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COMPUTER AIDED ANALYSIS OF A PLATE SUBJECTED TO A 

CIRCULAR MOVING LOAD 

 

ABSTRACT 

 

Moving load problem is investigated by engineers in various engineering 

structures such as beams and plates. In this thesis, vibration analyses of plates 

subjected to a circular moving load are realized by using the finite element method. 

ANSYS parametric design language is used to create the finite element model of the 

plate considering circular trajectory. A single point load is moved over the circular 

trajectory. The amplitude of the circular moving load changes harmonically on the 

plate. The two excitation frequencies corresponding to the first two natural 

frequencies of the plate are used in the harmonic circular moving load. The dynamic 

time response is obtained from the middle point of the plate. Natural frequencies of 

the plate are found with the modal analysis. The results are compared with the 

reference study. The effects of the radius of the circular path, forcing frequency and 

rotating speed of the moving load are investigated. 

 

Keywords: Moving load, finite element method, ANSYS, vibration of plate, 

rectangular plate, computer aided analysis. 
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DAİRESEL HAREKETLİ YÜK ALTINDAKİ PLAKANIN BİLGİSAYAR 

DESTEKLİ ANALİZİ 

 

ÖZ 

 

Hareketli yük problemi mühendisler tarafından kirişler ve plakalar gibi çeşitli 

mühendislik yapılarında incelenmektedir. Bu tezde, dairesel hareketli yük altındaki 

plakaların titreşim analizleri sonlu eleman yöntemi kullanılarak gerçekleştirilmiştir. 

Plakanın sonlu eleman modelini yaratmak için ANSYS parametrik dizayn dili 

dairesel yörünge dikkate alınarak kullanılmıştır. Bir tekil noktasal yük dairesel 

yörünge üstünde hareket ettirilmiştir. Dairesel hareketli yükün genliği plaka üstünde 

harmonik olarak değiştirilmiştir. Plakanın ilk iki doğal frekansı uyarım frekansı 

olarak harmonik dairesel hareketli yükte kulanılmıştır. Dinamik zaman cevabı, 

plakanın merkezinden elde edilmiştir. Plakanın doğal frekansları modal analiz ile 

elde edilmiştir. Sonuçlar referans çalışma ile karşılatırılmıştır. Dairesel yörüngenin 

yarıçapının, hareketli yükün zorlama frekansı ve dönüş hızı büyüklüğünün etkileri 

araştırılmıştır. 

 

Anahtar sözcükler : Hareketli yük, sonlu eleman yöntemi, ANSYS, plakaların 

titreşimi, dikdörtgen plaka, bilgisayar destekli analiz. 
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CHAPTER ONE 

INTRODUCTION 

 

1.1 Introduction 

 

Moving loads have important effects on the dynamic behavior of the engineering 

structures. Therefore, moving load problem has a large spectrum of applications in 

various engineering fields. The literature is extensive for vibration of structural 

system due to moving load. However, not much investigation was oriented toward 

the dynamic characteristics of a plate undergoing forces moving along a circular 

path. For this reason, we studied that topic in this thesis. 

 

1.2 Literature Review 

  

Hilal & Zibdeh (2000) studied fundamental problem of vibration of beams with 

general boundary conditions traversed by moving loads. The moving load is assumed 

to move with accelerating, decelerating and constant velocity type of motions.  They 

applied analytical formulation to Euler-Bernoulli beams and also examined the effect 

of different boundary conditions and damping. Wu, Whittaker & Cartmell (2000) 

used equivalent nodal force technique to beam structure for analyzing the dynamic 

response of structures to time variant moving load. Later, they implemented same 

technique to calculate the effect of two-dimensional motion of the trolley on the 

response of the base of the structure of a mobile gantry crane model. 

 

 Wu, Whittaker & Cartmell (2001) presented dynamic responses of the structures 

to moving bodies using combined finite element and analytical methods including 

inertia effects. Chen, Huang & Shih (2001) calculated the response of an infinite 

Timoshenko beam on a viscoelastic foundation to a harmonic moving load.  
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Kıral & Karagülle (2002) studied the moving load problem numerically to analyze 

the dynamic behavior of a single span beam resting on a elastic foundation by using 

I-DEAS.  

 

Pesterev, Bergman et al (2003) studied in depth the asymptotic of the solutions of 

the moving oscillator problem and found that in the limiting case the moving 

oscillator problem and the moving mass problem for a simply supported beam are 

equivalent in the sense of the beam displacements, but not in the sense of beam 

stresses. Also, it was shown that for small values of spring stiffness, the moving 

oscillator problem is equivalent to the moving load problem. Wu (2003) further 

extended this technique to plate element structure and presented one dimensional 

equivalent beam model to replace conventional 2-D plate under moving load. 

Pesterev, Yang et al. (2003) have considered the vibration of a beam subjected to a 

constant moving force. They formulate simple tools to calculate the maximum 

deflection of the beam for any given velocity of the moving force. It is shown that 

there exists a unique response-velocity dependence function, which satisfies a 

particular boundary function. A unique amplitude-velocity dependence function is 

formulated for simply supported and clamped-clamped beams. These unique 

functions are used to calculate the maximum beam response without complex 

computations. The response of the beam is approximated by means of the first 

natural mode. The response is also calculated by including higher modes. These 

responses are compared with each other and the error range is less than one percent. 

Therefore, it is concluded from this study that the first fundamental mode alone is 

sufficient for finding the maximum deflection of a beam when subjected to a moving 

force. Wu (2003) also probed a rectangular plate subjected to circular moving loads. 

Fig. 1.1 shows a rotating mechanism used in the this study. Oniszczuk (2003) 

analyzed undamped forced transverse vibrations of an elastically connected double 

beam system. The problem is formulated and solved in the case of simply supported 

beams and the classical modal expansion method is applied. Zibdeh & Hilal (2003) 

investigated the random vibration of simply - supported laminated composite coated 

beam traversed by a random moving load. The moving load is assumed to move with 

accelerating, decelerating and constant velocity type of motions.  
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Figure 1.1 (a) Sketch for the rotating mechanism and (b) its corresponding 
mathematical model for the dynamic analysis of the rectangular bottom plate. 

 

De Faria (2004) proposed a new strategy that is based on an adaptive mesh 

scheme and on the use of perturbation technique for Mindlin elements structure 

under off-nodal moving load. Bilello & Bergman (2004) presented a theoretical and 

experimental study on the response of a damaged Euler – Bernoulli beam traversed 

by a moving mass. Damage is modeled through rotational springs whose compliance 

is evaluated using linear elastic fracture mechanics. Kargarnovin & Younesian 

(2004) studied the response of a Timoshenko beam with uniform cross – section and 

infinite length supported by a generalized Pasternak – type viscoelastic foundation 

subjected to an arbitrary – distributed harmonic moving load. Kim (2004) 

investigated the vibration and stability of an infinite Euler - Bernoulli beam resting 

on a Winkler foundation when the system is subjected to a static axial force and a 

moving load with either constant or harmonic amplitude variations. The effects of 

load speed, load frequency, damping on the deflected shape, maximum displacement 
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and critical values of the velocity, frequency and axial force are also studied. Law & 

Zhu (2004) studied the dynamic behavior of damaged reinforced concrete bridge 

structures under moving vehicular loads. The vehicle is modeled as a moving mass 

or by four - degree of freedom system with linear suspensions and tires flexibility, 

and the bridge is modeled as a continuous Euler-Bernoulli beam simply supported at 

both ends.  

 

Wu (2005) presented a technique for predicting the dynamic responses of a two 

dimensional (2-D) full-size rectangular plate undergoing a transverse moving line 

load by using the one dimensional (1-D) equivalent beam model.  

 

A lot of analytical and numerical methods were improved to study moving load 

problem. Especially, the finite element method has been one of the most important 

solution techniques.  

 

The Finite Element Method (FEM) has become useful tool to find approximate 

solutions for the numerical analysis of a wide range of engineering problems. The 

finite element method makes it possible to build up complex geometrical shape 

easily. It is divided many small subdomain that is called finite elements. These 

elements are connected with the nodes. The equations of motion of the finite element 

model can be expressed in matrix form. Thus, it might be easier to develop a general 

purpose computer program that is able to produce accurate results for all kinds of 

parameters. The general purpose computer program allows not only change 

parameters of the analysis after the system is modeled, but also rerun analysis several 

times with minimal cost.  

 

In this study, the ANSYS computer aided engineering (CAE) software is used to 

model the plate to obtain the finite element discretization and finally to perform the 

finite element vibration analysis based on the Newmark integration method. Two 

different boundary conditions are considered in beam and plate vibrations (clamped – 

clamped and hinged – hinged). The results obtained of plate in this study are 

compared with the results obtained of Wu’s study (2003).  
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1.3 Thesis Overview 

 

The solution of the moving load problem is performed by developing computer 

programs to calculate the dynamic displacements of the plate subjected to circular 

moving loads. The thesis is organized as follows: 

 

Chapter 1 includes the literature review on the moving load problem and overview 

of the thesis. Chapter 2 vibration analyses of hinged-hinged and clamped-clamped 

plates subjected to circular moving load is presented. Vibration results are compared 

with the Jia-Jang Wu’s study. Chapter 3 has the conclusions of the present study. A 

list of the computer programs is included in the Appendices. 
 

 

 

 



 

CHAPTER TWO 

RECTANGULAR PLATE UNDER CIRCULAR MOVING LOAD 

 

2.1 Introduction 

 

Vibration of structural system due to moving load is an important problem in 

engineering. The finite element analysis is a computer aided numerical technique 

useful in solving for the response of a structure subjected to loading. Finite element 

model of the structure is created easily in many engineering programs. The model is 

divided into small elements. These elements are connected by nodes at which the 

finite element boundary conditions are applied. Mass and stiffness matrices are 

created for each element and combined simultaneous equations are solved. Finite 

element programs use graphic displays to review results.  

 

This chapter includes two main parts. Modeling and vibration analyses of hinged-

hinged and clamped-clamped plates subjected to circular moving load is presented at 

first. Then, the vibration analysis of plates is studied with different parameters. 
 

2.2 Modeling 

 

ANSYS parametric design language is used to develop the finite element model of 

the plate considering circular trajectory. The parameters in the developing code lx, ly, 

h, r0, dthdeg and bcsel are length, width, thickness, radius of circular path, angle 

between nodes on circular path and boundary condition selection parameter, 

respectively.  

 

The finite element model of the plate is constructed using SHELL63 elements by 

ANSYS. SHELL63 that is elastic shell has six degrees of freedom at each node: 

translations in the nodal x, y, and z directions and rotations about the nodal x, y, and 

z-axes. Stress stiffening and large deflection capabilities are included. The geometry, 

node locations and the coordinate system of SHELL63 are shown at Figure 2.1. The 
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element is defined by four nodes, four thicknesses, elastic foundation stiffness, 

and the orthotropic material properties.   

 

 
Figure 2.1 SHELL63 geometry (ANSYS, 2004) 

 

First, nodes on circular path are created at the model. ANSYS uses random node 

numbers to generate mesh areas. Therefore, three circles are formed and generate 

elements between their nodes to order of node numbers. And then, keypoints on 

circular path and edge of plate are produced. Two areas are created between 

keypoints. First area is circle generate between centre keypoint of plate and 

keypoints on circular path. Second area is whole plate generate between centre 

keypoint of plate and edge keypoints of plate. First area is subtracted from second 

area. Finally, all areas are meshed and applied boundary conditions. Subtracting 

areas is realized by a developed ANSYS program which is below: 

  

k1=kdc+1 

*do,i,1,kdc1-2,1 
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a,1,k1,k1+1 

k1=k1+1 

*if,k1,eq,kdc1,then 

a,1,kdc1,kdc+1 

*endif 

*enddo 

aadd,all 

a,kdc2+1,kdc2+2,kdc2+3,kdc2+4,kdc2+5,kdc2+6,kdc2+7,kdc2+8 

asba,1,kdc1, 

 

All the translational DOF for the boundary nodes along width edge are 

constrained except that the DOF of rotations about the y-axis are free for the hinged-

hinged plate and all the DOF for the same as boundary nodes of hinged-hinged plate 

are constrained. 

 

 

A uniform undamped clamped-clamped rectangular plate is shown in Figure 2.2. 

The dimensions of the plate are; length mlx 2= , width  and 

thickness . The plate is modeled with 329 elements and 406 nodes and 

made of steel with density a , modulus of elasticity 

 and Poisson’s ratio

mly 1=

mh 01.0=
3/7820 mkg=ρ

2/8.206 mGNE = 29.0=υ .  
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Figure 2.2 Finite element model of plate. 

 

2.3 Dynamic Response Study 

 

2.3.1 Free Vibrations of the Plate 

 

The usual first step in performing a dynamic analysis is determining the natural 

frequencies and mode shapes of the structure. These results characterize the basic 

dynamic behavior of the structure and are an indication of how the structure will 

respond to dynamic loading. Modal analysis is performed by ANSYS with Block 

Lancozs method to calculate the lowest 10 natural frequencies and the corresponding 

mode shapes.  

 

The lowest 10 mode shapes of clamped and hinged plate are shown in Figure 2.3 

and Figure 2.4. 

 

The four natural frequencies 
ipω  (i=1, 3, 6, 9) as shown in Figure 2.3 are called 

the beamlike modes. 
ipω  (i=2, 4, 5) are called the torsional modes because each un-

constrained node rotates about the longitudinal centre line of the plate. 
ipω  (i=7, 8, 

10) are called the hybrid modes. 
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Figure 2.3 First 10 natural mode shapes of clamped plate. 

 

The four natural frequencies 
ipω  (i=1, 3, 5, 9) as shown in Figure 2.4 are called 

the beamlike modes. 
ipω  (i=2, 4, 6) are called the torsional modes because each un-

constrained node rotates about the longitudinal centre line of the plate. 
ipω  (i=7, 8, 

10) are called the hybrid modes. 

 

 
Figure 2.4 First 10 natural mode shapes of hinged plate. 
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The comparisons of natural frequencies of our model and Jia-Jang Wu’s model 

are shown in Table 2.1. It shows that our model is most sensitive than Jia-Jang Wu’s 

model. Our first 2 mode shapes are similar acting his model that presents in Figure 

2.5 and Figure 2.6. 

 
Table 2.1 The lowest 10 natural frequencies of Clamped and Hinged plate for our and Wu’s study. 

The lowest 10 natural frequencies of Clamped plate and Hinged plate 
Natural Frequencies of 
Clamped Plate, ω (Hz) 

Natural Frequencies of 
Hinged Plate, ω (Hz) Mode 

No 
Our model Wu’s 

model Our model Wu’s 
model 

  
  
  
  
  
  
  
  
  
  
  
  

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

  

13.6240 
22.3510 
37.6010 
51.2120 
67.6350 
73.9250 
90.0110 
98.4230 
122.45 
139.96 

13.8201 
20.5217 
38.8017 
47.1634 
55.2698 
75.7331 
78.0695 
84.0931 
104.7738 
127.9466 

  

5.8902 
17.1080 
23.8550 
40.1450 
54.0630 
65.1470 
72.6850 
90.8580 
96.5130 
116.31 

5.9015 
15.7954 
24.1024 
36.6485 
53.8316 
55.4407 
66.3103 
70.9606 
95.3750 
101.1105 
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Figure 2.5 Mode shapes for the clamped–clamped plate: (a) 1st mode and 

(b) 2nd mode of Wu’ model and (c) 1st mode and (d) 2nd mode of ours. 

(Wu, 2003, Fig. 6) 

 

 
Figure 2.6 Mode shapes for the hinged–hinged plate: (a) 1st mode and (b) 

2nd mode of Wu’ model and (c) 1st mode and (d) 2nd mode of ours.(Wu, 

2003, Fig. 5) 
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2.3.2 Vibration Response of the Plate 

 

The plate subjected to a sinusoidal force tSinsF ω10= N moving along a circular 

path with radius is studied. mr 3.0= mxG 1=  and myg 5.0=  are coordinates of the 

center of the circular path. The sinusoidal force moves along the circular path 

counter clockwise with a constant rotating speed for 10s and then keep free vibration 

following time for 10s. In this study, first two natural frequencies were used to 

forcing frequency in Figure 2.7(a) when Hz8902.5=ω , in Figure 2.7(b) 

when Hz1080.17=ω , in Figure 2.8(a) when Hz6240.13=ω  and in Figure 2.8(b) 

when Hz3510.22=ω .  

 

The time step is the time increment between consecutive time points. Natural 

frequencies are used to determine the time step. The time step is chosen as 

Δt=1/(20*fi), where fi is the ith natural frequency to be considered at belonging the 

natural frequency numbers i=1, 2, 3 etc. The time step, Δt, is 0.008 s, 0.03 s, 0.004 s 

and 0.002 s respectively.  

 

The comparison of the time histories for the vertical z displacements of centre of 

our plates and Wu’s plates is presented in Figure 2.7 and Figure 2.8.  

 

The response amplitude raises with the expansion of time t in the first 10s because 

of undamped forced vibrations and then stays unchanged after 10s caused by 

undamped free vibrations in Figure 2.7(a) and Figure 2.8(a). The centre of the plate 

is located at the top of the first mode shape as shown in Figure 2.5 and Figure 2.6 so 

that forced and free vibration responses for the centre of the plate are nearly 

symmetric with respect to the static equilibrium position of the centre. Our model has 

lower frequency than Wu’s model as shown in Table 2.1. Hence a comparison 

between Figure 2.7(a) and (c) shows that our response amplitude is higher than Wu’s 

response amplitude. 
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The centre of the plate is located on the line node of the second mode shape as 

shown Figure 2.5 and Figure 2.6. Thus the maximum central vertical z displacement 

of center is very small and any small responses of the plate will reach this maximum 

value. Therefore the response amplitude does not raise with the expansion of time t 

for the first 10s. The plate vibrates freely after 10 s. Whole these analysis responses 

are obtained the truth of our model.  

 

 
Figure 2.7 Time histories for the vertical z displacements of the centre of hinged plate subjected to a 

single sinusoidal force, tSinFs ω10= N, moving along a circular path of radius  with a 

constant forcing frequency 

mr 3.00 =

ω  (a) Hz8902.5=ω , (b) Hz1080.17=ω , (c) and (d) are Wu’s 

results (Wu, 2003, Fig. 7). 
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Figure 2.8 Time histories for the vertical z displacements of the centre of clamped plate subjected to 

a single sinusoidal force, tSinFs ω10= N, moving along a circular path of radius  with a 

constant forcing frequency 

mr 3.00 =

ω  (a) Hz6240.13=Ω , (b) Hz3510.22=ω , (c) and (d) are Wu’s 

results. (Wu, 2003, Fig. 8) 

 

2.2.2.1 Vibration Analysis of the Plate with Different Parameters 

 

Both the rotating speed ω and the forcing frequency Ω are equal to the first two 

natural frequencies and each other at the previous subsection in this chapter. In this 

subsection, the moving load with various rotating speed and forcing frequency are 

studied. 

 

The vertical z displacements of the centre of clamped plate subjected to a single 

sinusoidal force are presented in Figure 2.9, tSinsF ω10= N, moving along a circular 

path of radius  with constant forcing frequency mr 3.0= Hz6240.13=ω  for various 
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rotating speed. The vertical z displacements of the centre of clamped plate subjected 

to a single sinusoidal force are shown in Figure 2.10, tSinsF ω10= N, moving along a 

circular path of radius with constant rotating speed mr 3.00 = Hz6240.13=ω  for 

various forcing frequency. Displacement is reached the maximum value at the first 

natural frequency in Figure 2.9 and Figure 2.10. When displacement is made a 

suddenly peak at first natural frequency value in Figure 2.9, distribution is made a 

regular increase in Figure 2.10. Therefore, when rotating speed equals to first natural 

frequency, is more important than when forcing frequency equals to first natural 

frequency.  

 

0
0.0001
0.0002
0.0003
0.0004
0.0005
0.0006
0.0007
0.0008
0.0009

0 5 10 15 20 25 30 35

ω (Hz)

Um
ax

 (m
)

 

Ω=ω1
r0=0.3m 

Figure 2.9 The vertical z displacements of the centre of clamped plate subjected to a single 

sinusoidal force, tSinFs ω10= N, moving along a circular path of radius  with constant 

forcing frequency  for various rotating speed. 

mr 3.00 =

Hz6240.13=Ω
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Figure 2.10 The vertical z displacements of the centre of clamped plate subjected to a single 

sinusoidal force, tSinFs ω10= N, moving along a circular path of radius with constant 

rotating speed 

mr 3.00 =

Hz6240.13=ω  for various forcing frequency. 

 

The FE model results of the plate subjected to moving load with different rotating 

speed and forcing frequency are shown in Figures 2.11 - 2.15. When radius 

decreases, displacements are increase. It is reason that center of plate has a maximum 

peak at first natural frequency. It is show that rotating speed is important. When 

rotating speed equals to first natural frequency, displacement values are higher than 

other results. 

 

The computer codes developed by ANSYS parametric design language for the 

plate model  and the whole analysis of hinged - hinged plate and clamped – clamped 

plate are given Appendix. 
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Figure 2.11 The vertical z displacements of the centre of clamped plate subjected to a single 

sinusoidal force, tSinFs ω10= N, moving along a circular path of various radius with constant 

rotating speed and forcing frequency Hz6240.131 ==Ω= ωω . 
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Figure 2.12 The vertical z displacements of the centre of clamped plate subjected to a single 

sinusoidal force, tSinFs ω10= N, moving along a circular path of various radius with constant 

rotating speed Hz10=ω  and forcing frequency Hz6240.131 ==Ω ω . 
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Figure 2.13 The vertical z displacements of the centre of clamped plate subjected to a single 

sinusoidal force, tSinFs ω10= N, moving along a circular path of various radius with constant 

rotating speed Hz25=ω  and forcing frequency Hz6240.131 ==Ω ω . 
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Figure 2.14 The vertical z displacements of the centre of clamped plate subjected to a single 

sinusoidal force, tSinFs ω10= N, moving along a circular path of various radius with constant 

rotating speed Hz6240.131 == ωω  and forcing frequency Hz10=Ω . 
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Figure 2.15 The vertical z displacements of the centre of clamped plate subjected to a single 

sinusoidal force, tSinFs ω10= N, moving along a circular path of various radius with constant 

rotating speed Hz6240.131 == ωω  and forcing frequency Hz25=Ω . 

 

 



 

 

CHAPTER FOUR 

CONCLUSIONS & FUTURE WORKS 

 

A circular moving load on a rectangular plate is modeled using ANSYS. The code 

that is developed in ANSYS parametric design language (APDL) is used to create the 

finite element model of the plate considering circular trajectory. Forced vibration 

analysis of hinged-hinged and clamped-clamped plates under the effect of circular 

moving load using finite element method is successfully carried out with the help of 

general finite element program ANSYS. A single point load is moved over the 

circular trajectory. The amplitude of the circular moving load changes harmonically 

on the plate. The two excitation frequencies corresponding to the first two natural 

frequencies of the plate are used in the harmonic circular moving load. The dynamic 

time response is obtained from the middle point of the plate. Natural frequencies of 

the plate are found with the modal analysis. The results are compared with the 

reference study. The effects of the radius of the circular path, forcing frequency and 

rotating speed of the moving load are investigated. 

 

For free response analysis, the lowest mode shapes of plate can be represented as 

beamlike, torsional and hybrid modes. For vertical displacement of plate under single 

moving load, the beamlike modes are dominant and very similar to mode shapes in 

beam element. 

 

When the excitation frequency selected as the first natural frequency of the plate, 

resonance is observed. The response amplitude increases at each cycle. When the 

excitation frequency selected as the second natural frequency of the plate, resonance 

is not observed because of second mode shape is not excited. 

 

Circular moving load problem can be investigated under the effect of damping 

ratio in the future work, and also it can be analyzed for different frequencies and 

different structures. 
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APPENDIX 

 

THE COMPUTER CODES DEVELOPED BY APDL 

 

!========================================================== 

! This program is used to create finite element model of plate 

!========================================================== 

/config,nres,100000 

/prep7 

/title,Circular Moving Force of Rectangular Plate Model 

!----***plate model parameters***-------- 

r0=0.3 

dr=r0/5 

dthdeg=12  !enter degree 

lx=2 

ly=1 

h=10e-3 

dsmesh=r0/3 

bcsel=2    ! 1-Clamped 

  ! 2-Hinged 

!---------------------------------------- 

pi= 4*atan(1) 

dth=dthdeg*pi/180   

thson=2*pi 

mp,ex,1,206.8e9                ! Elasticity modulus for metal 

mp,dens,1,7820                 ! Density   

mp,nuxy,1,0.29                 ! Posisson's ratio 

et,1,shell63 

r,1,h,h,h,h 

nd=1 

n,nd,0,0 

*do,th,0,thson-dth,dth 

 



 26

x=r0*cos(th) 

y=r0*sin(th) 

nd=nd+1 

n,nd,x,y 

*enddo 

ndc=nd 

r01=r0+dr 

nd=ndc 

*do,th,0,thson-dth,dth 

x=r01*cos(th) 

y=r01*sin(th) 

nd=nd+1 

n,nd,x,y 

*enddo 

ndc1=nd 

r02=r0-dr 

nd=ndc1 

*do,th,0,thson-dth,dth 

x=r02*cos(th) 

y=r02*sin(th) 

nd=nd+1 

n,nd,x,y 

*enddo 

ndc2=nd 

eind=1 

nel=ndc-1-1 

en,eind,2,ndc+1,ndc+2,3 

egen,nel,1,1,1 

en,ndc-1,ndc,ndc1,ndc+1,2 

eind=ndc 

en,eind,2,ndc1+1,ndc1+2,3 

egen,nel,1,ndc,2*ndc 
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en,2*(ndc-1),ndc,ndc2,ndc1+1,2 

:line5  

kd=1 

k,kd,0,0 

*do,th,0,thson-dth,dth 

x=r0*cos(th) 

y=r0*sin(th) 

kd=kd+1 

k,kd,x,y 

*enddo 

kdc=kd 

r01=r0+dr 

kd=kdc 

*do,th,0,thson-dth,dth 

x=r01*cos(th) 

y=r01*sin(th) 

kd=kd+1 

k,kd,x,y 

*enddo 

kdc1=kd 

r02=r0-dr 

kd=kdc1 

*do,th,0,thson-dth,dth 

x=r02*cos(th) 

y=r02*sin(th) 

kd=kd+1 

k,kd,x,y 

*enddo 

kdc2=kd 

*if,kon,eq,1,then 

*go,:line10 

*endif 
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k,kdc2+1,lx/2,0   ! 1 

k,kdc2+2,lx/2,ly/2   ! 2 

k,kdc2+3,0,ly/2   ! 3 

k,kdc2+4,-lx/2,ly/2  ! 4 

k,kdc2+5,-lx/2,0   ! 5 

k,kdc2+6,-lx/2,-ly/2  ! 6 

k,kdc2+7,0,-ly/2   ! 7 

k,kdc2+8,lx/2,-ly/2  ! 8 

k1=kdc+1 

*do,i,1,kdc1-2,1 

a,1,k1,k1+1 

k1=k1+1 

*if,k1,eq,kdc1,then 

a,1,kdc1,kdc+1 

*endif 

*enddo 

aadd,all 

a,kdc2+1,kdc2+2,kdc2+3,kdc2+4,kdc2+5,kdc2+6,kdc2+7,kdc2+8 

asba,1,kdc1, 

kon=1 

*go,:line5 

:line10 

a,1,kdc1+1,kdc1+2 

*repeat,kdc-1-1,0,1,1 

a,1,kdc2,kdc1+1 

esize,dsmesh 

amesh,all 

nummrg,node 

/VIEW,1,,,1  

*if,bcsel,eq,1,then 

!Clamped BC 

nsel,s,loc,x,(-lx/2) 
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d,all,all,0 

nsel,A,loc,x,(lx/2) 

d,all,all,0 

*elseif,bcsel,eq,2 

!Hinged BC 

nsel,s,loc,x,(-lx/2) 

d,all,ux,0 

d,all,uy,0 

d,all,uz,0 

d,all,rotx,0 

d,all,rotz,0 

nsel,A,loc,x,(lx/2) 

d,all,ux,0 

d,all,uy,0 

d,all,uz,0 

d,all,rotx,0 

d,all,rotz,0 

*endif 

nsel,all 
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!========================================================== 

! This program is used to perform the analysis of modal and transient 

!========================================================== 

/input,pmnew,txt 

f0=10 

excel=2   !1-f1 

    !2-f2 

ansel=1 

!------------------------------------------------------------ 

!******* Select Analysis ******* 

! 1- Modal analysis 

! 2- Transient analysis of sinusoidal force 

!------------------------------------------------------------- 

*if,ansel,eq,1,then 

/solu   ! Modal Analysis 

antype,modal,new  

modopt,lanb,10           

solve 

*get,f1,mode,1,freq 

*get,f2,mode,2,freq 

finish 

/POST1 

SET,LIST 

finish 

*elseif,ansel,eq,2 

/solu   ! Modal Analysis 

antype,modal,new  

modopt,lanb,10           

solve 

*get,f1,mode,1,freq 

*get,f2,mode,2,freq 

finish 
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*if,excel,eq,1,then 

f=f1 

*elseif,excel,eq,2 

   f=f2 

*endif 

dt=1/f/20 

w=2*pi*f 

t0=1/f 

dto=t0/(ndc-1) 

tson=1 

nloop=nint(tson/t0) 

/solu   ! Transient analysis for moving load problem 

antype,trans,new 

outres,all,all 

kbc,1 

tintp,,0.25,0.5,0.5 

timint,on,ALL    

trnopt,FULL 

deltim,dt 

nind=0 

*do,i,0,t0,dto 

  nind=nind+1 

*enddo 

ny=nind 

*DIM,fs1,,ny  ! DEFINE ARRAYS WITH DIMENSION     

*DIM,fs2,,ny 

*DIM,fs3,,ny 

*DIM,fs4,,ny 

*VFILL,fs1(1),RAMP,0,dto ! ARRAY A(N) : TIME IN SECOND 

*VFACT,w ! MULTIPLYING FACTOR : FREQUENCY = (2*pi*f) 

*VFUN,fs2(1),COPY,fs1(1)! RESULT ARRAY fs2(N)=FREQUENCY*fs1(ny)   

*VFUN,fs3(1),SIN,fs2(1)  ! ARRAY fs3(N) : SIN(fs2(ny))  
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*VFACT,f0   ! MULTIPLYING FACTOR : AMPLITUDE A 

*VFUN,fs4(1),COPY,fs3(1) ! ARRAY fs4(ny) : f0*fs3(ny)  

tlp=0 

j1=1 

j2=0 

*do,i1,1,nloop,1  

   f,2,fz,fs4(1) 

   time,tlp+j1*dt/100 

   solve 

  *do,nd,2,ndc-1,1  

   f,nd,fz,0 

   f,nd+1,fz,fs4(j1+1) 

   time,tlp+j1*dto 

   solve 

   j1=j1+1 

   flist,2,ndc,cn    

  *enddo 

j1=1 

j2=j2+1 

tlp=j2*t0 

 f,ndc,fz,0 

 time,tlp+dt/1000 

 solve 

eplot 

*enddo 

ns=nd 

*if,excel,eq,2,then 

f,ns,fz,f0 

*endif 

time,tson+tson 

solve 

/post26 
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nsol,2,1,u,z 

/axlab,x,time(sec) 

/axlab,y,displacement(m) 

plvar,2 

finish 

*endif 

 


