DOKUZ EYLUL UNIVERSITY
GRADUATE SCHOOL OF NATURAL AND
APPLIED SCIENCES

NEURO - FUZZY CLASSIFICATION OF
WISCONSIN BREAST CANCER DATABASE

by
Sedat KIRTULUKOGLU

September, 2009
IZMIR



NEURO - FUZZY CLASSIFICATION OF
WISCONSIN BREAST CANCER DATABASE

A Thesis Submitted to the
Graduate School of Natural and Applied Sciences of Dokuz Eyliil University
In Partial Fulfillment of the Requirements for the Degree of Master of Science

in Electrical and Electronics Engineering Program

by
Sedat KIRTULUKOGLU

September, 2009
IZMIR



M. Sc. THESIS EXAMINATION RESULT FORM

We have read the thesis entitled “NEURO — FUZZY CLASSIFICATION OF
WISCONSIN BREAST CANCER DATABASE” completed by SEDAT
KIRTULUKOGLU under supervision of ASST. PROF. DR. METEHAN
MAKINACI and we certify that in our opinion it is fully adequate, in scope and in

quality, as a thesis for the degree of Master of Science.

Asst. Prof. Dr. Metehan MAKINACI

Supervisor

(Jury Member) (Jury Member)

Prof. Dr. Cahit HELVACI
Director

Graduate School of Natural and Applied Sciences

i



ACKNOWLEDGEMENT

I would like to thank my advisor Asst. Prof. Dr. Metehan MAKINACI for his

valuable guidance and support for this project.

Besides, I would like to thank my family for their helping, supporting and

encouraging me in my whole life.

Sedat KIRTULUKOGLU

il



NEURO - FUZZY CLASSIFICATION OF WISCONSIN BREAST
CANCER DATABASE

ABSTRACT

The automatic diagnosis of breast cancer is an important, real-world medical
problem. In this paper a Fuzzy Logic system design for diagnosing and analyzing the
breast cancer and the learning procedure of this system was described. For this
purpose we dealt with Wisconsin Breast Cancer Database (WBCD). This system
extracts classification rules from trained network based on Fuzzy Logic. Analyzing
both malignant and benign cell features, we could also generate the rules for
classification depending on the cell features using Fuzzy Inference System (FIS)
editor using MATLAB. In this project, we describe the accuracy of the trained
networks and compare the result with the outputs of the classifiers constructed by
using both k-nearest neighbor (KNN) and Bayes classifier. Finally we could say that
our approach to the disease diagnosis using fuzzy logic had a high classification rate

of over 96.93 % average and 99.12 % best.

Keywords: Fuzzy logic, fuzzy systems, fuzzy classifier, k-nearest neighbor, Bayes

classifier, Wisconsin Breast Cancer Diagnosis.
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WISCONSIN GOGUS KANSERI VERITABANININ NORAL — BULANIK
SINIFLANDIRILMASI

0z

Gogiis kanseri gergek diinyanin énemli bir medikal problemidir. Bu tezde gogiis
kanserini tanimlama ve analiz etme i¢in dizayn edilen bir bulanik mantik sistemi ve
bu sistemin Ogrenme prosediirii agiklandi. Bu amagla Wisconsin gogilis kanseri
veritabani ele alindi. Bu sistem bulanik mantik kullanarak egitilmis bir agdan
tiiretilen siniflandirma kurallarini olusturur. Ayni zamanda iyi huylu ve kotli huylu
hiicrelerin 6zelliklerini inceleyip, MATLAB’daki bulanik ¢ikarim sistem diizenleyici
kullanarak siniflandirma igin gerekli olan kurallar1 da olusturduk. Bu projede
egitilmis aglarin dogrulugunu acikladik ve ¢ikan sonuglar1 hem en yakin k-komsu
hem de Bayes siniflandiric1 kullanarak da karsilastirdik. Sonug olarak sdyleyebiliriz
ki, hastaligin tanisinda kullandigimiz bulanik mantik ortalama 96.93 % ve en iyi

99.12 % gibi yiiksek siniflandirma basarisina sahip.

Anahtar sozciikler: Bulanik mantik, bulanik sistem, bulanik siniflandirici, en

yakin k komsu, Bayes siniflandirici, Wisconsin gogiis kanseri tanist.
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CHAPTER ONE

INTRODUCTION

1.1 Breast Cancer

Cancer is a group of diseases in which cells in the body grow, change, and
multiply out of control. Usually, cancer is named after the body part in which it
originated; thus, breast cancer refers to the erratic growth and proliferation of cells
that originate in the breast tissue. A group of rapidly dividing cells may form a lump
or mass of extra tissue. These masses are called tumors. Tumors can either be
cancerous (malignant) or non-cancerous (benign). Malignant tumors penetrate and
destroy healthy body tissues. This malignant tumor that has developed from cells is

referred as breast cancer. (Imaginis, 1999)

1.2 Wisconsin Breast Cancer Database

The Wisconsin Breast Cancer Database (WBCD) is a popular choice for
evaluating classifiers developed by the statistics, neural network and machine
learning communities. This database was obtained from the University of Wisconsin
Hospitals, Madison from Dr. William H. Wolberg (Mangasarian, Wolberg, 1990). It
represents a reasonably two-class problem with 9 continuous-valued inputs. A total
of 683 instances (441 benign, 242 malignant) with complete input specification are
provided. We are interested in classifying this database as benign and malignant by
dividing the instances into training and testing sets. Detailed description of WBCD is
given in section 4.3. Some rule extraction strategies have also been applied on this

data set by using fuzzy logic, K-nearest neighbor and bayes classifiers.



1.3 Literature Review

In the past few years lots of research has been made in order to diagnose the
cancer disease. Related to our project we examined both the breast cancer
classification with any method and the classification of any cancer data made by
fuzzy logic. While searching we attached mostly on the methods they used, the
percentage of the trained data in the whole data and the efficiency of the methods.

For this purpose we investigated some thesis and article mentioned below.

In the first article (Jain & Abraham, 2003) the used data is Wisconsin breast
cancer data but somehow different from our data; this data has 32 attributes (30 real-
valued input features) and 569 instances of which 357 are benign and 212 are of
malignant class. The main method Jain and Abraham used is fuzzy classification
constituting four fuzzy rule generation method. All the rules generate one of the
fuzzy if-then rules using some methods. The successes of the classification methods
are: mean and standard deviation is 92.2 %, histogram of attribute values is 86.7 %,
modified grid is 62.57 % and the simple grid method has a high classification of
99.73 %.

In 2003 a fuzzy expert system design for diagnosis of prostate cancer has been
built (Saritas, Allahverdi & Sert, 2003). The method Saritas and his friends used is
just like the method we used which will be described in chapter 3 and chapter 4
named as fuzzy inference system. The success of the fuzzy expert system
classification is 86 %, bayes classification is 79 and the k-nearest neighbor

classification is 78 %.

A neural network was designed (Setiono, 1999) in order to classify the breast
cancer diagnosis using the Wisconsin breast cancer data which is slightly different
from our data. The attributes of the data are the same as ours. Setiono used lots of

methods in neural network and the success of the classification reaches up to 98 %.



In 2001 another efficient fuzzy classifier with the ability of feature selection based
on a fuzzy entropy measure (Lee, Chen, Chen, Jou, 2001) was designed. In this work
same data with ours is used, but the method is different. The success when 6 of the 9
cell features had taken into account is 95.14 %, and the success when all the features

used is a little lower 94.67 %.

Neuro-fuzzy classification (NEFCLASS) method was used to classify the prostate
cancer (Keles, Hasiloglu, Keles, Aksoy, 2007). This new approach, NEFCLASS, is a
tool having batch learning, automatic cross validation, automatic determination of
the rule base size and handling of missing values to increase its interpretability. This
system is like our system but works on a java platform. Using NEFCLASS, Keles
and his friends were able to classify in some different methods with the success of
98.89 % by using triangular classifier, 98.89 % by using trapezoidal classifier, 92.22
% by using bell-shaped classifier and 95.99 % by using adaptive neuro-fuzzy

inference system (ANFIS) that we also used and explained in chapter 4.

A self-adaptive neuro-fuzzy inference system (Wang, Lee, 2002) is constructed in
order to classify iris, Wisconsin breast cancer and wine. The main idea of the system
is the same as our adaptive system with no prior knowledge of the data. The entire
algorithm depends on having training and testing data sets so that the system can
develop its own rules. Wang and his friends used the same data as we used in our
classification project. So a good comparison can be made between our and their

systems. There are three different methods they used having a success of 96.3 %,

96.07 % and 96.28 %.

In 2004 statistical neural network structures are applied to classify the Wisconsin
breast cancer data (Kiyan, Yildirim, 2004). The used data are the same as we used.
Kiyan and her friend constructed four different neural network structures. The radial
basis network has a classification success of is 96.18 %, probabilistic neural network
has 97 %, generalized regression neural network has 98.8 % and multilayer

perception has a classification success of 95.74 %.



Another different classification prostate cancer data was made in 1997 (Lorenz,
Bliim, Ermert, Senge). Lorenz and his friends used neuro-fuzzy classification
systems. Two of the methods Lorenz and his friends used were like our methods.
One has 16 rules, 2 membership functions and 50 epochs. The other method is done
using adaptive neuro — fuzzy inference system with 3 rules and 3 membership
functions. Also one of the methods used in the project is the same as Keles and his
friends’” method called NEFCLASS. First method trainable fuzzy system Lorenz and
his friends used has a classification success of 84.7 %, histogram based fuzzy system
has 85 %, adaptive neuro-fuzzy inference system has 87.2 % and NEFCLASS has a

success of 87.9 %.

A study of data-driven generation of compact and linguistically-sound fuzzy
classifiers based on a decision-tree initialization (Abonyi, Roubos, Szeifert, 2002)
was made to classify the Wisconsin breast cancer data. Two different methods were
applied: decision-tree initialization with 10-fold cross validation and neuro-fuzzy
classification method with 135 rules. Also the used data is the same as ours. The
decision-tree initialization with 10-fold cross validation has a classification success
0f 96.82 % and the neuro-fuzzy classification method with 135 rules has 95.06 % of

SUcCCcEsS.

A fuzzy expert system (FES) design was constructed in 2004 (Chang, Lilly,
2004). Chang and his friend used the same data as ours for classification. The
method is also resembles our method, but somehow different. As mentioned earlier
the data has 9 features. But Chang and his friend used 2 of the 9 features with 2
membership functions and created 3 rules only. But the success of the classification

is satisfying with a rate of 96.5 %.

Another different data classification was made on vibration signals of cylindrical
shells (Marwala, Tettey, Chakraverty, 2006). The type of the data totally different
from ours but the reasoning of the method is the same. Marwala and his friends used

neuro — fuzzy classification method in their project. They changed the threshold of



the system and had two successful classifications. Varied threshold had the

classification success 0f 91.62 % and fixed threshold method had 90.42 %.

Another system to classify Wisconsin breast cancer data, same as our data, was
designed in 1996 (Nauck, Nauck, Kruse, 1996). The main method Nauck and his
friends used for neuro — fuzzy model was NEFCLASS. In the study of classifying the
cancer data, Nauck and his friends used all the 9 cell features. In order to see the
efficiency of the system, rule and the epoch number were changed. Fuzzy clustering
method with 3 rules and 80 epochs had the classification success of 92.7 % and the

method with 4 rules and 100 epochs had 96.5 %.

In the last study we investigated, a fuzzy genetic approach was used (Pena-Reyes,
Sipper, 1998). Reyes and his friend used Wisconsin breast cancer data. In their study
they worked the effect of the train and the test data sets’ importance in percentage.
They tried several percentages of train and test data sets and concluded on the results
that; 75 % train, 25 % test method had a success of 96.76 % classification and 50 %

train 50 % test method had a success of 96.23 % classification of the data.

1.4 Outline

In the first chapter an introduction to breast cancer and WBCD are given. Typical
attributes of the database are also given in the first chapter. A long literature review
is given and outline ends this chapter. In chapter 2 an introduction and theoretical
background of fuzzy logic is given. Fuzzy inference system built in MATLAB is
studied in chapter 3. In the next section chapter 4, the application of fuzzy inference
system is explained. The illustration of this application is done using MATLAB on
WBCD to be able to compare the results with the adaptive system. Chapter 5
explains the adaptive neuro — fuzzy inference system (ANFIS). In the subsequent
part, chapter 6, k-nearest neighbor and Bayes classification methods explained
briefly. Results of the all classification methods are given in chapter 7. The final

chapter, chapter 8, finishes the thesis with the overall conclusion.



CHAPTER TWO

FUZZY LOGIC

The term "fuzzy logic" emerged in the development of the theory of fuzzy sets by
Lotfi Zadeh (1965). A fuzzy subset A of a (crisp) set X is characterized by assigning
to each element x of X the degree of membership of x in A (e.g., X is a group of
people, A the fuzzy set of old people in X). Now if X is a set of propositions then its
elements may be assigned their degree of truth, which may be “absolutely true,”
“absolutely false” or some intermediate truth degree: a proposition may be more true
than another proposition. This is obvious in the case of imprecise propositions like
“this person is old” (beautiful, rich, etc.). In the analogy to various definitions of
operations on fuzzy sets (intersection, union, complement, ...) one may ask how
propositions can be combined by connectives (conjunction, disjunction, negation, ...)
and if the truth degree of a composed proposition is determined by the truth degrees
of its components, i.e. if the connectives have their corresponding truth functions
(like truth tables of classical logic). Saying “yes” (which is the mainstream of fuzzy
logic) one accepts the truth-functional approach; this makes fuzzy logic to something
distinctly different from probability theory since the latter is not truth-functional (the
probability of conjunction of two propositions is not determined by the probabilities

of those propositions). (Stanford encylclopedia of philosophy, 2006).

2.1 Fuzzy Sets

In this section all the figures are taken from and the theoretical background is
based on the book Anonymous, (1999), Matlab — Fuzzy Logic Toolbox User’s Guide
(version 2) Natick: MathWorks.

Fuzzy logic starts with the concept of a fuzzy set. A fuzzy set is a set without a
crisp, clearly defined boundary. It can contain elements with only a partial degree of

membership.



Now consider the set of days comprising a weekend. The figure 2.1 is one attempt

at classifying the weekend days using a continuous scale time plot of weekend-ness.

weekend-ness

o

() O —————— 1753745
Thursday Friday Saturday Sunday Monday

Figure 2.1 Days of the weekend two-valued membership.

Thursday Friday Saturday Sunday Meonday

Figure 2.2 Days of the weekend multi-valued membership.

The figure 2.2 shows a smoothly varying curve that accounts for the fact that all
of Friday, and, to a small degree, parts of Thursday, participate in weekend-ness and
thus deserve partial membership in the fuzzy set of weekend moments. The curve
that defines the weekend-ness of any instant in time is a function that maps the input
space (time of the week) to the output space (weekend-ness). Specifically it is known

as a membership function.



2.2 Operations with Fuzzy Sets

The theoretical background in this part is based on the book Kasabov, N., K.,
(1998). Foundations of Neural Networks, Fuzzy Systems, and Knowledge
Engineering (2™ ed.). London: MIT. Detailed description is also given in the same
book.

Ordinary (crisp) sets are a special case of fuzzy sets, when two membership
degrees only, 0 and 1 are used, and crisp borders between the sets are defined. All
definitions, proofs, and theorems that apply to fuzzy sets must also be valid in the
case when the fuzziness becomes zero, that is, when the fuzzy set turns into an

ordinary one.

A B
o A Dilation
A Ts Ty
B ) k-..‘ .I"‘
> R
u
Concantration

Figure 2.3 Five operations with two fuzzy sets A and B approximately represented in a graphical

form.

2.3 Membership Functions

This section is based on the book Anonymous, (1999), Matlab — Fuzzy Logic
Toolbox User’s Guide (version 2) Natick: MathWorks.

A membership function (MF) is a curve that defines how each point in the input
space is mapped to a membership value (or degree of membership) between 0 and 1.
The input space is sometimes referred to as the universe of discourse, an interesting
name for a simple concept. Some of the membership functions used in MATLAB is

given below. More membership functions are given in the reference book.



Triangular membership function is shown in figure 2.4.

0.75

0.5

0.25

trimf. P =[3 6 8]

Figure 2.4 Triangular membership function (trimf)

Gaussian membership function is shown in figure 2.5.

0.75

0.5

0.25

gaussmf, P =[2 5]

Figure 2.5 Gaussian membership function (gaussmf)

2.3.1.7 Properties of Membership Functions

Fuzzy sets describe vague concepts

- A fuzzy set admits the possibility of partial membership in it.

- The degree an object belongs to a fuzzy set is denoted by a membership value
between 0 and 1.

- A membership function associated with a given fuzzy set maps an input value
to its appropriate membership value.
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2.4 Fuzzy Relations, Fuzzy Implications

Fuzzy relations make it possible to represent ambiguous relationship like “the
grades of the third and second year classes are similar” or “team A performed
slightly better than team B” or “the more fat you eat, the higher the risk of cancer

attack”. Fuzzy relations link two fuzzy sets in a predefined manner.

If a fuzzy set defined over a universe U, and B is a fuzzy set defined over a
universe V, then a fuzzy relation R(A,B) is any fuzzy set defined on the cross-

product universe UXV = {(u,v)/ueU,veV}. A fuzzy relation is characterized by its

membership function.

He ' UXV = [0,1] 2.1)

2.5 Fuzzy Propositions and Fuzzy Logic

The biggest restriction in classic propositional and predicate logic is the fact that
the propositions can have their truth-values as either “true” or “false”. This
restriction has its assets as well as its drawbacks. The main asset is that the decision
obtained is exact and precise. The main drawback, however, is that it can not reflect
the enormous diversity of the real world, which is analog and not digital. The truth

value of a proposition in classical logic can not be unknown.

In order to overcome this limitation of classic logic, multi-valued logic has been

developed.

2.6 If-Then Rules

Fuzzy sets and fuzzy operators are the subjects and verbs of fuzzy logic. These if-

then rule statements are used to formulate the conditional statements that
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compromise fuzzy logic. A generalized form of the fuzzy rule is the following form:

If X, is AL AND X, is A2 AND ... AND x, is Ak, THEN y is B, (2.2)

where X, X,, ..., X, Y are fuzzy variables (attributes) over different universes
of discourse Ux,, UX,, ..., Ux,, Uy and Al, A2, ..., Ak, B are their possible values

over the same universes.

2.7 Fuzzy Inference Method

Fuzzy inference method is a matching in a wider sense that is, matching a domain

space with a solution space.

A fuzzy inference method combines the results Bi' for the output variable y

inferred by all the fuzzy rules for a given set of input facts. In a fuzzy production
system, which performs cycles of inference, all the fuzzy rules are fired at every
cycle and they all contribute to the final result. Some of the main else—links

between fuzzy rules are:

OR-link: The results obtained by the different rules are “OR-ed” in a monotonic
fashion, so the more that is inferred by any of the rules, the higher the resulting
degree of the membership function for B'. Max operation is applied to achieve this

operation.

AND-link: The final result is obtained after a min operation over the

corresponding values of the inferred by all the rules or fuzzy membership functions.

The selection of the “else-link” depends on the context in which the rules are

written.
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2.8 Fuzzification, Rule Evaluation, Defuzzification

When the input data are crisp and the output values are expected to be crisp too,
then the “fuzzification, rule evaluation, defuzzification” inference method is applied

over fuzy rules of the type of if X, is Al and X, isA2 THEN y is B.

Fuzzification is the process of finding the membership degrees p,, (X1 ') and
,,(X,") to which input data (x,') and (x,') belong to the fuzzy sets Al and A2

antecedent part of a fuzzy rule.
Defuzzification is the process of calculating a single-output numerical value for a
fuzzy output variable on the basis of the inferred resulting membership function for

this variable.

These methods are explained in the application of Fuzzy Inference System.



CHAPTER THREE

FUZZY INFERENCE SYSTEMS IN MATLAB

This section is based on the book Anonymous, (1999), Matlab — Fuzzy Logic
Toolbox User’s Guide (version 2) Natick: MathWorks.

Fuzzy inference is the process of formulating the mapping from a given input to
an output using fuzzy logic. The mapping then provides a basis from which decisions
can be made, or patterns discerned. The process of fuzzy inference involves all of the
pieces that are described in the previous sections: membership functions, fuzzy logic
operators, and if-then rules. There are two types of fuzzy inference systems that can
be implemented in the Fuzzy Logic Toolbox: Mamdani-type and Sugeno-type. These
two types of inference systems vary somewhat in the way outputs are determined.
Descriptions of these two types of fuzzy inference systems can be found in the

references (Jang, Sun, 1997).

3.1 Fuzzy Inference System Process

3.1.1 Step 1. Fuzzify Inputs

The first step is to take the inputs and determine the degree to which they belong
to each of the appropriate fuzzy sets via membership functions. In the Fuzzy Logic
Toolbox, the input is always a crisp numerical value limited to the universe of
discourse of the input variable (in this case the interval between 0 and 10) and the
output is a fuzzy degree of membership in the qualifying linguistic set (always the
interval between 0 and 1). Fuzzification of the input amounts to either a table lookup

or a function evaluation

13
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3.1.2 Step 2. Apply Fuzzy Operator

Once the inputs have been fuzzified, we know the degree to which each part of the
antecedent has been satisfied for each rule. If the antecedent of a given rule has more
than one part, the fuzzy operator is applied to obtain one number that represents the
result of the antecedent for that rule. This number will then be applied to the output
function. The input to the fuzzy operator is two or more membership values from

fuzzitied input variables. The output is a single truth value.

3.1.3 Step 3. Apply Implication Method

Before applying the implication method, we must take care of the rule’s weight.
Every rule has a weight (a number between 0 and 1), which is applied to the number
given by the antecedent. Generally this weight is 1 (as it is for this example) and so it
has no effect at all on the implication process. From time to time you may want to
weight one rule relative to the others by changing its weight value to something other

than 1.

3.1.4 Step 4. Aggregate All Outputs

Since decisions are based on the testing of all of the rules in an FIS (Fuzzy
Inference Systems), the rules must be combined in some manner in order to make a
decision. Aggregation is the process by which the fuzzy sets that represent the
outputs of each rule are combined into a single fuzzy set. Aggregation only occurs
once for each output variable, just prior to the fifth and final step, defuzzification.
The input of the aggregation process is the list of truncated output functions returned
by the implication process for each rule. The output of the aggregation process is one

fuzzy set for each output variable.

3.1.5 Step 5. Defuzzify

The input for the defuzzification process is a fuzzy set (the aggregate output fuzzy

set) and the output is a single number. As much as fuzziness helps the rule evaluation
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during the intermediate steps, the final desired output for each variable is generally a
single number. However, the aggregate of a fuzzy set encompasses a range of output
values, and so must be defuzzified in order to resolve a single output value from the

set.



CHAPTER FOUR

APPLICATION OF FUZZY INFERENCE SYSTEM

4.1 FIS Editor

The FIS Editor displays general information about a fuzzy inference system.
There’s a simple diagram at the top that shows the names of each input variable on
the left, and those of each output variable on the right. The sample membership
functions shown in the boxes are just icons and do not depict the actual shapes of the

membership functions.

For our example we will construct a nine-input, one output system. Nine inputs
are cell features and their names are input 1, input 2 and so on. The output is the

class of the cell. Our editor is shown in figure 4.1
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Updaling M st Funclion Edtor

Figure 4.1 Cancer FIS editor

As seen in above figure, our “And method” is min, “Or method” is max,

“implication” is min, “aggregation” is max and “defuzzification” is centroid.
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4.2 Membership Function Editor

Next we created the membership functions for the input variables, cell features.
To create the input variable membership functions we used a scale from 0 to 10 to
represent the variables. We created these membership functions according to the
rules explained in the next section. Our membership function editor with 9 inputs is

given in figure 4.2.
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Figure 4.2 Membership function editor with 9 inputs
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Figure 4.3 Membership functions of output variable “class”
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We used triangular membership function types for the output. First, benign is just
over the value 2 and the malignant is just over the value 4. Our membership

functions of output variables are given in figure 4.3.

4.3 The Rule Editor

Constructing rules using the graphical rule editor interface is fairly self-evident.
Based on the descriptions of the input and output variables defined with the FIS
Editor, the Rule Editor allows you to construct the rule statements automatically, by
clicking on and selecting one item in each input variable box, one item in each output

box, and one connection item.

Since we dealt with Wisconsin Breast Cancer Database (WBCD) for this project,
it will be better to explain the rules we created via this database. WBCD represents a
two-class problem with 9 continuous valued inputs. A total of (441 benign, 242
malignant) with complete input specification are provided. In the process of getting
used to the data what rule it is based on, we dealt with 11 different attributes. First
attribute is the id number of the cell. The last, 11™attribute is class. The remaining

attributes are the cell features. The database information is given in table 4.1.

Table 4.1 WBCD information

Attribute Domain

1. Sample code number (Sc) id number

2. Clump Thickness (Ct) assigned between 1-10
3. Uniformity of Cell Size (C. Size) assigned between 1-10
4. Uniformity of Cell Shape (C. Shape) assigned between 1-10
5. Marginal Adhesion (Ma) assigned between 1-10
6. Single Epithelial Cell Size (Ecs) assigned between 1-10
7. Bare Nuclei (Bn) assigned between 1-10
8. Bland Chromatin (Bc) assigned between 1-10
9. Normal Nucleoli (Nn) assigned between 1-10
10. Mitoses (M) assigned between 1-10
11. Class (2 for benign, 4 for malignant)
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As explained earlier in order to be able use fuzzy logic to classify, we had to
organize the rules we would use in our FIS. Some of the data is shown below, since
we are going to give reasons about how we examined them. We will show them in
four parts according to their characteristics. While examining the data we recognized

that the class attribute is classified into two groups according to four rules:

Table 4.2 Referans table for rule 1

1050718 6 1 1 1 2 1 3 1

1113483 5 2 3 1 6 |10 | 5 1

Id Number | Ct | C. Size | C. Shape | Ma | Ecs | Bn | Bc | Nn | M | Class
1
1
1

1116132 6 3 4 1 5 2 3 9

It is shown in table 4.2 that if at least one of the cell features contains the number

“9” or “10”, the cell is class 4, malignant.

Table 4.3 Referans table for rule 2

Id Number | Ct |C. Size | C. Shape| Ma | Ecs | Bn | Bc | Nn | M | Class
1113038 8 2 4 1 5 1 5 4 | 4 4
859164 5 3 3 3 4
1240337 5 2 2 2 2 2 3 2 12 2

It is shown in table 4.3 that if the cell feature ”10” (mitoses) is numbered 3 or

higher, the cell is class is 4,malignant.

Table 4.4 Referans table for rule 3
Id Number | Ct |C. Size | C. Shape | Ma | Ecs | Bn | Bc | Nn | M | Class
1148278 3 3 6 4 5 8 4 4 1 4

It is shown in table 4.4 that if the cell features are high (there is not any reference

to say it is high) the cell is class is 4, malignant.



Table 4.5 Referans table for rule 4
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Id Number | Ct |C. Size | C. Shape| Ma | Ecs | Bn | Bc | Nn | M | Class
1152331 4 1 1 1 2 1 3 1 1 2
1155546 2 1 1 2 3 1 2 1 1 2
1156272 1 1 1 1 2 1 3 1 1 2
1156948 3 1 1 2 2 1 1 1 1 2
1157734 4 1 1 1 2 1 3 1 1 2
1158247 1 1 1 1 2 1 2 1 1 2
1160476 2 1 1 1 2 1 3 1 1 2

Otherwise cell class is 2, benign. Table 4.5 shows examples of benign cells.
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Figure 4.4 Rule editor with 4 rules, 9 inputs and 1 output (class)

Our rule editor is shown in figure 4.4. It has 4 rules whose creations are described

earlier, 9 inputs which are the cell features and 1 output which is the class of the cell.
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4.4 The Rule Viewer
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Figure 4.5 Rule viewer with 4 rules, 9 inputs and 1 output

Our rule viewer is shown in figure 4.5. The Rule Viewer displays a roadmap of
the whole fuzzy inference process. It’s based on the fuzzy inference diagram
described in the previous section. You see a single figure window with 41 small plots
nested in it. The ten small plots across the top of the figure represent the antecedent
and consequent of the first rule. Each rule is a row of plots, and each column is a
variable. The first four columns of plots (the thirty six yellow plots) show the
membership functions referenced by the antecedent, or the if-part of each rule. The
last column of plots (the four blue plots) shows the membership functions referenced

by the consequent, or the then-part of each rule.

The red line above the first nine columns is for changing the input values to
generate a new output response. The red line above last blue box provides a
defuzzified value. The bottom-right plot shows how the output of each rule is

combined to make an aggregate output and then defuzzified.

In the next chapter we will describe the classification of the cells adaptive neuro-

fuzzy inference system (ANFIS) which is capable of learning and creating rules.



CHAPTER FIVE

ADAPTIVE NEURO - FUZZY INFERENCE SYSTEM

The basic structure of the type of fuzzy inference system is a model that maps
input characteristics to input membership functions, input membership function to
rules, rules to a set of output characteristics, output characteristics to output
membership functions, and the output membership function to a single-valued output
or a decision associated with the output. We have only considered membership
functions that have been fixed, and somewhat arbitrarily chosen. Also, we’ve only
applied fuzzy inference to modeling systems whose rule structure is essentially
predetermined by the user’s interpretation of the characteristics of the variables in the

model.

In this section we discuss the use of the function anfis (adaptive neuro-fuzzy
inference system). This system applies fuzzy inference techniques to data modeling.
The shape of the membership functions depends on parameters, and changing these
parameters will change the shape of the membership function. Instead of just looking
at the data to choose the membership function parameters, it is possible to choose

membership function parameters automatically.

There will be some modeling situations in which you can’t just look at the data
and discern what the membership functions should look like. Rather than choosing
the parameters associated with a given membership function arbitrarily, these
parameters could be chosen so as to tailor the membership functions to the
input/output data in order to account for these types of variations in the data values.
This is where the so-called neuro-adaptive learning techniques incorporated into

anfis in the Fuzzy Logic Toolbox can help.
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5.1 Model Learning and Inference Through ANFIS

The basic idea behind these neuro-adaptive learning techniques is very simple.
These techniques provide a method for the fuzzy modeling procedure to learn
information about a data set, in order to compute the membership function
parameters that best allow the associated fuzzy inference system to track the given

input/output data. This learning method works similarly to that of neural networks.

5.1.2 FIS Structure and Parameter Adjustment

A network-type structure similar to that of a neural network, which maps inputs
through input membership functions and associated parameters, and then through
output membership functions and associated parameters to outputs, can be used to

interpret the input/output map.

The parameters associated with the membership functions will change through the
learning process. The computation of these parameters (or their adjustment) is
facilitated by a gradient vector, which provides a measure of how well the fuzzy
inference system is modeling the input/output data for a given set of parameters.
Once the gradient vector is obtained, any of several optimization routines could be
applied in order to adjust the parameters so as to reduce some error measure (usually
defined by the sum of the squared difference between actual and desired outputs).
ANFIS uses either back propagation or a combination of least squares estimation and

back propagation for membership function parameter estimation.

5.3 Some Constraints of ANFIS

ANFIS is much more complex than the fuzzy inference systems discussed so far,
and is not available for all of the fuzzy inference system options. Specifically,

ANFIS only supports Sugeno-type systems, and these must be:
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* First or zeroth order Sugeno-type systems
* Single output, obtained using weighted average defuzzification (linear or
constant output membership functions)

* Of unity weight for each rule

Detailed theoretical background of adaptive neuro — fuzzy inference system is
given in the symposium Advances in Neural Networks (Liu, Fei, Hou, Zhang, Sun,
1998).



CHAPTER SIX

OTHER CLASSIFICATION METHODS

To compare the results of the fuzzy systems described in the preceding chapter,

we also used Bayes and k—nearest neighbor classification methods.

6.1 Bayes Classification

Based on the book Statistical Pattern Recognition Toolbox for Matlab (Franc,
Hlavac, 2004).

The object under study is assumed to be described by a vector of observations

X € X and hidden state yeY . The X and y are realizations of random variables
with joint probability distribution Py, (X,y). A decision rule q: X — D takes a

decision d € D based on the observation Xe X. Let W:DxY >R be a loss

function which penalizes the decision q(X) € D when the true hidden state is y €Y .

Let X cR" and the sets Y and D be finite. The Bayesian risk R(q) is an
expectation of the value of the loss function W when the decision rule q is applied,

1.e.,

R@ =] > Pu (%YW (), y)dX (6.1)

yeY

The optimal rule q° which minimizes the Bayesian risk (6.1) is referred to as the

Bayesian rule

q° (x) =arg minz Py, (X, YW ((X),Y), VX e X (6.2)

y yeY

The STPR (Statistical Pattern Recognition) tool built in MATLAB, we used in our

25
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classification project, implements the Bayesian rule for two particular cases:

6.1.1 Minimization of misclassification

The set of decisions D coincides to the set of hidden states Y = {1,...,0}. The 0/1-

loss function

(6.3)

_J0 for q(x) =Y,
WO/I(q(X)a y) - {1 fOI‘ q(X) " y

is used. The Bayesian risk (6.1) with the 0/1-loss function corresponds to the

expectation of misclassification. The rule ¢: X —Y which minimizes the

expectation of misclassification is defined as

q(x)=arg max PY\X (y1%),
< (6.4)
=arg n;lax Pyy (X YR, (Y).
ye

6.1.2 Classification with reject-option

The set of decisions D is assumed to be D =Y u{dont know}. The loss

function is defined as

0 for g(x)=vy,

W, (a(x),y)=41 for q(x)=y, (6.5)
e for q(x)=dont_know,

where ¢ is penalty for the decision dont know. The rule q:X —Y which

minimizes the Bayesian risk with the loss function (5.5) is defined as

arg r?ax PX|Y (x| YR, (Y)
ye

q(x)= (6.6)
dont _know 1- max Px (Yl X)=e.
ye

f l—man Px(YIX)<e,
ye

=
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To apply the optimal classification rules one has to know the class-conditional

distributions P, and priory distribution P, (or their estimates).

6.2 K-Nearest Neighbor Classification

Based on the book Pattern Classification (Duda, Hart, Stork, 2001).

K-nearest neighbor (kNN) classification is one of the most fundamental and
simple classification methods and should be one of the first choices for a
classification study when there is little or no prior knowledge about the distribution
of the data. K-nearest neighbor classification was developed from the need to
perform discriminant analysis when reliable parametric estimates of probability

densities are unknown or difficult to determine. (Scholarpedia, 2009)

Theoretical background is based on the book

As expected, this rule classifies x by assigning it the label most frequently
represented among the k-nearest samples; in other words, a decision is made by
examining the labels on the k-nearest neighbors and taking a vote (Figure 6.1). We
shall not go into a through analysis of the k-nearest neighbor rule. For two-class
cases as in our classification project, one should avoid to have even k values in order

not to have equal number of nearest sample or samples for each class.

We notice that if k is fixed and the number n of samples is allowed to approach
infinity, then all of the k-nearest neighbors will converge to X. Hence, as in the
single-nearest neighbor cases, the labels on each of the k-nearest neighbors are

random variables, which independently assume the values w, with probabilities
P(w, | x),i=1,2. If P(w, |x) is the larger a posteriori probability, then the Bayes
decision rule always selects W ,. The single-nearest neighbor rule selects w, with
probability P(w,, | X). The k-nearest neighbor rule selects w,, if a majority of the k-

nearest neighbors are labeled w,,, an event of probability
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Figure 6.1 The k-nearest neighbor query starts at the test point and grows a spherical

region until it encloses k training samples and the labels at the test point by a majority

vote of these samples. In this K = 5 case, the test point would be labeled the category
of the black points (Duda, Hart, Stork, 2001)

In general, the larger the value of k, the greater the probability that w_ will be

selected. In figure 6.1 k = 5case is given.

It can be shown that if k is odd, the large-sample two-class error rate for the k-

nearest neighbor rule is bounded above by the function C, (P"), where C, (P") is

defined to be the smallest concave function of P~ greater than
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(k=1)/2 , e . . :
Z ( J[(P*)'+l 1-PH +(PH'(1-P )'”]. Here the summation over the first
izo \!
bracketed term represents the probability of error due to i points coming from the
category having the minimum probability and k—i>i points from the other
category. The summation over the second term in the brackets is the probability that
k —i points are from the minimum probability category and i+1<k —i from the

higher probability category. Both of these cases constitute under the k-nearest

neighbor rule, and thus we must add them to find the full probability of error.



CHAPTER SEVEN

RESULTS

7.1 ANFIS Classification

In order to be able to explain the efficiency of fuzzy classification method we
gave the results of different compositions of ANFIS. Here only the results are given
and the detailed explanation of these compositions is discussed in the next chapter.
For all of the classifications we used 680 instances out of 683. 170 benign and 170
malignant train data is used in order to make the prior probability the same for each
class. The remaining 340 instances are used for testing. For each cross — validation

these training data is changed among all of the data.

7.1.1 2 membership function compositions

7.1.1.1 2 Rule

In order to run the program faster we reduced the rule number to 2. To reduce the
rule number to 2 we assigned 2 membership functions to one attribute at a time.

Since we had 9 attributes, we had 9 different compositions.

Table 7.1 Different training compositions for 2 rule method

Feature
Training Compositions| 1 | 2 | 3 | 4 [ S [ 6 | 7| 8 ]9
1 2111111 rprgi
2 1 |21 |1 {171 )/ 1]1]1
3 I |12 1|11 ]17]1]]1
4 1 |1 (172 (1] 11 ]1]1
5 I | 11172711 ]1]1
6 I |11 1172117171
7 I |11 1171127171
8 I |11 17171 ]1]2]1
9 1|1} 11171 ]1[]1]2

30
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Table 7.1 shows that for training composition 1, only the first feature of the cell
has 2 membership functions and the remaining has only 1. For training composition
7, only the 7th feature has 2 membership functions and the remaining has only 1,

and it goes on.

Table 7.2 Classification results for cross-validation between 1 — 8

Classification Result (%)

97,35196,76 96,18 97,35[97,94 96,76 | 95,88 | 97,06
97,35197,94197,65|97,35| 96,18 96,76 | 97,06 | 97,35
97,06/96,1896,76196,76 97,94 97,06 | 97,65 | 97,35
Compositions 97,35197,94 197,351 98,82 97,65 96,76 | 97,35 97,35
According to 97,35197,94197,06|97,35197,94 96,76 | 97,06 | 96,18

Table 7.1 97,65197,94197,35197,35[97,65 | 98,24 | 97,06 | 96,76
96,18 |95,88195,29195,29(96,47 96,47 96,18 197,06
95,59197,06|97,06|95,88196,76 95,59 (97,06 | 96,18
97,65195,88196,76 | 98,24 96,47 96,76 | 95,88 | 97,94

Training

Table 7.3 Classification results for cross-validation between 9 — 16

Classification Result (%)
96,47196,47197,35|95,29 96,47 97,35 (97,06 | 97,06
97,94 196,76 197,94 97,94 97,06 |97,35|97,06 | 97,35
97,35197,65196,76 196,76 | 97,06 96,47 | 97,06 | 97,06
Compositions 97,06 97,06 97,65 | 98,24 96,18 96,76 | 97,06 | 97,35
According to 97,35197,35196,76 197,65 | 96,18 95,29 197,06 | 97,06

Table 7.1 97,06 197,35196,76 197,06 | 98,53 197,94 97,65 | 97,06
95,29 195,59197,06 | 95,88 97,06 96,76 | 94,71 | 96,76
96,47197,35196,18 97,06 96,47 95,88 96,76 | 98,24
97,35196,76197,06 | 96,18 | 97,941 96,76 | 97,65 | 97,06

Training

Table 7.4 Classification results for cross-validation between 17 — 24

Classification Result (%)
95,88197,0696,47197,06|97,35[96,76 | 97,65 | 96,18
96,47196,47197,35197,65197,06 | 97,65 | 97,35 | 96,47
96,76 197,94197,94 97,65 (95,29 (97,35197,35 97,94
Compositions 97,94199,12196,47197,06 97,06 | 97,35 97,94 | 96,47
According to 97,06 |96,4796,4797,94 97,06 | 97,06 | 98,82 | 96,76

g
Table 7.1 97,06/97,94197,941 97,06 |97,35[97,65 | 97,35 | 97,65
96,47195,59197,06|95,88195,59[96,47 (96,18 | 95,88
96,47196,76|96,47197,35196,1897,35[95,29 | 95,88
95,59196,47196,1897,35|97,65|96,47 97,06 | 97,35

Training
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Table 7.5 Classification results for cross-validation between 25 — 30 and the final results

Classification Result (%) Average | Maximum
Result | Result (%)
(%)
97,94 1 95,88 | 97,06 | 97,06 | 97,94 | 96,18 | 96,88 97,94
97,35 196,18 | 97,35 97,35 98,24 197,94 | 97,30 98,24
.. 97,651 96,47 | 95,88 |1 97,06 | 97,06 | 98,24 | 97.16 98,24
cOEgglsliltli% L 197.0696.76 | 98.24 | 97.94 | 95,59 | 97.06 | 97.34 | 99.12
i 97,35 195,88 | 98,24 |1 97,06 | 96,18 | 97.35| 97,08 98,82
According to

Table 7.1 97,06 | 96,18 | 96,76 | 96,76 | 98,53 | 96,76 | 97,41 98,53
94,71 | 95,29 | 96,47 | 96,47 | 95,59 | 96,47 | 96,13 97,06
95,59 195,59 | 96,47 | 95,88 | 97,65 | 96,47 | 96,61 98,24
97,94 1 97,35 197,351 97,35 97,65 | 97,65| 97,14 98,24

Table 7.2, 7.3, 7.4 and 7.5 represent the classification results for 9 different

compositions with 30 times of cross-validation.

Table 7.6 shows the overall results for 2 rule method. Since we had 9 different

compositions for 2 rule method and 30 times of cross-validation, we had 270

different tests.

Table 7.6 Overall results for 2 rule method of 270 tests

Average Maximum Minimum
Classification Classification Classification
Result (%) Result (%) Result (%)
| 2 Rule 97,01 99,12 93,82

Table 7.7 shows the confusion matrix for 2 rule method out of 340 test data.

Table 7.7 Confusion matrix of one of the classifications for 2 rule method

Predicted
Benign | Malignant
Classification [Negative| 62 10
Positive 4 264
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7.1.1.2 4 Rule

Table 7.8 Different training compositions for 4 rule method

Feature

Training Compositions| 1 | 2 | 3 [ 4 [ S| 6| 7| 8] 9
1 2 2111|1111
2 2 (1211|171 ]1]1
3 2 (112111717171
4 2 (1112110111
5 2 (11112710171
6 21111120171
7 2 (11111121
8 2 (111110172
9 1|22 )1 |1 |1 1 ]1]1
10 L {21211 ]1]1]1
11 I |21 ] 12|11 ]1]1
12 L2111 {21111
13 I {21 1|11 ]2]1]1
14 1|21 )11 ]171]2]1
15 1|21 /1|1 {171 ]1]2
16 L1221 ]1]1]1]1
17 I |1 ]2 121 11]1]1
18 1|12 )11 ]2 11]1]1
19 L {12111 ]2]1]1
20 I {12111 11]2]1
21 L1211 [1]1]1]2
22 L {11212 1 [1]1]1
23 1 |1 1|21 (2111
24 L1121 {12111
25 L {11 /21111 ]2]1
26 1 1112171 ] 1]1]2
27 1|1 17121211171
28 L {11 1|21 [2]1]1
29 1 |1 112711121
30 I |11 /171211 ]1]1]2

To make the ANFIS process with 4 rules we gave 2 of the features 2 membership
functions again in order such as we did in 2 rules method. A small demonstration of
this composition is shown in table 7.8. Table 7.8 shows that for training composition
1, only the first 2 features of the cell have 2 membership functions and the remaining
has only 1. For training composition 12, only the 2™ and 6" feature have 2

membership functions and the remaining has only 1, and it goes on.



Table 7.9 Classification results for cross-validation between 1 — 6 and the final results
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Classification Results (%) Overall Overall
Average | Maximum
Results Results
(%) (%)

97,35 196,47 | 97,65 | 97,351 96,47 | 98,82 | 97,55 98,82

96,47 | 97,94 | 96,18 | 98,24 | 96,76 | 97,65 | 97,18 98,24

97,35 196,47 | 97,06 | 96,47 | 96,47 | 97,94 | 97,05 97,94

97,06 | 96,47 | 98,24 | 96,18 | 96,18 | 96,18 | 96,79 99,12

97,06 | 96,76 | 96,76 | 97,35 | 96,47 | 96,18 | 97,37 99,12

97,94 1 96,76 | 97,06 | 97,06 | 96,76 | 97,65 | 96,92 98,24

97,65 1 95,59 | 97,06 | 95,59 | 96,47 | 97,06 | 96,99 98,53

96,76 | 97,06 | 97,351 97,65 | 97,35 | 95,88 | 96,79 98,82

97,06 | 97,35 [ 97,35 | 96,76 | 97,06 | 97,94 | 97,13 97,94

97,94 1 96,47 | 95,88 | 96,47 | 98,24 | 97,65 | 97,09 98,53

96,76 | 97,35 1 96,76 | 97,06 | 96,18 | 97,06 | 96,91 98,24

97,35 196,18 | 96,18 | 97,06 | 97,94 | 96,18 | 96,88 97,94

97,06 | 97,94 | 97,65 |1 97,94 | 97,06 | 95,29 | 97,18 98,53

96,76 | 97,94 | 97,06 | 97,35 | 96,18 | 96,18 | 97,25 98,53

98,24 1 97,35 (97,35 | 95,88 | 98,24 | 96,47 | 97,33 98,53

Training 97,06 | 97,65 | 96,47 | 96,76 | 96,18 | 96,76 | 97,25 98,53
Compositions | 96,76 | 98,24 | 97,65 | 97,35 97,35 [ 97,35 | 97,00 98,82
According to | 97,65 | 96,76 | 97,35 | 97,06 | 97,06 | 97,94 | 97,04 98,82
Table 7.8 97,06 | 96,47 | 97,06 | 95,00 | 95,88 | 97,35 | 96,52 97,94
96,47 | 95,88 | 97,351 96,47 | 98,24 | 96,76 | 96,79 98,24

98,24 | 95,29 | 96,76 | 96,47 | 96,18 | 96,47 | 96,80 98,24

95,88 | 95,88 | 97,65 | 97,06 | 97,06 | 97,65 | 96,97 98,24

98,82 197,94 | 97,35 | 95,00 | 96,18 | 97,65 | 97,14 98,82

97,65 1 96,18 | 97,06 | 96,18 | 95,88 | 97,35 | 96,76 98,24

97,35 196,18 | 97,65 | 96,47 | 97,06 | 97,35 | 96,89 98,53

98,24 | 96,47 | 95,59 | 97,06 | 95,88 | 97,35 | 96,60 98,24

98,24 1 97,94 | 98,24 |1 97,65 | 97,65 | 97,94 | 97,42 98,53

96,18 | 97,06 | 96,47 | 96,76 | 97,94 | 96,47 | 96,58 98,24

98,24 | 96,18 | 97,35 | 95,88 | 97,06 | 97,06 | 96,72 98,24

96,76 | 96,47 | 97,65 | 95,29 1 96,76 | 96,18 | 96,86 98,24

95,59 195,88 | 96,47 | 97,65 | 98,24 | 97,06 | 96,74 98,53

97,35 196,18 | 98,24 |1 97,94 | 96,76 | 98,24 | 97,57 98,82

94,41 | 96,47 | 97,06 | 96,76 | 95,00 | 97,65 | 96,71 98,53

97,65 | 98,24 | 96,76 | 97,65 | 96,47 | 98,24 | 97,13 98,53

Just like in the method of 2 rules, we had 30 epochs to be sure of the process.

Since it will be too much to show all the epochs’ results here, we gave only first 6

epoch results with all the combinations of 4 rule method in table 7.9. Also the overall

average and the overall maximum results of all of the epochs are given in table 7.9.
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Table 7.10 shows the overall results for 4 rule method. Since we had 36 different

compositions for 4 rule method and 30 times of cross-validation, we had 1080

different tests.

Table 7.10 Overall results for 4 rule method of 1080 tests

Average Maximum Minimum
Classification Classification Classification
Result (%) Result (%) Result (%)
| 4 Rule 96,93 99,12 92,35

Table 7.11 shows the confusion matrix for 4 rule method out of 340 test data.

Table 7.11 Confusion matrix of one of the classifications for 4 rule method

Predicted
Benign | Malignant
Classification |Negative| 70 2
Positive 10 258
7.1.1.3 8 Rule

For 8 rule method we assigned 2 membership functions to 3 of the features out of
9. There occur 84 different combinations of these 8 rule method. In order not to

cover a lot of pages, we only gave a small number of these combinations.

Table 7.12 shows that for training composition 1, only the first 3 features of the
cell have 2 membership functions and the remaining has only 1. For training
composition 17, only the 1%, 4™ and 8" feature have 2 membership functions and the

remaining has only 1, and it goes on.



Table 7.12 Different training compositions for 8 rule method
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Also the results of all of the combinations with 30 epochs take to much paper. We

gave a small amount of the result for demonstration in. Table 7.13 shows the

classification results of only 24 combinations and 6 epochs. Also the overall average

and the overall maximum results of all of the epochs are given in table 7.13.



Table 7.13 Classification results for cross-validation between
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1 — 6 and the final results of 24

combinations
Classification Results (%) Overall | Overall
Average | Maximum
Results Results
(%) (%)
97,65 | 97,06 | 96,47 | 97,06 | 95,59 | 97,65 | 96,66 97,94
95,88 | 97,06 | 96,18 | 95,88 | 96,47 | 95,59 | 96,70 98,24
97,35 198,24 |1 96,47 | 96,18 | 98,82 | 96,76 | 96,87 98,82
96,18 | 97,94 |1 96,47 | 97,65 | 95,00 | 97,94 | 97,04 98,53
97,35 1 95,88 | 97,06 | 97,35 | 96,76 | 96,76 | 96,86 98,24
95,59 197,94 |1 97,06 | 96,47 | 98,82 | 97,94 | 97,38 99,41
96,47 | 96,18 | 95,00 | 96,18 | 96,18 | 95,59 | 96,00 97,65
97,06 | 95,00 | 95,29 | 97,06 | 97,65 | 97,35 | 96,89 97,94
96,47 | 96,76 | 95,00 | 96,18 | 96,18 | 96,76 | 96,56 97,65
97,06 | 95,59 196,47 | 96,47 | 96,76 | 97,35 | 96,61 98,24
Training 96,76 | 96,76 | 96,47 | 96,47 | 97,35 | 96,18 | 96,43 98,24
Compositions | 97,65 | 97,35 | 97,65 | 96,76 | 97,65 | 97,06 | 97,04 98,53
According to [ 94,71 | 96,76 | 95,29 | 95,88 | 96,18 | 96,76 | 95,88 97,94
Table 7.12 | 96,18 | 97,06 | 97,06 | 96,76 | 96,47 | 95,88 | 96,57 97,94
96,76 | 97,94 1 95,00 | 97,94 | 95,29 | 94,71 | 96,61 98,24
97,06 | 97,65 | 95,88 | 96,47 | 96,76 | 98,53 | 96,94 98,53
97,06 | 96,47 | 96,18 | 95,59 | 97,94 | 95,88 | 97,10 98,53
95,00 | 95,59 195,29 | 94,41 | 97,06 | 95,00 | 95,66 97,35
96,18 | 97,65 | 97,35 197,65 | 96,47 | 97,65 | 97,11 98,24
96,18 | 97,94 | 95,00 | 94,71 | 97,06 | 96,76 | 96,31 97,94
95,59 197,94 |1 97,06 | 96,76 | 96,18 | 95,29 | 96,54 97,94
95,59 | 95,00 | 96,18 | 95,59 | 95,00 | 93,53 | 95,19 97,65
97,35 | 97,06 | 96,76 | 98,24 | 96,47 | 96,18 | 97,02 98,24
95,88 | 97,06 | 98,24 | 97,65 | 97,06 | 96,47 | 97,25 98,53
Table 7.14 Overall results for 8 rule method of 2520 tests
Average Maximum Minimum
Classification Classification Classification
Result (%) Result (%) Result (%)
| 8 Rule 96,27 99,41 92,06

Table 7.14 shows the overall results for 8 rule method. Since we had 84 different

compositions for 4 rule method and 30 times of cross-validation, we had 2520

different tests.

Table 7.15 shows the confusion matrix for 8 rule method out of 340 test data.




Table 7.15. Confusion matrix of one of the classifications for 8 rule method

Predicted
Benign | Malignant
Classification | Negative 56 16
Positive 3 265
7.1.1.4 16 Rule
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From now on we will not give all the classification results, since there are too

much of them. Only the first training composition, ANFIS info, overall average,

overall maximum and overall minimum results, and a confusion matrix of all of the

combinations and all 30 epochs (confusion matrix of all of the tests) will be shown.

Table 7.16 shows only the first combination of 126 different combinations.

Table 7.16 First training composition for 16 rule method

Feature
Training Compositions| 1 | 2 | 3 | 4 [ 5[ 6 819
1 2 12121211711 1 |1

Table 7.17 shows the overall results for 16 rule method. Since we had 126

different compositions for 16 rule method and 30 times of cross-validation, we had

3780 different tests.

Table 7.17 Overall results for 16 rule method of 3780 tests

Average Maximum Minimum
Classification Classification Classification
Result (%) Result (%) Result (%)
| 16 Rule 92,90 97,06 86,18

Table 7.18 shows the confusion matrix for 16 rule method out of 340 test data.
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Table 7.18. Confusion matrix of one of the classifications for 16 rule method

Predicted
Benign | Malignant
Classification | Negative 58 14
Positive 8 260
7.1.1.4 32 Rule

Table 7.19 shows only the first combination of 126 different combinations.

Table 7.19 First training composition for 32 rule method

Feature
Training Compositions| 1 | 2 | 3 | 4 [ S [ 6 | 7
1 2 (212212111711

Table 7.20 shows the overall results for 32 rule method. Since we had 126
different compositions for 32 rule method and 30 times of cross-validation, we had

3780 different tests.

Table 7.20 Overall results for 32 rule method of 3780 tests

Average Maximum Minimum
Classification Classification Classification
Result (%) Result (%) Result (%)
32 Rule 88,27 93,82 80,88

Table 7.21 shows the confusion matrix for 32 rule method out of 340 test data.

Table 7.21 Confusion matrix of one of the classifications for 32 rule method

Classification

Predicted
Benign | Malignant
Negative| 48 24
Positive 11 257




7.1.1.5 64 Rule

Table 7.22 shows only the first combination of 84 different combinations.

Table 7.22 First training composition for 64 rule method

Feature
Training Compositions| 1 | 2 | 3 | 4 | 5] 6 819
1 2 121212122 1 1
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Table 7.23 shows the overall results for 64 rule method. Since we had 84 different

compositions for 64 rule method and 30 times of cross-validation, we had 2520

different tests.

Table 7.23 Overall results for 64 rule method of 2520 tests

Average Maximum Minimum
Classification Classification Classification
Result (%) Result (%) Result (%)
| 64 Rule 88,27 95 81,18

Table 7.24 shows the confusion matrix for 64 rule method out of 340 test data.

Table 7.24 Confusion matrix of one of the classifications for 64 rule method

Predicted
Benign | Malignant
Classification |Negative| 40 32
Positive 8 260

7.1.1.6 128 Rule

Table 7.25 shows only the first combination of 36 different combinations.

Table 7.25 First training composition for 128 rule method

Feature
Training Compositions| 1 | 2 | 3 | 4 [ 5[ 6 819
1 2 121212122 1 |1
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Table 7.26 shows the overall results for 128 rule method. Since we had 36
different compositions for 128 rule method and 30 times of cross-validation, we had

1080 different tests.

Table 7.26 Overall results for 128 rule method of 1080 tests

Average Maximum Minimum
Classification Classification Classification
Result (%) Result (%) Result (%)
| 128 Rule 89,84 95,88 80,41

Table 7.27 shows the confusion matrix for 128 rule method out of 340 test data.

Table 7.27 Confusion matrix of one of the classifications for 128 rule method

Predicted
Benign | Malignant
Classification |Negative| 46 26
Positive 2 266

7.1.1.7 256 Rule

Table 7.28 shows only the first combination of 9 different combinations.

Table 7.28 First training composition for 256 rule method

Feature
Training Compositions| 1 | 2 | 3 [ 4 [ S| 6 | 7 | 8
1 2 (2121212 ]2 ]|2]2]1

Table 7.29 shows the overall results for 256 rule method. Since we had 9 different
compositions for 256 rule method and 30 times of cross-validation, we had 270

different tests.

Table 7.29 Overall results for 256 rule method of 270 tests

Average Maximum Minimum
Classification Classification Classification
Result (%) Result (%) Result (%)
| 256 Rule 90,88 95,88 81,22
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Table 7.30 shows the confusion matrix for 256 rule method out of 340 test data.

Table 7.30 Confusion matrix of one of the classifications for 256 rule method

Predicted
Benign [ Malignant
Classification [Negative| 57 15
Positive 10 258

7.1.2 3 Membership Function Compositions

7.1.2.1 3Rule

Table 7.31 shows only the first combination of 9 different combinations.

Table 7.31 First training composition for 3 rule method

Feature
Training Compositions | 1 [ 2 [ 3 [ 4 [ S [ 6 | 7| 8] 9
1 311 | 1 1 1 1 1 |

Table 7.32 shows the overall results for 3 rule method. Since we had 9 different
compositions for 9 rule method and 30 times of cross-validation, we had 270

different tests.

Table 7.32 Overall results for 3 rule method of 270 tests

Average Maximum Minimum
Classification Classification Classification
Result (%) Result (%) Result (%)
| 3 Rule 96,81 98,53 93,23

Table 7.33 shows the confusion matrix for 3 rule method out of 340 test data.
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Table 7.33 Confusion matrix of one of the classifications for 3 rule method

Predicted
Benign | Malignant
Classification | Negative 65 7
Positive 6 262
7.1.2.2 9 Rule

Table 7.34 shows only the first combination of 36 different combinations.

Table 7.34 First training composition for 9 rule method

Feature
Training Compositions| 1 | 2 | 3 | 4 [ S [ 6 | 7
1 331 11|11 ]1]1

Table 7.35 shows the overall results for 9 rule method. Since we had 36 different
compositions for 9 rule method and 30 times of cross-validation, we had 1080

different tests.

Table 7.35 Overall results for 9 rule method of 1080 tests

Average Maximum Minimum
Classification Classification Classification
Result (%) Result (%) Result (%)
9 Rule 95,62 98,82 89,11

Table 7.36 shows the confusion matrix for 9 rule method out of 340 test data.

Table 7.36 Confusion matrix of one of the classifications for 9 rule method

Classification

Predicted
Benign | Malignant
Negative 64 8
Positive 6 262




7.1.2.3 27 Rule

Table 7.37 shows only the first combination of 84 different combinations.

Table 7.37 First training composition for 27 rule method

Feature
Training Compositions| 1 | 2 | 3 | 4 | 5] 6 819
1 3131311 1 1 1 1
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Table 7.38 shows the overall results for 27 rule method. Since we had 84 different

compositions for 27 rule method and 30 times of cross-validation, we had 2520

different tests.

Table 7.38 Overall results for 27 rule method of 2520 tests

Average Maximum Minimum
Classification Classification Classification
Result (%) Result (%) Result (%)
| 27 Rule 90,16 96,47 82,13

Table 7.39 shows the confusion matrix for 27 rule method out of 340 test data.

Table 7.39 Confusion matrix of one of the classifications for 27 rule method

Predicted
Benign | Malignant
Classification |Negative| 46 26
Positive 5 263
7.1.2.4 81 Rule

Table 7.40 shows only the first combination of 126 different combinations.

Table 7.40 First training composition for 81 rule method

Feature
Training Compositions| 1 | 2 | 3 | 4 [ 5[ 6 819
1 31313131711 1 |1
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Table 7.41 shows the overall results for 81 rule method. Since we had 126

different compositions for 81 rule method and 30 times of cross-validation, we had

3780 different tests.

Table 7.41 Overall results for 81 rule method of 3780 tests

Average Maximum Minimum
Classification Classification Classification
Result (%) Result (%) Result (%)
| 81 Rule 89,47 97,35 84,15

Table 7.42 shows the confusion matrix for 81 rule method out of 340 test data.

Table 7.42 Confusion matrix of one of the classifications for 81 rule method

Predicted
Benign | Malignant
Classification |Negative| 56 16
Positive 9 259

7.2 FIS Classification

No training data used; only the rules are created. Table 7.43 shows the FIS

classification result.

Table 7.43 FIS classification result

Result (%)

FIS Classification

96.48

Table 7.44 shows the confusion matrix for FIS method out of 683 test data.



46

Table 7.44 Confusion matrix of FIS classification

Predicted
Benign | Malignant
Classification |Negative| 225 17
Positive 7 434

7.3 KNN Classification

For the KNN classification method we used 1-nearest neighbor, 3-nearest

neighbor, 5-nearest neighbor, 7-nearest neighbor and 9-nearest neighbor
classifications. As we did in ANFIS classification, we used 30 epochs to make the
program decisive. For all of the classifications we used 400 train and 283 test data.
To make the prior probabilities same, we used 200 benign and 200 malignant
instances. Below in table 7.45 we presented these results in average, maximum and

minimum classification results.

Table 7.45 Results for KNN classification method

I-nearest | 3-nearest | S-nearest | 7-nearest | 9-nearest | Overall
(o) (7o) (%) (7o) (%0) (7o)
Average 96,77 97,42 97,81 97,63 97,27 97,38
Max 97,87 99,29 98,94 98,93 98,23 99,29
Min 94,69 95,40 96,81 96,11 95,40 94,69

Table 7.46 shows the confusion matrix for KNN classification method out of 283

test data.

Table 7.46 Confusion matrix of one of the KNN method classifications

Predicted
Benign | Malignant
Classification | Negative 39 3
Positive 6 235




7.4 Bayes Classification

For all of the classifications we used 400 train and 283 test data. To make the

prior probabilities same, we used 200 bening and 200 malignant instances.

Table 7.47 shows the overall results for Bayes classification method of 30 tests.

Table 7.47 Overall results for Bayes classification method of 30 tests

Average Maximum Minimum
Classification Classification Classification
Result (%) Result (%) Result (%)
Bayes 94,07 97,17 90,10
Classification

Table 7.48 shows the confusion matrix for Bayes classification method out of 283

test data.

Table 7.48 Confusion matrix of Bayes classification

Classification

Predicted
Benign | Malignant
Negative| 41 23
Positive 1 218




CHAPTER EIGHT

CONCLUSION

The main classification method of this research is adaptive neuro — fuzzy
inference system classification. There are two method that ANFIS learning employs
for updating membership function parameters: back propagation for all parameters (a
steepest descent method), and a hybrid method consisting of back propagation for the
parameters associated with the input membership functions. When we applied back
propagation method, because of the sharp slope for the membership functions, we
learned that it was not proper for our classification of WBCD. Then we decided to

use hybrid model.

ANFTIS is capable of having many rules if needed. For 9 attributes we could have
more than 2’ rules, having 2 membership functions for all attributes. Moreover we

could even have more than 3’ rule, having 3 membership functions for all attributes,
and so on. Besides, we could assign for example 2 membership functions for the
attribute 1, 3 membership functions for the attribute 2 and any number of
membership functions for any attribute. By this way we were able to give as much
importance as necessary for any attribute. We then realized that when we increased
the rule number we only made the program run slower, because calculation of all the
rules was a time consuming process. Having less rules we had the results got nearly
the same as the ones having more rules. Because ANFIS was able to give satisfying
results even though we used very small number of rules. Epoch number of adaptive
training is also changeable. For our first attempts of classification we used more than
10 epochs to get good classification results. Then we gradually decreased the epoch
number in order to run the program faster. We noticed that ANFIS was again able to
create rules capable of classifying with a good percentage even if we used 1 epoch

for training.

For training purpose we had to use some of the data and the remaining data for the

test of the program. Since we did not know the prior probabilities of the benign and
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malignant cells, we gave the same prior probability 0.5 for each of them. This

method is the same for all of the classification methods mentioned in this project.

For the FIS we created our own rules according to the data distribution. To be able
to make proper classification we investigated the data in detail. As mentioned in
chapter 4 we created 4 rules. While using FIS editor we were again able to change
the epoch number of the system, but increasing it was not necessary. For our FIS
classification we accomplished 96.48 % of true classification rate which was very

satisfying.

This method had its pros and cons. For any classification of any data we are
allowed to create our own rules according to the data. We can easily change the
membership functions of any input and output. We can also change the rule number,
the number of the attributes contained in one of the rules. But for any data that we
are not allowed to investigate the data distribution, it is impossible to have proper
rules. Because this system is not a learning system. All the steps except calculation
process are done by the programmer. So this method can be used for getting
accustomed to the easy process of FL, flexibility of FL and the linguistic way of
programming of the FL, and so on. This FIS helped us to understand the FL in

practical.

When we came to the ANFIS, it was a little complicated than the FIS. We were
again able to change the parameters of the system very easily but in a limited way.
We were not allowed to use any of the membership functions that we mentioned in
chapter 2. Some of them were not suitable for adaptive learning. Also the methods
for fuzzy system Sugeno and Mamdani type were not allowed to choose, we can only
use Sugeno method for adaptive system. As mentioned earlier we used several
different numbers of epochs and we had a decision to reduce it to 1 epoch, since we
got really satisfying results. We were allowed to change the error rate of the system.
After our lots of experiments we decided to choose the error rate not so small making

the program run slower, but slower enough to give good results of classification.
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The method of our membership function employment to the features was
changing according to the rule number. When we look into 2 rules, we were giving 2
membership functions to one of the attributes and 1 membership function to the
remaining ones. The combination of this distribution gave us 2 rules. But in order to
give 2 membership functions to all of the features we used a diagonal matrix having
2 in the diagonal, and 1 for the other locations. For 4 rules we did the same process.
We had 2 features of having 2 membership functions and 1 for the remaining, and
again just in the 2 rule method we had to give 2 membership functions in order. But
in this method we had 36 different combinations. So our system worked a little
slower. For the other methods, we had 84 different combinations for 8 rules, 126
different combinations for 16 rules, 126 different combinations for 32 rules, 84
different combinations for 64 rules, 36 different combinations for 128 rules and 9
different combinations for 256 rules. We did not have more than 256 rules because

our computer was not able to give results before 24 hours for more than 256 rules.

For the training process we had 170 benign and 170 malignant cells in order to
have same prior probabilities as mentioned in the result chapter. We also changed the
data chosen for training by 30 times of cross validation in order to have all of the
data to be in the training part and also to see if there were classification differences
between these epochs. But all the results for the chosen number of rule were close to

each other.

When we come the results, we could easily say that ANFIS was able give good
classification a result no matter the rule number was. There was a slight difference
between them but the overall rate was very high. For the best classification we had
99.41 % in 8 rule classification and best average of 97.01 % in 2 rule method. By
looking at the results we can say that for Wisconsin breast cancer data it is not
necessary to have lots of rules to get good results. Also by having less number of
rules we have our system run faster. So for the Wisconsin breast cancer data it is

recommended to have rules between 2 and 8.
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If we compare our system for other methods we experimented we can again say
that Bayes classification was slightly worse than ANFIS classification with a rate of
97.17 % for the best and 94.07 for the average. The k-nearest neighbor classification
method was nearly same as ANFIS with a rate of 99.29 % for the best and 97.38 for
the average. But the flexibility of the ANFIS is indisputable.

For the improvement of the system a higher technology for the computer to be
able use more membership functions is needed. It can be seen that for the first 2, 4
and 8 rule methods the system has a very high classification rate. But for the 16, 32
and 64 rule methods it has slightly worse classification rate than the preceding ones.
When we increased the rule number the system again started to rise is classification
success up to 256 rules. Further experiments can be done using high number of rules

and high number of train data to train the system better.

A wise progression can be done by using very large amount of data for training.
Our system was trained with a very limited number of data. To increase the
classification success could be done by this way. Surely, with a well trained and well
equipped fuzzy system, the diagnosing process of this disease will be used in the

future projects with high efficiency.
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