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PROBLEM OF OMITTED VARIABLE IN 

REGRESSION MODEL SPECIFICATION 

 

ABSTRACT 

 

In many non-experimental studies, the analyst may not have access to all relevant 

variables, and does not include these variables into the model and omits them. To 

omit some variables that affect the dependent variable from the model may cause 

omitted variables bias. In this thesis, it is aimed to investigate the omitted variable 

bias, its importance, reasons, and consequences and to research the methods for 

dealing with omitted variable bias and RESET test which is a method for detecting 

omitted variable(s). 

 

In this study, a simulation was performed by using the programs written in 

Minitab which is a statistical software package. Three types of populations with 1000 

observations which varied depending on the correlations between the variables were 

generated and random samples were drawn from these populations. Though the true 

model had three independent variables, the models were estimated by omitting one 

and then two independent variables for each sample. 10,000 repetitions were 

generated for each of sample sizes. Therefore when correlations were changed and 

the number of omitted variables was increased, the effects of omitted variable bias 

were investigated. The amount of bias, the estimated coefficients, coefficients of 

determination and the adjusted coefficients of determination, standard deviations of 

the estimated coefficients were computed for every model and F statistics were also 

computed for applying RESET test and they were all compared for each population. 

Moreover, by increasing the sample size, it was investigated whether the effects of 

omitted variable bias were changed depending on sample size. 

 

 

Keywords: Regression analysis, model specification error, omitted variable bias, 

RESET test 
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REGRESYON MODELİ BELİRLEMEDE 

DIŞLANAN DEĞİŞKEN SORUNU 

 

ÖZ 

 

Deneysel olmayan pek çok çalışmada, araştırmacı model için gerekli olan tüm 

değişkenlere ulaşamamakta ve bu değişkenleri modele dahil edememekte, dolayısıyla 

modelden dışlamaktadır. Bağımlı değişkeni önemli derecede etkileyen bazı 

değişkenlerin modele alınmaması dışlanan değişken yanlılığına sebep olmaktadır. Bu 

tezde, dışlanan değişken yanlılığı, bu yanlılığın önemi, nedeni ve sonuçları 

araştırılırken dışlanan değişken sorununu ortadan kaldırmak için kullanılan 

yöntemler incelenmiş ve ayrıca modelden dışlanan değişkenlerin varlığını saptamak 

üzere RESET testi kullanılmıştır.  

 

Bu çalışmada, Minitab istatistiksel paket programı kullanılarak bir benzetim 

çalışması yapılmıştır. Değişkenler arasındaki korelasyon değerlerine bağlı olarak 

değişen 1000 verilik üç değişik tipte kitle türetilmiş ve bu kitlelerden rassal 

örneklemler çekilmiştir. Gerçek model üç bağımsız değişken ile kurulmuş, sırasıyla 

bir ve iki değişken dışlanarak her örneklem için yeni modeller elde edilmiştir. 

Böylece korelasyon değerleri değiştiğinde ve dışlanan değişken sayısı arttığında 

dışlanan değişken yanlılığının ne gibi etkileri olduğu incelenmiştir. Yanlılık 

miktarları, katsayı kestirimleri, belirtme katsayıları, tahmini katsayılara ilişkin 

standart sapmalar hesaplanmıştır. Ayrıca, F istatistikleri de RESET testi 

uygulayabilmek için elde edilmiştir. Bu işlemler 10,000 defa tekrarlanmıştır ve 

sonuçların birbirleriyle karşılaştırmaları yapılmıştır. Son olarak, örneklem ölçüsü 

arttırılarak dışlanan değişken yanlılığının örneklem ölçüsüne bağlı olarak değişip 

değişmediği de araştırılmıştır. 

 

 

Anahtar sözcükler: Regresyon analizi, model spesifikasyon hatası, dışlanan 

değişken yanlılığı, RESET testi 
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CHAPTER ONE 

INTRODUCTION 

 

Regression analysis is a statistical tool for investigation of relationships between 

variables. In general, the investigator seeks to ascertain the casual effect of one 

variable upon another or others. In many non-experimental studies, however, the 

analyst may not have access to all relevant variables, and does not include these 

variables into the model. It is sometimes impossible to measure some variables such 

as socio economic status. Furthermore, sometimes some variables may be 

measurable but require too much time and abandoned. Therefore they are omitted 

from the model. The omission from a regression of some variables that affect the 

dependent variable may cause an omitted variables bias. This bias depends on the 

correlation between the independent variables which are omitted and included. 

Hence, this omission may lead to biased estimates of model parameters. The problem 

arises because any omitted variable becomes part of the error term, and the result 

may be a violation of an important assumption for being an unbiased estimator. This 

assumption logically implies the absence of correlation between the explanatory 

variables included in the regression and the expected value of the error term, because 

whatever the value of any independent variable, the expected value of the error term 

is always zero. Thus, unless the omitted variable is uncorrelated with the included 

ones, the coefficients of the included ones will be biased because the assumption is 

violated, it means that, they now reflect not only an estimate of the effect of the 

variable which they are associated, with but also partly the effects of the omitted 

variable.  

 

The purpose of this study is to investigate omitted variable bias, its importance, 

reasons, and consequences.  

 

This thesis contains five chapters. In Chapter 1, a short description of the entire 

study is summarized. In Chapter 2, introduction to regression analysis and methods 

of selection of independent variables are mentioned, because of constituting a basic 

for the third chapter. Problem of omitted variable, RESET test  for detecting omitted 
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variables and the methods for dealing with omitted variable bias such as proxy 

variable are discussed in Chapter 3. In Chapter 4, omitted variable bias and its effects 

on the parameters and RESET test are presented using simulation. Chapter 4 also 

include the simulation study to examine the effects of the larger sample size on 

omitted variable bias. Finally, in  Chapter 5, the conclusions related to the simulation 

study are presented.   
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CHAPTER TWO 

MULTIPLE REGRESSION 

 
2.1 Introduction 

 
Simple regression is a procedure which is used for obtaining a linear equation that 

predicts a dependent variable as a function of a single independent variable. 

However, in many situations several independent variables jointly influence a 

dependent variable. Multiple regression enables to determine the simultaneous effect 

of several independent variables on a dependent variable using the least square 

principle.  

 

2.2 Multiple Regression Models 

 

Multiple regression is a statistical method for studying the relationship between a 

single dependent variable and one or more independent variables. It is admittedly one 

of the most widely used of all statistical methods and generally used in social, 

biological and physical sciences. The basic uses of multiple regression are prediction 

and casual analysis (Mendenhall & Sincich, 2003). 

 

Many mathematical formulas can serve to express relationships between more 

than two variables, but most commonly used in statistics are linear equations of the 

form  

 

ipipiii XXXY εββββ +++++= −− 1,122110 L                (2.1) 

 

0β , 11 ,, −pββ K  are the parameters  

1,1 ,, −pii XX K  are known constants 

iε  are independent random variables with mean zero and variance 2σ  

i = 1, … , n; number of observations 
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It can also be written as: 

 

∑
−

=

++=
1

1
0

p

k
iikki XY εββ                   (2.2) 

 

Assuming that ( ) 0=iE ε , the response function for regression model is: 

 

( ) 1122110 −−++++= pp XXXYE ββββ L                (2.3) 

 

The parameter kβ  indicates the change in the mean response E(Y) with a unit 

increase in the independent variable kX , when all other independent variables in the 

model are held constant (Neter, Kutner, Nachtsheim & Wasserman, 1996) 

 

2.2.1 Least Squares Estimators 

 

The population regression model is a useful theoretical construct, but for 

applications finding the real values of parameters can not be possible, therefore an 

estimate of the model is needed to be determined. To determine the estimated model, 

estimators for the unknown parameters 110 ,,, −pβββ K  should be found. These 

estimators are simply procedures for making guesses about the unknown parameters 

on the basis of known sample values of 121 ,,,, −pXXXY K . For any estimates of the 

parameters, denoted by 110 ,,, −pbbb K , the value for Y can be estimated by  

 

11110
ˆ

−−+++= pp XbXbbY L                            (2.4) 

 

The coefficient estimators are obtained using equations derived by using the 

method of least squares (Neter, Kutner, Nachtsheim & Wasserman, 1996). 
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2.2.2 Method of Least Squares 

 

The difference between the actual (observed) and predicted values for each 

observation is  

 

11110
ˆ

−−−−−−=−= ppiiii XbXbbYYYe L                (2.5) 

 

ie  is called the residual for thi observation and is the vertical distance between the 

estimated plane and the actual observation iY . This means, when the absolute values 

of ie  become larger, the estimated plane does the worse at representing the data. 

Since ie  indicate how closely an estimated plane comes to describing the data points, 

it is a reasonable approach to compare the values of ie  for choosing among 

alternative estimators. A mathematical function that represents the effect of squaring 

all of the residuals and computing the sum of squared residuals is computed. This 

function which is defined as sum of squared errors includes the coefficients.  

According to the method of least squares, the coefficient estimators are obtained as 

the estimators minimizing the sum of squared errors (Draper & Smith, 1966). 

 

( )∑ ∑ −==
22

îii YYeSSE                  (2.6) 

 

If the regression model has n independent variables, then the least square 

estimators can be solved using matrix forms. 

 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

n

nx

Y

Y
Y

Y
M

2

1

1
                     (2.7) 
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⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

−1

1

0

pb

b
b

b
M

                      (2.9) 

      

The least squares normal equations for the general linear regression model: 

 

YXXbX ′=′                  (2.10) 

 

And the least squares estimators: 

 

( ) ( )YXXXb ′′= −1 .                 (2.11) 

 

2.2.3  Assumptions of Least Square Regression 

 

All statistical procedures including multiple regression require the assumptions be 

made for their mathematical development. If these assumptions hold, then in large 

samples the Ordinary Least Squares (OLS) estimators have sampling distributions 

that are normal. In turn, this large-sample normal distribution allows for developing 

methods for hypothesis testing and constructing confidence intervals using the OLS 

estimators (Stock & Watson, 2003). 

 

Nevertheless, violation of an assumption may potentially lead to some problems. 

First and more serious, the estimate of the regression coefficients may be biased in 

such cases, the estimates of the regression coefficients, 2R , significance tests, and 

confidence intervals may all be incorrect. Second, only the estimate of the standard 

error of the regression coefficients may be biased. In such cases, the estimated value 
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of the regression coefficients is correct, but hypothesis tests and confidence intervals 

may be incorrect. Third, the estimated model would have large variances, and the 

estimated model would not be as efficient as it should be. These problems are all 

very important but fortunately, remedial measures are available for handling the 

problems resulting from violations of assumptions. 

 

Many of the assumptions focus on the residuals; consequently, careful 

examination of the residuals can often help identify problems with regression 

models. All these assumptions are not only required for the OLS estimation of model 

parameters but are necessary for reliable confidence intervals and hypothesis tests 

based on t distributions or F distributions (Field, 2005). 

 

2.2.3.1 Zero Mean Value of Error Term 
 
The first least squares assumption is that the conditional distribution of iε  given 

iX  has a mean of zero. This assumption is a formal mathematical statement about 

the other variables contained in iε  and asserts that these other variables are unrelated 

to iX  in the sense that, given a value of iX , the mean of the distribution of these 

other variables is zero.  

 

( ) 0=ii XE ε  

 

The assumption that ( ) 0=ii XE ε  is equivalent to assuming that the population 

regression line is the conditional mean of iY  given iX .  

 

The conditional mean assumption ( ) 0=ii XE ε  implies that iX  and iε  are 

uncorrelated, or ( ) 0,cov =iiX ε . Because correlation is a measure of linear 

association, this implication does not go the other way; even if iX  and iε  are 

uncorrelated, the conditional mean of  iε  given iX  might be nonzero. If iX  and iε  
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are correlated, then the conditional mean assumption is violated (Stock & Watson, 

2003). 

 

2.2.3.2 Independence of Residuals  

 

The residuals of the observations must be independent of one another. Otherwise 

stated, there must be no relationship among the residuals for any subset of cases in 

the analysis. This assumption will be met in any random sample from a population. 

However, if data are clustered or temporally linked, then the residuals may not be 

independent. Clustering occurs when data are collected from groups. The most 

common situation in which this assumption might not be met is when the 

observations represent repeated measurements on sampling or experimental units. 

Such data are often termed longitudinal and arise from longitudinal studies (Cohen, 

2003). 

 

2.2.3.3 Constant Variance of Residuals (Homoscedasticity) 

 

The conditional variance of the residuals around the regression line in the 

population, for any value of the independent variable X, is assumed to be constant. 

Conditional variances represent the variability of the residuals around the predicted 

value for a specified value of X. Consequently, each probability distribution for Y has 

the same standard deviation regardless of the X-value (Cohen, 2003). 

 

2.2.3.4 Normality of Residuals 

 

The residuals around the regression line, for any value of the independent variable 

X, are assumed to have a normal distribution (Cohen, 2003). The validity of the 

normality assumption can be assessed by examination of appropriate graphs of 

residuals (Chatterjee & Hadi, 2006).  
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2.2.3.5 No Multicollinearity 

 

There are no perfect linear relationships among the independent variables. A 

potential problem when running a multiple regression is that two or more 

independent variables are very highly intercorrelated with each other. This is referred 

to as multicollinearity. The problem with multicollinearity is that it is likely to 

prevent any of the individual variables from being significant (Dewberry, 2004). 

 

2.2.4 Properties of Least Squares Estimators 

 

With these assumptions the least square estimator can be shown to have minimum 

variance among all estimators that are linear functions of the observed Y’s and X’s 

and that are unbiased. Unbiased estimators with minimum variance are said to be the 

best or most efficient estimators. Thus, the least square estimator is called BLUE 

(best linear unbiased estimator). The formulas and expressions of these properties are 

presented below by depending on simple linear regression model (Hanushek & 

Jackson, 1977).  

 

2.2.4.1 Linearity  

 

The least squares estimator is linear in Y.  Since Y is a random variable, and X is 

assumed fixed, X is simply the weight of Y.  

 

( )( )
( )

( ) ( )
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∑= iiYwb1                  (2.12) 
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Since it is a linear function of iY , 1b  is a linear estimator and actually a weighted 

average of  iY  with iw  serving as weights (Kurt, 2000). 

 

2.2.4.2 Unbiasedness 

 

One intuitively desirable property of an estimator is unbiasedness or, that the 

expected value of the estimator equals the true population value ( ( ) β=bE ). If we 

could draw many samples and estimate the parameters for each sample, then the 

means of the estimator would equal the true population value in the unbiased case. 

That is, there is no systematic overestimation or underestimation of the true 

coefficients.  

 

Because the properties of weights iw : 

 

∑ = 0iw       ∑ = 1ii Xw  

 

( )

∑
∑ ∑ ∑ ∑
+=

++=++=

ii

iiiiiii

w

wXwwXwb

εβ

εββεββ

1

101101
           (2.13) 

 

( ) ( )∑+= ii EwbE εβ11                 (2.14) 

 

Since iw  is non-stochastic, they can be treated as constant. Since 0)( =iE ε  by 

assumption obtain  

 

( ) 11 β=bE                   (2.15) 

 

Therefore it is said that 1b is an unbiased estimator of 1β  (Kurt, 2000). 
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2.2.4.3 Best 

 

The meaning of best estimator is that the least square estimator has minimum 

variance. There are many linear unbiased estimators for b, but the least square 

estimator is the most efficient by reason of having minimum variance (Hanushek & 

Jackson, 1977).  It was given in equation 2.12 that  

 

∑= iiYwb1  

 

where
( )∑ −

−
= 2XX

XX
w

i

i
i . Let us now define an alternative linear estimator of 1β  as 

follows: 

 

∑= iiYkb*
1                                        (2.16) 

 

where ik  are also weights, not necessarily equal to iw .  

 

( ) ( ) ( )∑ ∑ ∑ ∑+=+== iiiiiii XkkXkYEkbE *
10

*
10

*
1 ββββ            (2.17) 

 

Now, for *
1β  to be unbiased, these conditions must be satisfied: ∑ = 0ik  

∑ = 1ii Xk  
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Also, we may write 
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Since the last term is constant, the variance of *
1b  can be minimized only by 

manipulating the first term. So, if we let, 

 

∑
= 2

i

i
i X

X
k                  (2.19) 

 

then 

 

)var()var( 12

2
*
1 b

X
b

i

==
∑
σ                (2.20) 

 

In words, with weights ii wk = , which are the least squares weights, the variance 

of the linear estimator *
1b  is equal to the variance of the least squares estimator 1b ; 

otherwise )var()var( 1
*
1 bb > . It means, 1b  has a minimum variance (Kurt, 2000). 
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2.3 Explanatory Power of a Multiple Regression Model 

 

Independent variables explain the behavior of the dependent variable. By linear 

function of the independent variables, it is possible to find the variability in the 

dependent variable. A measure of the proportion of the variability in the dependent 

variable has been developed and named multiple coefficient of determination and 

denoted by the symbol 2R . 

 

Error sum of squares was given in equation 2.6. Regression sum of squares 

 

( )∑
=

−=
n

1i

2

i YYSSR ˆ                            (2.21) 

 

Total sum of Squares 

 

( ) ( )∑ ∑ ∑
= = =

−+−=−=
n

1i

n

1i

n

1i

2
ii

2

i
2

i YYYYYYSST )ˆ(ˆ              (2.22) 

 

SST = SSR + SSE                 (2.23) 

 

Total sample variability = Explained variability + Unexplained variability  

 

Since the coefficient of determination is the proportion of the total sample 

variability which is explained by the regression model,  

 

SST
SSE

SST
SSRR −== 12   10 2 ≤≤ R              (2.24) 

 

By the way, when additional independent variables are added to a multiple 

regression model, the explained sum of squares (SSR) will increase even if the 

additional independent variable is not an important variable. In such a case, the 
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increased value of 2R  would be misleading and it is acceptable to use adjusted 

coefficient of determination which is defined as 
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where n is sample size and k is the number of regressors. In a multiple linear 

regression model, adjusted R square measures the proportion of the variation in the 

dependent variable accounted for by the independent variables. Unlike R square, 

adjusted R square allows for the degress of freedom associated with the sums of the 

squares. Therefore, even though the residual sum of squares decreases or remains the 

same as new explanatory variables are added, the residual variance does not. For this 

reason, adjusted R square is generally considered to be a more accurate goodness-of-

fit measure than R square. The adjusted 2R  provides a better comparison between 

multiple regression models with different numbers of independent variables 

(Mendenhall & Sincich, 2003).  

 

2.4 Model Building  

 

Model building is an important issue, since writing a model will provide a good fit 

to a set of data and will give good estimates of the mean value of Y and good 

predictions of future values of Y for given values of the independent variables.  

 

Researchers often collect a data set with a large number of independent variables, 

each of which is a potential predictor of some dependent variable, Y. When it is 

wanted that to build a multiple regression model, the problem of deciding which X’s 

in a large set of independent variables to include in the model is common. Therefore, 

using variable selection methods is necessary in order to provide good fit of data and 

good estimates of parameters (Jobson, 1991). 
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2.4.1 Variable Selection Methods 

 

In exploratory studies, an algorithmic method for searching among models can be 

informative, if the results are used warily. To make the model useful for predictive 

purposes it may be wanted the model to include as many X’s as possible so that 

reliable fitted values can be determined. However, on the other hand, because of the 

costs involved in obtaining information on a large number of X’s and subsequently 

monitoring them, it may be wanted the equation to include as few X’s as possible. 

Further more, the selection process becomes more challenging as the number of 

independent variables increases, because of the rapid increase in possible effects and 

interactions. There are two competing goals: The model should be complex enough 

to fit the data well, but simpler models are easier to interpret.  

 

On the other hand, on reducing the model the error term may change to reflect the 

omission of important independent variables. If important independent variables are 

deleted mistakenly from the model, their effects are included in the model error 

terms. In this instance coefficient estimates may change impressively and reflect 

biases incurred by eliminating these variables (Mason, Gunst, & Hess, 2003). 

 

However, there is no unique statistical procedure to reduce the number of 

independent variables to be used in the final model, and personal judgment will be a 

necessary part of any of the statistical methods discussed (Chatterjee & Hadi, 2006). 

 

2.4.1.1 All Possible Regressions Procedure 

 

Variable selection techniques have been developed in the literature for the 

purpose of identifying important independent variables. The most popular of these 

procedures are those that consider all possible regression models given the set of 

potentially important predictors. Such a procedure is commonly known as an all 

possible regressions selection procedure. The techniques differ with respect to the 

criteria for selecting the best subset of variables. 
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The purpose of the all possible regression approach is to identify a small group of 

regression models that are “good” according to a specified criterion so that a detailed 

examination can be made of these models, leading to the selection of the final 

regression model to be employed (Mendenhall & Sincich, 2003). 

 

Different criteria for comparing the regression models may be used with the all 

possible regressions selection procedure. Four criteria are widely used in 

practice: 2R , MSE, pC , PRESS.  

 
2R  or SSE Criterion: 2R  criterion calls for the use of the coefficient of multiple 

determination 2R  in order to identify several “good” subsets of X variables, in other 

words, subsets for which 2R  is high. The 2R  criterion, as shown in the equation 

(2.24), is equivalent to using the error sum of squares SSE as the criterion. With the 

SSE criterion, subsets for which SSE is small are considered “good”. Since the 

denominator SST is constant for all possible regression models, 2R  varies inversely 

with SSE.  

 

It is known that SSE can never increase as additional X variables are included in 

the model. Hence, 2R  will be a maximum when all potential X variables are included 

in the regression model. The aim at using the 2R  criterion is to find the point where 

adding more X variables is not worthwhile because it leads to a very small increase in 
2R . Often, this point is reached when only a limited number of X variables is 

included in the regression model. Clearly, the determination of where diminishing 

returns set in is a judgmental one. In practice, the best model found by the 2R  

criterion will rarely be the model with the largest 2R (Mendenhall & Sincich, 2003). 

 

Adjusted 2R  or MSE (Mean Square Error) Criterion: It was mentioned that 

since 2R  does not take account of the number of parameters in the regression model 

and since 2R  can never decrease as the number of potential X variables increases, 
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the adjusted coefficient of multiple determination 2
adjR  has been suggested as an 

alternative criterion. The equation of 2
adjR  in (2.25) can be written as 

 

   ( )
1

1
1

112

−
−=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+−

−
−=

n
SST

MSE
SST
SSE

kn
nRadj              (2.26) 

 

where n is sample size and k is the number of regressors. This coefficient takes the 

number of parameters in the regression model into account through the degrees of 

freedom. It can be seen from the equation that 2
adjR  increases if and only if MSE 

decreases since SST / (n – 1) is fixed for the given Y observations. Hence, 2
adjR  and 

MSE provide equivalent information. We shall consider here the criterion MSE, again 

showing the number of the parameters in the regression model as a subscript of the 

criterion. The smallest MSE for a given number of parameters in the model can, 

indeed, increase as k increases. This occurs when the reduction in SSE becomes so 

small that it is not sufficient to offset the loss of an additional degree of freedom. 

Users of the MSE criterion seek to find a few subsets for which MSE is at the 

minimum or so close to the minimum that adding more variables is not worthwhile.  

 

 pC  Criterion: This criterion is a function of the mean squared error concerned 

with the total mean squared error (TMSE) of the n fitted values for each subset 

regression model. The mean squared error concept involves the total error in each 

fitted value:  
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The objective is to compare the TMSE for the subset regression model with 2σ , 

the variance of the random error for the true model, using the ratio 
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2σ
TMSE

=Γ  

 

Small values of Γ  imply that the subset regression model has a small total mean 

square error relative to 2σ . Unfortunately, both TMSE and 2σ  are unknown, but a 

sample estimates of these quantities can be used. It can be shown that a good 

estimator of Γ  is given by 
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              (2.28) 

 

where n is the number of observations and p is the number of estimated parameters, 

pSSE  is the SSE for the estimated model, ),( , 1p1 XXMSE −L is an unbiased 

estimator of 2σ  (Neter, Kutner, Nachtsheim & Wasserman, 1996). 

 

In using the pC  criterion, it is sought to identify the subsets of X variables for 

which the pC  value is small and the pC  value is near p. Subsets with small pC  

values have a small total mean squared error, and when the pC  value is also near p, 

the bias of the regression model is small (Mendenhall & Sincich, 2003). 

  

PRESS Criterion: The PRESS (prediction sum of squares) criterion is a measure 

of how well the use of the fitted values for a subset model can predict the observed 

responses iY  (Neter, Kutner, Nachtsheim & Wasserman, 1996). 

 

[ ]∑
=

−=
n

1i

2

ii YYPRESS )(̂                 (2.29) 

 

where )(̂iY  denotes the predicted value for the thi  observation obtained when the 

regression model is fit with the data point for the thi  observation omitted (or deleted) 

from the sample. Thus, the candidate model is fit to the sample data n times, each 
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time omitting one of the data points and obtaining the predicted value of Y for that 

data point. Since small differences )(̂ii YY −  indicate that the model is predicting well, 

a model with a small PRESS is chosen (Mendenhall & Sincich, 2003). 

 

2.4.1.2 Stepwise Regression Procedure  

 

The stepwise regression procedure is probably the most widely used of the 

automatic search methods. This search method develops a sequence of regression 

models, at each step adding or deleting an X variable. The criterion for adding or 

deleting an X variable can be stated equivalently in terms of error sum of squares 

reduction, coefficient of partial correlation, t statistic, or F statistic (Neter, Kutner, 

Nachtsheim, & Wasserman, 1996).   

 

The forward selection method starts with an equation containing no independent 

variables, just constant term, and adds terms consecutively until further additions do 

not improve the fit (Agresti, 2002). At any stage in the selection process, forward 

selection method adds the variable which has the highest partial correlation, 

increases 2R  the most, and gives the largest absolute t or F statistic (Christensen, 

2002). The minimum P-value for testing the term in the model is also a sensible 

criterion for adding variable (Agresti, 2002). 

 

The backward elimination procedure starts with the full equation and drops one 

variable at every stage. The variables are dropped based on their support to the 

reduction of error sum of squares. This has the same meaning with deleting the 

variable which has the smallest t-test in the equation. Assuming that there are some 

variables which have insignificant t-tests, the procedure drops the variable with the 

smallest insignificant t-test. The procedure is terminated when all the t-tests are 

significant or all variables which have insignificant t-tests have been deleted 

(Chatterjee & Hadi, 2006). 
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The stepwise method is essentially a composite of the forward and backward 

methods. In this method, a variable which has entered in the earlier stages of 

selection may be eliminated at later stages.    

 

An essential difference between automatic search procedures and the all possible 

regressions procedure is that the automatic search procedures end with the 

identification of a single regression model as “best”. With the all possible regressions 

procedure, on the other hand, several regression models can be identified as good for 

final consideration. The identification of a single regression model may hide the fact 

that several other regression models may also be “good”. Finally, the goodness of a 

regression model can only be established by a thorough examination using a variety 

of diagnostics (Neter, Kutner, Nachtsheim, & Wasserman, 1996). 
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CHAPTER THREE 

OMITTED VARIABLES 

 

3.1 Introduction 

 

In ordinary regression models, the consistency of standard least squares estimators 

depends on the assumption that the explanatory variables are uncorrelated with the 

error term. This assumption is prone to be violated, especially when important 

explanatory variables are excluded from the model. Often, such omissions are 

unavoidable due to the inability to collect necessary variables for the model. The 

consequence is not only possible for estimating the effects of important variables, but 

also the estimates for other effects in the model may be biased and thus misleading. 

This problem is often called an omitted variable bias (Kim & Frees, 2006). 

 

Most regressions conducted by economists can be critiqued for omitting some 

important independent variables which may cause the estimated relationships to 

change. Why some variables are omitted? Variables are often omitted when they 

cannot be measured, when it is impossible to sufficiently specify the list of potential 

additional variables, when it is impossible to model how the omitted variables 

interact with the included variables, and when the influence of the omitted variables 

are not known (Leightner & Inoue, 2007). 

 

When significant independent variables are omitted from the model, the least 

squares estimates will usually be biased and the usual inferential statements from 

hypothesis tests or confidence intervals can be seriously misleading. Thus, omitted 

variable is a serious problem however, an omitted variable is only a problem under a 

specific set of circumstances. If the regressor is correlated with a variable that has 

been omitted from the analysis but that determines the dependent variable in part, 

then the OLS estimator will have omitted variable bias (Stock & Watson, 2003). 
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3.2 Omitted Variable Bias 

 

The omission from a regression of some variables that affect the dependent 

variable may cause an omitted variable bias. Every omission doesn’t always result 

biassedness. Omitted variable bias occurs when two conditions come true: first, the 

omitted variable is a determinant of the dependent variable and second, the omitted 

variable is correlated with the included variables (Stock & Watson, 2003).  
 

If a variable that is related to the dependent variable but uncorrelated with any 

measured independent variable is omitted, the result is a poorer fitting model with a 

larger error term. The regression coefficients for the measured independent variables, 

however, are not biased just by the omission of such a variable. In contrast, if the 

omitted variable is related to the dependent variable and correlated with a measured 

independent variable, then it can be said that the regression coefficient for the 

measured independent variable can be biased (Sackett, Laczo, & Lippe, 2003). Since 

it is impossible to include all relevant variables in a regression equation, omitted 

variable bias is unavoidable; however it is possible to mitigate this bias (Clarke, 

2005). 

 

The problem arises because any omitted variable becomes part of the error term, 

and the result may be a violation of the assumption necessary for the minimum SSE 

criterion to be an unbiased estimator. This assumption is the first least squares 

assumption which is ( ) 0=ii XE ε  incorrect. It was described in chapter two that the 

error term iε  in the linear regression model with a single regressor represents all 

variables, other than iX , that are determinants of iY . If one of these other variables is 

correlated with iX , this means that the error term (which contains this variable) is 

correlated with iX . In other words, if an omitted variable is a determinant of iY , then 

it is the error term, and if it is correlated with iX , then the error term is correlated 

with iX . Since iε  and iX  are correlated, the conditional mean of iε  given iX  is 

nonzero. This correlation therefore violates the first least squares assumption which 

is given in Section 2.2.3.1, and this causes a serious problem which is the OLS 
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estimator has omitted variable bias. This bias does not vanish even in very large 

samples, and the OLS estimator is inconsistent (Stock & Watson, 2003). 

 

The omitted variable bias formula is a very useful tool for judging the impact on 

regression analysis of omitting important influences on behavior which are not 

observed in the data set. In small sample form, the bias formula was developed and 

popularized by Theil (1957, 1971), and has been used extensively in empirical 

research (Stoker, 1983). 

 

To visualize the omitted variable bias, suppose that the model with two 

independent variables is the true model 

 

εβββ +++= 22110 XXY                    (3.1) 

 

However, suppose again instead that Y is regressed on 1X  alone, with 2X  omitted 

because of being unobservable. Then, the term 22 Xβ  is moved into the error term 

and the estimated model is 

 

110
ˆ XbbY +=                       (3.2) 

 

and therefore 

 

    *
110 eXbbY ++=                  (3.3) 

 

where *e  is the error term and equals to )( 22 εβ +X  (Ramsey, 1969). As before ε  is 

uncorrelated with 1X , but if 2X  is correlated with 1X , the error term )( 22 εβ +X  

will be correlated with the included variable 1X . Therefore, the least square 

assumption will be violated and as a consequence of this violation, the OLS 

estimator will be biased and inconsistent, if 2X  is correlated with 1X . Unless 2X  is 

correlated with 1X , however, there will be no correlation between the error term and 
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the independent variable 1X , therefore the bias will not arise from omitting the 

variable 2X .  

 

The property of being unbiasedness, mentioned in the previous chapter, means 

that the expected value of the estimator equals the true population value. Therefore, it 

is investigated whether 11 )( β=bE  when the model has omitted variable. If the true 

model is as equation (3.1) and we estimate as equation (3.2), then the least square 

estimator is (Williams, 2008) 
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211 )(
σ
σ

ββ +=bE                                        (3.5) 

 

If the omitted 2X  is correlated with 1X , then the estimate of 1β  will be biased. 

Because it now reflect not only the effect of itself but also partly the effects of the 

omitted variable. But, if the 1X  and 2X  are uncorrelated, then omitting one does not 

result in biased estimates of the effect of the other. Furthermore, if 2β  
= 0, this 

means that the model is not mis-specified and 2X  does not belong in the model 

because it has no effect on Y (Williams, 2008). 
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The amount of bias in the estimation with omitted 2X  is 2
1

12
2 σ
σ

β . As it can be 

seen, 1β  may increase or decrease according as the sign of 2β  and sign of the value 

of covariance. The direction of the bias, in other words whether 1b  tends to over or 

under estimate 1β  is solely a function of the signs of 2β  and 12σ . If both are positive 

or both are negative, 1b  will be biased upward; if one is negative and one is positive, 

1b  will be biased downward. 

 

It is straightforward to deduce the directions of bias when there is a single 

included variable and one omitted variable. It is important to note, furthermore, that 

if more than one variable is included, then the terms in omitted variable formula 

involve multiple regression coefficients, which themselves have the signs of partial, 

not simple, correlations (Greene, 2003). The omitted variable bias formula for the 

models that have three independent variables is given by Hanushek and Jackson 

(1977). The proof implies that if the true model is  

 

εββββ ++++= 3322110 XXXY                 (3.6) 

 

and we estimate 

 

22110
ˆ XbXbbY ++=                  (3.7) 

 

and therefore 

 
*

22110 eXbXbbY +++=           where εβ += 33
* Xe                     (3.8) 
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The least square estimators 
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where 1V  and 2V : the variances of 1X  and 2X ; ijC : the covariances of the variables 

thi  and thj . From the true model for Y and from averaging the iY  over the sample, it 

is known that 
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where ε is the mean of all error terms implicit in the sample. By substitution, 
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 where 2
1221 CVVD −= . The first summation can be written as 

( ) ( )∑ =− 121
2

1121 /1 VVXXNV i ββ . 
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Similar treatment the succeeding terms gives 
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Similarly, 

 

D
CCCV

b εεβ 11221
22

−
+=                 (3.13) 

 

Since in this case the error term equals *e , the equations (3.12) and (3.13) change 

as below 
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Substituting εβ += 33
* Xe  into the covariance expressions involving *e  gives 
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εβ 11331 * CCC
e

+=                  (3.16) 

 

εβ 22332 * CCC
e

+=                 (3.17) 

 

Taking the expected value of 1b  and 2b , assuming fixed X and ( ) 0=εE  
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where 
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where ijr  mean the correlations between sample values. As a result of this proof, it 

can be seen that the models that have three independent variables may have the 

omitted variable bias. 

 

The biases in the estimation with omitted 3X  are 313bβ  and 323bβ . As it is seen 

from the formula, to obtain the direction of bias can be difficult. This is because 

21 , XX  and 3X  can all be pair wise correlated. The direction of the bias, in other 

words whether 1b  and 2b  tend to over or under estimate of 1β  and 2β  is solely a 

function of the signs of 3β  and of 31b  and 32b . If both are positive or both negative, 

1b  (or 2b ) will be over estimated; if one is negative and one is positive, 1b  (or 2b ) 
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will be under estimated. Hence, the direction of bias in 1b  and 2b  does not have to be 

the same.  

 

3.3 Detection of Omitted Variables with RESET Test 

 

Detection of omitted variables plays an important role in specification analyses. 

Several techniques are developed for this purpose. One of the oldest specification 

tests for linear regression models, that is still widely used, is Regression Equation 

Specification Error Test (RESET), which was originally proposed by Ramsey (1969) 

and is known as the Ramsey RESET test (Clements and Hendry, 2002). This test is 

primarily a test designed to detect omitted variables and is a model misspecification 

test.  

 

Ramsey’s RESET Test tests the hypothesis that no relevant independent variables 

have been omitted from the regression model (Watson, 2002). Even if the Ramsey 

test signals that some variable(s) are omitted, it obviously doesn’t tell which ones are 

omitted. Besides this, nonetheless gave satisfactory values for all of the more 

traditional test criteria such as goodness of fit, high t-ratios and correct coefficient 

signs and test for first order autocorrelation (Evans, 2002). 

 

Furthermore, the RESET test is not only used to detect omitted variables, but also 

is used to check for the following types of errors, except for omitted variables:  

 

• Nonlinear functional forms  

• Simultaneous-equation bias 

• Incorrect use of lagged dependent variables (Evans, 2002) 

  

The idea is that the various powers of the fitted values will reveal whether 

misspecification exists in the original equation by determining whether the powers of 

the fitted values are significantly different from zero. More specifically, in 

developing a misspecification test, Ramsey recommends adding a number of 

additional terms to the regression model and then testing the significance of these. It 
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means that it is necessary to include in the regression model some functions of the 

regressors, on the basis that, if the model is misspecified, the error term would 

capture these variables either directly or indirectly through other variables omitted 

from the regression. Then, a test for the significance of these additional variables is 

used. It follows from the Milliken-Graybill Theorem (1970) that the usual test 

statistic will be exactly F-distributed with k and (n-k-r-1) degrees of freedom under 

the null hypothesis, if the errors are independent, homoskedastic, and normally 

distributed . If these additional variables are found to be significant, then it is said 

that the model is misspecified and some variables are omitted. 

 

The test is developed as follows. Suppose that the standard linear model is  

 

ipipiii XXXY εββββ +++++= −− 1,122110 L              (3.20) 

 

Ramsey now proposes the creation of a vector, defined as 

 

( )k
iiii YYYY ˆ,,ˆ,ˆ,ˆ 432 K  

 

where the value of k is chosen by the researcher, and suggests that the powers of 

Ŷ be included in the equation in addition to all the other iX  terms that are already in 

the regression (Evans, 2002). 

 

If the true model is as equation (3.6), and the estimated model is as equation (3.7), 

then by adding powers of the fitted values of Y to the original model, a new model is 

estimated 

 

uYYXXY +++++= 3
2

2
122110

ˆˆ δδβββ              (3.21) 

 

Then, in order to test the significance of these additional variables, the following 

hypotheses are constructed 
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The meanings of these hypotheses are: 

 

0H : the model has no omitted variable 

1H  : the model has omitted variable(s) 

 

Test statistic: 

 

)1,,(
)1/(

/)(
−−−≈

−−−
−

= rknkF
rknSSE

kSSESSE
F

new

newold α             (3.22) 

 

where k is the number of new regressor and r is the number of old regressor and 

oldSSE  is the sum of squared error for the estimated model, and newSSE  is the sum of 

squared error for the model added powers of the fitted values of Y  (Newbold, 

Carlson & Thorne, 2003). 

 

F-test provides an exact test for the null hypothesis (Verbeek, 2004). Decision 

rule implies that if the calculated F is greater than the F given by the critical value of 

F for some desired rejection probability (e.g. 0.05), the null hypothesis is rejected. 

Rejection of the null hypothesis implies the original model is inadequate and can be 

improved.  

 

Consequently, if the model can be significantly improved by artificially including 

powers of the predictions of the model, then the original model must have been 

inadequate and some important variables must have been added to the model 

(Newbold, Carlson & Thorne, 2003). 

 

RESET test is available in some software packages as STATA and R.        

STATA applies RESET test via the “ovtest” or “ovtest, rhs” commands after a reg 

command. The ovtest which is standing for “ommited variables test” uses the second 
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through fourth powers of the fitted values. The rhs option uses the second through 

fourth powers of independent variables. Both the RESET test with powers of the 

fitted values of approval and the test with the powers of the independent variables 

produce significant F tests for specification error. Furthermore, R applies RESET test 

via the “reset” or “resettest” commands and uses the second and third powers of the 

independent variables or fitted values or first principal component. 

 

3.4 Methods for Dealing with Omitted Variable Bias 

   

There are two types of methods to deal with the omitted variable bias which are 

theoretical methods and practical methods.  

 

3.4.1 Theoretical Methods  

 

How the analyst should proceed can be found out by looking at the errors of 

models with omitted variable. The terms 31b  and 32b  in equations (3.18) and (3.19) 

are the functions of the characteristics of the particular sample. Although 3X  is not 

observed and included in the data set, each observation has some implicit values for 

this variable associated with it. The variance of these implicit values for 3X  affects 

the values of 31b  and 32b  for a given set of values for 1X  and 2X . Since the terms 

31b  and 32b  refer to the sample used for the estimation, it is possible to reduce 31b  

and 32b  through appropriate choice of sample. If it can be found a sample where 3X  

does not vary which means 03 =V , then 31b  and 32b  will be zero, and therefore the 

bias will be removed, completely. Thus, selection of the sample is an important issue. 

 

By the way, it can be understood that the problems of specification are related to 

the size of 3β . The biases in the estimation with omitted 3X  are 313bβ  and 323bβ . 

Thus, the biases become more severe as the excluded variable becomes more 

important in explaining Y, for example the biases become larger in absolute 

magnitude of 3β . Choosing independent variables to include to the model is a very 
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critical point for proper specification. A priori knowledge based upon theory, past 

empirical results form the basis for making decisions on the size of different 

coefficients for variables omitted from models (Barreto & Howland, 2006). 

 

The correlations between the unmeasured sample values of this omitted variable 

and the included variables, denoted by 31r  and 32r , affect the values of 31b  and 32b  

for a given set of values for 1X  and 2X . Therefore, one method of reducing bias is 

to reduce the relationships in the sample between the omitted and the included 

variables. It means this method involves collecting observations in which the 

excluded variable is uncorrelated with the included variables. In such a sample 31r  

and 32r  are equal to zero and this makes 31b  and 32b  zero and in this manner it was 

provided unbiased estimates of 1β  and 2β . The only difficulty with this procedure is 

that if the included independent variables are at all correlated, the excluded variable 

must be randomized with respect to all the exogenous variables or all the coefficients 

will be biased, regardless of the correlation between the excluded variable and any 

particular X. In real data sets, it is hard enough to find situations where an omitted 

variable is uncorrelated with any included variable. This is the focal point for 

physical science research since laboratory experiments can be designed to reduce or 

eliminate the correlations with excluded variables from the experiment. Social 

scientists, however, do not often have the luxury of experimental design. Hence, they 

can not usually use this method. 

 

The remedy for these misspecification problems is obvious, but not necessarily 

easy. The excluded variable can either be included or a sample can be collected in 

which the covariance between included and omitted variables is zero, either because 

they are uncorrelated or because the excluded variable has no variance. However, 

each of these solutions requires that the misspecification be recognized prior to the 

collection of the data. In most real world applications, the misspecification arises 

because researchers failed to recognize the importance of a variable, not because they 

were unable to obtain a measure for the excluded variable or a sample where it was 

uncorrelated with included variables. This will be particularly true in social science 
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areas that do not have a well-developed priory theory. Consequently, in some areas 

as social science the likelihood of misspecification is increased because there is little 

formal theory to guide the researcher in selecting variables and ascertaining what 

needs to be held constant. The researcher then must be particularly careful in 

selecting the original variables.  

 

One of the most important implications of the theoretical development is that the 

inclusion of the important variables is essential, even if one is not interested in the 

estimated effects of all of the variables. In order to arrive at good estimates of the 

parameters of interest, it may be necessary to include other variables of lesser 

usefulness in the given problem. Recognition of the significance of a variable in a 

behavioral relationship does not necessarily imply that the analyst can or wishes to 

interpret its coefficient, only which one wishes to avoid biasing the coefficients of 

real interest (Hanushek & Jackson, 1977) 

 

3.4.2 Practical Methods  

 

The danger of omitted variables has been a recurrent issue in the social sciences. 

Boardman and Murnane (1979) underscored the potential bias and inconsistency of 

the ordinary least squares (OLS) estimators, and promoted a panel data approach. 

Ehrenberg and friends incorporated instrumental variable approaches for the analysis 

of the High School and Beyond (Ehrenberg & Brewer, 1994) and the National 

Education Longitudinal Study of 1988 (Ehrenberg, Goldhaber, & Brewer, 1995). 

Several other studies have considered a variety of procedures to address problems 

related to omitted variables. 
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Some methods in order to prevent the problem of omitted variables are presented 

in the following sections. 

 

• Proxy Variable   
• Instrumental Variable 
• Panel Data  
• Reiterative Truncated Projected Least Squares  

 
3.4.2.1 Proxy Variable 

 

Some variables, such as socioeconomic status, and quality education, and ability 

are so vaguish that it may be impossible even in principle to measure them. Others 

might be measurable, but require so much time and energy that in practice they have 

to be abandoned. Sometimes you are frustrated because you are using survey data 

collected by someone else, and an important variable has been omitted. Sometimes 

another variable is used in place of the omitted variable. Such a measurement 

variable is called a proxy variable. 

 

Because of these circumstances, if the researcher cannot obtain the variable of 

interest, then he must search whether proxy variables are available. When another 

variable, which’s observations are obtainable and highly correlated with the omitted 

variable and this variable is thus available as a proxy (McCallum, 1972).  

 

When only proxy variables are available for a subset of the independent variables, 

one must choose between the strategies of including the set of proxy variables in the 

regression or omitting them. A number of reasons show that it is usually a good idea 

to use a proxy variable to stand in for the missing variable, rather than omitting it 

entirely. It is shown that the bias of the estimates of the coefficients of the observable 

variables obtained by omitting the unobservable variable is always greater than the 

bias resulting from using proxy. In fact, it is better to use even a poor proxy than to 

use none at all and omit the variable (Wickens, 1972).  
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There are two good reasons for tring to find a proxy. First, the variable simply can 

be left out, then the regression is likely to suffer from omitted variable bias but the 

statistical tests will be invalidated. Second the results from your proxy regression 

may indirectly reveal the influence of the omitted variable.  

 

As it was described, omitted variable bias can be eliminated or at least mitigated, 

if a proxy variable is avaliable for the excluded variable. Suppose that the true model 

is as (3.6), where 3X  is unobservable. Suppose that *
3X  is available as a proxy for 

3X . The proxy variable *
3X  must have some relationship with 3X . Now, suppose 

that the relationship is written as: 

 

3
*
3103 vXX ++= δδ                 (3.23) 

 

There are some conditions that the proxy variable *
3X  should satisfy (Byun, 

2005). Because, it will solely give unbiased estimator. They are:  

 

• ε  is not correlated with 21 , XX  and 3X . This is the standard assumption for 

the true model. 

 

• ε  is not correlated with *
3X . Condition 1 and 2 imply that 

 

( ) 0,,, *
3321 =XXXXE ε  

 

• 3v  is not correlated with 21 , XX  and *
3X . This condition is necessary for 

“good” proxy variable.  

 

( ) ( )*
33

*
3213 ,, XXEXXXXE = 330 Xδδ +=  

 

• One another condition the proxy variable should satisfy is that the proxy 

variable should be redundant (sometimes called ignorable) in the structural 
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equation (Wooldridge, 2002). Proxy variable *
3X  is irrelevant in the true 

model, once 21 , XX  and 3X  have been included. It is 3X  that directly affects 

Y, not *
3X . The most natural statement of redundancy of *

3X  is: 

 

( ) ( )321
*
3321 ,,,,, XXXYEXXXXYE =  

 

3.4.2.2 Instrumental Variable 

 

The instrumental variable method is a way to consistently estimate the true 

coefficients of the regression model in spite of the endogenous variables which are 

the independent variables correlated with the error term, likely due to one or more 

omitted variables. Omitting a relevant variable causes endogeneity, because if an 

omitted variable is a determinant of iY , then it becomes a part of the error term, and 

if it is correlated with at least one of iX , then the error term is correlated with X. 

Therefore this variable is called endogenous variable.  

  

An instrumental variable, often defined by the letter Z in equations, is used as an 

“instrument” or “tool” to isolate the part of X that is correlated with the error term. 

Because if the information in X that is not correlated with the error term can be 

isolated, then this information can be used to obtain an unbiased estimate of true 

regression parameters. This method is particularly used when there are no 

satisfactory proxy variables for the omitted variables (Schreck, 2009). 

 

A good instrumental variable, Z, has the following properties which are necessary 

for getting unbiased coefficient estimates (Wooldridge, 2002) 

 

• Unlike a proxy variable, Z should be uncorrelated with the omitted variable. 

Therefore Z is independent of the error term, so that the instrument can 

isolate the variation in X. This property is known as “instrument exogeneity” 

(Schreck, 2009). 
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0),( =εZCov  

 

• Z is correlated with the endogenous variable X, hence the instrument can 

capture some of its variation. This property is also known as “instrument 

relevance” (Stock & Watson, 2003).  

 

0),( ≠XZCov  

 

• Z is strongly correlated, rather than weakly correlated, with the endogenous 

variable X . 

 

If an instrument fails the first condition, it means that Z is correlated with the error 

term, the instrument is said to be an invalid instrument. If an instrument fails the 

second condition, the instrument is said to be an irrelevant instrument. The third 

condition fails when very low correlation exists between the instrument and the 

endogenous variable being instrumented; likewise the instrument is called a weak 

instrument (Cameron & Trivedi, 2005). 

 

Instrumental variable estimator provides a way to obtain consistent parameter 

estimates. This method, widely used in econometrics and rarely used elsewhere, is 

conceptually difficult and easily misused. However this method can not always be 

applied, because necessary instruments may not always be available (Stock & 

Watson, 2003). 

 

3.4.2.3 Panel Data 

 

Panel data can be used to obtain consistent estimators in the presence of omitted 

variables (Gossy, 2008). A panel data set contains repeated observations over the 

same units (individuals, firms) collected over a number of periods. The availability 

of repeated observations on the same units allows economists to specify and estimate 

more complicated and more realistic models than a single cross-section or a single 

time series would do (Verbeek, 2004).  
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Time series is a data set containing observations on a single phenomenon 

observed over multiple time periods. In time series data, both the values and the 

ordering of the data points have meaning. Cross-sectional data is a data set 

containing observations on multiple phenomena observed at a single point in time. In 

cross-sectional data sets, the values of the data points have meaning, but the ordering 

of the data points does not. Panel data is, however, a data set containing observations 

on multiple phenomena observed over multiple time periods. Alternatively, the 

second dimension of data may be some entity other than time (Hsiao, 2003). 

Therefore, panel data are not only suitable to model or explain why individual units 

behave differently but also to model why a given unit behaves differently at different 

time periods (Verbeek, 2004). 

 

The main idea of panel data models is to regard any unobserved factor affecting 

the dependent variable as consisting of two effects: those that are constant and those 

that vary over time (Gossy, 2008). 

 

Panel data provide means to eliminate or reduce the omitted-variable bias through 

the various data transformations when the correlations between included explanatory 

variables and the random error terms follow certain specific patterns (Arminger, 

Clogg, & Sobel, 1995). In certain cases the availability of panel data can actually 

simplify the computation and inference (Cameron & Trivedi, 2005). 

 

Panel data can reduce the effects of omitted variable bias, or in other words, 

estimators from a panel data set may be more robust to an incomplete model 

specification (Hsiao, 2003). 

 

3.4.2.4 Reiterative Truncated Projected Least Squares  

 

Traditional techniques for dealing with omitted variables use proxy variables or 

instrumental variables. However the correct use of proxy variables and instrumental 

variables involves knowing (1) how the omitted variable’s affect on the dependent 

variable should be modeled and (2) how the correlation between the instruments or 
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proxies and the omitted variable should be modeled. This necessary knowledge is 

often impossible to obtain. By building on Branson and Lovell, Leightner created a 

new analytical technique named Reiterative Truncated Projected Least Squares 

(RTPLS) that produces reduced form estimations while greatly reducing the 

influence of omitted, unknown, and immeasurable variables. Unlike the use of 

proxies or instrumental variables, RTPLS does not require knowing how the omitted 

variable is correlated to the dependent variable and how the omitted variable is 

correlated with proxies or instruments (Leightner & Inoue, 2007). 

 

3.5 The Relationship between Omitted Variable and Multicollinearity  
 

Multicollinearity which means that two or more independent variables are highly 

correlated with each other, can have a powerful effect upon model specification and 

particularly, on statistical tests of model specification (Hanushek & Jackson, 1977). 

 

One of the methods which are used to avoid multicollinearity is to drop the 

collinear variable, but it is the risk of mis-specifying model and having omitted 

variable bias (Crown, 1998). Where there is multicollinearity, it is especially 

dangerous to omit one of the interrelated variables from the model (Upton, 1987). 

Dropping variables seems the most obvious solution and may work in some cases 

where not interested in individual parameter values. But, the coefficient on the 

remaining collinear variable will absorb most of the effect of the omitted variable. 

Therefore this solution results the problem of omitted variable bias (Crown, 1998). 

The consequences of omitting collinear variable are potentially more serious than 

those of multicollinearity because specification error may introduce bias into the 

model (Berry & Feldman, 1990). 

 

It was mentioned that the biases in the estimation with omitted 3X  are 313bβ  and 

323bβ . It was also given in the equations of (3.18) and (3.19) that the correlations 

between the omitted variable and the included variables, denoted by 31r  and 32r , 

affect the values of 31b  and 32b  for a given set of values for 1X  and 2X . Thus, it is 
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obvious that, when omitted variable is correlated with the included variables, the 

values of 31r  and 32r  will be high, then as a result of this the omitted variable bias 

will arise. Consequently, when there is multicollinearity, exclusion of the collinear 

variable from the model causes omitted variable bias, because of the increasing of 

the values of 31r  and 32r  (Berry & Feldman, 1990). 

 

On the other hand, when data on the omitted variable exist but were ignored, the 

standard t-test of the null hypothesis 0=jβ  ( 1,,1 −= pj K ) is a test of the 

specification that includes X, and performance of that statistical test provides 

information about appropriate model specification. But multicollinearity confounds 

this test and weakens the ability to judge among model specifications. Since 

multicollinearity reduces the precision of the estimates because of it increases their 

variance, it becomes difficult to develop tests that are good at distinguishing between 

alternative values of a parameter and alternative specifications of the model 

(Hanushek & Jackson, 1977). 

 

Therefore, it is suggested strongly not to omit a variable simply when it appears to 

be highly correlated to another variable because omitting a variable is often far worse 

(Burt, Barber, Rigby, & Cooper, 2009). The researcher must be more cautious in 

evaluating and interpreting the results and must provide much more information 

about the behavior being modeled. This information can come only from theoretical 

considerations and previous empirical work (Hanushek & Jackson, 1977). 
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CHAPTER FOUR 

SIMULATION STUDY 

 

4.1 Introduction 

 

In the previous chapters the definitions of multiple regression and omitted 

variable were given. In this chapter, it will be given that how omitted variable bias 

can affect the model.  

 

First, in this chapter, three kinds of populations with 1000 data were generated 

from the multivariate normal distribution. In each population, three independent 

variables 1X , 2X  and 3X , dependent variable Y and the error term were generated. 

The differences between the populations are the correlations between the variables. 

One of these populations has no correlated variables and is named “L-pop”; the other 

population has two variables that are correlated with each other and is named “M-

pop”; and the other population has all the variables highly correlated with each other 

and is named “H-pop”. The purpose of generating populations with different 

correlated variables is to investigate the omitted variable bias in three different 

situations.    

 

Second, random samples were drawn from these populations with sample size of 

n = 30. Then, regression procedure was applied to these samples. All the independent 

variables were included to the model firstly, then one variable ( 3X ) was omitted and 

then two variables ( 2X  and 3X ) were omitted from the model. The model was built 

in every omission in order to investigate the omitted variable bias. Furthermore, 

when two variables were omitted from the model, RESET test was applied in order 

to show how RESET test work. The computations were executed using a Minitab 

macro program. This macro program was run 10,000 times and the results were 

recorded.  

 

The study with sample size of n = 30 were also applied with sample size of n = 50 

in order to check whether larger sample size affects the omitted variable bias.
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4.2 Correlations between Variables 

 

The correlation matrixes of Y, 1X , 2X , and 3X  for each population are given in 

Table 4.1, Table 4.2 and Table 4.3.  

 
Table 4.1 Correlation coefficients for L-pop 

 Y 1X  2X  3X  

  Y 1    

 1X  0.587 1   

 2X  0.639 0.247 1  

 3X  0.578 0.118 0.167 1 

 

The population named L-pop has no high correlation between independent 

variables as Table 4.1 shows. By the way, the simple correlation coefficients between 

iX  and Y are not high.  

 
Table 4.2 Correlation coefficients for M-pop 

 Y 1X  2X  3X  

  Y 1    

 1X  0.502 1   

 2X  0.818 0.176 1  

 3X  0.800 0.129 0.889 1 

 

Table 4.2 shows that there is a high correlation between 2X  and 3X ; 889.032 =r . 

Furthermore, the correlations between iX  and Y are absolutely high, especially the 

correlation between 2X  and Y. 
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Table 4.3 Correlation coefficients for H-pop 

 Y 1X  2X  3X  

  Y 1    

 1X  0.739 1   

 2X  0.815 0.404 1  

 3X  0.926 0.747 0.903 1 

 

Finally, as seen from Table 4.3, that a high correlation exists between all the 

independent variables and similar to M-pop, the simple correlation coefficients 

between iX  and Y are high.  

 

4.3 Omitted Variable Bias when Sample Size 30 

      

Random samples were drawn from each of populations with sample size of          

n = 30. Then, regression procedure was applied to these samples. All of the true 

coefficients of independent variables are adjusted to be equal to one. 

 

4.3.1 When One Variable is Omitted 

 

After 10,000 samples with n = 30 are drawn from each of these populations and 

regression procedure is applied, 3X  is omitted from the model. The results in regard 

to the regression analysis which is applied to the different populations are shown in 

Table 4.4. 
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Table 4.4 Mean values of the amount of bias, the coefficients and the standard deviations 

 L-pop M-pop H-pop 

 31b  0.076          - 0.028 0.460 

 32b  0.145 0.904 0.715 

 1b  1.036 0.959 1.363 

 2b  1.258 1.929 1.790 

 )( 1bs  0.290 0.228 0.224 

 )( 2bs  0.285 0.222 0.221 

 

In Table 4.4, 31b  means that the amount of bias on 1b  when 3X  is omitted and 

similarly 32b  means that the amount of bias on 2b  when 3X  is omitted. 

 

For L-pop, when 3X  is excluded from the model, there is approximately 4% 

change in the coefficient of 1X . Since the correlation between 3X  and 2X  is much 

more than the correlation between 3X  and 1X , the ratio of bias on the coefficient of 

2X  is approximately 0.26.  

 

For M-pop, when 3X  is omitted, it becomes the part of the error term and since 

the correlation between 2X  and 3X  is high, then the error term is correlated with 

2X . Since the error term and 2X  are correlated, the assumption which implies that 

the conditional mean of iε  given iX  is nonzero (given in Section 2.2.3.1) is violated, 

and this causes omitted variable bias on 2b . That is, the estimate of 2β  is biased 

upward, because 3X  is omitted. On the other hand, since there is low correlation 

between 1X  and 3X , almost 4% bias is emerged on 1b  and likewise 1b  is biased 

downward. 

 

For H-pop, since the omitted 3X  is correlated with the other two independent 

variables 1X  and 2X , the estimates of the 1β  and 2β  are substantially different from 

the real values which are equal to one. The amount of bias in the estimates are 
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460.031 =b  and 32b  = 0.715. Therefore, the omission of 3X  which is an important 

variable for the model causes bias, as expected. 1b  and 2b  consist of the effects of 

3β  and are biased.  

 

The results of explanatory power of the models for each population are given in 

Table 4.5.  

 
Table 4.5 The explanatory powers of the models for each population 

 L-pop M-pop H-pop 

  Omission 2R  2
adjR  2R  2

adjR  2R  2
adjR  

  Before  0.8112 0.7894 0.8422 0.8240 0.8715 0.8567 

  After ( 3X ) 0.6139 0.5853 0.8048 0.7904 0.8655 0.8555 

 

In L-pop, before omitting any independent variable, 8112.02 =R  and 

7894.02 =adjR ; but after 3X  is omitted, 6139.02 =R  and 5853.02 =adjR . The 

reduction in the values of 2R  and 2
adjR  is obvious. Therefore the variation in the 

dependent variable is not fully measured without it and significance of the model 

decreases.  

 

In M-pop, the value of 2R  is equal to 0.8048. This value was equal to 0.8422 

before 3X  was omitted. This means, although 1X , 2X  and 3X  explain 84% of the 

model, 1X  and 2X  without 3X  explain 81% of the total sample variation of Y. 

Similarly, although the value of 2
adjR  is 0.824, this value decreases to 0.7904 after 

omitting.  

 

In both of the populations, M-pop and H-pop, since explained variability (SSR) 

decreases, when 3X  is omitted, the values of 2R  and 2
adjR  are less than before. 

However, as seen from Table 4.5, there are no noticeable differences among the 

values before and after omitting.  



47 

 

Although the estimates of iβ  parameters have omitted variable bias, the values of 

2R  and 2
adjR  are high and does not change significantly. Basically, it is expected that 

these values should decrease and tell a lack of fit of the model to the data. Although 

3X  has an important role in explaining Y ( 926.03 =Yr ), the values of 2R  and 2
adjR  

does not give any information about omitted variable. The reason of these values 

does not change significantly depending on omitting an important variable may be 

that the included variables have high correlations with dependent variable Y. Thus, 

the results of 2R  and 2
adjR  assert that these included variables can explain the model 

sufficiently, although there is an omitted variable.  

 

On the other hand, the reason of decreasing in these values distinctly in L-pop is 

that the included independent variables have almost low correlations between 

dependent variable, and hence the explanatory power of the model, without 3X , is 

not enough. 

 

To better understand the relationship between the bias and 2R , the following 

graphs are drawn for each population. These graphs show the relationship between 
2R  and the bias on 1b  when 3X  is omitted. 

 

 

           Figure 4.1 A scatterplot of the bias on 1b  versus 2R  for L-pop 
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            Figure 4.2 A scatterplot of the bias on 1b  versus 2R  for M-pop 

 

 

             Figure 4.3 A scatterplot of the bias on 1b  versus 2R  for H-pop 

 

As Figure 4.1, Figure 4.2 and Figure 4.3 show, while the values of 2R  increase, 

the bias may increase or decrease, as expected. Moreover, the graphs for the 

relationship between 2R  and the bias on 2b  are similar to these graphs.   

 

Stock and Watson (2003) confirm this case. They say that a high 2R  or 2
adjR  does 

not imply that there is no omitted variable and similarly a low 2R  or 2
adjR   does not 

mean there is omitted variable. 
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Consequently, it can be said that it is dangerous to judge the usefulness of the 

model based solely on these values, 2R  and 2
adjR . 

 

4.3.2 When Two Variables are Omitted 

 

10,000 samples with n = 30 are drawn from these populations and regression 

procedure is applied. 2X  and 3X  are omitted from the model. The results in regard 

to the regression analysis which is applied to the different populations are shown in 

Table 4.6. 

 
Table 4.6 Mean values of the amount of bias, the coefficient and the standard deviation 

 L-pop M-pop H-pop 

  31b  0.099 0.115 0.705 

  21b  0.217 0.162 0.391 

  1b  1.309 1.274 2.057 

  )( 1bs  0.356 0.429 0.368 

 

In Table 4.6, 31b  means that the amount of bias on 1b  when 3X  is omitted and 

similarly 21b  means that the amount of bias on 1b  when 2X  is omitted. 

 

When the results given in Table 4.6 have been checked, for L-pop, it can be seen 

that the amount of bias on 1b  caused by omitting 3X  is 0.099 and the amount of bias 

on 1b  caused by omitting 2X  is 0.217.  

 

For M-pop, as supposed, since 129.031 =r  and 176.021 =r , the amounts of bias, 

particularly, are not high. However, unlike the situation of omitting one variable, 

both of the amounts of bias are added to the estimate, so that, the estimate of true 

coefficient is biased. 
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For H-pop, since the omitted 3X  is highly correlated with the included 1X , the 

bias is high and equal to 0.705 and furthermore, since the other omitted variable 2X  

is not highly correlated with 1X , the bias is not as much as for 3X ’s and equal to 

0.391. Besides, as seen from the table, 1b  is quite different from the true coefficient, 

because 1b  contains both of the omitted variables effects. The rate of bias on 1b  is 

approximately 106%. 

 
Table 4.7 The explanatory powers of the models for each population 

 L-pop M-pop H-pop 

Omission 2R  2
adjR  2R  2

adjR  2R  2
adjR  

  Before  0.8112 0.7894 0.8422 0.8240 0.8715 0.8567 

  After ( 3X ) 0.6139 0.5853 0.8048 0.7904 0.8655 0.8555 

  After ( 2X , 3X ) 0.3496 0.3264 0.2659 0.2397 0.5443 0.5281 

 

As seen from the table, in each population, when two variables are excluded from 

the model, unlike the case that one variable is excluded, 2R  and 2
adjR  are reduced 

excessively.  This means, the model which is built with only 1X  does not fit the data 

very well. 2X  and 3X  have important roles in explaining Y, but 1X  does not, as it is 

seen from Table 4.1, Table 4.2 and Table 4.3. Hence, because of the low correlation 

between 1X  and Y, the values of 2R  and 2
adjR  are decreased. Consequently, it can be 

said that if the correlation between the included variable and the dependent variable 

is low, then 2R  and 2
adjR  are decreased and signal about omitted variables. However, 

if the correlation between these included and dependent variables is high, then 2R  

and 2
adjR  do not tell anything about omission.  

 

4.3.3 RESET Test for Sample Size 30 

 

In this study, RESET test is applied when two variables, 2X  and 3X , are 

excluded from the model to find out how it works and whether it confirms the 
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omissions from the model. As described in the literature, RESET test is principally 

improved to detect omitted variables. 

 

First, by adding second and third powers of the fitted values of Y to the original 

model, a new model is built. 10,000 samples with n = 30 are drawn from the 

populations and these procedures are applied 10,000 times. The hypothesis that no 

relevant independent variables have been omitted from the regression model is tested 

by testing the significance of additional variables, 32 ˆ,ˆ YY . F test for the significance 

of these additional variables is used as Ramsey who is the developer of the RESET 

test suggests. 

 

Ramsey RESET test results using powers of the fitted values of Y are given in 

Table 4.8. 

 
Table 4.8 The statistics for F – values in regard to Ramsey RESET test  

 Mean Min – Max 

  L-pop 597.15 6.86 – 14376.1 

  M-pop 408.02 9.90 – 26938.6 

  H-pop 163.79 0.95 – 09957.3 

 

Regarding all of these statistics, from Table 4.8, it is seen that, for every 

population, computed values of F are substantially great.  

 

The critical value for F is 1,, −−− rknkFα  = 5.53 where 01.0=α , k = 2, n = 30, r = 2. 

 

Since the computed values of F exceed the critical value, the null hypothesis is 

rejected for each population. The combined effects of these additional variables do 

improve the model. This means, one or more variables should be included to the 

model. Hence, RESET test detects that some variable(s) omitted from the model. As 

described in the literature, RESET test is not able to discover which variables 

omitted. However, it gives a caution about omission. 
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Incidentally, as seen from the table, for H-pop, the minimum value of F is equal to 

0.951 and less than the critical value. But, when looking at the data, the percentage of 

being less than the critical value for H-pop is 1%. Therefore, it can be said that, this 

case does not change the result.  

 

Comparisons of the explanatory powers of the new model which is built by 

powers of the fitted values of Y and old model which is built by only 1X  are given in 

Table 4.9. 

 
Table 4.9 The explanatory powers of the models for each population 

 L-pop M-pop H-pop 

 Model 2R  2
adjR  2R  2

adjR  2R  2
adjR  

  Old  0.3496 0.3264 0.2659 0.2397 0.5443 0.5281 

  New  0.9602 0.9556 0.9352 0.9278 0.9210 0.9193 

 

Considering these statistics, to add second and third powers of the fitted values of 

Y to the original model increases the values of  2R  and 2
adjR , and it can be said that to 

add new variables to the model increases the explanatory power of the model.  

 

4.4 Omitted Variable Bias when Sample Size 50 

 

The samples that contain substantially more data are drawn to check whether 

larger sample size affects the omitted variable bias. Random samples were drawn 

from each of populations with sample size of n = 50. Then, regression procedure was 

applied to these samples. All of the true coefficients of independent variables are 

adjusted to be equal to one. 

 

4.4.1 When One Variable is Omitted 

 

After 10,000 samples with n = 50 are drawn from these populations and 

regression procedure is applied, 3X  is omitted from the model. The results in regard 
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to the regression analysis which is applied to the different populations are shown in 

Table 4.10. 
 

Table 4.10 Mean values of the amount of bias, the coefficients and the standard deviations 

 L-pop M-pop H-pop 

 31b  0.079          - 0.029 0.459 

 32b  0.147 0.904 0.715 

 1b  1.037 0.965 1.356 

 2b  1.264 1.925 1.791 

)( 1bs  0.220 0.173 0.169 

)( 2bs  0.216 0.168 0.167 

 

In Table 4.10, 31b  means that the amount of bias on 1b  when 3X  is omitted and 

similarly 32b  means that the amount of bias on 2b  when 3X  is omitted. 

 

For L-pop, when 3X  is omitted from the model, approximately 4% bias on the 

coefficient of 1X  is emerged. Since the correlation between 3X  and 2X  is much 

more than the correlation between 3X  and 1X , the ratio of bias on the coefficient of 

2X  is approximately 0.26.  

 

For M-pop, when 3X  is omitted, it becomes the part of the error term and since 

the correlation between 2X  and 3X  is high, then the error term is correlated with 

2X . Since the error term and 2X  are correlated, the assumption of the least square is 

violated, and this causes omitted variable bias on 2b . The percentage of bias is 

approximately 93%. On the other hand, when the amounts of bias are compared, it is 

seen that the bias on 1b  is less than the bias on 2b , since the correlation between 1X  

and 3X  is less than the correlation between 2X  and 3X .  
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For H-pop, since the omitted 3X  is correlated with the other two independent 

variables 1X  and 2X , the estimates of the 1β  and 2β  are substantially different from 

the real values which are equal to one. The amount of bias in the estimate with 

omitted 3X  are 459.031 =b  and 32b  = 0.715. Therefore, omission of 3X  which is an 

important variable for the model causes bias, as supposed. 1b  and 2b  consist of the 

effects of 3β  and are biased.  

 

The results of explanatory power of the models for each population are given in 

Table 4.11.  

 
Table 4.11 The explanatory powers of the models for each population 

 L-pop M-pop H-pop 

  Omission 2R  2
adjR  2R  2

adjR  2R  2
adjR  

  Before 0.8089 0.7965 0.8389 0.8284 0.8689 0.8603 

  After ( 3X ) 0.6102 0.5937 0.8034 0.7949 0.8650 0.8593 

 

In L-pop, before omitting any independent variable, 8089.02 =R ; but after 3X  is 

omitted, 6102.02 =R . After 3X  was omitted, as shown in the table, both of the 

values 2
adjR  and 2R  are significantly less than before. 

 

In both of the populations, M-pop and H-pop, it can be said that, since explained 

variability (SSR) decreases, when 3X  is omitted, the values of 2R  and 2
adjR  are less 

than before. However, as it is seen at Table 4.11, there are no noticeable differences 

between the values before and after omitting.  

 

Table 4.10 shows the estimates of iβ  parameters have omitted variable bias. In 

spite of the fact that, the values of 2R  and 2
adjR  are high and does not change 

significantly. Basically, it is expected that these values should decrease and tells a 

lack of fit of the model to the data. Although 3X  has an important role in explaining 
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Y ( 926.03 =Yr ), the values of 2R  and 2
adjR  does not give any information about 

omitted variable. The reason of these values does not change significantly depending 

on omitting an important variable may be that the included variables have high 

correlations with dependent variable Y. Thus, the results of 2R  and 2
adjR  assert that 

these included variables can explain the model sufficiently, although there is an 

omitted variable.  

 

On the other hand, the reason of decreasing in L-pop is that the included 

independent variables have low correlations between dependent variable, and the 

explanatory power of the model, without 3X , is not enough. 

 

Consequently, it can be said that it is dangerous to judge the usefulness of the 

model based solely on these values, 2R  and 2
adjR . 

 

4.4.2 When Two Variables are Omitted 

 

10,000 samples with n = 50 are drawn from these populations and regression 

procedure is applied. This time, 2X  and 3X  are omitted from the model together. 

The results in regard to the regression analysis which is applied to the different 

populations are shown in Table 4.12. 

 
Table 4.12 Mean values of the amount of bias, the coefficient and the standard deviation 

 L-pop M-pop H-pop 

 31b  0.116 0.129 0.743 

 21b  0.248 0.182 0.410 

 1b  1.359 1.310 2.111 

 )( 1bs  0.273 0.327 0.281 

 

In Table 4.12, 31b  means that the amount of bias on 1b  when 3X  is omitted and 

similarly 21b  means that the amount of bias on 1b  when 2X  is omitted. 
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For L-pop, it can be seen from the table, the amount of bias on 1b  caused by 

omitting 3X  is 0.116 and the amount of bias on 1b  caused by omitting 2X  is 0.248. 

Therefore, the total bias on 1b  is 0.359, since 1b  contain the effects of both of the 

omitted variables. 

 

For M-pop, as expected, since 129.031 =r  and 176.021 =r , the amounts of bias, 

particularly, are not too high. However, unlike the situation of omitting one variable, 

both of the amount of bias are added to the estimation, so that, the estimate of true 

coefficient is biased.  

 

For H-pop, since the omitted 3X  is highly correlated with the included 1X , the 

bias is high and since the other omitted variable 2X  is not highly correlated with 1X , 

the bias is not as much as 3X ’s. Moreover, as it is seen from the table, 1b  is quite 

different from the true coefficient, because 1b  includes both of the omitted variables 

effects. The percentage of bias is approximately 111%. 

 
Table 4.13 The explanatory powers of the models for each population 

 L-pop M-pop H-pop 

 Omission 2R  2
adjR  2R  2

adjR  2R  2
adjR  

Before 0.8089 0.7965 0.8389 0.8284 0.8689 0.8603 

After ( 3X ) 0.6102 0.5937 0.8034 0.7949 0.8650 0.8593 

After( 2X , 3X ) 0.3468 0.3331 0.2598 0.2444 0.5432 0.5336 

 

As seen from the table, in each population, when two variables are excluded from 

the model, unlike the case one variable is excluded, 2R  and 2
adjR  are reduced 

excessively.  This means, the model which is built with only 1X  does not fit the data 

very well. 2X  and 3X  have important roles in explaining Y, but 1X  does not, as seen 

from the correlation tables. Hence, the low correlation between 1X  and Y is the 

reason of reduced 2R  and 2
adjR . Therefore it can be said that if the correlation 
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between the included variable and the dependent variable is low, then 2R  and 2
adjR  

are decreased and signal about omitted variables. However, if the correlation 

between these included and dependent variables is high, then 2R  and 2
adjR  do not tell 

anything about omission.  

 

4.4.3 RESET Test for Sample Size 50 

 

RESET test is applied when n = 50 and when two variables, 2X  and 3X , are 

excluded from the model to find out how it works and whether it confirms the 

omissions from the model. 

 

The process which is used when n = 30 is followed. As Ramsey who is the 

developer of the RESET test suggests, first, by adding second and third powers of the 

fitted values of Y to the original model, a new model is built. 10,000 samples with    

n = 50 are drawn from the populations and these procedures are applied 10,000 

times. The hypothesis that no relevant independent variables have been omitted from 

the regression model is tested by testing the significance of additional variables. F 

test for the significance of these additional variables is used. 

 

Ramsey RESET test results using powers of the fitted values of Y are given in 

Table 4.14 . 

 
Table 4.14 The statistics for 10,000 F - values in regard to Ramsey RESET test  

 Mean Min – Max 

  L-pop 615.86 29.63 – 9740.5 

  M-pop 389.73 25.60 – 7679.8 

  H-pop 165.45 04.85 – 4046.8 

 

Regarding all of these statistics, from this table, it is seen that, for every 

population, computed values of F are substantially great.  
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The critical value for F is 1,, −−− rknkFα  where 01.0=α , n = 50, k = 2, r = 2 is 

approximately 5.00. Since the computed values of F exceed the critical value, the 

null hypothesis is rejected for each population.  

 

The combined effects of these additional variables do improve the model. This 

means, one or more variables should be included to the model. Hence, RESET test 

detects that some variable(s) omitted from the model. As described in the literature, 

RESET test is not able to discover which variables omitted. However, it gives a 

caution about omission. 

 

Incidentally, as it can be seen from the table, for H-pop, the minimum value of F 

is equal to 4.85 and less than the critical value. But, when looking at the data, the 

percentage of being less than the critical value for H-pop is 0.1%. Therefore, it can 

be said that, this case does not change the result.  

 

Comparisons of the explanatory powers of the new model which is built by 

powers of the fitted values of Y and old model which is built by only 1X  are given in 

Table 4.15. 

 
Table 4.15 The explanatory of the models for each population 

 L-pop M-pop H-pop 

Model 2R  2
adjR  2R  2

adjR  2R  2
adjR  

 Old  0.3468 0.3331 0.2598 0.2444 0.5432 0.5336 

 New  0.9539 0.9509 0.9285 0.9238 0.9077 0.9016 

 

According to the results, to add second and third powers of the fitted values of Y 

to the original model increases the values of  2R  and 2
adjR , and it can be said that to 

add new variables to the model increases the explanatory of the model.  
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CHAPTER FIVE 

CONCLUSIONS 

 

In this study, the omitted variable bias is examined as theoretically and 

investigated in which conditions the omitted variable bias occurs and how affects the 

model and estimation by simulation. 

 

In the simulation study, three types of populations with 1000 data which varied 

depending on the correlation values between the variables were generated to show 

the effects of the different correlations on the bias. Random samples were drawn 

from these populations with sample size of n = 30 and n = 50. Though the true model 

had three independent variables, the models were estimated by omitting one and then 

two independent variables for each sample. 10,000 repetitions were generated for 

each of sample sizes of 30 and 50. Therefore the effects of omitted variable bias were 

investigated in each situation. The amount of bias, the estimated coefficients, 

coefficients of determination and the adjusted coefficients of determination, standard 

deviations of the estimated coefficients are computed for every model and F statistics 

are also computed for applying RESET test. 

 

It was described in the literature that, when a relevant variable is omitted from the 

model, the effects of this omitted variable can not be estimated and the estimators for 

other variables in the model may be biased and thus misleading. Because, if a 

relevant variable is omitted, it becomes the part of the error term and if the 

correlation between the omitted and the included variables is high, then the error 

term is correlated with the included variable. Thus, the assumption which implies 

that the conditional mean of iε  given iX  is nonzero is violated, and this causes 

omitted variable bias in the coefficient of included variable. In this study, it is seen 

that when a high correlated variable with the other variables in the model is omitted 

from the model, it causes bias in the included variable, and this bias changes 

depending on the values of correlation. A high correlation increases the amount of 

bias and similarly a low correlation decreases the amount of bias. In brief, the
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correlation between the omitted and the included variables and the bias in the 

estimated coefficients are directly proportional. 

 

At the same time, when the values of 2R  and 2
adjR  are calculated and considered, 

it is seen that although the estimators of iβ  parameters have omitted variable bias, 

the values of 2R  and 2
adjR  are high and does not change significantly. Basically, it is 

expected that these values should decrease and tell a lack of fit of the model to the 

data. Even though the omitted variable has an important role in explaining Y, the 

values of 2R  and 2
adjR  does not signal about omitted variable. The reason of these 

values does not change significantly depending on omitting an important variable 

may be that the included variables have high correlations with dependent variable Y. 

Thus, the results of 2R  and 2
adjR  assert that these included variables can explain the 

model sufficiently, although there is an omitted variable. On the other hand, these 

values may decrease distinctly when a relevant variable is omitted. The reason of this 

decreasing may be that the remaining independent variables have low correlations 

between dependent variable, when the relevant variable is omitted. Therefore, it can 

be said that a high or a low 2R  or 2
adjR  does not give any information about whether 

there is an omitted variable. Consequently, it can be seen clearly from the results that 

it is dangerous to judge the usefulness of the model based solely on these values, 2R  

and 2
adjR . 

 

Problem of omitting relevant variables is a remarkable issue. It brings a lot of 

trouble and causes misleading results. Therefore, the investigator should check 

whether there are omitted variables. For this purpose, Ramsey (1969) developed 

RESET test, as mentioned in Chapter 3. Simulation results show that, RESET test, 

which is applied when two variables are omitted from the model, detects that some 

variables are omitted from the model. As defined in Chapter 3, this test does not tell 

how many or which variables are omitted. However, considering computed F values 

and comparing them with the critical values, the null hypothesis which implies that 
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the model has no omitted variable is rejected and RESET test signals the omission, 

truthfully. 

 

In general, it is said that the researchers achieve greater power with increases in 

sample sizes. Larger sample sizes result in increasingly more precise estimates of 

parameters (Meyers, Gamst & Guarino, 2006). Finally, the omitted variable bias is 

investigated with different sample size and it is seen that when sample size is 

increased, the results are not changed. This means that even though the sample size is 

increased, the existing omitted variable bias does not disappear. Hence, as Stock and 

Watson (2003) defined, it can be said that to change the sample size is not the 

solution for the omitted variable bias.  
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