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ON THE SOLUTIONS OF NON-LINEAR INITIAL VALUE PROBLE MS 

ABSTRACT 
 

In this thesis, numerical solution of the second order non-linear initial value 

problems is considered by differential transform method. This method can easily be 

applied to non-linear initial value problems and series solutions are obtained. After 

the transformation, we have formulated series coefficients very simply for the 

considered problems.  
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DOĞRUSAL OLMAYAN BA ŞLANGIÇ DE ĞER PROBLEMLER ĐNĐN 
ÇÖZÜMLER Đ ÜZERĐNE 

 

ÖZ 
 

Bu tezde, ikinci dereceden doğrusal olmayan başlangıç değer problemlerinin 

yaklaşık çözümleri diferensiyel dönüşüm yöntemi ile incelenmiştir. Bu yöntem 

doğrusal olmayan başlangıç değer problemlerine kolayca uygulanabilmiş ve seri 

çözümleri oluşturulabilmiştir. Dönüşümden sonra, incelenen problemlerin seri 

katsayıları elde edilmiştir.  

 

Anahtar sözcükler: Doğrusal Olmayan Başlangıç Değer Problemi, Diferensiyel 

Dönüşüm Yöntemi. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 



vi 

 

CONTENTS 

 

Page 

M.Sc THESIS EXAMINATION RESULT FORM ..................................................... ii 

ACKNOWLEDGEMENTS ..................................................................................................... iii 

ABSTRACT ............................................................................................................................. iv 

ÖZ ................................................................................................................................ v 

 

CHAPTER ONE – INTRODUCTION .................................................................... 1 

 

1.1 Previous Studies ...........................................................................................................1 

 1.2 Existence and Uniqueness Theorems ........................................................................4 

 

CHAPTER TWO–DIFFERENTIAL TRANSFORM METHOD ......... ................ 8 

 

2.1 Description of Differential Transform Method ........................................................8 

 

CHAPTER THREE – APPLICATIONS ............................................................... 19 

 

3.1 Applications ............................................................................................................... 19 

 

CHAPTER FOUR - CONCLUSION ..................................................................... 30 

 

REFERENCES ......................................................................................................... 31 

 

 



1 

CHAPTER ONE 

INTRODUCTION 

1.1  Previous Studies 
 

In this study, we consider the second order nonlinear differential equation 

                                             ( )'
2

2

,, yytf
dt

yd =  ,                                      (1.1.1) 

where f is continuous over some subset of the plane. The initial value problem 

associated with (1.1.1) is to find a function ∅  satisfying (1.1.1), defined in an 

interval I containing 10 , xx  and satisfying the initial conditions 

10
'

00 )(,)( xtxt =∅=∅ . 

 

These problems may be too complicated to solve analytically. Alternatively, the 

numerical methods can provide approximate solutions of the problems. The Euler 

Method, the Taylor Method and the Runge – Kutta methods serve as an introduction 

to numerical methods for solving systems of differential equations. The differential 

transformation technique is one of the numerical methods for ordinary(partial) 

differential equations which uses the form of polynomials as the approximation to 

the exact solution. However, the Taylor Method requires the calculation of high-

order derivatives, a difficult symbolic and complex problem. The concept of 

differential transformation was first proposed by Zhou in 1986 and it was applied to 

solve linear and nonlinear initial value problems in electric circuit analysis (Zhou, 

1986). This method has been applied to solve a second – order nonlinear differential 

equation that describes the under damped and over damped motion of a system 

subject to external excitations (Jang and Chen, 1997). In a recent work, Jang, Chen 

and Liy introduced the application of the concept of the differential transformation of 

fixed grid size to approximate solutions of linear and nonlinear initial value problems 

(Jang, Chen and Liy, 2000). Jang states that “the differential transform is an iterative 

procedure for obtaining Taylor series solutions of differential equations” (Jang, Chen 

and Liy, 2001). Although the Taylor series method requires more computational 

work for large orders, the present method reduces the size of computational domain 
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and is applicable to many problems easily.  This method has been applied to 

eigenvalue problems and Sturm – Lioville eigenvalue problem by Hassan (Hassan, 

2002). This technique of fixed grid size is applied to solve higher – order initial value 

problems by I. H. Abdel – Halim Hassan (Abdel and Hassan, 2004). Ayaz has 

obtained numerical solution of linear differential – algebraic equations by using this 

method (Ayaz, 2004). Abbasov used this method to obtain approximate solutions of 

some linear and nonlinear equations related to engineering problems and observed 

that the numerical results are in good agreement with the analytical solutions 

(Abbasov and Bahadir, 2005). 

 

In this thesis, the differential transform method is applied to the nonlinear initial 

value problems. This method does not evaluate the derivatives symbolically; instead, 

it calculates the relative derivatives by an iteration procedure described by the 

transformed equations obtained from the original equations using differential 

transformation.  

 

1.2  Existence And Uniqueness Theorems 
 

Definition 1:Consider the first order differential equation 

                                                    ( )xtf
dt

dx
,=   ,                             (1.2.1) 

where f is continuous over some subset of the plane. The initial value problem 

associated with (1.2.1) is to find a function ∅  satisfying (1.2.1), defined in an 

interval I containing x0 and satisfying the initial condition ( ) 00 xt =∅ . 

 

We will give abstract existence and uniqueness theorem first and then apply it to 

initial value problems.  

 

Let T be a mapping on continuous functions. EET →:  

( ){ }BuAIuxuE ≤≤= andintervalclosedtheoncontinuousis:  
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Definition 2:A mapping EET →:  is called a CONTRACTION MAPPING if 

there is a constant 10, << αα , such that for any Evu ∈,  

 

( )( ) ( )( ) ( ) ( )xvxuIxxvTxuTIx −∈≤−∈
maxmax α  

 

Theorem 1.2.1. (Contraction Mapping Theorem – Fixed Point Theorem) Let 

EET →:  be a contraction mapping. There exists a unique function ( )xy ∅=  in E 

such that 

 

                                
( )( ) ( )
( )yTy

IxallforxxT

=
∈∅=∅

        ( Erwing Kreyszig, 1978)  

 

Proof. The uniqueness follows from the definition. Suppose Ψ∅,  are two 

functions in E such that 

  

( )( ) ( ) ( )( ) ( ) IxallforxxTxxT ∈Ψ=Ψ∅=∅ ,  

 

Then  

( ) ( ) ( )( ) ( )( ) ( ) ( )xxIxxTxTIxxxIx Ψ−∅∈≤Ψ−∅∈=Ψ−∅∈
max.maxmax α  

 

But 1<α  so we must have  

( ) ( ) ( ) ( )xxeixxIx Ψ=∅=Ψ−∅∈ .,.0max  

 

For existence, we apply an iteration scheme called Picard’s Method. Let ( )xu0  be 

any function in E. Let 
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( ) ( )( ) ( )
( ) ( )( ) ( )

( ) ( )( ) ( ) ExuthenxuTxu

ExuthenxuTxu

ExuthenxuTxu

nnn ∈=

∈=
∈=

−1

212

101

.

.

.
 

 

Since T is contraction un’s get closer each other. For km ≥  

( ) ( ) ( )
( ) ( )

( ) ( )

)()(max
.
.
.

)()(max)()(max

)()(max.)()(max.

)()(max)(max

0

33
2

22
2

2211

11

xuxuIx

xuTxuTIxxuxuIx

xuTxuTIxxuxuIx

xuTxuTIxxuxuIx

km
k

kmkm

kmkm

kmkm

−∈≤

−∈=−∈≤

−∈=−∈≤

−∈=−∈

−

−−−−

−−−−

−−

α

αα

αα

 

But Ixun ∈)(  for all n, hence { }BACxuorBxuA nn ,max)()( =<≤≤ . So for 

all km ≥  we have 

{ })()()()(max)()( 00 xuxuxuxuIxxuxu km
k

km
k

km +≤−∈≤− −− αα  

                                  ( ) IxallforCCC kk ∈=+≤ αα 2                         (1.2.2) 

 

Since ∞→→<< kask 0,10 αα  so 

0)()(lim =−
∞→

xuxu km
k

 

 

So { })(xuk  form a Cauchy sequence therefore 

( )xxuk
k

∅=
∞→

)(lim  exists for all Ix∈  

 

By taking the limit in (1.2.2) we get 

                              k
k Cxux α2)()( ≤−∅  for all Ix∈                        (1.2.3) 
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We will show that ∅  is continuous on I. Let 0>ε  be given and Ix ∈0 . Since 

0→kα  as ∞→k  there is a number k0 such that 
3

2 0
εα <kC . 

 

Hence by (1.2.3) 

Ixallforxux k ∈<−∅
3

)()(
0

ε
 

 

Since 
0ku  is continuous on I, there exists a δ  > 0 such that if δ<− 0xx  then 

3
)()( 000

ε<− xuxu kk , Now suppose δ<− 0xx . Then  

ε<∅−+−+−∅≤∅−∅ )()()()()()()()( 0000 00
xxuxuxuxuxxx kkkk  

 

So, ( )x∅  is continuous on I. 

 

Also since  BxuA k ≤≤ )(   by taking the limit we get  

                 ε∈∅≤∅≤ )()( xsoBxA  

We now show that ( ) IxallforxxT ∈∅=∅ )()( . 

So,              

( ) ( )

( ) ( ) IxallforxTxuT

CxxuIxxTxuT

k
k

k
kk

∈∅=

≤∅−∈≤∅−

∞→

+

)()(lim

2)()(max.)()( 1αα
 

 

If we let m = k + 1 in (1.2.2) 

 

                ( ) )()()()(2 1 xuxuTxuxuC kkkk
k −=−≥ +α  

                 ( )( ) 0)()(lim =−
∞→

xuxuT kk
k

 

                 ( ) ( ) 0)()(0)(lim)(lim =∅−∅==−
∞→∞→

xxTxuxuT k
k

k
k

 

  Therefore, 

                    ( ) IxallforxxT ∈∅=∅ )()(                                                     
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We can apply these theorems to the initial value problem. 

( )
( ) 00

,

xtx

xtf
dt

dx

=

=
 

 

Lemma 1. A function )(tx ∅= is a solution to the initial value problem if and 

only if  it is satisfies the integral equation. 

( ) ( ) Itallfordfxt
t

t

∈∅+=∅ ∫ ξξξ
0

)(,0  

 

Proof. 

( )xtf
dt

dx
,= ,  00 )( xtx =   

By integrating 

( ) Itallfordtxfdt
dt

dx t

t

t

t

∈= ∫∫
00

)(, ξξ  

( )
( )
{

( )
{

( )

( ) ( )∫

∫

∅+=∅

=−
∅

t

t

t

txt

dfxt

dxftxtx

0

00

)(,

)(,

0

0

ξξξ

ξξξ

 

 

Lemma  2.Let f(t,x) be continuous on a rectangle R. 

( ){ }BxAbtaxtR ≤≤≤≤= ,:,  then there is a constant M such that  

( ) ( ) RxtallforMxtf ∈≤ ,,  

 

Proof. M is just the maximum of the function ( )xtf ,  which is continuous on the 

closed set R. 

 

So ( ) Mxtf ≤,  
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Lemma 3. Let 
x

f

∂
∂

 be continuous on a rectangle R. Then there is a constant K 

such that 

( ) ( ) ( ) ( ) RxtRxtallforxxKxtfxtf ∈∈−≤−− 212121 ,,,,  

 

Proof. If we take 
x

f

R
K

∂
∂=

max
it follows from the Mean-Value Theorem. In this 

case we say that f(x,y) satisfies Lipschitz continuity.                                                 

 

Theorem 1.2.2. Suppose f(t,x) and 
x

f

∂
∂

 are continuous on R then there is a unique 

solution to the initial value problem in some interval hxx <− 0 .  (D. H. Griffel, 

1993) 

 

Proof. ( )xtf
dt

dx
,=  

( ) 00 xtx =  is to equivalent to find ( )t∅  

( ) ( )

( )

( ) ( )( )tTt

dfxTif

httdfxt

t

t

t

t

∅=∅

+

<−∅+=∅

∫

∫

0

0

,:

for)(,

0

00

ξξ

ξξξ

 

So, we can apply Fixed Point Theorem for the existence-uniqueness solution.    
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CHAPTER TWO 

DIFFERENTIAL TRANSFORM METHOD 
 

2.1 Description of Differential Transform Method 
 

Differential transform of  a smooth function y(x) is defined as follows: 

        

                                         ( ) ( )
,

!

1

0=








=

x
k

k

dx

xyd

k
kY                     (2.1.1) 

 

where y(x) is the original function and Y(k) is the transformed function, which is 

also called the T-function. Differential inverse transform of Y(k) is defined as: 

 

                                             ( ) ( )∑
∞

=

=
0k

k kYxxy                               (2.1.2) 

 

Combining  (2.1.1) and (2.1.2), we obtain: 

 

                                       ( ) ( )
∑

∞

= =








=

0 0
!k x

k

kk

dx

xyd

k

x
xy                         (2.1.3) 

 

Series (2.1.3) implies that the concept of differential transform is derived from 

Taylor series expansion, but the method does not evaluate the derivatives 

symbolically. 

 

However, relative derivatives are calculated by an iterative way which are 

described by the transformed equations of the original functions. In this thesis, we 

use the lower case letter to represent the original function and upper case letter 

represent the transformed function. 
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From (2.1.1) and (2.1.2), it is easily proven that the transformed functions comply 

with the basic mathematical operations shown in the theorems.  

 

In actual applications, the function y(x) is expressed by a finite series and  (2.1.2) 

can be written as 

 

                                              ( ) ( )∑
=

=
m

k

k kYxxy
0

                               (2.1.4) 

 

Series (2.1.3) implies that ( )∑
∞

+= 1mk

k kYx  is negligibly small. In fact, m is decided by 

the convergence of natural frequency in this thesis. 

 

The fundamental theorems of the one- dimensional differential transform are 

given below. 

 

 

Theorem 2.1.1. If ( ) ( ) )()(),()( kZkYkWthenxzxyxw mm ==  

 

Proof. By using the definition of the transform: 

( )

( )
∑

∑
∞

=

∞

=

==

==

0

0

)()(,
!

1
)(

)()(,
)(

!

1

k

k

k

k

k

k
k

k

kZxxz
dx

xzd

k
kZ

kYxxy
dx

xyd

k
kY

 

k

k

k

k

dx

xzd

kdx

xyd

k
kZkY

)(

!

1)(

!

1
)()( mm =  

[ ])()(
!

1
)()( xzxy

dx

d

k
kZkY

k

k

mm =  by the hypothesis. 

)()()( xwxzxy =m  

 

So, 

                           )(
)(

!

1
)()( kW

dx

xwd

k
kZkY

k

k

==m                            (2.1.5) 
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( )∑

∑ ∑
∞

=

∞

=

∞

=

=

=

0

0 0

)()(

)()()(

k

k

k k

kk

kZkYx

kZxkYxxw

m

m

 

 

By using the definition (2.1.5) 

∑
∞

=

=
0

)()(
k

k kWxxw  

                                                                                                                        

 

Theorem 2.1.2. If w(x) = cy(x), then W(k) = cY(k)            

 

Proof. By using definition of the differential transform 

[ ])(
!

1
)( xcy

dx

d

k
kW

k

k

=  

where c is a constant. Thus, we have 

)()(

)(
)(

!

1
)(

kcYkW

kcY
dx

xyd

k
ckW

k

k

=

=







=

 

 

                                                                                                                               

Theorem 2.1.3. If )1()1()(,
)(

)( ++== kYkkWthen
dx

xdy
xw  

 

Proof. By utilizing the definition of transform: 

                                  ∑
∞

=

=
0

)()(
k

k kYxxy  

                                 ...)3()2()1()0()( 32 ++++= YxYxxYYxy        (2.1.6) 

 

 

 

 

 

 

 



11 
 

 

By taking the derivative of (2.1.6) 

∑
∞

=

−=

+++=

1

1

2

)(

...)3(3)2(2)1(
)(

k

k kYkx
dx

dy

YxxYY
dx

xdy

 

 

By starting the index from k = 0 instead of k = 1 we can obtain 
dx

dy
 as follows: 

∑
∞

=

++==
0

)1()1(
)(

)(
k

k kYkx
dx

xdy
xw  

 

Consequently, we obtain 

)1()1()( ++= kYkkW  

                                                                                                                       

Theorem 2.1.4. If )(
!

)!(
)(,

)(
)( nkY

k

nk
kWthen

dx

xyd
xw

n

n

++==  

 

Proof. By using the definition of the transform 

                              ∑
∞

=

=
0

)()(
k

k kYxxy  

                             ...)3()2()1()0()( 32 ++++= YxYxxYYxy                (2.1.7) 

 

Step by step if we take the derivative of (2.1.7)                                       
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∑

∑

∑

∞

=

∞

=

∞

=

++++==

+++=

++=

++=

+++=

0

0
2

2

2

2

0

2

).())...(2)(1(
)(

)(

.

.

.

)2()2)(1(
)(

...)3(6)2(2
)(

)1()1(
)(

...)3(3)2(2)1(
)(

k

k
n

n

k

k

k

k

nkYnkkkx
dx

xyd
xw

kYkkx
dx

xyd

xYY
dx

xyd

kYkx
dx

xdy

YxxYY
dx

xdy

 

 

We have 

)(
!

)!(
)( nkY

k

nk
kW ++=  

This can be proved by mathematical induction. 

Theorem 2.1.5.   If w(x) = y(x) z(x), then ∑
=

−=
k

m

mkZmYkW
0

)()()(  

Proof. By the definition of transform, 

∑∑

∑ ∑

=

∞

=

∞

=

∞

=

−=

=

k

mk

k

m j

jm

mkZmYxxw

jZxmYxxw

00

0 0

)()()(

)()()(

 

We get 

∑
=

−=
k

m

mkZmYkW
0

)()()(  

 

Theorem 2.1.6. If )().()...().()( 121 xyxyxyxyxw nn−= , then  

)()()...()(...)( 1
0

21112211
000

2

1

3

2

1

21

−
=

−−−
===

−−−= ∑∑∑∑
−

−−

nn

k

k
nnn

k

k

k

k

k

k

kkxYkkYkkYkYkW
n

nn

  

      (A. Arikoğlu and I. Özkol, 2005)
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Proof. By using the definition of the transform 

[ ]

[ ]

,)1()0()...0()0()0()1()...0()0(

...)0()0()....1()0()0()0()...0()1()1(

)()()...()()()()...()(

...)()()...()()()()...()(

)()()...()(
!1

1
)1(

,)0()0()...0()0()()()...()(
!0

1
)0(

121121

121121

|
121

|
121

1
|
2112

|

121

121121

0

1

0

0

nnnn

nnnn

xxnnnn

nnnn

xxnn

nnxxnn

YYYYYYYY

YYYYYYYYW

xyxyxyxyxyxyxyxy

xyxyxyxyxyxyxyxy

xyxyxyxy
dx

d
W

YYYYxyxyxyxyW

−−

−−

=−−

−−

=−

−=−

++
++=













++

++
=

=

==

44444 344444 21

 

    

)2()...0()0()0(...

)0()...0()0()2(...)1()1()...0()0(

...)0()....1()1()0()1()...0()0()1(

...)0()...1()0()1()0()...0()1()1()2(

321

321121

321321

321321

n

nnn

nn

nn

YYYY

YYYYYYYY

YYYYYYYY

YYYYYYYYW

++
+++

+++

++=

−

 

 

In general, we have 

 

 

 

Theorem 2.1.7. If w(x) = c, then )()( kckW δ=  

 

Proof. By using the definition of the differential transform 

∑
∞

=

=
0

)()(
k

k kWxxw  

where w(x) = c. Thus, we get 

...)2()1()0( 2 +++= WxxWWc  

 

From the definition of the polynomials 

0...)2()1(

)0(

===
=

WW

Wc
 

 

∑∑∑∑
=

−−−−
===

−−−=
−

−−

2

1

3

2

1

21 0
121112211

000

)()()...()(...)(
k

k
nnnnn

k

k

k

k

k

k

kkYkkYkkYkYkW
n

nn
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So, we have 

)()(

0,0

0,1

,...2,1,0,
0,0

0,
)(

kckW

k

k
c

k
k

kc
kW

δ=




≠
=

=

=




≠
=

=

      

 

 

Theorem 2.1.8. If w(x) = x, then )1()( −= kkW δ  

 

Proof. By using the definition of the transform 

∑
∞

=

=
0

)()(
k

k kWxxw  

where w(x) = x 

...)3()2()1()0( 32 ++++= WxWxxWWx  

From the definition of the polynomials 





≠−
=−

=





≠
=

=

===
=
=

01,0

01,1
)(

1,0

1,1
)(

0...)3()2(

1)1(

0)0(

k

k
kW

k

k
kW

WW

W

W

 

Finally, we obtain 

)1()( −= kkW δ  

 

Theorem 2.1.9. If )()(,)( mkkWthenxxw m −== δ  

 

Proof. By using the definition of the differential transform 
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



≠−
=−

=

=




≠
=

=

=
==−===

++++=

=

=∑
∞

=

0,0

0,1
)(

,...2,1,0
,0

,1
)(

1)(

0...)1(...)1()0(

...)(...)1()0(

)(

)()(
0

mk

mk
kW

k
mk

mk
kW

mW

mWWW

mWxxWWx

xxwwhere

kWxxw

mm

m

k

k

 

Thus , we get 

)()( mkkW −= δ  

 

Theorem 2.1.10. If 
!

)(,)(
k

kWthenexw
k

x λλ ==  

 

Proof. By using the definition of the transform 

∑
∞

=

=
0

)()(
k

k kWxxw  

We use Taylor Series expansion of xeλ  

!
)(

.

.

.
!3

)3(

2
)2(

)1(

1)0(

...)3()2()1()0(...
!3!2

1

3

2

323
3

2
2

k
kW

W

W

W

W

WxWxxWWxxx

kλ

λ

λ
λ

λλλ

=

=

=

=
=

++++=++++
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Theorem 2.1.11. If ( )
!

)1)...(1(
)(,1)(

k

kmmm
kWthenxxw m +−−=+=  

 

Proof. By using the definition of the differential transform 

∑
∞

=

=
0

)()(
k

k kWxxw  

We use Binomial theorem of ( )mx+1  

!3

)2)(1(
)3(

!2

)1(
)2(

)1(

1)0(

...)2()1()0(...
!3

)2)(1(

!2

)1(
1 232

−−=

−=

=
=

+++=+−−+−++

mmm
W

mm
W

mW

W

WxxWWx
mmm

x
mm

mx

 

 

Since, we obtain 

!

))1()...(1(
)(

k

kmmm
kW

−−−=  

 

 

Theorem 2.1.12. If 






==
!2

sin
!

)(),sin()(
k

k

z
kWthenzxxw

k π
 

 

Proof. By using the definition of the transform 

∑
∞

=

=
0

)()(
k

k kWxxw  

We use 

 

( ) ( ) ( )

)!12(
)1()12(...,,

!5
)5(,

!3
)3(,)1(

0)2(...,,0)4(,0)2(,0)0(

...)3()2()1()0(...
!7!5!3

1253

32
753

+
−=+=−==

====

++++=+−+−

+

k

z
kW

z
W

z
WzW

kWWWW

WxWxxWW
zxzxzx

zx

k
k
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Thus, we get 








=
2

sin
!

)(
k

k

z
kW

k π
 

 

Theorem 2.1.13. If 






==
2

cos
!

)(),cos()(
πk

k

z
kWthenzxxw

k

 

 

Proof. By using the definition of the transform 

∑
∞

=

=
0

)()(
k

k kWxxw  

     We use 

 

 

Finally, we have 








=
2

cos
!

)(
k

k

z
kW

k π
 

 

 

( ) ( )!2
1)2(

.

.

.
!6

)6(

!4
)4(

!2
)2(

1)0(

0)12(...)5()3()1(

...)4()3()2()1()0(...
!6!4!2

1

2

6

4

2

4326
6

4
4

2
2

k

z
kW

z
W

z
W

z
W

W

kWWWW

WxWxWxxWWx
z

x
z

x
z

k
k−=

−=

=

−=

=
=+====

+++++=+−+−
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Theorem 2.1.14. If 1,
)1(

)(,)()(
0

≥−== ∫ kwhere
k

kY
kWthendttyxw

x

 

(A. Arikoğlu and I. Özkol, 2005)

 

 

Proof. By using equation (2.1.2) the transform of an integral can be found as 

follows: 

∑

∑

∑∫

∫∑∫

∞

=

+

∞

=

+

∞

=

∞

=

+
=















+
=

=

==

0

1

0 0

1

0

0 00

)1(

)(

1
)(

)(

)()()()(

0

k

k

k

xk

k

x

x

k

x

k

k
x

x
k

kY

k

t
kY

dttkY

dttkYxwthendttyxw

 

 

By starting the index from k = 1 instead of k = 0 we can obtain w(x) as follows: 

∑
∞

=

−=
1

)1(
)(

k

kx
k

kY
xw  

 

By using (2.1.1) and (2.1.2) we get: 

 

0)0(1,
)1(

)( =≥−= Wandkwhere
k

kY
kW
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CHAPTER THREE 

APPLICATIONS 

 

3.1 Applications 
 

In this chapter, we solve four nonlinear initial value problems by the differential 

transform method compare the results with exact solutions 

 

Example 3.1.1. Consider the second order nonlinear initial value problem 

                                                  12
2''' −=+− yy                                      (3.1.1) 

with initial conditions 

                                                       0)( =πy                                              (3.1.2) 

                                                      0)(' =πy                                               (3.1.3) 

 

The exact solution of the problem is 






−=
2

sin2)(
x

nxy l . One can see that the 

differential transform of equation (3.1.1) can be evaluated by using Theorems (2.1.4) 

– (2.1.5) and (2.1.7) as follows: 

 

)()1()1()1)(1()2()2).(1(2
0

kkYYkkYkk
k

δ−=−++−++++++− ∑
=

llll

l

  (3.1.4) 

 

where Y(k) is the differential transformation of the corresponding function y(x). 

The initial conditions are transformed as follows: 

            π=−=∑
∞

=
0

0
0 ))(()( xatxxkYxy

k

k  

            ...))(3())(2())(1()0()( 32 +−+−+−+= πππ xYxYxYYxy           (3.1.5) 

            
( )

...0)3(0)2(0)1()0(0

...))(3())(2())(1()0( 32

++++=
+−+−+−+=

YYYY

YYYYy πππππππ
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From the definition of polynomials equality 

                                                      Y(0) = 0                                                 (3.1.6) 

 

Differentiating (3.1.5) we find 

( )
...0)3(30)2(2)1(0

...))(3(3))(2(2)1(

...))(3(3))(2(2)1()(
2'

2'

+++=
+−+−+=

+−+−+=

YYY

YYYy

xYxYYxy

πππππ
ππ

 

                            0)1( =Y                                                                            (3.1.7) 

 

By using (3.1.6) and (3.1.7) in (3.1.4), we obtain the following simplified 

equations, for  k = 0,1,2,... and we get  

For k = 0 

)0()1().1(.1.1)2(.2.1).2( δ−=+− YYY  

                                                         
4

1
)2( =Y                                             (3.1.8) 

For k = 1 

∑
=

=−+−++−
1

0

)1()2()1()2)(1()3(.3.2).2(
l

llll δYYY  

 

From the theorem (2.1.6) 1,0)( ≥= kforkδ  

 

Consequently, we obtain 

                                                          Y(3) = 0                                             (3.1.9) 

 

2)( ≥kforkY  are easily obtained as follows 

322560

17
)8(,0)7(,

1440

1
)6(,0)5(,

96

1
)4( ===== YYYYY  

 

and so on. In general, we find  

 ,...2,1,0,0)12( ==+ kkY  
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Substitution of all Y(k) into Eq. (2.1.2) give the solution in a series form: 

))(()(
322560

17
)(

1140

1
)(

96

1
)(

4

1
)( 98642 πππππ −+−+−+−+−= xOxxxxxy  

 

Table 3.1 Numerical Results 

x y (DTM) y (Exact) y (Error) 
π  0.0 0.0 0.0 
3.22743 0.00184272 0.00184272 131055571.1 −x  
3.31327 0.0073777 0.0073777 111098716.3 −x  
3.39911 0.0166254 0.0166254 91002494.1 −x  
3.48496 0.0296205 0.0296205 8100281.1 −x  
3.5708 0.0464118 0.0464118 81016145.6 −x  
3.65664 0.0670637 0.0670639 71066712.2 −x  
3.74248 0.0916564 0.916573 71022752.9 −x  
3.82832 0.120288 0.12029 61071056.2 −x  
3.91416 0.153073 0.15308 61002919.7 −x  
4.0 0.19015 0.190166 0.0000165273 

 

Example 3.1.2. Consider the second order nonlinear initial value problem 

                                                 
2''''' yxyy +=                                           (3.1.10) 

with initial conditions 

                                                      0)1( =−y                                           (3.1.11) 

                                                     2)1(' =−y                                           (3.1.12)                     

 

To solve this problem, we write p instead of y'  and obtain Clairaut’s equation  

                                                 
2








+=
dx

dp

dx

dp
xp                                   (3.1.13) 

 

The equation (3.1.13) has the general solution as follows: 

                                                     2ccxp +=                                          (3.1.14) 
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Using the initial conditions (3.1.11) – (3.1.12), the following straight lines obtain 

for Clairaut’s equation 

                                                  1)(1 +−= xxp                                        (3.1.15) 

                                                  42)(2 += xxp                                         (3.1.16) 

 

Consequently, we have two exact solutions  from (3.1.15) and (3.1.16) 

                                              
2

3

2
)(

2

1 ++−= x
x

xy                                   (3.1.17) 

                                              34)( 2
2 ++= xxxy                                       (3.1.18) 

 

Now, we take the differential transform of ODE and use the initial condition       

y(-1) = 0,  y 2)1(' =−  to obtain: 

)19.1.3()2()2)(1()2()2)(1)(2()2)(1(

)2()2)(1)(1()1()1(

0

0

+++−+−+−+−++++

+−+−+−−=++

∑

∑

=

=

kYkkkYkkY

kYkkkYk

k

k

llllll

llll

l

l

δ

                                                   2)1(,0)0( == YY                                  (3.1.20) 

 

For each k, substituting (3.1.20) into (3.1.19), and by recursive method, 

...,0)6(,0)5(,0)4(,0)3(,1)2(or
2
1

)2( =====−= YYYYYY  and so on. 

In general, we find 

Y(k) = 0, k = 3,4,5,6,… 

 

Substitution of Y(0), Y(1), Y(2) into equation (2.1.2) we obtain two polynomial 

solutions 

2
2

2
1

)1()1(2)(

)1(
2

1
)1(2)(

+++=

+−+=

xxxy

xxxy
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Table 3.2 Numerical Results 

x 
1y  (DTM) 1y  (Exact) 1y  (Error) 

-1.0 0.0 0.0 0.0 
-0.9 0.195 0.195 0.0 
-0.8 0.38 0.38 0.0 
-0.7 0.555 0.555 0.0 
-0.6 0.72 0.72 0.0 
-0.5 0.875 0.875 0.0 
-0.4 1.02 1.02 0.0 
-0.3 1.155 1.155 161022045.2 −x  
-0.2 1.28 1.28 0.0 
-0.1 1.395 1.395 0.0 
0.0 1.5 1.5 0.0 

 

x 
2y  (DTM) 2y  (Exact) 2y  (Error) 

-1.0 0.0 0.0 0.0 
-0.9 0.21 0.21 0.0 
-0.8 0.44 0.44 171055112.5 −x  
-0.7 0.69 0.69 0.0 
-0.6 0.96 0.96 0.0 
-0.5 1.25 1.25 0.0 
-0.4 1.56 1.56 0.0 
-0.3 1.89 1.89 0.0 
-0.2 2.24 2.24 0.0 
-0.1 2.61 2.61 161044089.4 −x  
0.0 3.0 3.0 0.0 

 

 

Example 3.1.3. Consider the second order nonlinear initial value problem 

                                                    
2''' 1 yy +=                                         (3.1.21) 

with initial conditions 

                                                        0)0( =y                                            (3.1.22) 

                                                       0)0(' =y                                             (3.1.23)                                        

 

The exact solution of the problem is ( )xnxy cos)( l−= . One can see that 

differential transform of equation (3.1.21) can be evaluated by using Theorems 

(2.1.4) – (2.1.5) and (2.1.7) as follows: 
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∑
=

+−++−++=+++
k

kYYkkkYkk
0

)1()1()1)(1()()2()2)(1(
l

llllδ     (3.1.24) 

where Y(k) is the differential transformation of the corresponding function y(x). 

 

The initial conditions are transformed as follows: 

0at))(()( 0
0

0 =−=∑
∞

=

xxxkYxy
k

k  

                                 ...)3()2()1()0()( 32 ++++= xYxYxYYxy           (3.1.25) 

 

We use initial condition (3.1.22) 

...0).3(0).2(0).1()0()0( 32 ++++= YYYYy  

 

So, we find  

                                                  0)0( =Y                                          (3.1.26) 

 

Differentiating (3.1.25) we have 

...)3(3)2(2)1()( 2' +++= xYxYYxy  

 

From the initial condition (3.1.23) 

...0).3(30).2(2)1()0( 2' +++= YYYy  

                                  0)1( =Y                                                            (3.1.27) 

 

By using (3.1.26) and (3.1.27) in (3.1.24), we obtain the following simplified 

equations, for k=0,1,2,… and we get  

 

For k = 0 

)1().1(1.1)0()2(.2.1 YYY += δ  

                                            
2

1
)2( =Y                                                    (3.1.28) 
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For k = 1 

∑
=

−+−++=
1

0

)2()1()2)(1()1()3(.3.2
l

llll YYY δ  

 

By using theorem (2.1.6)  1for,0)( ≥= kkδ  

 

Consequently, we obtain 

                                                       Y(3)=0                                                (3.1.29) 

 

2for)( ≥kkY  are easily obtained as follows: 

2520

17
)8(,0)7(,

45

1
)6(,0)5(,

12

1
)4( ===== YYYYY  

 

and so on. In general, we have 

,...2,1,0,0)12( ==+ kkY  

 

Substitution of all Y(k) into equation (2.1.2) give the solution in a series form: 

)(
2520

17

45

1

12

1

2

1
)( 98642 xOxxxxxy ++++=  

 

Table 3.3 Numerical Results 

x y (DTM) y (Exact) y (Error) 
0.0 0.0 0.0 0.0 
0.1 0.00500836 0.00500836 161085216.6 −x  
0.2 0.0201348 0.0201348 121006797.3 −x  
0.3 0.0456917 0.0456917 101005201.4 −x  
0.4 0.082229 0.082229 81031219.1 −x  
0.5 0.130584 0.130584 71097509.1 −x  
0.6 0.191963 0.191965 61083835.1 −x  
0.7 0.268073 0.268086 0.0000123308 
0.8 0.361325 0.361391 0.0000653731 
0.9 0.475151 0.475442 0.000291156 
1.0 0.614489 0.61526 0.00113793 

 

 



26 
 

 

3.1.4  Simple Pendulum 

 

Consider the second order nonlinear initial value problem 

                                                  0sin
2

2

=+ θθ
dt

d
                                     (3.1.30) 

with the initial conditions 

                                                       
3

)0(
πθ =                                            (3.1.31) 

                                                       0)0(' =θ                                             (3.1.32) 

 

Exact solution is obtained as follows: 

Integrating the given equation with respect to θ  we have 

( ) ( )( )

( ) ( )( )2sin6sin4

6sin212sin21)3cos(cos.
2
1

)3cos(constantcos.
2

1

22
2

22
2

2

θπθ

πθπθθ

πθθ

−=








+−−=−=








−==−








dt

d

dt

d

dt

d

 

 

Thus 

( ) ( )

( ) ( )
dt

d
dt

d

2

2sin6sin

2sin6sin2

2
2

22

=
−

−

−−=

θπ
θ

θπθ

 

 

The negative sign being taken since 
.

θ  is initially negative. Hence  

( ) ( )∫
−

−=
θ

π π
3

22

2sin6sin
2

u

du
t  
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writing ( ) ( ) kvuk == 2sinand6sinπ , we have  

( )
dv

vk

k
du

kdvduu

221

2

2cos
2

1

−
=

=
 

( )( )

( )( )∫

∫

−−
−=

−−
−=

x

x

vkv

dv
t

dv
vkkvk

k
t

1
222

1
22222

11

1
 

where ( ).2sinθ=kx  Thus 

( )( ) ( )( )

tKxsn

xsnKt

vkv

dv

vkv

dv
t

x

−=
−=

−−
−

−−
=

−

−

∫∫

)(

)(

1111

1

1

0
222

1

0
222

 

 

The modulus of the Jacobian function being k and its period 4K. Then 

)(

)(

)(

Ktsnx

Ktsnx

tKsnx

+=
−−=
−=

 

that is, 

( ) ( ) ( )Ktsn += .6sin2sin πθ  

 

So, the exact solution is obtained as 

                                         ( ) ( ) ( )[ ]Ktsnt += − .6sinsin2 1 πθ  

 

The period is ( )






= 6sin;1;
2

1
,

2

1
.24 2

12
ππ FK  (C.G.Lambe and C.J. Tranter, 1961) 

Approximate solution is obtained as follows: 
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Now, we apply the differential transform method to ODE and the initial   

conditions ;0)0(,3)0( ' == θπθ  

                                  ( )( ) ( ) )(221 kFkYkk −=+++                                 (3.1.33) 

                                      0)1(,3)0( == YY π                                        (3.1.34)  

 

Trigonometric nonlinearity θθθθ cos)(andsin)( == gf  

                         
( )[ ] ( ) ( )
( )[ ] ( ) ( ))0(cos)0(cos)(cos)0(

,)0(sin)0(sin)(sin)0(

0

0

YtG

YtF

t

t

===
===

=

=

θθ
θθ

                  (3.1.35)   

 

To find other transformed functions, we differentiate f(θ ) = sinθ  and 

g(θ )=cosθ , obtaining 

                              

.)(sin
)(

,)(cos
)(

dt

d
f

dt

d

dt

dg
dt

d
g

dt

d

dt

df

θθθθθ

θθθθθ

−=−=

==
                               (3.1.36) 

 

Applying the differential transform to Eq. (3.1.35), we obtain; 

                

( )

( ) ∑

∑

=

=

−+−+−=++

−+−+=++

k

m

k

m

mkYmFmkkGk

mkYmGmkkFk

0

0

).1()()1()1(1

,)1()(1)1()1(

                   (3.1.37) 

 

Similarly, replacing k+1 by k gives 

                            

∑

∑
−

=

−

=

≥−−−=

≥−−=

1

0

1

0

1),()()(

,1),()()(

k

m

k

m

kmkYmF
k

mk
kG

kmkYmG
k

mk
kF

                       (3.1.38) 
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     Combine equations (3.1.34) and (3.1.37) to give the recursive relation 

                            

( )









≥−−
=

=
∑

−

=

1

0

1),()(

,0,)0(sin

)( k

m

kmkYmG
k

mk

kY

kF                       (3.1.39)  

(S-H Chang and I-L Chang, 2008) 

 

Substituting equation (3.1.31) and k = 0 into equations (3.1.30) and (3.1.39), we       

get 

( ) ( ) ( )
433012701.0)2(,866025403.0)0(

,
2

3sin
)2(,3sin)0(sin)0(

−==

−===

YF

YYF
π

π
 

 

Following the same recursive procedure, we find 

930083987592.0)8(,0)7(,090024056261.0)6(

,0)5(,018042195.0)4(,0)3(

===
===

YYY

YYY
 

In general, 

,...2,1,0,0)12( ==+ kkY  
 
Substitution of all Y(k) into Eq. (2.1.2) we obtain the solution in a series form: 

( ) ( ) ( ) ( )
( ) )(930083987592.0

090024056261.0018042195.0433012701.03
98

642

tOt

tttt

++

++−+= πθ
 

 

Table 3.4 Numerical Results 

t θ (DTM) θ (Exact) θ  (Error) 
0.0 1.0472 1.0472 161044089.4 −x  
0.1 1.04287 1.04287 111054505.9 −x  
0.2 1.02991 1.02991 81022098.2 −x  
0.3 1.00837 1.00837 71068446.5 −x  
0.4 0.978393 0.978387 61066793.5 −x  
0.5 0.940142 0.940109 0.0000338461 
0.6 0.893905 0.893759 0.000145549 
0.7 0.84012 0.839621 0.000499619 
0.8 0.779499 0.778045 0.00145422 
0.9 0.713189 0.709457 0.00373169 
1.0 0.643031 0.634362 0.00866992 
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CHAPTER FOUR 

CONCLUSION 
 

Differential transformation method has been applied to second order non-linear 

initial value problems. The results for four numerical examples showed that the 

present method is quite reliable. The method has been successfully applied to non-

linear second order initial value problems. The numerical results obtained by present 

method are also compared with the exact solutions. All computations are made by 

Mathematica. It is shown that the results are found to be in good agreement with 

each other.  
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