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ON THE SOLUTIONS OF NON-LINEAR INITIAL VALUE PROBLE MS

ABSTRACT

In this thesis, numerical solution of the secondeornon-linear initial value
problems is considered by differential transfornthod. This method can easily be
applied to non-linear initial value problems andiese solutions are obtained. After
the transformation, we have formulated series @oeffts very simply for the

considered problems.

Keywords: Non-Linear Initial Value Problem, Differential Tnsform Method.



DOGRUSAL OLMAYAN BA SLANGIC DE GER PROBLEMLER iNiN
COZUMLER 1 UZERINE

oz

Bu tezde, ikinci dereceden glosal olmayan b#angic dger problemlerinin
yaklasik ¢cozumleri diferensiyel dogim yontemi ile incelenmiir. Bu ydntem
dogrusal olmayan bgangic dger problemlerine kolayca uygulanabiknve seri
cbzimleri olgturulabilmistir. Donilsimden sonra, incelenen problemlerin seri
katsayilari elde edilngiir.

Anahtar sozcukler. Dogrusal Olmayan Bgangic Deer Problemi, Diferensiyel
Donlstim Yontemi.
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CHAPTER ONE
INTRODUCTION

1.1 Previous Studies

In this study, we consider the second order noafidiferential equation
d’y
dt?

where f is continuous over some subset of the plane. Tit&ali value problem

= tly.y), (1.1.1)

associated with (1.1.1) is to find a functian satisfying (1.1.1), defined in an

interval | containing X,,x, and satisfying the initial conditions

O(ty) = X, D‘(to) =X

These problems may be too complicated to solveyaaally. Alternatively, the
numerical methods can provide approximate solutiminthe problems. The Euler
Method, the Taylor Method and the Runge — Kuttahmés$ serve as an introduction
to numerical methods for solving systems of diffiitied equations. The differential
transformation technique is one of the numericalthoes for ordinary(partial)
differential equations which uses the form of polynals as the approximation to
the exact solution. However, the Taylor Method rezpithe calculation of high-
order derivatives, a difficult symbolic and complgxoblem. The concept of
differential transformation was first proposed kyod in 1986 and it was applied to
solve linear and nonlinear initial value problemseiectric circuit analysis (Zhou,
1986). This method has been applied to solve anseemrder nonlinear differential
equation that describes the under damped and awepedd motion of a system
subject to external excitations (Jang and Chen7)198 a recent work, Jang, Chen
and Liy introduced the application of the concefpthe differential transformation of
fixed grid size to approximate solutions of linead nonlinear initial value problems
(Jang, Chen and Liy, 2000). Jang states that ‘iffierential transform is an iterative
procedure for obtaining Taylor series solutionsglifferential equations” (Jang, Chen
and Liy, 2001). Although the Taylor series methedjuires more computational
work for large orders, the present method reduicessize of computational domain



and is applicable to many problems easily. Thighaoe has been applied to
eigenvalue problems and Sturm — Lioville eigenvgtoeblem by Hassan (Hassan,
2002). This technique of fixed grid size is appliegolve higher — order initial value
problems by I. H. Abdel — Halim Hassan (Abdel andssan, 2004). Ayaz has
obtained numerical solution of linear differentiablgebraic equations by using this
method (Ayaz, 2004). Abbasov used this method tainkapproximate solutions of

some linear and nonlinear equations related toneeging problems and observed
that the numerical results are in good agreemeti Wwie analytical solutions

(Abbasov and Bahadir, 2005).

In this thesis, the differential transform methsdapplied to the nonlinear initial
value problems. This method does not evaluate ¢hgatives symbolically; instead,
it calculates the relative derivatives by an iteratprocedure described by the
transformed equations obtained from the originabagigns using differential

transformation.

1.2 Existence And Uniqueness Theorems

Definition 1:Consider the first order differential equation

dx _
Kot (12.1)

where f is continuous over some subset of the pldine initial value problem
associated with (1.2.1) is to find a functian satisfying (1.2.1), defined in an

interval | containing xand satisfying the initial conditiofl (t, ) = x,.

We will give abstract existence and uniquenessrémdirst and then apply it to

initial value problems.

Let T be a mapping on continuous functioms.E —» E

E ={u(x): uis continuouson theclosedintervall andA< u < B}



Definition 2:A mapping T :E - E is called a CONTRACTION MAPPING if

there is a constant, 0 < a <1, such that for any, v E

max
xdl

u(x)-v(x)(

Theorem 1.2.1. (Contraction Mapping Theorem — Fixed Point Theordrmsj
T:E - E be a contraction mapping. There exists a uniquetfan y = D(x) in E

such that

T(O(x)=0(x) for all xOl

( Erwing Kreyszig, 1978)
(Ty=y)

Proof. The uniqueness follows from the definition. Supmpds,¥ are two

functions in E such that

TO(X)=0(x), T(W(x)=w(x) forall xOI

But a <1 so we must have

?S)I(‘D(X)_LP(X)( =0 ie, O(x)=w(x)

For existence, we apply an iteration scheme c#&ledrd’s Method. Leuo(x) be

any function in E. Let



c -
=]
—~
X
—

|

=T(u,,(x)) thenu, (x)OE

Since T is contraction,ls get closer each other. For= k

o un () = U () =?STT(Um_l(X))—T(uk_l(x)X
=a. )r?Da)I( Ups (X) —U, (X)) =2 )I’?Da)l( (mZ(X)) (Uk z(X))(
<q? mS>|< U (X) —U (X)) =02 r)I‘SﬂT u, (X)) - k3(x))(
< T, 09-U,(x)

But u,(x)O1 for all n, henceA<u,(X)<B or |u,(x)|<C = ma><{jAHB|} So for

all m=k we have

. max

X1 < ¥ {up (9] +us (9}

U () —u () < a Up-i (X) = Up (X)

<a*(C+C)=2Ca* for all xOlI (1.2.2)

SinceO<a<l,a* -0 as k - » so

lim|u, ()~ Uy (X)] =

So{u, (x)} form a Cauchy sequence therefore

limu, (x) =0 (x) exists for allx 0|

By taking the limit in (1.2.2) we get
[0(x) —u, (¥)| < 2Ca* for all xO | (1.2.3)



We will show that[] is continuous on I. Let >0 be given andx, !l . Since

a® - 0 ask - « there is a numbeplsuch that2Ca* <§.

Hence by (1.2.3)

£
O(x)—-u, (X)|<= for all xOI
009 -0, (0] <

Since u,, is continuous on |, there existsda > 0 such that ifx—x,| <& then
‘uko (X) = Uy, (xo)‘ < % Now supposgx —X,| < d. Then

000 =0(%) < |70 =y (] +|u, (0 = U, ()] *|u, (%) =D (%) < €
So, 0(x) is continuous on I.

Also since A<u,(x) < B by taking the limit we get
A<O(x)<B so OX)0Oe
We now show thaT(D (x)) =0(x) for all xOI1.

|T(Uk (X)) —T(D (X)X <a max < 2Cqg &+

x4l

u, () ~ 0 (x)

So,
LiETJOT(uk(x)):T(D(x)) for all xO1

Ifweletm=k+1in (1.2.2)

2Cak 2 |y, () =t ()] =T (1, (x)) = u (X)
lim (T (u, () - u, (%)) =0
lim T(u, ()~ im u, () =0=T(D(x)-0(x) =0

Therefore,
T(O(x)=0(x) for all xOI



We can apply these theorems to the initial valwblem.

dx _
a = f(t,X)
X(to): Xy

Lemma 1. A function x =[(t) is a solution to the initial value problem if and

only if it is satisfies the integral equation.

t

0t)=x, +[ (£, 0(6))dé for all tOI

Proof.

By integrating

j’ﬁ(dtzj'f({, x(&))dt  for all tO1

t

X(t)-x(t,) = | (¢, x(©))de

[} (t) Xo ty

D(t):x0+jf(5,m(5))df

Lemma 2.Let f(t,x) be continuous on a rectangle R.

R={(t,x):a<t<b, A< x< B} then there is a constant M such that

[f(t,x)<M forall (t,x)OR

Proof. M is just the maximum of the functiqri (t,x)| which is continuous on the

closed set R.

So|f(t,x) <M



Lemma 3. Let g_f be continuous on a rectangle R. Then there isrestemt K
X

such that

[£(tx)= flt=%) <K|x =x| forall {t,x)0R, (tx)0R

ma
Proof. If we takeK = R T;—f it follows from the Mean-Value Theorem. In this

X

case we say that f(x,y) satisfies Lipschitz continu ]

Theorem 1.2.2. Suppose f(t,X) an%f— are continuous on R then there is a unique
X

solution to the initial value problem in some inalr |x—X,| <h. (D. H. Griffel,

1993)

dx
Proof. — = f
roo m (t, x)

x(t,) = %, is to equivalent to find (t)

t

O(t)=x, + [ (&, D(&)E  for [t-t5|<h

to

if T:x0+jf(f, )d&

S0)=T(O0)

So, we can apply Fixed Point Theorem for the ert#teuniqueness solution.
]



CHAPTER TWO

DIFFERENTIAL TRANSFORM METHOD

2.1 Description of Differential Transform M ethod

Differential transform of asmooth function y(x) is defined as follows:

Y(k)=1{dky(x)}xzo , 2.1.1)

where y(x) is the original function and Y (k) is the transformed function, which is
also called the T-function. Differential inverse transform of Y (k) is defined as:

y(x)=>" x*Y(k) (2.1.2)

Combining (2.1.1) and (2.1.2), we obtain:

y(x) = ZO%[ ()LO (2.1.3)

Series (2.1.3) implies that the concept of differential transform is derived from
Taylor series expansion, but the method does not evaluate the derivatives

symbolically.

However, relative derivatives are calculated by an iterative way which are
described by the transformed equations of the original functions. In this thesis, we
use the lower case letter to represent the original function and upper case letter
represent the transformed function.



From (2.1.1) and (2.1.2), it is easily proven that the transformed functions comply
with the basic mathematical operations shown in the theorems.

In actual applications, the function y(x) is expressed by afinite seriesand (2.1.2)
can be written as

y(x)=>"x*Y(k) (2.1.4)

Series (2.1.3) impliesthat Y x“Y(k) is negligibly small. In fact, m is decided by

k=m+1

the convergence of natural frequency in thisthesis.

The fundamental theorems of the one- dimensional differential transform are

given below.

Theorem 2.1.1. If w(x) = y(x) ¥ z(x), then W(k) =Y (k) F Z(k)

Proof. By using the definition of the transform:

_1dy(x ok
Y(k)—EW : y(x) —éx Y (k)
_1d*z(x) -
Z(k) —ET , Z(X) = ;X Z(k)
Y(K) T Z(ky = LAY o 1 d72(x)

Klodx* kI dx
_ _ 1 d* _ .
Y(K)F Z(k) = Ed—k[y(x) T z(x)] by the hypothesis.
T ax

y(X) F z(x) = w(x)

d*“w(x)
dx*

Y(K) F Z(K) :% =W(k) (2.1.5)



W(X) = i XY (K) F i x*Z(K)

= ixk (Y(K)FZ(K))

By using the definition (2.1.5)

wx) = 3 XW(K)

Theorem 2.1.2. If w(x) = cy(x), then W(K) = cY (k)

Proof. By using definition of the differential transform

Wl = o]

where c is a constant. Thus, we have

_[1dym]_
W(k)—c{k! " } cY(K)

W(K) = cY(K)

Theorem 2.1.3. If w(x) = ?, then W(K) = (k +DY(k +1)

Proof. By utilizing the definition of transform:

V() = Y XY

y(X) =Y (0) + xY(1) + x°Y(2) + x°’Y(3) +...

10

(2.1.6)



By taking the derivative of (2.1.6)

% = Y(1) +2XY(2) + 3Y(3) +...

dy _ & ks
—Z =) X kY(k
o kZ;, (k)

dy

By starting the index from k = O instead of k = 1 we can obtain o asfollows:

X

W(X) = d?;(;‘) - i XK (K + DY (K +1)

Consequently, we obtain
W(K) = (kK +1Y(k +1)

11

]
n |
Theorem 2.1.4. If w(x) =2 dyﬁx) then W(k) = & ;”)'Y(k +n)
X !
Proof. By using the definition of the transform
y(x) =2 x“Y(K)
k=0
y(X) =Y(0) + xY(D) + x2Y(2) + x°Y(3) +... (2.1.7)

Step by step if we take the derivative of (2.1.7)



12

dz‘(;) =Y (1) + 2XY(2) + 3x2Y(3) + ...

dy(x) =3 X (k + DY (k +1)

k=0

dLX(ZX) =2Y(2) +6xY(3) +...

[

o” y(x) =3 XK (k+D)(k+2)Y (k +2)

k=0

w(x) = I YX = 3 x4 (K +1)(K +2)...(k+ DY (K + ).

k=0

We have
wik) =KV (k)
k!
This can be proved by mathematical induction. -
Theorem 2.1.5. If w(x) = y(X) z(x), thetW(k) = iY(m)Z(k -m)
m=0
Proof. By the definition of transform,
w(X) = miome(m) JZ:;XjZ(j)
W(X) = i X~ Zk:Y(m)Z(k -m)
k=0 m=0
We get
W(k) = iY(m)Z(k -m)
"~ L]

Theorem 2.1.6. If W(X) =V, (X).Y,(X)...y,-,(X).y,(X), then

WK =Y S SV K)Y, (k — k)Y (Ko -

Ky-1=0 kn_,=0  k,=0 k=0

I(n—Z)XYn (k - I(n—l)

(A. Arikgglu and I. Ozkol, 2005)



Proof. By using the definition of the transform
1
W(0) = [¥:09209-+ Y01 (¥, (09 o, =% (O (0)- Y4 (0¥, ()

W =3 0952009, 0],

_ Y00 Y2 () Yinea () Yo () + Y3 (Y5 ()Y () Yo () + ...
FY109Y500--Yat (00 (0 + V(02 (- Yaa (VRO |,
W(D) =Y, (DY(0).-Y,4 (0)Y, (0) + Y, (0Y; (D)., 4 (O)Y, (0) +..
+Y,(0)Y,(0)...Y, 4 (DY, (0) + Y, (0)Y,(0)...Y,,4 (0)Y, (1),

W(2) =Y, (DY, (D)Y(0)...Y, (0) + Y, (DY, (0) Y (1)...Y, (0) +...
+Y,(0Y,(0)Y(0)...Y, () + Y, (0, (DY, (D-...Y, (0) +...
+Y,(0)Y,(0)--Y,4 (DY, (D +...+ Y, (2, (0Y5(0)..Y, (0)
+...+Y,(0)Y, (0)Y,(0)..Y, (2)

In general, we have

k Kn-1

wik=> 3.3 in(kl)Yz(kz “k )Y (K —k )Y (k=K )

kn-1=0 k =0  k,=0

]

Theorem 2.1.7. If w(x) = ¢, thenW(k) = cd(k)

Proof. By using the definition of the differential transform
W(x) = > x“W(K)
k=0

where w(x) = c. Thus, we get

c =W(0) + xXW(1) + x*W(2) +...

From the definition of the polynomias
c=W(0)
W@ =W(2)=..=0

13
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So, we have
c, k=0

W(k) = k=012,...
(k) {0, ceo KT0L2

1, k=0
=C
0, kz0

W(k) =cd(k)
Theorem 2.1.8. If w(x) = X, thenW(k) =d(k -1

Proof. By using the definition of the transform
w(x) = > x“W(k)
k=0

where w(x) = X
X =W(0) + XW(2) + X’ W(2) + xW(3) +...
From the definition of the polynomias
W(@0)=0
w@ =1
W(2)=W@Q)=...=0
W(K) = 1, k=1
0, k#1
1, k-1=
W(k)=:" 0
0, k-1#0
Finally, we obtain
W(k) =d(k-1)

Theorem 2.1.9. If w(x) =x", then W(k) = d(k—m)

Proof. By using the definition of the differential transform



w(x) = 3 X*W(K)

where w(x) = x™
X" =W(0) + XW() +...+ x"W(m) +...
W(0)=W@Q) =...=W(m-1)=...=0

W(m) =1
wio =11 =M o012
10, kzm IR
W(K) = 1, k-m=0
0, k-m#0
Thus, we get
W(K) =J(k —m)

k
Theorem 2.1.10. If w(x) =e™, then W(k) = %

Proof. By using the definition of the transform
w(x) = > x“W(Kk)
k=0

We use Taylor Series expansion of ™

2 3

1+ Ax +/;x2 +/; x% +...=W(0) + xXW(1) + x*W(2) + x*W(3) +...

W(0) =1
W) =
»

w(2)="

Wk =7

15



m(m-1)...(m-k +1)
k!

Theorem 2.1.11. If w(x) =(1+x)", then W(k) =

Proof. By using the definition of the differential transform
w(x) = > x“W(k)
k=0

We use Binomial theorem of (1+x)"

1+ mx+ m(m-1) X2 + m(m-1)(m-2) x3

W(0)=1
W@ =m
m(m-—1)
2
m(m-1)(m-2)
3

W(2) =

W(3) =

Since, we obtain

m(m-1)...(m-(k -1)

W(K) = .

k
Theorem 2.1.12. If w(x) =sin(zx), then W(k) = %gn(%j

Proof. By using the definition of the transform
w(x) = > x“W(k)
k=0
Weuse

zx- (Z:;()s + (25)!()5 - (27)?7 +... =W(0) + XW(1) + X’ W(2) + X W(3) +...

W(0)=0, W(2) =0, .W(4) =0, .., W(2k)=0

2k+1
Z

(2k +1)!

W@ =z,W(@{3)= —§ , W(5) =%5 s W(2k+2) = (D"

+...=W(0) + XW(D) + x*'W(2) +...

16



Thus, we get

W(K) = %sin(%j

k
Theorem 2.1.13. If w(x) =cos(zX), then W(k) = %co{l%ﬂj

Proof. By using the definition of the transform

wx) = 3 XW(K)

2 4 6
1_%X2 +%X4 _%x6 + ... :W(O) + XW(l) + X2W(2) + X3VV(3) + X4W(4) .

WD) =W(3) =W(5) =...=W(2k +1) = 0

W(0) =1
W(2) = —Z?T

W(4 :%6

W(6) = —%

W (2K) = (~1)¢ é;k)!
We use

Finally, we have

W(K) = % cos(%j

17
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Y(k -1)

Theorem 2.1.14. If w(x) = [ y(t)dt, then W(k) = , where k=1
0

(A. Arikaglu and I. Ozkol, 2005)

Proof. By using equation (2.1.2) the transform of an integral can be found as

follows:

W(X) = j y(t)dt then w(x) = j ZY(k)t dt

o k=0

By starting the index from k = 1 instead of k = 0 we can obtain w(x) asfollows:
SY(k-1)
W(X) =) ———=X
(%) ; k

By using (2.1.1) and (2.1.2) we get:

Wi = Y&

, Where k=1 and W(0) =0



CHAPTER THREE

APPLICATIONS

3.1 Applications

In this chapter, we solve four nonlinear initialua problems by the differential

transform method compare the results with exacitsols

Example 3.1.1. Consider the second order nonlinear initial vadcablem

-2y +y =1 (3.1.1)
with initial conditions
y(n) =0 (3n.2
y(m=0 (1.

The exact solution of the problem igx) = —Zén(singj. One can see that the

differential transform of equation (3.1.1) can alaated by using Theorems (2.1.4)
—(2.1.5) and (2.1.7) as follows:

—2(k +1).(k + 2)Y(k +2) + Zk:(f +D)(k+1- Y (L +DY(k +1- 1) = -3(k) (3.1.4)

(=0

where Y(k) is the differential transformation ofetlsorresponding function y(x).
The initial conditions are transformed as follows:

y(x):iY(k)(x—xo)k at X, =71

y(X) =Y () +YQ)(x—71) +Y ) (x- 1) +Y @) (x - 71)° +... (3.1.5)

y(7) =Y Q) +YQ)(r-m)+Y Q- 1)* +Y Q) (- 1)* +...
0=Y(©0)+Y() 0+Y(2) 0+Y(3) 0+...

19
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From the definition of polynomials equality
Y(0)=0 (3.1.6)

Differentiating (3.1.5) we find
Yy () =Y +2Y(Q)(x-m)+3Y@)(x-7m)" +...
y ()= Y@ +2YQ)(7r-m) +3Y @) (- m)* +...
0=Y@D+2Y(2)0+3¥(3) 0 +...

YO =0 (3.1.7)

By using (3.1.6) and (3.1.7) in (3.1.4), we obtdive following simplified
equations, for k =0,1,2,... and we get
Fork=0
(-2).12Y(2)+11Y®.Y([D) =-5(0)

v =1t (3.1.8)
4
Fork=1

(-2).23Y(3) + i(z +D(2-)Y(L +DY(2- 1) = 3()

=0
From the theorem (2.1.&)(k) =0, fork> 1

Consequently, we obtain
Y(3)=0 (3.1.9)

Y(k) for k=2 are easily obtained as follows

_i = =i = = L
Y@=go YE=0 YO = YM=0 Y@=

and so on. In general, we find
Y(2k+1) =0, k=012,...
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Substitution of all Y(k) into Eq. (2.1.2) give telution in a series form:

_1 2, 1 i, 1 6, 17 8 9

y(x)_Z(X ) +%(X ) +114((X ) +32256((x m)° +0O((x—m)°)
Table 3.1 Numerical Results
X y (DTM) y (Exact) y (Error)
7l 0.0 0.0 0.0
3.22743 0.00184272 0.00184272 1.5557x107%°
3.31327 0.0073777 0.0073777 3.98716dA0™
3.39911 0.0166254 0.0166254 1.02494410°°
3.48496 0.0296205 0.0296205 1.0281x10°8
3.5708 0.0464118 0.0464118 6.1614540°
3.65664 0.0670637 0.0670639 26671240
3.74248 0.0916564 0.916573 0.2275210”7
3.82832 0.120288 0.12029 271056407
3.91416 0.153073 0.15308 7.0291940°
4.0 0.19015 0.190166 0.0000165273

Example 3.1.2. Consider the second order nonlinear initial valtgbfem

y=xy +y" (3.1.10)

with initial conditions
y-)=0 (3.1.11)
y(-)=2 (3.1.12)

To solve this problem, we write p instead ofand obtain Clairaut’s equation

2
x@ + (@j (3.1.13)
dx
The equation (3.1.13) has the general solutiool®Afs:
p =cx+c? (3.1.14)
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Using the initial conditions (3.1.11) — (3.1.12)etfollowing straight lines obtain
for Clairaut’s equation
p,(X) =—-x+1 (3.1.15)

p,(X) =2x+4 (3.1.16)

Consequently, we have two exact solutions frorh.{5%) and (3.1.16)

2
y,(x) = —X?+x+§ (3.1.17)
Y,(X)=x*+4x+ 3 (3.1.18)

Now, we take the differential transform of ODE amske the initial condition

y(-1) =0, y(-1) = 2to obtain:

(k +DY(k +1) :ié(ﬁ—l)(k—ﬁ +D)(k=C+2)Y (k-0 +2)

+ Zk: (+D(+2Y(U+2)(k—1+D)(k—1+2Y(k-(+2)—(k+D(k +2)Y(k +2) (3119
) YO=0, Y(D=2 (3.1.20)

For each k, substituting (3.1.20) into (3.1.19)Y &y recursive method,

Y(2):—% orY(2) =1, Y3 =0 Y@A=0 YB)=0 Y(®) =0, .. and so on.

In general, we find
Y(k) =0, k=3,4,5,6,...

Substitution of Y(0), Y(1), Y(2) into equation (22) we obtain two polynomial

solutions
1 2
Y, (X) = 2(x+1) —§(X+1)

Y. (X) = 2(x+2) +(x+1)°



Table 3.2 Numerical Results
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X y, (DTM) y, (Exact) y, (Error)
-1.0 0.0 0.0 0.0

-0.9 0.195 0.195 0.0

-0.8 0.38 0.38 0.0

-0.7 0.555 0.555 0.0

-0.6 0.72 0.72 0.0

-0.5 0.875 0.875 0.0

-0.4 1.02 1.02 0.0

-0.3 1.155 1.155 222045010716
-0.2 1.28 1.28 0.0

-0.1 1.395 1.395 0.0

0.0 1.5 1.5 0.0

X y, (DTM) y, (Exact) y, (Error)
-1.0 0.0 0.0 0.0

-0.9 0.21 0.21 0.0

-0.8 0.44 0.44 555112407
-0.7 0.69 0.69 0.0

-0.6 0.96 0.96 0.0

-0.5 1.25 1.25 0.0

-0.4 1.56 1.56 0.0

-0.3 1.89 1.89 0.0

-0.2 2.24 2.24 0.0

-0.1 2.61 2.61 4.44089A07°
0.0 3.0 3.0 0.0

Example 3.1.3. Consider the second order nonlinear initial valtgbfem

with initial conditions

y =1+y"

y@ =20
y(@©)=0

(3.1.21)

(3.1.22)
(3.1.23)

The exact solution of the problem iy(x)=—€n(cosx). One can see that

differential transform of equation (3.1.21) can é&ealuated by using Theorems
(2.1.4) — (2.1.5) and (2.1.7) as follows:
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(K +1)(k +2)Y (k +2) = 5(K) + Zk:(f +D(k-L+DY(L+DY(K-0+1)  (3.1.24)

=0

where Y(K) is the differential transformation o&thorresponding function y(x).

The initial conditions are transformed as follows:
Y09 = Y Y (K)(X=%)* at x, =0
k=0
Y =YO) +YDx+Y Qx> +YQ)x*+ ...  (3.1.25)

We use initial condition (3.1.22)
y(0) =Y(0)+YD).0+Y(2).0° +Y((3).0° +...

So, we find
Y(©0)=0 (3.1.26)

Differentiating (3.1.25) we have
Y (%) =Y@)+2Y(2)x+3Y Qx> +...

From the initial condition (3.1.23)
y (0)=Y(@) +2Y(2).0+3Y(3).0° +...
Y= O (3.1.27)

By using (3.1.26) and (3.1.27) in (3.1.24), we abtthe following simplified

equations, for k=0,1,2,... and we get
Fork=0
12Y(2)=o0)+1IYQD.Y(Q

Y(2) :% (3.1.28)
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Fork=1

23Y(@3) =3 + zll(z +1)(2- Y (L +DY (2- 1)

By using theorem (2.1.6p(k) =0, for k=1

Consequently, we obtain
Y(3)=0 (3.1.29)

Y (k) for k=2 are easily obtained as follows:

1 1 17
Y@=—, Y@B=0 Y@®B=—  Y@®H=0 Y@=—r
W=7 © ©=2 ) ®)= 252

and so on. In general, we have
Y(2k+1) =0, k=0212,...

Substitution of all Y(k) into equation (2.1.2) gitlee solution in a series form:

V() =23+t

—xP+———x*+0(x%)
2 12 45 252(

Table 3.3 Numerical Results

X y (DTM) y (Exact) y (Error)

0.0 0.0 0.0 0.0

0.1 0.00500836 0.00500836 6.85216d0"°

0.2 0.0201348 0.0201348 3.0679%10*

0.3 0.0456917 0.0456917 40520107

0.4 0.082229 0.082229 1.3121910°®

0.5 0.130584 0.130584 197509407

0.6 0.191963 0.191965 1.83835d0°°

0.7 0.268073 0.268086 0.0000123308
0.8 0.361325 0.361391 0.0000653731
0.9 0.475151 0.475442 0.000291156

1.0

0.614489

0.61526

0.00113793
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3.1.4 Simple Pendulum

Consider the second order nonlinear initial valtgbfem

d*e

+sind=0 3.1.30
e ( )
with the initial conditions
60 =2 (3.1.31)
3
g0)=0 (3.1)32

Exact solution is obtained as follows:

Integrating the given equation with respecétave have

1 (%jz —co0sé = constant —cos(7 )
2 dt 3

N
(%}2 = afsin?(174)-sin(8)

Thus

R AR )

- dg = 2dt

Jsin?{7g)-sin’(6;)

The negative sign being taken singds initially negative. Hence

s _%\/sinz (%)Li sinz(%)
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writing k = sin(%) andsin(%)z kv, we have

1 S(l/ B
ECO 2)du = kadv

du= 2k dv
_k2v2
¢ k
t=- d
{ Joee e k)
¢ dv
t=-
'[\/(l—vz)(l— k2v?)
Wherekx=sin(52) Thus
t ¢ dv
t=
NEn = RN =D =
t=K-sn(x)
sn(x) =K -t

The modulus of the Jacobian function being k asg@riod 4K. Then
x=sn(K —t)
X =-sn(t — K)
x=san(t +K)

that is,

sm( 2) S|n(/6) t+K

So, the exact solution is obtained as

0t)= Zsin‘llsin(%)sn(t + K)]

The period is4K =27z, F [ =1;sin (%3)) (C.G.Lambe and C.J. Tranter, 1961)

Approximate solution is obtained as follows:
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Now, we apply the differential transform methoddBE and the initial

conditions#(0) =77, 6 (0)=0;
(k +1)(k + 2)Y(k + 2) = -F (k)

YO =", Y)=0

Trigonometric nonlinearityf () = sind andg(6) = cosé

F (0) =[sin(6(1))]., = sin(6(0)) =sin(v (0)),
G(0) = [codB(1))]., = cod8(0)) = codY (0))

To find other transformed functions, we differetgiaf(d) =

g(€)=cosé, obtaining

df (6) dé
o cos@ =g( )
M = —S|n9% =—f (0)_
dt dt

Applying the differential transform to Eq. (3.1.3B)e obtain;

(k+1)F(k+1) = Zk:(k+1—m)G(m)Y(k+1—m),

m=0

(k +1)G(k +1) = —Zk:(k +1-m)F(m)Y (k +1-m).

m=0

Similarly, replacing k+1 by k gives

F(k) = Z—G(m)Y(k m), k=1,

G(k) = Z—F(m)Y(k m), k=1

(3.1.33)

(3.1.34)

(3.1.35)

sind and

(3.1.36)

(3.1.37)

(3.1.38)
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Combine equations (3.1.34) and (3.1.37) te ¢ine recursive relation

sin(Y (0)), k=0,

Flk) = k_l—k;mG(m)Y(k—m), k>1 (3.1.39)

m=0

(S-H Chang and I-L Chang, 2008)

Substituting equation (3.1.31) and k = 0 into et (3.1.30) and (3.1.39), we
get

F(0) =sin(Y (0)) = sin(%) . Y =- Sin(z%) ,

F (0) = 0.866025403, Y (2) =-0.433012701

Following the same recursive procedure, we find
Y@ =0, Y(4)=0.018042195Y(5) =0,
Y (6) = 0.00240562609, Y (7) =0, Y(8)=0.00839875993

In general,
Y2k+1D) =0 k=012,...

Substitution of all Y(k) into Eq. (2.1.2) we obtaime solution in a series form:

0t) = % +(- 043301270} +(0.01804219%* +(0.00240562609)t®
+(0.00839875993)t* +O(t°)

Table 3.4 Numerical Results

t 6(DTM) 6 (Exact) 6 (Error)

0.0 1.0472 1.0472 44408940
0.1 1.04287 1.04287 9.54505¢.07*
0.2 1.02991 1.02991 2.2209810°®
0.3 1.00837 1.00837 5.68446A07
0.4 0.978393 0.978387 5.6679310°
0.5 0.940142 0.940109 0.0000338461
0.6 0.893905 0.893759 0.000145549
0.7 0.84012 0.839621 0.000499619
0.8 0.779499 0.778045 0.00145422
0.9 0.713189 0.709457 0.00373169
1.0 0.643031 0.634362 0.00866992




CHAPTER FOUR

CONCLUSION

Differential transformation method has been applied to second order non-linear
initial value problems. The results for four numerical examples showed that the
present method is quite reliable. The method has been successfully applied to non-
linear second order initial value problems. The numerical results obtained by present
method are also compared with the exact solutions. All computations are made by
Mathematica. It is shown that the results are found to be in good agreement with

each other.
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