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A NOVEL LINE BALANCING PROBLEM: COMPLEX CONSTRAINED 

ASSEMBLY LINE BALANCING  

ABSTRACT 

 
The primary aim of this dissertation is to extend the rule-based assembly 

modeling and to introduce a novel assembly line balancing problem: complex-

constrained assembly line balancing problem (CCALBP), which is of the general 

ALBPs, in order to model all assembly constraints through a rule-base to tackle 

alternative ways of assembling a product and their effects on task times, precedence 

relations and the line balance simultaneously. 

 

A genetic algorithm (GA) based on the rule-base is proposed and discussed in 

detail to solve CCALBP. The specific characteristics of the proposed GA are 

explained on an example problem. The control parameters of the GA are optimized 

to improve the performance. Since CCALBP is a novel problem, there is no set of 

benchmark instances for testing. Therefore, the computational experiments are 

carried out on a set of self-made instances generated by adapting well-known 

benchmark problems from the literature. Some alternative routes are created and 

added to these literature problems. Based on the experiments, the proposed GA is 

proven to perform better. It is shown that line balancing improves when more 

alternatives are added to CCALBP.  

 

It is also shown how to map a rule-based assembly model to a constraint 

programming (CP) model and an integer programming (IP) model. CCALBP can be 

solved only through rule-based modeling, but not graph-based modeling. The 

efficiency and modeling capability of CP and IP models are discussed, and compared 

with that of traditional precedence graphs. 

 

Keywords: Assembly line balancing, Precedence constraints, Rule-based 

representation, Genetic algorithms 
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YENİ BİR MONTAJ HATTI DENGELEME PROBLEMİ: KARMAŞIK 

KISITLI MONTAJ HATTI DENGELEME  

ÖZ 

 
Bu doktora çalışmasının temel amacı, kural tabanlı montaj modellemesini 

genişletmek ve bir ürünün tüm alternatif montaj yolları ile bunların iş süreleri, 

öncelik ilişkileri ve hat dengesi üzerindeki etkilerini aynı anda ele almak amacıyla 

tüm montaj kısıtlarını bir kural tabanı ile modellemek için genel montaj hattı 

dengeleme problemlerinden olan yeni bir montaj dengeleme problemini, karmaşık 

kısıtlı montaj hattı dengeleme problemini (KKMHDP), tanıtmaktır. 

 

KKMHDP’ni çözmek için kural tabanıyla bütünleşmiş bir genetik algoritma (GA) 

önerilmiş ve detaylıca tartışılmıştır. Önerilen GA’nın performansını iyileştirmek için 

kontrol parametreleri en uygun hale getirilmiştir. KKMHDP yeni bir problem olduğu 

için, test etmek için kıyaslama örnekleri seti yoktur. Bu nedenle, deneyler 

literatürden iyi bilinen kıyaslama problemlerinden adapte edilerek oluşturulan 

problem setleri ile yapılmıştır. Bazı alternatif rotalar yaratılmış ve bu literatür 

problemlerine eklenmiştir. Deneylere göre, önerilen genetik algoritma daha iyi 

sonuçlar vermiştir.  KKMHDP’ne yeni alternatifler eklendikçe hat dengelemenin 

geliştiği gösterilmiştir. 

 

Çalışmada bir kural tabanlı modelin kısıt programlama modeline ve tamsayılı 

programlama modeline nasıl eşleştirildiği de gösterilmiştir. KKMHDP, grafik tabanlı 

modelleme ile değil, yalnızca kural tabanlı modelleme ile çözülebilmektedir. Kısıt 

programlama modeli ve tamsayılı programlama modelinin modelleme kabiliyetleri 

ve etkinlikleri tartışılmış, geleneksel öncelik diyagramları ile karşılaştırılmıştır. 

 

 

Anahtar Sözcükler: Montaj hattı dengeleme, Öncelik kısıtları, Kural tabanlı 

gösterim, Genetik algoritmalar  
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CHAPTER ONE 

INTRODUCTION 

 

1.1 Background and Motivations 

 

In ancient times assembly techniques were used to make tools, weapons, ships, 

machinery, furniture, and garment. Manufacturing and assembly systems evolved 

time by time and two important principles were introduced during Industrial 

Revolution. The first principle is division of labor (work simplification, 

standardization, and specialization) argued by Adam Smith in his book in 1776, and 

the second one is interchangeable parts (individual components that make up the 

final product must be interchangeable)  based on efforts of Eli Whitney and others at 

the beginning of the nineteenth century. In the mid- and late- 1800s, modern 

production lines were used in meat packing plants. After an automotive industrialist, 

Henry Ford, had observed these plants, he designed and invented an assembly line 

with his friends (Groover, 2001). 

 

Originally, assembly lines were developed in order to deal with mass production 

of standardized products in a cost efficient way (Boysen, Fliedner, & Scholl, 2007). 

Mass production was characterized by specialization of equipment and labor. A 

single product was manufactured in large quantities with a high productivity by 

designing and balancing dedicated assembly lines (Bukchin, Dar-el, & Rubinovitz, 

2002). 

 

Recently, mass production has been challenged by mass customization. 

Production systems and supply chains must be designed to handle high variety of 

products while at the same time achieve mass production quality and productivity 

(Hu, Zhu, Wang, & Koren, 2008). They are needed to be flexible and responsive to 

changes in demand for different product types. Today, assembly lines are still up to 

date, because the principle to increase productivity by division of labor is
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timeless (Amen, 2001). Assembly lines gain importance even in low volume 

production of customized products (Scholl & Becker, 2006). 

 

An assembly line is a production line which consists of a number of workstations 

where assembly tasks are performed by human workers or automation. Products are 

assembled as they move along the line. Work pieces are moved from station to 

station manually or by a material transport system. The decision problem of 

optimally partitioning the assembly work among the stations with respect to some 

objectives is known as the assembly line balancing problem (ALBP) (Scholl, 1999). 

 

The ordering in which tasks must be performed in an assembly line are called 

precedence constraints. They are technological restrictions or physical sequencing 

requirements on the assembly line. A precedence graph is generally used to represent 

the precedence constraints. But, there are some shortcomings of the precedence 

graphs. They usually fail to represent all the possible assembly sequences of a 

product in a single graph (Lambert, 2006), and exclude some logic statements, e.g., 

the precedence relation “(2 or 3) → 7” cannot be represented properly on a 

precedence graph (De Fazio & Whitney, 1987). Hence, they allow limited flexibility.  

 

One or more parts of a product’s assembly process may admit alternative 

precedence sub-graphs. Because of the great difficulty of the problem and the 

impossibility of representing alternative sub-graphs in a precedence graph, a line 

designer selects, a priori, one of such alternative sub-graphs (Capacho & Pastor, 

2008). 

 

 Precedence graphs fail to describe some complicated constraints, e.g., constraints 

indicating that some pairs of tasks cannot be assigned into the same station because 

of incompatibility between them caused by some technological factors (Park, Park, & 

Kim, 1997). 

 

Alternative ways of assembling a product and their effects on task times, 

precedence relations and the line balance should be tackled simultaneously. In this 
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regard, a rule-based assembly model is proposed in this dissertation to address this 

issue. 

 

1.2 Objectives and Research Methodology 

 

The main objective of this dissertation is to extend the rule-based assembly 

modeling and to introduce the complex-constrained assembly line balancing problem 

(CCALBP), which is of the general ALBPs, in order to model all assembly 

constraints through a rule-base to tackle alternative ways of assembling a product 

and their effects on task times, precedence relations and the line balance 

simultaneously. 

 

This dissertation addresses a new ALBP that has not been considered in the 

literature before. Hence, the main objectives of this dissertation are to define, to 

formalize and to solve CCALBP. 

 

CCALBP is defined and explained with an illustrative example. In order to 

formalize the problem, constraint programming and integer programming 

formulations are developed and are used to solve some illustrative problems. 

 

To show how to model all assembly constraints through the well known If-then 

rules, and how to solve CCALBP, a genetic algorithm (GA) based on the rule-based 

model is proposed. 

 

Since CCALBP is a new problem, benchmark problems are generated for 

computational experiment to evaluate the proposed GA.  
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1.3 Outline of the Thesis 

 

This dissertation is divided into seven chapters. The present chapter briefly 

introduces the theme of the study, points out the novel problem and presents the main 

objectives of the work. 

 

Chapter 2 gives an overview of the ALBP. It presents the main characteristics of 

assembly line systems and defines the ALBP. Different types of ALBPs and 

particular solution methods to tackle the line balancing problems are also presented. 

 

Chapter 3 describes the main characteristics of the selected meta-heuristic, GA. 

 

Chapter 4 is dedicated to review the available literature on application of GAs to 

solve ALBPs. The literature review of GA applications on line balancing problems 

according to their specifications is given in a chronological order.  

 

In Chapter 5, a novel problem, the complex-constrained assembly line balancing 

problem (CCALBP), is introduced. Rule-based modeling of assembly constraints is 

discussed through an illustrative example. Mapping the rule-based model into the 

constraint programming (CP) model and into the integer programming (IP) model is 

shown. The CP model and IP model are developed to formally describe CCALBP. 

The performance of the developed mathematical programming models is evaluated 

by using commercial optimization software ILOG OPL Studio (2003). 

 

In Chapter 6, a GA based on the rule base is proposed to solve CCALBP. The 

proposed GA is explained through an example step by step. Since CCALBP is a new 

problem, benchmark problems are generated. Conclusions are withdrawn based on a 

set of computational experiments. An industrial case study is also presented.  

 

Finally, the summary and the contributions of the dissertation are pointed out with 

the directions for future research in Chapter 7. 

 
 



 
 

CHAPTER TWO 

ASSEMBLY LINE BALANCING 

 

2.1 Introduction 

 

The aim of this chapter is to provide an overview of the main features of assembly 

lines and to introduce the basic concepts on assembly line balancing. This chapter is 

organized as follows: First, the main features and additional characteristics of 

assembly line systems are given. Next, the assembly line balancing problem is 

described in detail with the classification schemes. Then, the most common solution 

methods of the problem presented in the literature are discussed. Finally, the chapter 

is summarized. 

 

2.2 Assembly Lines 

 

Assembly lines are most commonly used methods in a mass production 

environment, because they allow the assembly of complex products by workers with 

limited training, by dedicated machines and/or by robots.  

 

In an assembly line, products are assembled as they move along the line, visiting 

each workstation sequentially. Assembly tasks are performed at each station. Raw 

material or semi-finished product enters at the one end and the desired product comes 

out from the other end of the assembly line. The designers aim at increasing the 

efficiency of the assembly line by maximizing the ratio between throughput and the 

total cost required (Rekiek, Dolgui, Delchambre, & Bratcu, 2002). 

 

In this section, a terminology is first given to describe assembly lines. Then, 

additional characteristics of assembly line systems are given in order to understand 

the assembly line balancing problem. 
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2.2.1 Terminology 

 

 The terminology for the basic concepts of an assembly line based on Scholl 

(1999) is given below: 

 

 Assembly: It is the process of putting two or more parts, subassemblies, and 

components together in order to make a finished product. 

 

 Assembly line: It is a production line that consists of a sequence of workstations 

arranged along a conveyor belt or a similar mechanical material handling equipment. 

The workpieces are consecutively launched down the line and are moved from 

station to station. At each station, a task is performed on each unit. 

 

 Task: It is a portion of total work content in an assembly process, having an 

operational processing time and a set of precedence relations. Tasks (operations) are 

considered indivisible; they cannot be split into smaller work elements without 

unnecessary additional work. When all tasks are allocated to the workstations, a 

feasible solution will be obtained. 

 

 Task time (ti): The time required to perform a task. 

 

 Workstation (Station): It is a part of an assembly line where a certain amount of 

work (a set of assigned tasks) is manually performed by workers using simple tools 

or by semi-automated machines. 

 

 Workstation time (Station time): It is total time of the tasks allocated in the 

workstation. Each task assignment process updates the workstation time by adding 

the time of the new assigned task to the time of the previous assigned tasks. 

 

 Cycle time (C): The interval of time between the completions of successive 

products. In the case of paced assembly lines, the cycle time represents the maximum 

amount of time a product (or a job) can be processed by a station necessary. In 
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unpaced flow lines, the cycle time is the maximum possible average station time. The 

cycle time must not exceed the station time, and it must not be less than maximum 

task time on the assembly line. Idle time is a positive difference between the cycle 

time and the station time. The sum of idle times of all stations in the line is called the 

delay time. The planning department asks for the desired cycle time (C), but due to 

failures or setup-times the real cycle time by which the line will operate is the 

effective cycle time (EC). 

 

 Precedence constraints: The technological restrictions or/and physical sequencing 

requirements on the assembly line. 

 

 Precedence graph (diagram): A graphical representation of the sequence of tasks 

as defined by the precedence constraints. The partial ordering in which tasks must be 

performed is illustrated by means of a precedence graph. Nodes symbolize tasks, and 

arrows connecting the nodes indicate the precedence relations. The sequence 

proceeds from left to right. For example, in Figure 2.1, task 4 is preceded by tasks 1 

and 2, and task 5 is preceded by tasks 3 and 4. 

 

1 

2 

3 

4 

5 6 

 
          
           Figure 2.1 A precedence graph 

 

 Combined precedence graph (diagram): A graphical representation that alters 

different models of a product into one equivalent single model. A product family is 

composed of several product variants. Each variant has its own distinctive tasks, but 

also shares some common tasks (Macaskill, 1972). Precedence relations for a set of 
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models of a product family are defined by a single graph instead of different graphs 

as given in Figure 2.2. 

 

 

 
(a) 

3 

4 5 

8 10 

2 9 

1 

3 6 

1 5 8 10 

 
                                                               (b) 

1 

2 

3 

9 

6 

5 

4 8 
10 

 
     (c) 

 
        Figure 2.2 Precedence diagrams of (a) model 1, (b) model 2 and (c) combined. 
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 Line efficiency (E): A measure for the capacity utilization of the line. It is 

computed as follows (n: number of stations): 

( ) 100(%)
1

×⎥
⎦

⎤
⎢
⎣

⎡
×= ∑

=

CntE
n

i
i                      (2.1) 

 

 Balance delay ratio (BR): A measure of the line efficiency which results from idle 

time due to the imperfect allocation of tasks among stations. The unused capacity is 

reflected by this ratio. It is computed as follows: 

1001(%) 1 ×
×

−×
=−=

∑
=

Cn

tCn
EBR

n

i
i

                (2.2) 

 

2.2.2 Characteristics of Assembly Lines  

 

In the literature, various classification schemes of assembly lines are given by 

Baybars (1986), Ghosh & Gagnon (1989), Erel & Sarin (1998), Scholl (1999), 

Rekiek et al. (2002), and Boysen, Fliedner, & Scholl (2008). Scholl (1999) classified 

assembly lines as in Figure 2.3. The continuous lines show that any combination of 

characteristics is typical; broken lines indicate that it is unusual. 

 

 

Assembly lines 

Multi-model Single-model 

Paced( unbuffered) 

Mixed-model 

Unpaced (buffered) 

Deterministic Dynamic Stochastic 

Figure 2.3 Classification of assembly lines (Scholl, 1999) 
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 2.2.2.1 Product Variety 

 

Because of the versatility of human workers, the design of assembly lines has to 

deal with differences in assembled products (Groover, 2001). The number and 

variety of products to be assembled on the same line have an important influence on 

the line architecture. With respect to product variety, there are three types of 

assembly lines described below. 

 

 Single-Model Lines: Only one homogeneous product is continuously 

manufactured in large quantities. 

 

 Mixed-Model Lines: Several models of a basic product are manufactured on the 

same line in an arbitrarily inter-mixed sequence.  

 

 Multi-Model Lines: Family of products which present significant differences in 

processes are manufactured on one or several assembly lines separately in batches. 

 

 The different line types are illustrated in Figure 2.4, where different models are 

symbolized by different geometric shapes. Depending on these line types, balancing 

problems for single-model, mixed-model and multi-model versions of assembly lines 

are modeled and solved. 

 

 

            (a) 

   

             (b) 

 

(c) 
                  Figure 2.4 Assembly lines for (a) single-model, (b) mixed-model, and (c) 

                   multi-model. 
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 2.2.2.2 Line Control 

 

With respect to the line control, there are assembly lines that can be designed with 

alternatives as given below (Groover, 2001). 

 

 Paced Lines: In case of a paced assembly line, each workstation is given the same 

amount of time to perform tasks assigned to the workstation. The synchronization is 

achieved by transferring the jobs between stations at pre-determined and fixed time 

intervals. This transfer takes place irrespective of whether or not the individual 

stations complete their task. The station time of each station is limited to the cycle 

time as a maximum value for each workpiece. Therefore, in paced lines, there is a 

fixed production rate equal to the reciprocal of the cycle time. The pace is either kept 

by a continuous material handling equipment, e.g. a conveyor belt, or by an 

intermittent transport.  

 

 Unpaced Lines: In the absence of a common cycle time, workpieces may have to 

wait before they can enter the next station(s) and/or may get idle when they have to 

wait for the next workpiece. Workpieces are transferred when all tasks are 

completed, rather than being a bound to a given time span. Under asynchronous 

movement, a workpiece is always moved as soon as all tasks of a station are 

completed and the next station is not blocked anymore by another workpiece. By 

buffers between the stations, these difficulties can be partially overcome. If there is 

too much variability in the task process times, it is preferable to have unpaced or 

asynchronous line. In such a line, each station works at its own pace and advances 

the part to the next station whenever it completes its assigned tasks. Under 

synchronous movement, all stations wait for the slowest station to finish all tasks 

before workpieces are transferred at the same point in time. Buffers are then not 

necessary (Boysen et al., 2008). 
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 2.2.2.3 Variability of Task Times 

 

The task processing time is an important parameter for assembly lines. The nature 

of tasks and the skills of operators or the reliability of the machines can change the 

task processing time. All these variations have a great influence on the assembly line 

(Rekiek et al., 2002). With respect to variations of task times; there are three types of 

assembly lines described below. 

 

 Deterministic Time: The task times are considered to be deterministic (constant or 

known with certainty) whenever the expected variance of task times is sufficiently 

small, as in case of highly qualified and motivated workers or highly reliable 

automated stations (Johnson, 1983). 

 

 Stochastic Time: Significant variations of task times due to the work rate, skill and 

motivation of the workers, and the failure sensitivity of complex processes require 

considering task times to be stochastic (Robinson, McClain, & Thomas, 1990) rather 

than to be fixed at a known value.  

 

 Dynamic Time: Systematic reductions are possible due to learning effects 

(Toksari, Isleyen, Guner, & Baykoc, 2008, 2010) or successive improvements of the 

production process. 

 

 2.2.2.4 Line Configuration 

 

The flow of materials partially determines the layout of flow-line production 

systems. There exist several line configurations (Becker & Scholl, 2006). 

 

 Serial Lines: Single stations are arranged in a straight line along a linear conveyor 

belt. Operators perform tasks on a continuous portion of the line. Figure 2.5 

illustrates a serial line. 
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Station j-1 Station j+1Station j

      Figure 2.5 Configuration of serial lines 
 

 U-Shaped Lines: Both ends of the line are close to each other to form a narrow 

“U” shape. Operators can move between the two segments of the line to perform 

combinations of tasks (Miltenburg & Wijngaard, 1994). Thus, there are 

improvements in the visibility of the whole process and communication of workers. 

Job enrichment and enlargement lead to higher motivation, improved quality of 

products and increased flexibility (Rekiek et al., 2002). Figure 2.6 illustrates the 

configuration of U-shaped lines. 

Group j-2 

Group j 

Group j-1 

Group j+1 Group j+2 

Station

 
            Figure 2.6 Configuration of U-shaped lines 
 

 Parallel Lines: When the demand is high enough, it is common to duplicate the 

entire assembly line. This has the advantage of shortening the assembly line, but may 

require more equipment and tooling. If failure occurs at a given station, other lines 

can continue to run. This reduces the risk of production stops. Parallel lines increase 

flexibility with better line balances and horizontal job enlargement (Rekiek & 

Delchambre, 2006). An example of the use of parallel lines is shown in Figure 2.7. 
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Station j-1 Station j+1
 

Station j

    
 

Station j-1 Station j+1
 

Station j

     
      Figure 2.7.Configuration of parallel lines 

 

 Parallel Stations: There are many advantages of parallelization even by installing 

parallel stations in a single line. Each station in a set of parallel stations performs 

similar activities. The workpieces are distributed among the operators who perform 

the same tasks. This is a common layout when a series of product variations are 

being manufactured. If certain task times exceed the desired cycle time, parallel 

stations allow decreasing the cycle time (Becker & Scholl, 2006). Figure 2.8 

illustrates the configuration of parallel stations. 

 

Station j

Station k

                
                        Figure 2.8 Configuration of parallel stations 
 

 Two-sided Line: In the assembly of large-sized and heavy workpieces, such as 

trucks and buses, both the left-side and the right-side of the line are used in parallel. 

The operators working in opposite sides of the line perform their tasks on the same 

component simultaneously. In two-sided assembly lines, some tasks can be assigned 

to only one side of the two sides: L (left) and R (right)-type tasks, while others can 

be assigned to either side of the line: E (either)-type tasks.  
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2.3 The Assembly Line Balancing Problem 

  

 The installation of an assembly line is a long-term decision and usually requires 

large capital investments. Therefore, it is important to design and balance an 

assembly line in a way that it should work as efficiently as possible. Most of the 

studies related to the assembly lines concentrate on the assembly line balancing. The 

assembly line balancing is the allocation of the tasks among stations so that the 

precedence relations are not violated and a given objective function is optimized. The 

assembly line balancing problem (ALBP) deals with balancing the assembly line 

with respect to the precedence constraints and objective function(s). 

  

 Based on the problem structure, ALBP can be classified into two groups as given 

in Figure 2.9. The first group is the classification according to the assembly line 

models, and the second group is the classification of Baybars (1986) (Gen, Cheng, & 

Lin, 2008). 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

CLASSIFICATION OF ALBP BASED ON PROBLEM 
STRUCTURE

According to  
ALB model type 

According to 
ALB problem structure 

Single-model ALB (smALB) 

Multi-model ALB (muALB) 

Mixed-model ALB (mALB) 

Simple ALB (sALB) 

General ALB (gALB) 

          

  Figure 2.9 Classification of assembly line balancing problems based on problem structure 
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 The classification according to the assembly line models has three kinds of ALBP. 

These are Single Model assembly line balancing problem (SMALBP), Multi Model 

assembly line balancing problem (MuMALBP), and Mixed Model assembly line 

balancing problem (MMALBP). SMALBP includes balancing of assembly lines 

producing only one product. MuMALBP includes balancing of assembly lines 

producing a family of product in batches. MMALBP includes balancing of assembly 

lines producing several models of a basic product in an arbitrarily inter-mixed 

sequence (Boysen et al., 2008). 

 

 According to the classification proposed by Baybars (1986) with respect to the 

problem structure, the problem can be grouped into two types: The original and 

simplest form of the problem is simple assembly line balancing problem (SALBP). 

When additional constraints are added to the model, the problem becomes the 

general assembly line balancing problem (GALBP). 

 

If only one homogeneous product is continuously manufactured in large quantities 

on the line, the problem is SMALBP. In the literature, the deterministic SMALBP is 

called as simple assembly line balancing problem (SALBP) and specifies the 

following assumptions (Baybars, 1986): 

 

1. All of the parameters relating to the line must be known with certainty. 

2. A task cannot be divided between two or several stations. 

3. Tasks cannot be treated in an arbitrary order due to the precedence constraints. 

4. All the tasks of an assembly line must be processed. 

5. All the stations are equipped with various resources, and can process any task. 

6. The task process time is independent of the station on which it will be 

processed. 

7. Any task can be made on any station. 

8. The assembly line is serial, and contains neither feeding system, nor parallel 

subassembly lines. 

9. The assembly system is to be designed for a unique model of a single product. 
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10. The cycle time is fixed, and the goal is to minimize the number of stations. 

Or, the number of stations is fixed, and the goal is to minimize the cycle time. 

 

 When the other restrictions or factors are introduced into the model, the problem 

becomes the general assembly line balancing problem (GALBP). Thus, GALBP is a 

generalization of SALBP and includes all of the problems that are not SALBP. 

Multi/mixed-model cases, zoning constraints, restrictions on balance delay, parallel 

stations, forms of positional restrictions, feeder or subassembly lines, parallel, U-

shaped, robotic or two-sided lines, workcenters, stochastic or dependent processing 

times, cost functions, equipment selection are the factors of GALBP. Therefore, 

GALBP is more realistic (Becker & Scholl, 2006; Boysen et al., 2007, 2008). 

 

 Besides balancing a newly designed assembly line, an existing assembly line has 

to be re-balanced in a periodic way or after some changes in the production process 

or the production plan. Due to the long-term effect of balancing decisions, the 

strategic goals of the enterprise require the objective functions be carefully chosen.  

 

 Additionally, based on the objective function, ALBP have several versions (Kim, 

Kim, & Kim, 1996). These are with objectives to minimize the number of 

workstations (Type-1), to minimize cycle time (Type-2), to maximize workload 

smoothness (Type-3), to maximize work relatedness (Type-4), and the multiple-

objective with the objective of Type-3 and Type-4 (Type-5). The most common type 

of ALBP is Type-E, with the objective of maximizing the line efficiency by 

simultaneously minimizing the cycle time and number of workstations. Another type 

of ALBP is the feasibility problem (Type-F); finding a feasible balance for a given 

number of stations and a given cycle time (Scholl, 1999). 

 

 Main constraints in ALBP are the cycle time constraint and task precedence 

constraints. Their explanations are given in Section 2.2.1. In addition to these 

constraints, some other constraints given below may restrict possible assignments of 

tasks to stations (Baybars, 1986; Scholl, 1999; Boysen et al., 2007): 
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 Task zoning constraints: Some zoning constraints force and others forbid the 

assignment of different tasks to the same workstation, being called positive or 

negative zoning constraints, respectively. Positive zoning constraints are related with 

the use of common equipment or tooling. Some tasks may need the same equipment 

or may have similar processing conditions (temperature, moisture, etc.). Then, it is 

required to assign them to the same workstation. Negative zoning constraints are 

usually related with the technological issues. It may not be possible to perform some 

tasks in the same workstation because of safety reasons or etc. 

 

 Workstation related constraints: If some tasks need special equipment or material 

which is only available at a determined workstation, then these tasks are assigned to 

that workstation. 

 

 Position related constraints: These constraints group tasks according to the 

position in which they are performed, especially when the workpieces of large and 

heavy products have a fixed position and cannot be turned. 

 

 Operator related constraints: Some tasks require different levels of skill 

depending on their complexity. A sufficiently qualified operator is assigned to a 

determined task. It is better to combine more monotonous tasks and more variable 

tasks in the same workstation in order to induce higher levels of job satisfaction and 

motivation, from the ergonomic point of view. 

 

2.4 Solution Methods for the Assembly Line Balancing Problem 

 

The idea of balancing was first introduced by Bryton (1954) in his graduate thesis 

(Kilbridge & Wester, 1962). The first analytical statement of ALBP was formulated 

by Helgeson, Salveson, & Smith (1954), while the first published study of ALBP 

modeled mathematically with a linear programming solution belonged to Salveson 

(1955) (Ghosh & Gagnon, 1989). Since then, many solution procedures were 

developed to solve ALBP (Agpak & Gokcen, 2005). Generally branch and bound 
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(B&B) procedures (Amen, 2006; Peeters & Degraeve, 2006) and dynamic 

programming (DP) approaches were used. 

 

In the last decade, a large variety of heuristic approaches were in the focus of the 

researchers (Gamberini, Grassi, & Rimini, 2006). These were constructive 

procedures based on priority rules or enumeration techniques (Dimitriadis, 2006) and 

improvement procedures using metaheuristics like tabu search (Lapierre, Ruiz, & 

Soriano, 2006), ant colony optimization (Bautista & Pereira, 2002, 2007; Mcmullen 

& Tarasewich, 2003, 2006), simulated annealing (Baykasoglu, 2006; Kara, Ozcan, & 

Peker, 2007a, 2007b) and genetic algorithms (Baykasoglu & Ozbakir, 2007; Haq, 

Jayaprakash, & Rengarajan, 2006; Levitin, Rubinovitz, & Shnits, 2006; Simaria & 

Vilarinho, 2004; Tseng & Tang, 2006; Wong, Mok, & Leung, 2006; Yu, Yin, & 

Chen, 2006). 

 

 Baybars (1986) described and commented on a number of optimum seeking 

methods for SALBP. The heuristic procedures for ALBP were critically examined 

and summarized in details by Ghosh & Gagnon (1989) and Erel & Sarin (1998) for 

SALBP and GALBP. A survey of existing solution methods for different extensions 

of SALBP and GALBP was given by Rekiek et al. (2002).   

 

 Up-to-date analysis of the bibliography and available state of the art procedures 

for SALBP family of problems were given by Scholl & Becker (2006) and for 

GALBP by Becker & Scholl (2006). Boysen et al. (2007) classified the ALBP 

literature with a scheme including the extension of the problem and solution method.  

 

 According to the classification of studies surveyed by Scholl & Becker (2006) and 

review of existing methods by Rekiek & Delchambre (2006), Figure 2.10 gives a 

classification scheme for solution approaches of ALBPs. 
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  Figure 2.10 Classification of solution approaches for ALBP  
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2.4.1 Optimum Seeking Methods 

  

 Several approaches for determining lower bounds on the objectives of ALBPs are 

proposed in the literature. The lower bounds are obtained by solving problems which 

are derived from the considered problem by omitting or relaxing constraints. Most of 

these techniques fall into two categories, i.e., dynamic programming and branch and 

bound methods. Baybars (1986) described and commented on a number of optimum 

seeking methods for SALBP. A survey on exact methods for the ALBP can also be 

found in Scholl (1999). 

 

 2.4.1.1 Dynamic Programming  

 

Dynamic programming (DP) is a very powerful algorithmic paradigm to tackle 

multistage decision processes. DP is applied mostly to combinatorial optimization 

problems (Rekiek & Delchambre, 2006). Any given problem is solved by identifying 

a collection of sub-problems and tackling them sequentially one by one, smallest 

first, using the answers to small problems to help figure out larger ones, until the 

initial problem is solved by the aggregation of the sub-problem solutions. By 

dynamic programming, the problem can be divided into stages with a decision 

required at each stage. Each stage has a number of states associated with it. The 

states describe all possible conditions of the process in the current decision stage, 

which corresponds to every feasible partial solution. The decision at one stage 

transforms one state into a state in the next stage. The problem is solved by finding 

the optimal policy from an initial state to a final state in a chain (Bautista & Pereira, 

2009). The studies given in the following are linked to DP procedures. 

 

The first published study of ALBP formulated mathematically with a linear 

programming (LP) solution belonged to Salveson (1955). Salveson’s LP model to 

solve SALBP included all possible combinations of station assignments. Later, 

Bowman (1960) modified the formulation. Bowman (1960) was the first to provide 

“nondivisibility” constraint, by changing the LP formulation to zero-one integer 
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programming (IP) (Baybars, 1986). Other formulations have been proposed by many 

researchers, e.g. White (1961), Klein (1963), Thangavelu & Shetty (1971), Patterson 

& Albracht (1975), Talbot & Patterson (1984), Ugurdag, Rachamadugu, & 

Papachristou (1997), and Corominas (1999). 

 

MMALBP with an IP model was first solved by Robert & Villa (1970). In the 

model proposed, the objective was the minimization of the total idle time. The 

authors stated that the formulation is of more theoretical than practical interest due to 

the excessive number of constraints and variables. Later, Gokcen & Erel (1997) 

proposed a zero-one IP model utilizing a precedence diagram which combines 

different models of the problem. The performance of this model was superior to the 

model of Robert & Villa (1970). 

 

Agpak & Gokcen (2005) developed a zero-one IP model to solve resource 

constrained SMALBP Type-1 with the objective of minimizing the number of 

workstations and the number of resources used. Gokcen, Agpak, & Benzer (2006) 

proposed a zero-one IP model to solve SMALBP Type-1 with parallel lines. Hop 

(2006) developed a fuzzy zero-one IP model to solve MMALBP Type-1 with fuzzy 

processing times.  Peeters & Degraeve (2006) presented a Dantzig-Wolfe type 

reformulation of SALBP Type-1, the LP-relaxation which was solved using column 

generation combined with subgradient optimization. Urban & Chiang (2006) 

proposed an IP model, using a piecewise approximation for the chance constraints, to 

solve U-shaped SMALBP Type-1 with stochastic processing times. Corominas, 

Pastor, & Plans (2008) presented a zero-one IP model to solve the rebalancing of 

SMALBP with skilled and unskilled workers with the objective of minimizing the 

number of unskilled temporary workers. 

 

Toksari et al. (2010) developed a mixed nonlinear IP (MNIP) model SMALBP 

Type-1 with deterioration tasks and learning effects. “Learning effect” is a 

phenomenon for improving continuously as a result of repeating the same or similar 

activities (Mosheiov, 2001). The processing time of a job is shorter if it is done again 

later, because the processing time is dependent on learning of workers for repeating 

 
 



 23

tasks. Modeling the effect of task deterioration was introduced by Mosheiov (1991). 

Deterioration tasks are the tasks whose processing times are increasing functions of 

their starting times.  

 

The first DP method was developed by Jackson (1956) to solve SALBP using a 

tree notion. The solution process was subdivided in stages corresponding to stations. 

States were given by the feasible subsets of tasks already assigned at a given stage.  

The algorithm started by generating all feasible assignments to the first station. Then, 

this generated all feasible assignments to the next station, given the first station 

assignments. The process was repeated, each time adding one station. The optimal 

solution was searched for stage-by stage in a forward recursion (Baybars, 1986).  A 

number of researchers have employed DP methods, e.g. Held & Karp (1961), Held, 

Karp, & Shareshian (1963), Van Assche & Herroelen (1979), Johnson (1981), Bard 

(1989), and Carraway (1989). 

 

Gutjahr & Nemhauser (1964) transformed SALBP Type-1 to an equivalent 

shortest path problem. The states were represented by nodes and the station loads by 

arcs which were weighted with the corresponding station idle times. Each path 

corresponded to a feasible solution and each shortest path to an optimal solution of 

SALBP Type-1. Later, Gokcen, Agpak, Gencer, & Kizilkaya (2005) presented a 

shortest route formulation of U-shaped SMALBP Type-1 based on the study of 

Gutjahr & Nemhauser (1964). 

 

Miltenburg & Wijngaard (1994) introduced and modeled the U-shaped ALBP and 

proposed a DP procedure to identify the optimal solution for problems with small 

size. Guerriero & Miltenburg (2002) presented a DP approach to solve U-shaped 

SMALBP Type-1 with stochastic processing times. Bautista & Pereira (2009) 

proposed a new DP based heuristic, called Bounded DP, which mixed a set of 

heuristic rules within a DP to solve SALBP Type-1. 

 

Goal programming (GP) is an important technique for decision-makers to 

consider simultaneously conflicting objectives in finding a set of acceptable 
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solutions. GP models were used by researchers dealing with more than one goal in 

order to utilize IP formulations of ALBPs.  

 

Gokcen & Agpak (2006) were the first to solve U-shaped SMALBP using a GP 

model with a preemptive approach as a multi-criteria decision making approach. 

Kara & Tekin (2009) presented a mixed IP formulation to solve U-shaped MMALBP 

Type-1. Kara, Paksoy, & Chang (2009) presented binary fuzzy GP approach and 

employed IP method to solve U-shaped SMALBP with the objectives of minimizing 

the number of workstations and the cycle time at the same time in a fuzzy 

environment. 

 

Ozcan & Toklu (2009) presented a new MIP model to solve two-sided SMALBP 

Type-1 with an objective of minimizing the number of mated-stations. The authors 

also developed a mixed-integer GP model (MIGP) and a fuzzy mixed-integer GP 

model (FMIGP). The proposed goal programming models were the first multiple-

criteria decision-making approaches to solve two-sided SMALBP with multiple 

objectives. Choi (2009) presented a new zero-one IP model and an algorithm based 

on GP to solve MMALBP that concerned both processing time and physical 

workload at the same time as total workload. 

 

 2.4.1.2 Branch & Bound Algorithm 

 

Branch and bound (B&B) is a general algorithm for finding optimal solutions of 

various optimization problems, especially in discrete and combinatorial optimization. 

It consists of a systematic enumeration of all candidate solutions, where large subsets 

of fruitless candidates are discarded, by using upper and lower estimated bounds of 

the quantity being optimized. The B&B algorithm consists of two main components: 

the branching and the bounding. To reduce the solution effort, dominance and 

reduction rules are additionally used. The initial solution of the B&B algorithm is 

developed into several sub-problems, which is called branching. A multi-level 

enumeration is constructed by continuously developing such sub-problems. The sub-

problems for which the optimal solution is already known and for which there is no 
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http://en.wikipedia.org/wiki/Discrete_optimization
http://en.wikipedia.org/wiki/Combinatorial_optimization


 25

need to be branched are called as leaf nodes.  A leaf node is also used for nodes 

which are excluded from further consideration because they cannot lead to an 

optimal solution. Branch is a path from the root node to any other node of the tree. 

B&B procedures differ with respect to search strategy, a sequence in which the nodes 

of the enumeration tree are generated and branched: Depth-first-search and a 

minimal-lower-bound strategy. Bounding is applied to reduce the size of the 

enumeration trees. This is achieved by computing lower bounds at least necessary for 

a feasible solution in each node. If the global lower bound is found, then an optimal 

solution is found (Rekiek & Delchambre, 2006). 

 

FABLE by Johnson (1988) and EUREKA by Hoffmann (1992) were the most 

effective key developments of B&B methods introduced to solve SALBP Type-1. 

Later, Klein & Scholl (1996) combined EUREKA and FABLE, and developed B&B 

methods called SALOME-1 to solve SALBP Type-1 and SALOME-2 to solve 

SALBP Type-2. The authors proposed the local lower bound method which was a 

new enumeration technique and pointed out the similarities and differences between 

proposed and existing methods, such as FABLE and EUREKA.  

 

Scholl & Klein (1999) compared the most effective branch and bound procedures 

for SALPB-1, such as Johnson’s FABLE, Nourie & Venta's OptPack, Hoffmann's 

EUREKA, and Scholl & Klein's SALOME-1. In this computational comparison, the 

authors used totally 268 problem instances from Talbot’s data set, Hoffmann’s data 

set, and Scholl’s data set. In Hoffman’s data set OptPack was found to be the most 

effective. SALOME was the most effective procedure in Talbot’s data set and in 

Scholl’s data set, so that it was determined as a most effective B&B procedure in the 

study. However other procedures had got some superior properties. OptPack was 

very effective in reducing the size of the enumeration tree. Therefore, Scholl & Klein 

(1999) extended SALOME by adding dynamic renumbering and some dominance 

rules and called the new version of SALOME as SAL-All. SAL-All outperformed 

previous version of SALOME for all data sets.       
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Sprecher (1999) developed a B&B method to solve SALBP Type-1, called 

adapted general sequencing algorithm (AGSA), which was based on the precedence 

guided enumeration scheme introduced for dealing with resource-constrained project 

scheduling problems. Sprecher (1999) reformulated this problem as a resource 

constrained project scheduling problem by reflecting cycle time as a single 

renewable resource whose availability varied with time. 

 

Bukchin & Tzur (2000) presented an optimum seeking method and a heuristic to 

solve SMALBP with equipment selection. They developed a B&B algorithm and 

also a B&B based heuristic to solve large problems. Later, Bukchin & Rubinovitz 

(2003) adapted this B&B optimal algorithm which was developed for the equipment 

selection problem by Bukchin & Tzur (2000) to solve SMALBP with station 

paralleling.  

 

Amen (2006) used B&B techniques with LP-relaxation and implicit enumeration 

technique to solve cost-oriented ALBP.  Bukchin & Rubinowitch (2006) developed 

an optimal solution procedure based on a backtracking B&B method to solve 

MMALBP allowing a common task to be assigned to different stations for different 

models with the objectives of minimizing the number of the workstations (Type-1) 

and task duplication cost. Peeters & Degraeve (2006) developed a B&B algorithm to 

solve SALBP Type-1. Liu, Ng, & Ong (2008) presented new B&B algorithms to 

solve SALBP Type-1, a constructive algorithm and two destructive algorithms.  

 

Miralles, Garcia-Sabater, Andres, & Cardos (2008) introduced a new kind of 

ALBP called Assembly Line Worker Assignment and Balancing Problem 

(ALWABP) Type-2 and presented a basic B&B approach with three possible search 

strategies and different parameters to solve this new problem. Wu, Jin, Bao, & Hu 

(2008) proposed B&B algorithms for two-sided ALBP and carried out some 

experiments. 

 

Ege, Azizoglu, & Ozdemirel (2009) proposed two B&B algorithms, one for 

optimal solutions and one for near optimal solutions to solve GALBP with station 
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paralleling. The objective was to minimize the sum of station opening and equipment 

costs. Scholl & Boysen (2009) used ABSALOM, a method based on an extension of 

SALOME (Klein & Scholl, 1996), to solve SMALBP Type-1 with parallel assembly 

lines considered by Gokcen et al. (2006). Later, Scholl, Fliedner, & Boysen (2010) 

used ABSALOM to solve SMALBP Type-1 with assignment restrictions. 

 

2.4.2 Approximation Methods 

 

Due to the problem size limitation of the exact methods, approximation 

procedures are required to solve more realistic problems, i.e., medium and big scaled 

problems. A variety of simple heuristics and meta-heuristics have been proposed in 

the literature to solve ALBP. In this section, some of the well-known will be 

considered. 

 

 2.4.2.1 Heuristic Methods 

 

Many heuristics proposed in the literature use different criteria (Talbot, Patterson, 

& Gehrlein, 1986). Many proposed heuristics are a combination of these methods. 

The most effective ones are: RPWT (Helgeson & Birnie, 1961), Killbridge & 

Wester’s (1961), Hoffmann’s precedence matrix procedure (Hoffmann, 1963), 

COMSOAL (Arcus, 1966), Moodie & Young's (1965), and Lapierre & Ruiz’s (1999) 

improved COMSOAL heuristics.  

 

One of the first proposed heuristic was the ranked positional weight technique 

(RPWT) (Helgeson & Birnie, 1961). RPWT works by assigning the tasks which have 

long chains of succeeding tasks. The length of the chain can be measured either by 

the number of successors or the sum of the task times of the successors. The sum of 

the task process time and the process times of the successors is defined as the 

positional weight of the task. The tasks are then listed in descending order of weight, 

and an attempt is made to assign them in that order to the assembly stations, starting 

with the first station and proceeding, station by station, along the line. 
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Killbridge & Wester (1961) proposed a method, which groups tasks into columns 

in the precedence diagram where tasks are placed as far left as possible without 

violating precedence relations.  

 

Hoffmann (1963) proposed a heuristic based on a method for generating 

permutations using a precedence matrix. In the procedure, from the available tasks, a 

subset is selected such that the current station is loaded as much as possible. The 

procedure is repeated until all tasks are assigned. The procedure tends to concentrate 

tasks either at the first few stations or the last few stations depending on whether a 

forward or reverse problem is solved. 

 

Moodie & Young (1965) presented a modified formulation of the ALB problem 

that includes task time variability. The developed heuristic places tasks into 

workstations according to the longest task processing time. A task cannot be placed 

into a station unless all of its immediate predecessors have been already assigned. 

 

Arcus (1966) developed a heuristic known as COMSOAL, essentially a computer 

simulation technique that randomly generates a number of feasible solutions and 

adopts the best of these solutions by using ‘priority-based’ heuristics. In COMSOAL, 

for each task in the precedence graph, the numbers of immediate predecessors of all 

tasks are enumerated in a list. Then the tasks which have no immediate predecessors 

in this list are determined and enumerated in a second list. A task is selected 

randomly and removed from this second list. The second list is updated by moving 

all the tasks which are numerated at the bottom of the selected task in the list to an 

upper position. The selected task is removed from the precedence graph and the first 

list is updated. These steps are repeated until all the tasks are assigned according to 

the cycle time constraint. 

 

Lapierre & Ruiz (1999) programmed the COMSOAL algorithm (Arcus, 1966) on 

the software package Microsoft ACCESS97 with a modification to deal with 

constraints such as the position (rear, front, centre, etc.) and the level (high and low) 
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of tasks. Thus, the method aims to avoid grouping tasks having different levels on 

the same station.  

 

Fonseca, Guest, Elam, & Karr (2005) developed fuzzy versions of RPWT and 

COMSOAL methods to solve SMALBP Type-1 with a fuzzy representation of the 

time variables by triangular fuzzy numbers. Gokcen et al. (2006) developed two new 

procedures based on the COMSOAL algorithm of Arcus (1966) to solve SMALBP 

Type-1 with parallel lines. Jiao, Kumar, & Martin (2006) proposed the design and 

implementation of a web-based advisor composed of a schedule based on various 

heuristic algorithms such as RPWT, Killbridge & Wester’s method, and COMSOAL 

embedded in its library to solve SALBP Type-1 and Type-2. Kara & Tekin (2009) 

developed a new heuristic procedure based on the COMSOAL algorithm of Arcus 

(1966) to solve U-shaped MMALBP Type-1. 

 

Toksari et al. (2008) used the shortest task rule to solve SALBP and U-shaped 

SMALBP Type-1 with learning effects. Later, Toksari et al. (2010) adapted the 

COMSOAL algorithm of Arcus (1966) to solve large scale SMALBP Type-1 with 

deterioration tasks and learning effects.   

 

Boctor (1995) introduced a four-rule heuristic to solve SALBP Type-1. Bukchin 

et al. (2002) presented a mathematical model and a new three-stage heuristic, in 

which one of the stages was based on B&B, to solve MMALBP Type-1 in a make-

to-order environment. 

 

Jin & Wu (2002) developed a new heuristic algorithm called “variance algorithm” 

to solve MMALBP with an objective of minimizing the variance in the rate of 

resources used by the units. 

 

Zhao, Ohno, & Lau (2004) proposed a one-pass heuristic, based on the lower 

bound of the total overload time, to solve paced MMALBP with an objective of 

minimizing the total overload time. 
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Liu, Ong, & Huang (2005) proposed a bi-directional heuristic to solve SMALBP 

Type-2 with stochastic processing times. Hoffmann’s procedure (Hoffmann, 1963) 

was applied to guarantee the best task assignment. The tasks were assigned to 

workstations from two directions of the assembly line alternatively. The proposed 

method was superior to Moodie & Young's (1965) method. 

 

Chiang & Urban (2006) presented a hybrid heuristic composed of an initial 

feasible solution module and a solution improvement module to solve U-shaped 

SMALBP Type-1 with stochastic processing times. The first module consisted of 

two approaches as “First-Fit” and “Priority Based”. The second module consisted of 

approaches as “Least Number of Tasks” and “Least Task Time”. 

 

Dimitriadis (2006) developed a heuristic based on an enumeration method, 

Hoffmann’s precedence matrix procedure (Hoffmann, 1963), to solve paced ALBP 

with multi-manned workstations to achieve higher space utilization while the total 

effectiveness still remained optimized. 

 

Battini, Faccio, Ferrari, Persona, & Sgarbossa (2007) introduced a new heuristic 

procedure to solve unpaced MMALBP Type-2 with multi-turns circular transfer 

systems, such as a multi-station rotating table. 

 

Kilincci & Bayhan (2006) developed a Petri net based heuristic to solve SALBP 

Type-1. Later, Kilincci & Bayhan (2008) developed a heuristic based on the P-

invariants of Petri nets to solve SALBP Type-1. Kilincci (2010) developed a two-

stage heuristic adapted from a Petri net approach of Kilincci & Bayhan (2006) to 

solve SALBP Type-2. 

 

Cevikcan, Durmusoglu, & Unal (2009) presented a team-oriented mathematical 

programming model for creating assembly teams (physical stations) in MMALBP. 

The authors developed a scheduling based heuristic algorithm for this design 

methodology including horizontal and vertical balancing and model sequencing for 

mixed-model assembly lines. 
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 2.4.2.2 Meta-Heuristics 

 

Meta-heuristics are general search principles organized in a general search 

strategy used to solve combinatorial optimization problems (Pirlot, 1996). Meta-

heuristics start with an initial solution obtained with a heuristic and improve it, so 

they are the natural extension of priority-based heuristics. They are able to search 

large regions of the solution’s space without being trapped in local optima, a major 

disadvantage of pure local search algorithms. They have provided effective 

approximate solutions for difficult NP-hard combinatorial optimization problems. In 

the last decade, the focus of researchers has been on improvement procedures using 

meta-heuristics like Tabu Search (TS), Simulated Annealing (SA), Genetic 

Algorithm (GA), and Ant Colony Optimization (ACO) to solve ALBPs. This section 

focuses on literature review of their applications to ALBPs. 

 

Tabu Search (TS) is a generalized local search procedure proposed by Glover 

(1986) to guide other methods to escape the trap of local optimum. TS starts from an 

initial solution and iteratively moves to a neighbor solution which either improves on 

the previous solution or not. It uses problem-specific operators to explore a search 

space and memory (which is called the tabu list) to keep track of parts already 

visited. Some applications of TS for solving ALBP can be found in Peterson (1993), 

Scholl & Voss (1996), Chiang (1998), Pastor, Andris, Duran, & Pirez (2002), 

Lapierre et al. (2006), and Suwannarongsri & Puangdownreong (2008).  

 

A TS algorithm was used to solve ALBP firstly by Peterson (1993). An initial 

solution was adjusted according to tabu to improve the solution to a near-optimum 

condition with this method. To solve SALBP Type-1 and Type-2, Scholl & Voss 

(1996) presented basic TS algorithms. Chiang (1998) proposed another TS approach 

to solve SALBP Type-1. Although both of the methods were rather simple versions 

of TS, good results were obtained on classical data sets. Pastor et al. (2002) proposed 

a TS algorithm for an industrial multi-product and multi-objective ALBP. Lapierre et 

al. (2006) presented a new TS algorithm to solve SALBP Type-1 and discussed its 

differences with respect to those in the literature. The differences of the proposed SA 
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were the use of two different complementary neighborhoods redefinition of the 

solution space and the objective function in order to allow the algorithm to visit 

infeasible solutions.  

 

A recent application of TS can be found in Suwannarongsri & Puangdownreong 

(2008). The authors proposed a TS algorithm hybridized with the partial random 

permutation (PRP) technique to solve SALBP with the objective of minimizing 

workload variance. The TS algorithm was used to address the number of tasks 

assigned for each workstation, while the PRP technique was used to arrange the 

sequence of tasks. 

 

Simulated Annealing (SA) was introduced by Kirkpatrick, Gelatt, & Vecchi 

(1983) to solve NP-hard combinatorial optimization problems, by using the analogy 

with the simulation of the physical annealing of solids, in order to optimize the value 

of an objective function. The SA algorithm starts with a non-optimal initial solution 

and tries to improve it according to an annealing schedule that controls temperature. 

In each iteration, the difference between current position and the next possible 

position is calculated. If there is an improvement, the change is automatically 

accepted. If not, the change may still be accepted according to a probability, which 

decreases exponentially with the badness of the move. Some applications of SA for 

solving ALBP can be found in Suresh & Sahu (1994), McMullen & Frazer (1998), 

Erel, Sabuncuoglu, & Aksu (2001), Vilarinho & Simaria (2002), Baykasoglu (2006), 

and Kara et al. (2007a, 2007b).  

 

Suresh & Sahu (1994) developed a SA algorithm to solve SMALBP with 

stochastic processing times. To solve multi-objective MMALBP with parallel 

stations, McMullen & Frazer (1998) presented a SA algorithm for stochastic 

processing times. Erel et al. (2001) developed a heuristic based on SA to solve U-

shaped ALBP. Vilarinho & Simaria (2002) developed a two-stage SA algorithm to 

solve MMALBP with additional restrictions and parallel stations.  
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Mendes, Ramos, Simaria, & Vilarinho (2005) proposed a heuristic procedure 

combined of a version of RPWT and a SA algorithm to solve MMALBP Type 1. At 

first, the version of RPWT computed the initial solution, and then the SA algorithm 

tried to improve the solution. 

 

Baykasoglu (2006) presented a multi-rule multi-objective SA algorithm to solve 

SALBP and U-shaped SMALBP multiple objectives with Type 1 and Type-3.  

 

Recent applications of SA can be found in Kara et al. (2007a, 2007b). Kara et al. 

(2007a) was the first to deal with simultaneously balancing and sequencing problems 

of MMALBP Type-1 by using the SA method. Kara et al. (2007b) proposed a SA 

algorithm to solve simultaneously balancing and sequencing problems of MMALBP 

with multiple objectives of minimizing part usage rate, minimizing setup cost, and 

minimizing deviations of workload across workstations. 

 

Ant Colony Optimization (ACO) presented by Dorigo, Maniezzo, & Colorni 

(1996) and Dorigo, Di Caro, & Gambardella (1999) is a population-based procedure 

inspired on the behavior of real ant colonies. Ants are known for being able to find 

the shortest path between their nest and a food source, without making use of visual 

cues; only by following pheromone trails released by other ants. It is the colony as a 

whole that coordinates the activities without a direct communication between 

individual ants, as an isolated ant basically moves at random. ACO exploits a similar 

mechanism for solving optimization problems. In ACO, a number of artificial ants 

build solutions to an optimization problem and exchange information on the quality 

of these solutions via a communication scheme that is reminiscent of the one adopted 

by real ants. Some implementations of ACO to solve ALBP can be found in Bautista 

& Pereira (2002, 2007), McMullen & Tarasewich (2003, 2006), Vilarinho & Simaria 

(2006), Boysen & Fliedner (2008), Baykasoglu & Dereli (2008, 2009), Sabuncuoglu, 

Erel, & Alp (2009),  and Simaria & Vilarinho (2009).  

 

Bautista & Pereira (2002) presented an ACO algorithm to solve SALBP-2. 

McMullen & Tarasewich (2003) proposed an ACO algorithm to solve MMALBP 
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with parallel stations and stochastic task processing times. Later McMullen & 

Tarasewich (2006) presented an ACO technique to solve MMALBP with stochastic 

task processing times and multiple objectives via a composite function. This study 

was an extension of their previous research where only single-objective functions 

were addressed. 

 

Blum, Bautista, & Pereira (2006) proposed a Beam-ACO algorithm to solve the 

time and space constrained SMALBP Type-1 with the objective of minimizing the 

number of necessary work stations. This problem was denoted as TSALBP-1 in the 

literature. The proposed Beam-ACO approach was a state-of-the-art meta-heuristic 

that resulted from hybridizing ACO with beam search.  

 

Vilarinho & Simaria (2006) presented an ACO algorithm to solve MMALBP for 

two objectives of Type-1 and Type-3 with zoning restrictions and parallel 

workstations. Bautista & Pereira (2007) presented an ACO algorithm to solve the 

time and space constrained ALBP with various objectives. Boysen & Fliedner (2008) 

proposed a two-stage general procedure (AVALANCHE) to solve several extensions 

of SALBP and GALBP with constraints such as parallel workstations and tasks, cost 

synergies, processing alternatives, zoning restrictions, stochastic processing times or 

U-shaped assembly lines. In the first stage, the ACO algorithm was used for 

sequence generation. Then, the task assignment was carried out by well-known 

mathematical tools such as IP. 

 

Baykasoglu & Dereli (2008) proposed an ACO based heuristic to solve two-sided 

ALB problems with zoning constraints (2sALBz). This paper was one of the first 

attempts to show how an ant colony heuristic (ACH) can be applied to solve 2sALBz 

problems. Later, Baykasoglu & Dereli (2009) proposed an ACO algorithm integrated 

with COMSOAL method and RPWT to solve SALBP and U-shaped SMALBP 

Type-1. Sabuncuoglu et al. (2009) proposed an ACO algorithm to solve U-shaped 

SMALBP Type-1.  Simaria & Vilarinho (2009) proposed an ACO algorithm to solve 

two-sided MMALBP Type-1 with additional goals. In the proposed procedure, two 

ants worked simultaneously, one at each side of the line. 
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Genetic Algorithms (GA) (Holland, 1975) are an iterative search method, based 

on the biological process of natural selection and genetic inheritance, which maintain 

a population of a number of candidate members over many simulated generations. 

Falkenauer & Delchambre (1992) were the first to solve ALBP with GAs. Some of 

the applications of GAs for solving ALBP can be found in Leu, Matheson, & Rees 

(1994), Falkenauer (1997), Rekiek, De Lit, Pellichero, Falkenauer, & Delchambre 

(1999), Goncalves & De Almedia (2002), Stockton, Quinn, & Khalil (2004a, 2004b), 

Brown & Sumichrast (2005), and Rekiek & Delchambre (2006). A review of the GA 

applications for ALBPs will be given in Chapter 4.  

 

An iterative procedure named “balance for order”, based on a modified GA, was 

proposed by Rekiek, De Lit, & Delchambre (2000) to solve problems of model 

sequencing and line balancing in a mixed-model assembly line simultaneously. The 

proposed algorithm was tested on randomly generated instances. The number of 

operations varied from 50 to 500 and the number of models varied from 1 to 50. The 

results of the experiments showed that the optimum solutions as the number of 

workstations and makespan depended on both desired cycle time and maximum peak 

time. 

 

Symbiotic evolutionary algorithm (SEA), a special kind of GA, is a stochastic 

search algorithm that imitates the biological co-evolution process through symbiotic 

interaction (Potter, 1997). SEA maintains two or more populations (species) that 

represent sub-problems. Then, an individual of a population becomes a partial 

solution to the entire problem. Complete solution of the problem is constructed by 

combining all the partial solutions of each population. 

 

Kim et al. (2000a) presented a new method, called SEA, using a co-evolutionary 

algorithm that could solve line balancing and model sequencing problems of 

MMALBP at the same time. The objective was minimizing utility work, which was 

defined as the amount of uncompleted works within the given length of a 

workstation. The balancing problem and sequencing problem were defined as 
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populations. Generation, crossover and mutation operations, genetic representations, 

and adaptations of all of them to the line balancing problem were explained in detail 

by representing the proposed algorithm. Thomopoulos’ 19-task and Arcus’ 111-task 

problems and a real life problem with 61-task were used to perform the algorithm. 

The experimental results showed that the proposed algorithm was superior to existing 

approaches. Later, Kim et al. (2000b) proposed SEA to deal with the integration of 

balancing and sequencing of U-shaped MMALBP simultaneously. Totally 21 

problems were solved. The proposed co-evolutionary algorithm was compared with 

some methods and the hierarchical approach which solved a sequencing problem 

after the solution of the line balancing problem. Thomopoulos’ 19-task problem, 

Arcus’ 111-task problem, and a real life problem with 61 tasks were used as test-bed 

problems. The results showed that the proposed algorithm outperformed the existing 

methods. Also it improved the results according to the hierarchical approach as from 

%28.20 to %73.20. 

 

Endosymbiotic evolutionary algorithm (EEA), an extension of SEA, is an 

algorithm in which an evolutionary strategy imitating the endosymbiotic process is 

embedded in an existing SEA. The theory of endosymbiotic evolution was first 

proposed by Margulis (1980) and the basic idea was based on the algorithm by Kim 

et al. (2001). 

 

Kim et al. (2006) proposed EEA to solve simultaneously line balancing and 

sequencing problems of U-shaped MMALBP Type-3. The proposed algorithm 

constructed and maintained a balancing population and a sequencing population. The 

individuals of each population became a partial solution of the problem. The 

algorithm maintained another population consisted of individuals formed by the 

integration of the two types of individuals. Then, they became the entire solution 

representing a combination of work assignment and model sequence. 

 

Differential evolution algorithm (DEA) is an evolutionary algorithm introduced 

by Storn & Price (1997) for global optimization over continuous spaces.  
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Nearchou (2007) proposed a new heuristic based on DEA to solve SALBP Type-

2. Two versions of the proposed FEA were implemented, one using random-keys 

encoding scheme and the other using priority-based. Their performances were   

compared with three types of GAs by testing two data sets from the literature 

including 17 problems with tasks varying from 29 to 297. The results of the proposed 

DEA were quite promising. Later, Nearchou (2008) proposed a multi-objective 

version of DEA to solve bi-criteria SALBP Type-2. The secondary objectives were 

to minimize balance delay time and workload smoothness index. The author 

compared three versions of the proposed DEA against two representative multi 

objective GAs, one proposed by Kim et al. (1996) and the other proposed by Murata, 

Ishibuchi, & Tanaka (1996). The version which used adaptive weights estimated in 

the objective function was superior to the others. 

 

2.5 Chapter Summary 

 

In this chapter, the terminology and characteristics of assembly lines, the 

assembly line balancing problem and various types of this problem with the solution 

methods were presented. 

 

The literature review shows that there are many algorithmic developments as 

exact and heuristic procedures to solve mainly SALBP, because it is a benchmark 

problem with a large number of data sets with known optimal solutions. Due to the 

need to solve more realistic line balancing problems, recent studies evolve towards 

solving GALBPs with different extensions. There is a growing interest in the use of 

meta-heuristics to solve complex real world ALBPs. Many studies showed that meta-

heuristics are able to solve SALBP and GALBP with a high performance and 

flexibility. 

 

 In this study, as a meta-heuristic approach, a GA will be employed to solve a 

novel GALBP. The following chapter will present detailed information about GAs.

 
 



 

CHAPTER THREE 

GENETIC ALGORITHMS 

 

3.1 Introduction 

 
Since this study involves the application of GAs to solve CCALBP, this chapter 

will focus on the description of the main characteristics of GAs. The chapter is 

organized as follows. In Section 3.2, an introduction of the terminology for GAs is 

presented and the procedure of GAs is given. Finally, in Section 3.3, the context of 

this chapter is summarized. 

  

3.2 Genetic Algorithms 

 

Solving the combinatorial optimization problems by exact methods such as DP or 

B&B causes storage requirements and exponential growth in computation time. 

Solving by heuristics such as neighborhood search causes being trapped at locally 

optimal solutions. To avoid all, meta-heuristics have been developed (Pirlot, 1996). 

 

Since the 1960s there has been an increasing interest in imitating living beings to 

develop powerful algorithms to solve difficult optimization problems. Recently, the 

term evolutionary computation is referred to such techniques. Many attempts have 

been made to understand the adaptive processes of natural systems. These methods, 

commonly called meta-heuristics, are general search principles organized in a 

general search strategy used to solve combinatorial optimization problems (Pirlot, 

1996). They are high level strategies for exploring search spaces by using different 

methods (Blum & Roli, 2003). Figure 3.1 gives the basic chronology of well-known 

meta-heuristics including GA, SA, TS, ACO, particle swarm optimization, and 

differential evolution. 

 
 

38



 39

1965     Evolution Strategies      

      1966     Evolutionary Programming 

      

      1975     Genetic Algorithms 

1983     Simulated Annealing 

1986     Tabu Search 

1990     Ant Colony Optimization 

1995     Particle Swarm Optimization 

1997     Differential Evolution 
                                     

                                  Figure 3.1 Chronology of meta-heuristics 

 

The first work on GA was introduced by John Holland, from the University of 

Michigan at the beginning of 1960s. The first achievement was the publication of 

“Adaptation in Natural and Artificial System” in 1975 (Holland, 1975). Holland (1975) 

attempted to explain the adaptive processes of natural systems and to design an artificial 

system based upon these natural systems. GA as a search and optimization routine was 

popularized by Goldberg’s 1989 publication “Genetic Algorithms in Search, 

Optimization, and Machine Learning” (Goldberg, 1989). 

 

GA is a stochastic search method; randomness is an essential role in GAs. GA 

simulates the natural process, and randomly searches the heuristic solution in the 

solution space, based on the mechanism of natural selection and natural genetics 

(Goldberg, 1989). Most stochastic search methods operate on a single solution to the 

problem, but GA operates on a population of solutions. 

 

GAs have been applied for solving various combinatorial optimization problems 

(COPs) in the literature and have become increasingly popular among approximation 

techniques for finding optimal or near optimal solutions in a reasonable time to COPs 

(Dowsland, 1996) (Reeves, 1997). 
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GA differs from conventional optimization techniques in several ways (Goldberg, 

1989): 

 

1. GAs work with coded versions of the problem parameters and not with the 

parameters themselves, i.e., GA works with the coding of solution set rather than 

the solution itself. 

2. Almost all conventional optimization methods search from a single point but GAs 

always search from a whole population of points, i.e., GA uses population of 

solutions, not a single solution for searching. This improves the chance of reaching 

the global optimum and also helps in avoiding a local optimum. 

3. GA uses fitness function for evaluation, not derivatives. Therefore, GAs can be 

applied to any kind of optimization problem by identifying and specifying a 

meaningful decoding function. 

4. GAs use probabilistic transition rules rather than deterministic rules. 

 

Beside its advantages, there are some difficulties in adjustment of the GA control 

parameters (population size, crossover probability, and mutation probability), for 

specification of the termination condition, and for encoding problems into fixed-length 

chromosomes. There are limited available commercial software products to solve 

various problems. 

 

3.2.1 Terminology for GAs 

 

To understand the procedure of a general GA, there are some basic components to 

learn. In this section, general terminology of GA is given. 
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 3.2.1.1 Representation 

 

GAs do not operate directly on the solution space. The solutions are coded in the 

form of symbolic strings called chromosomes. An encoding is selected in a way that 

each solution in the search space is represented by one chromosome. 

 

A chromosome is subdivided into genes. A gene is the GA’s representation of a 

single factor for a control factor. Each factor in the solution set corresponds to a gene in 

the chromosome. Genes are the basic “instructions” for building a GA. A chromosome is 

a sequence of genes. Genes may describe a possible solution to a problem, without 

actually being the solution. The most used gene type is the binary one with binary digits 

as Holland (1975) used (Sivanandam & Deepa, 2008) (See Figure 3.2.a). Later, different 

types of genes have been used according to the problem studied (See Figure 3.2.b). 

 

A chromosome, in some way, stores information about solution that it represents. 

That requires a mapping mechanism between the solution space and chromosome. This 

mapping is called representation (encoding) of the solution, which is an abstract 

representation (Sivanandam & Deepa, 2008). A chromosome representation describes an 

individual in the population. There are a number of ways to represent a solution in a way 

that it is suitable for GA such as binary, real number, vector of real numbers, 

permutations, general data structure (array, tree, matrix and so on), and they are mostly 

depend on the nature of the problem (See Figure 3.2) (Rotlauf, 2006). The first step of 

designing a GA for a particular problem is to devise a suitable representation so that the 

problem becomes easily solvable by GA. The suitable representation also allows for 

easy application of genetic operators and computation of fitness (Suresh, Vinod, & Sahu, 

1996). 
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1 1 0 1 0 0 1 0 1 1
(a) 

A C A B C D E D E E
(b) 

Figure 3.2 Chromosome representations 
 

 3.2.1.2 Initialization 

 

Chromosomes evolve through successive iterations (generations). The set of 

individuals (solutions, chromosomes) of each generation is called a population. The 

diversity of a population is a measure of the number of the different solutions present. 

The number of individuals in the population gives the population size.  

 

The initial population is created during an initialization phase and often generated 

randomly by assigning random values to the genes in the chromosomes. Some 

knowledge can be used by the GA to start the search from promising regions of the 

search space. Seeding the initial population with known good solutions or including a 

high-quality solution, obtained from another heuristic technique, can help a GA find 

better solutions rather more quickly than it can from a random start. However, there is 

also the possibility of inducing premature convergence to a poor solution (Reeves & 

Rowe, 2003). 

 

 3.2.1.3 The Fitness Function 

 

During each generation of a GA, the chromosomes are evaluated, using some 

measures of fitness. Fitness is assigned to each chromosome in the current population by 

a fitness function. The evaluation procedure rates chromosomes in terms of their fitness. 

The fitness value reflects the quality of the solution represented by the chromosome. The 

fitness function is the same as the objective function to be optimized, so it is adjusted to 
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the problem at hand (Kim et al., 1996). Sometimes, the fitness function can be the 

transformation of the objective function (Yu & Yin, 2009). The fitness value of each 

chromosome is calculated according to the given fitness (objective) function. 

 

 3.2.1.4 Selection 

 

The selection mechanism determines which individuals will have all or some of their 

genetic material passed to the next generation. The most fit individuals (chromosomes) 

are selected from a population to form a basis for subsequent generations, i.e., for 

reproduction (Haupt & Haupt, 2004).  

 

Selection can be based on many different criteria but it is usually based on a fitness 

value. The idea behind this is to select the best chromosomes for parents in a way by 

combining them to produce better offspring chromosomes. A comparative analysis of 

selection schemes used in GA was given by Goldberg & Deb (1991).  

 

The most popular selection techniques are given in the following: 

 

• Roulette Wheel Selection (RWS): This technique works like a roulette wheel in 

which each slot on the wheel is paired with an individual of the population. The 

size of each slot is proportional to the corresponding individual’s fitness. The 

wheel is spun just many times as the population size. On each spin, the individual 

under the wheel's marker is selected to be in the pool of parents for the next 

generation (Mitchell, 1996). This procedure selects chromosomes proportional to 

their fitness scores. 

 

• Stochastic Universal Sampling: This method uses a single wheel spin which is 

spun once, but with a number of equally spaced markers equal to the population 
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size. This method gives each individual the proper number of trials to eliminate 

selection noise (Mitchell, 1996). 

 

• Tournament Selection: At each iteration, this method chooses a number 

(tournament size) of individuals and selects the best one as a parent from this 

group into the next generation. This process is repeated for every parent needed as 

often as the population size (Goldberg & Deb, 1991). A larger value of tournament 

size increases the selective pressure while decreasing the population diversity 

(Kim et al., 1996). 

 

• Ranking selection: The individuals of the population are ranked according to 

fitness, and the expected value of each individual depends on its rank rather than 

on its absolute fitness. The solutions are selected proportionally to their rank. The 

population is sorted from the best to the worst one, and each individual is copied 

as many times as possible, and then the proportionate selection is performed.  

 

 3.2.1.5 Genetic Operators 

 

Genetic operators provide the basic searching mechanism of GAs. They are used to 

create new solutions based on existing solutions in the population. GAs use two main 

operators: crossover and mutation. The crossover operator has the role of combining 

pieces of information from different individuals in the population. The selected 

individuals called parents are joined in pairs and combine their genetic material to 

produce two new individuals called offspring with a probability equal to the crossover 

rate (Coley, 1999). There are many types of crossover operators such as binary-coded, 

real-coded, statistic-based, and permutation-based crossover operators. The popular 

permutation-based crossover operators which are used generally for line balancing 

problems are partially mapped crossover (PMX), order crossover (OX), cycle crossover 

(CX), position-based, and uniform crossover. Figure 3.3 shows two-point crossover 
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(2PX) which exchanges all genes between the two cutpoints mostly determined in a 

random way. 

 

    Parent 1 

1 1 0 0 0 1 0 0 1 1
   Parent 2 

1 0 1 0 0 1 1 1 0 1
 

         Randomly generated  

   Offspring 1    cutpoints 

1 1 0 0 0 1 1 1 1 1
   Offspring 2 

1 0 1 0 0 1 0 0 0 1
 

     

                                                  Figure 3.3 Two-point crossover 
 
 

The main objective of the crossover operator is to transfer good characteristics of 

parents to offspring. Crossover depends on chromosome representation and can be very 

complicated. Although general crossover operations are easy to implement, building 

specialized crossover operation for a specific problem can greatly improve performance 

of GA (Mitchell, 1996). 

 

After GA performs crossover, it performs mutation to finish production of new 

chromosomes. Mutation alters one or more genes with a probability equal to the 

mutation rate (Dreo, Siarry, Petrowski, & Taillard, 2006). Mutation makes small 

random changes to encoded solution; therefore it introduces a certain amount of 

randomness to the search. The aim of mutation is to prevent all solution being trapped 

into local optimum and to extend search space of the algorithm. This ensures diversity 

among individuals, preventing premature convergence. Mutation, as well as crossover, 
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depends on chosen representation. There are many types of mutation operators such as 

insertion, inversion, reciprocal, and scramble mutation. Figure 3.4 shows mutation of a 

bit which involves flipping a bit, changing 1 to 0. 

 

                                  Parent 

1 0 0 1 1 0 1 0 1 0
 

                                      Randomly selected gene  

   Offspring  

1 0 0 0 1 0 1 0 1 0
 
      Figure 3.4 Mutation 

 

 3.2.1.6 Survival 

 

The members of the new generation can be individuals from the current generation 

and/or offspring product of crossover or mutation. A survival approach is necessary to 

determine which individuals stay in the next population and which are replaced by 

offspring to keep the population size constant. The most common approach is elitism 

which allows the best chromosome in each generation to survive in the next generation. 

This is to make sure that the final population contains the best solution ever found. It is 

guaranteed that the best solution obtained during the generations to be preserved without 

being accidentally destroyed by genetic operators (Kim, Kim, & Cho, 1998). There are 

several approaches for the replacement. It is common to make one or a few exact copies 

of the best individual and place them directly in the next generation. But some 

approaches do the maintenance of the parents in the population. In either case, a random 

component is always present to avoid premature convergence to local optima. The 

tournament strategy or a local search algorithm can also be used as well as elitism for 

survival. 

 
 



 47

 3.2.1.7 Termination 

 

There are various stopping conditions for GAs as listed in the following (Sivanandam 

& Deepa, 2008): 

• Maximum generations: When the specified number of generations has evolved, 

GA stops. 

• Elapsed time: When a specified time has elapsed, GA will end. If the maximum 

number of generation has been reached before the specified time has elapsed, GA 

will end. 

• No change in fitness: If there is no change in the best fitness of population for a 

specified number of generations, GA will end. If the maximum number of 

generation has been reached before the specified number of generation without 

any change, GA will end. 

• Stall generations: GA stops if there is no improvement in the objective function 

for a sequence of consecutive generations during the length of stall generations. 

• Stall time limit: GA stops if there is no improvement in the objective function 

during an interval of time in seconds equal to stall time limit. 

 

3.2.2 Procedure of GAs 

 

In the application of GAs, there are some steps which should be taken as stated 

below: 

1. Choose a representation scheme for a possible solution (coding or chromosome 

representation) 

2. Decide on how to create the initial population. 

3. Define the fitness function. 

4. Define the genetic operators to be used (reproduction, crossover, mutation, 

elitism). 

5. Choose the parameters (population size, probability of genetic operators). 
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6. Define the termination rule. 

 

By initialization, GA maintains a population of individuals to start the search. Each 

individual is coded as a chromosome and represents a solution to the problem at hand. 

Each individual is evaluated to give measure of its fitness.  

 

After the evaluation of the initial population, chromosomes are selected on which the 

genetic operators are applied. In order to create new individuals, some individuals of the 

population undergo stochastic transformations by means of genetic operations. GAs use 

mainly two genetic operators, crossover and mutation, to direct the population to the 

global optimum. Crossover creates new individuals by combining parts (mating) from 

two individuals. This allows exchanging information between different solutions 

(chromosomes). Mutation creates new individuals by making changes (mutating) in a 

single individual and increases the variety in the population. Then new individuals, 

called offspring, are evaluated and a new population is formed. Passing through these 

steps completely is known as one generation.  

 

After several generations (iteration number), the algorithm converges to the most fit 

individual, which represents an optimal or suboptimal solution to the problem at hand. 

This process is continued until a termination criterion is met. Figure 3.5 illustrates the 

main steps as a general flowchart of a GA. 
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              Figure 3.5 Main steps of a generalized genetic algorithm 

 

 

 
 



 50

3.2.3 Parameter Setting for GAs 

 
One of the important issues in implementing a GA is setting the values of the various 

parameters, such as population size, crossover rate, and mutation rate. The well 

determined values can cause the algorithm to find an optimal or near-optimal solution 

efficiently. But suboptimal parameter values set by the user can result in a suboptimal 

algorithm performance. A given parameter value can have a different optimal value in 

different phases of the search. Choosing the appropriate parameter values is a hard task. 

Eiben, Michalewicz, Schoenauer, & Smith (2007) classified parameter setting 

approaches into two major groups: parameter tuning and parameter control as given in 

Figure 3.6. 

 

Parameter tuning is the approach of searching for good values of the parameters 

before the run of the algorithm and then running the algorithm using these fixed values. 

Parameter tuning is a typical approach, but it is very time consuming. The reason is that 

it is done by experimenting with different values of many parameters and selecting the 

ones that give the best results on the test problems at hand. 

 

Parameter control is the approach of starting a run with initial parameter values 

which are changed during the run. Different values of parameters might be optimal at 

different stages of the algorithm. Methods for changing the value of a parameter can be 

classified into three categories:  

 

1. Deterministic Parameter Control: This method is used when the value of a 

strategy parameter is altered by some deterministic rule. This rule modifies the 

strategy parameter in a predetermined way without using any feedback from the 

search. A user-specified way, such a time-varying schedule, is generally used, i.e., 

the rule will be used when a set number of generations have elapsed since the last 

time the rule was activated. 
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2. Adaptive Parameter Control: This method is used when there is some feedback 

from the search to determine the direction or magnitude of the change to the 

strategy parameter. The assignment of the value of the strategy parameter may be 

based on the quality of solutions discovered by different operators/parameters. It is 

important that the updating mechanism used to control parameter values is 

externally supplied, rather than being part of the algorithm. 

 

3. Self-Adaptive Parameter Control: To implement the self-adaptation of parameters, 

the idea of the evolution of evolution can be used. The parameters are encoded 

into the chromosomes and undergo mutation and recombination. The better values 

of these encoded parameters lead to better individuals. In turn they are more likely 

to survive and produce offspring and hence propagate these better parameter 

values. An updating mechanism of different strategy parameters is entirely 

implicit, i.e., they are the selection and variation operators of the algorithm itself. 
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                     Figure 3.6 Taxonomy for parameter setting in GAs 
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3.3 Chapter Summary 

 

In this chapter, main characteristics for GAs were presented in detail. The general 

procedure of GAs was given and their parameter setting is explained. Our study involves 

GAs for solving CCALBP; therefore the review of the literature for the application of 

GA approaches in line balancing will be given in the next chapter.

 
 



 
 

CHAPTER FOUR 

LITERATURE REVIEW FOR APPLICATIONS OF GENETIC ALGORITHMS 

IN ASSEMBLY LINE BALANCING 

 

4.1 Introduction 

 
Genetic algorithms (GAs) are meta-heuristics that have been thoroughly used for 

solving ALBPs. Dimopoulos & Zalzala (2000) reviewed recent developments for the use 

of evolutionary computation in many manufacturing problems including assembly line 

balancing. Rekiek et al. (2002) presented a survey of the methods including exact 

methods, heuristics and meta-heuristics applied to ALBP. Aytug, Khouja, & Vergara 

(2003) reviewed the use of GAs to solve operations problems including assembly line 

balancing. Pierreval, Caux, Paris, & Viguier (2003) reviewed evolutionary approaches 

for solving several types of problems encountered in the area of manufacturing systems 

including ALBP. These studies have a very wide range of the application areas including 

supply chain management, facility layout design, assembly lines, etc.  

 

Up-to-date analysis of the bibliography and available state of the art procedures for 

SALBP family of problems are given by Scholl & Becker (2006) and for GALBP by 

Becker & Scholl (2006). Tasan & Tunali (2008) reviewed the current applications of 

GAs in assembly line balancing with the focus on solving all types of ALBPs using 

GAs. Their study gave a structural framework to classify the reviewed papers according 

to the type of ALBP studied, the GA methodology and the performance specifications. 

 

In this chapter, the published studies for applications of GAs in assembly line 

balancing are classified based on the structural framework given by Tasan & Tunali 

(2008). In Section 4.2, the literature is organized in chronological order. In Section 4.3,
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the conclusions about the literature review are given and in Section 4.4, the chapter is 

summarized. 

 

4.2 Literature Review 

 
Referring to the classification of ALBP by Baybars (1986), the published literature is 

reviewed under two types of ALBPs studied: the literature of GAs for SALBP is 

reviewed in Section 4.2.1 and the literature of GAs for GALBP is reviewed in Section 

4.2.2. The reviewed studies based on the type of the problem and the objective functions 

are given in order in Table 4.1. 

 

4.2.1 Research on SALBP 

 

SALBP is the simplest version of ALBP which involves mass-production of only one 

homogeneous product, paced line with fixed cycle time, deterministic and independent 

processing times, no assignment restrictions besides the precedence constraints, serial 

line layout, one-sided and equally equipped workstations, and fixed rate launching 

 

SALBP was first solved with a GA by Falkenauer & Delchembre (1992). To solve 

SALBP Type-1, the authors pointed out the weaknesses of a standard GA when applied 

to grouping problems, and introduced the Grouping Genetic Algorithm (GGA) which 

was presented by Falkenauer (1991). The GGA differed from the classic GA in two 

important aspects. First, a special encoding scheme was chosen in order to make the 

structure of chromosomes more group-oriented. Second, special genetic operators, 

which were suitable for the chromosomes, were used with the given encoding. 

Falkenauer & Delchembre (1992) presented efficient crossover and mutation operators 

for the bin packing problem, and modified them to solve SALBP Type-1. The authors 

tested the performance of the algorithm on randomly generated data. 
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Table 4.1 Chronological list of GA studies for assembly line balancing 

 

 Year   Researcher(s)  Problem Type   Objective Function  
1992  Falkenauer & Delchambre  SALBP   Type-1  
1994  Leu et al.  SALBP   Type-1  
1994  Anderson & Ferris  SALBP   Type-2  
1995  Rubinovitz & Levitin  SALBP   Type-2  
1995  Tsujimura et al.  GALBP (SMALBP)   Type-1  
1996  Kim et al.  SALBP   Type-1, 2, 3, 4, 5  
1996  Suresh et al.  GALBP (SMALBP)   Type-1  
1997  Falkenauer  GALBP (SMALBP)   Type-1  
1998  Ajenblit & Wainwright  GALBP (SMALBP)   Type-1  
1998  Chan et al.  GALBP (SMALBP)   Type-1  
1998  Kim et al.  SALBP   Type-2  
1999  Rekiek et al.  SALBP   Equal Piles  
 2000   Bautista et al.  SALBP   Type-1, Type-2  
2000c  Kim et al.  GALBP (SMALBP)   Type-1  
2000  Ponnambalam et al.  SALBP   Type-1, Type-3  
2000  Sabuncuoglu et al.  SALBP   Type-1  
2001  Carnahan et al.  SALBP   Type-2  
2001a   Simaria & Vilarinho  GALBP (MMALBP)   Type-2  
2002  Chen et al.   GALBP (Assembly Planning )   Type-2  
2002  Goncalves & De Almedia  SALBP   Type-1  

2002  Miltenburg   GALBP (MMALBP & 
sequencing simultaneously)   Type-1  

2002  Valente et al.  GALBP (SMALBP)   Type-2  
2004  Brudaru & Valmar  GALBP (SMALBP)   Type-1  
2004  Martinez & Duff  GALBP (SMALBP)   Type-1  
2004  Simaria & Vilarinho  GALBP (MMALBP)   Type-2  

2004a, 
2004b   Stockton et al.   SALBP   Type-1  

2005  Brown & Sumichrast  SALBP   Type-1  
2006  Haq et al.  GALBP (MMALBP)   Type-1  
2006  Levitin et al.  GALBP (SMALBP)   Type-2  
2007  Baykasoglu & Ozbakir GALBP (SMALBP)   Type-1
2008  Guo et al. GALBP (SMALBP)  
2008  Hwang et al. GALBP (SMALBP)   Type-1
2009  Gao et al. GALBP (SMALBP)   Type-2
2009  Hwang & Katayama GALBP (MMALBP)   Type-1
2009  Moon et al. GALBP (SMALBP)   Type-1
2009  Kim et al. GALBP (SMALBP)   Type-2
2009  Yu &Yin SALBP   Type-1, Type-3  

 PROBLEM SPECIFICATIONS  
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Leu et al. (1994) showed how a GA was used to generate feasible line balances step 

by step to solve SALBP Type-1. The authors explained how to create feasible 

population in the initialization, and feasible children after crossover and mutation. As 

extensions, to improve GA solutions, Leu et al. (1994) used solutions of heuristic 

procedures in the initial population, and also demonstrated the possibility of balancing 

assembly lines with multiple criteria and side constraints such as allocating a task in a 

station by itself. 

 

Anderson & Ferris (1994) were the first to solve SALBP Type-2 with a GA. The 

authors described a standard implementation of GA for SALBP and carried out 

extensive computational testing for it. Anderson & Ferris (1994) also introduced an 

alternative parallel version of the algorithm, and compared it with the serial 

implementation. 

 

Rubinovitz & Levitin (1995) developed a GA to solve SALBP Type-2. The authors 

compared the proposed GA with MUST algorithm suggested by Dar-El & Rubinovitch 

(1979). Totally 36 problems with different flexibility ratios and with different number of 

stations were solved. The results showed that the proposed GA performed much faster 

than MUST for problems with large number of stations (more than 20) and high 

flexibility ratio.  

 

Kim et al. (1996) presented a GA to solve SALBP with various objectives. The 

objectives were to minimize the number of workstations (Type-1), to minimize cycle 

time (Type-2), to maximize workload smoothness (Type-3), to maximize work 

relatedness (Type-4), and the multiple-objective with the objective of Type-3 and Type-

4 (Type-5). The authors compared five standard crossover operators for the proposed 

GA to solve Type-1, Type-2, Type-3, and Type-4 problems. The proposed GA was also 

compared with the well-known heuristics in the literature. The results showed that in all 

of the four types, the proposed GA could provide much better solutions than the other 

heuristics on several test problems such as Kilbridge & Wester’s 45-task and Tonge’s 
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70-task problems. As an extension, Kim et al. (1996) implemented a multiple objective 

GA (MOGA) to solve SALBP Type-5. The authors concluded that for a multiple 

objective problem (Type-5), MOGA produced diverse Pareto optimal solutions. But 

according to Rekiek et al. (2002), the encoding scheme used by Kim et al. (1996) was 

not well suited for the grouping problem they dealt with. 

 

Kim et al. (1998) proposed a heuristic-based GA to solve SALBP Type-2 with the 

objective of workload smoothness. The authors placed the emphasis on utilization of 

problem-specific information and heuristics in order to get high quality solutions. The 

experiments for the proposed GA were carried out on five test-bed problems: Kilbridge 

& Wester’s 45-task, Tonge’s 70-task, Arcus’ 83-task, Arcus’ 111-task, and Bartholdi’s 

148-task problems. The results of the experiments showed that the proposed GA 

outperformed the three existing heuristics and the standard GA in optimizing the 

workload smoothness. 

 

Rekiek et al. (1999) presented a new algorithm using GGA, based on an Equal Piles 

approach. The proposed GGA was heavily modified to respect the precedence 

constraints to solve SALBP. Equal Piles approach for SALBP warranted to obtain the 

desired number of stations, and tried to equalize the station workloads (Rekiek et al., 

2002). The authors applied the proposed GGA to Buxey’s 29-task problem and 

presented this case study. 

 

Bautista, Suarez, Mateo, & Companys (2000) developed a Greedy Randomized 

Adaptive Search Procedure (GRASP) and a GA to solve an extension of SALBP. The 

extension of SALBP, which the authors considered, had incompatibilities between 

groups of tasks. If two tasks were incompatible, they could not be assigned to the same 

workstation. The objectives were, first, to minimize the number of workstations (Type-

1), and then, minimize the cycle time (Type-2) with the determined number of stations. 

GRASP was obtained from the application of some classic heuristics, based on priority 

rules. Bautista et al. (2000) used weights for revising GRASP and also proposed Greedy 
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Randomized Weighted Adaptive Search Procedure (GRWASP). The authors carried a 

comparative study and found that the proposed GA and GRWASP performed better than 

the greedy heuristics and GRASP. 

 

Ponnambalam, Aravindan, & Naidu (2000) proposed a MOGA to solve SALBP with 

multi-objectives. The performance criteria, to optimize simultaneously, were the number 

of workstations (Type-1), line efficiency and the smoothness index (Type-3). The 

developed GA was compared with six popular heuristic algorithms from the literature. A 

set of 20 networks from the literature were used for comparison. Each network was 

solved for five different cycle times. The number of tasks varied from 7 to 50. The 

authors found that the proposed GA performed better than the heuristics in all of the 

performance measures; however, the execution times were longer because of more 

iterations for global optimal solutions.  

 

Sabuncuoglu, Erel, & Tanyer (2000) proposed a GA with a special chromosome 

structure partitioned dynamically through the evolutionary process to solve SALBP. By 

using some concepts of simulated annealing (SA), a new elitism structure was 

implemented in the model to determine the survival of the individual solutions. The 

authors used a fitness function including two parts. The first part aimed at reducing the 

imbalance, and the second one at minimizing the number of stations (Type-1). The 

proposed GA was compared with the well-known heuristics in the literature. The results 

showed that the proposed GA outperformed the other heuristics on several test problems 

such as Kilbridge & Wester’s 45-task and Tonge’s 70-task problems. 

 

Carnahan, Norman, & Redfern (2001) developed three heuristics to solve SALBP 

Type-2 with the objectives of minimizing the worker’s fatigue and the cycle time to 

explore the incorporation of physical demand criteria in line balancing. The developed 

heuristics were a multiple ranking heuristic, a combinatorial GA, and a problem space 

GA. Each heuristic was tested using a set of 100 Type-2 ALB problems. The literature 

problems were Buxey’s 29-task, Sawyer’s 30-task, Gunther's 35-task, Kilbridge & 
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Wester’s 45-task, Hahn’s 53-task, Warnecke’s 58-task, Wee-Mag’s 75-task, Arcus’ 83-

task, Lutz’s 89-task, Lutz’s 89-task, Muckherje’s 94-task and Bartholdi’s 148-task 

problems. The results showed that the problem space GA was found to be the best of all 

three heuristics. 

  

Goncalves & De Almedia (2002) developed a hybrid GA that combined a heuristic 

priority rule, a local search procedure and a GA to solve SALBP Type-1. The proposed 

hybrid GA used a random key alphabet, an elitist selection and a parameterized uniform 

crossover. The authors presented computational experiments on 269 instances of three 

problem sets found in the literature: The Talbot set, the Hoffman set, and the Scholl set. 

The results showed that the algorithm performed remarkably well. 

 

Stockton et al. (2004a, 2004b) researched the applications of GAs for solving 

problems in various areas such as designing and planning of manufacturing operations. 

These problems were assortment planning, aggregate planning, lot sizing in material 

requirement planning, line balancing and facilities layout. The authors applied a GA to 

solve SALBP Type-1 in Stockton et al. (2004a). The authors also performed 

computational experiments in Stockton et al. (2004b). With the help of these 

experiments, the relationships between problem characteristics and performance of 

individual operator types and parameter values were identified as a set of guidelines. 

 

Brown & Sumichrast (2005) compared the performance of a GGA (Falkenauer, 1991) 

against the performance of a standard GA for solution quality and run time. The types of 

grouping problems selected to test were the bin packing problem, machine part cell 

formation problem and SALBP Type-1. Both GA and GGA obtained optimal solutions 

for all test problems, but the GA required much more time. 

 

Yu & Yin (2009) developed an adaptive GA using adaptive crossover and mutation 

operators to solve SALBP. The authors considered to minimize the number of 

workstations (Type-1) and to maximize the workload smoothness (Type-3). In the 
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proposed adaptive GA, the probability of crossover and mutation was dynamically 

adjusted according to the individual’s fitness value. The individuals with higher fitness 

values were assigned to lower probabilities of genetic operators. Two computational 

examples demonstrated that the proposed approach was better than the Kilbridge-Wester 

algorithm and Monte-Carlo algorithm. The adaptive GA provided an effective 

convergence and efficient computation speed. 

 

4.2.2 Research on GALBP 

 

GALBP include all of the problems which are not SALBP. These are balancing 

problems with different additional characteristics such as single or mixed model 

production, cost functions, equipment selection, paralleling, U-shaped or two-sided line 

layouts with stochastic, fuzzy or dependent processing times. 

 

GALBP was first solved with a GA by Tsujimura, Gen, & Kubota (1995). The 

authors proposed a GA to solve SMALBP Type-1. In order to treat the data of real world 

problems, the authors used fuzzy numbers by triangular membership functions to 

represent task times. Special mechanisms and operators ensured the feasibility of 

solutions. Tsujimura et al. (1995) illustrated the application of the proposed GA on an 

80-task problem. 

 

Suresh et al. (1996) proposed a general approach to solve SMALPB Type-1 with 

stochastic processing times using GAs. First, the authors presented a GA working with 

only feasible solutions. Then, an alternative version of the proposed GA working with 

two populations, one allowing only feasible solutions and the other allowing a certain 

amount of infeasible solutions, was presented. Suresh et al. (1996) claimed that the 

presence of infeasible solutions allowed a smoother search space and helped in escaping 

from certain local minima. The modified version of GA gave better results than the first 

one with only feasible solutions according to the results of the experiments. 
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Falkenauer (1997) developed a GA based on GGA proposed by Falkenauer & 

Delchembre (1992) and Branch & Bound (B&B) algorithm to solve SMALP Type-1. By 

GGA, tasks with resource dependent processing times were assigned to workstations 

along the line by minimizing the number of the stations; and then by B&B algorithm, the 

equipments were selected to carry out the operations by minimizing the cost of the line. 

 

Ajenblit & Wainwright (1998) were the first to solve U-shaped SMALBP Type-1 by 

using a GA. The authors considered three possible definitions for fitness function. One 

was to minimize total idle time, one was to minimize mean-squared idle time for 

balancing workload among the stations, and the other was a combination of both. 

Ajenblit & Wainwright (1998) developed six assignment algorithms in order to 

determine how a particular order of tasks in a chromosome can be assigned to 

workstations. The proposed algorithm was tested with 61 test instances from Merten’s 7-

task, Bowman’s 8-task, Jaeschke’s 9-task, Jackson’s 11-task, Dar-El’s 11-task, 

Mitchell’s 21-task, Heskiaoff’s 28-task, Kilbridge & Webster’s 45- task, Tonge’s 70-

task, Arcus’ 83-task, and Arcus’ 111-task problems. The proposed GA obtained the 

same results as previous researchers in 49 case, and superior results in 11 cases. 

 

Chan, Hui, Yeung, & Ng (1998) applied a GA to solve SMALBP Type-1 in the 

clothing industry. In their study, line balance was achieved by the assignment of workers 

with varying skill levels to workstations. The objective was to smooth system’s 

throughput while minimizing slack time in the apparel industry. The authors compared 

the proposed GA with a greedy algorithm by using a 41-task real case problem. The 

results showed that the proposed GA was much superior to the greedy algorithm. 

 

Kim et al. (2000c) developed a new GA to solve a two-sided SMALBP Type-1. In a 

two-sided assembly line, different assembly tasks were performed on the same product 

item in parallel at both sides of the line for producing large-sized high-volume products. 

The positional constraints due to facility layout were also considered in their study. The 
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objective was to minimize the number of workstations. The proposed GA was tested 

with five test-bed problems of 9, 12, 24, 65, and 148 tasks. The performance of GA was 

compared to integer programming (IP) and the first-fit rule heuristic, and the GA 

showed the best performance. 

 

Simaria & Vilarinho (2001a) proposed a GA to solve MMALBP Type-2 with parallel 

workstations. The proposed GA was based on a model developed in Simaria & 

Vilarinho (2001b) to solve SMALBP Type-2 by using a simulated annealing (SA) 

approach. The authors proposed and illustrated an iterative search procedure that solved 

MMALBP Type-2 at first, and then the GA was employed to minimize the cycle time 

and the workload balance (Tasan & Tunali, 2008). 

 

Chen, Lu, & Yu (2002) proposed a hybrid GA combined with a self-tuning 

mechanism, which changed the infeasible sequence of chromosomes as to prevent the 

violation of precedence relations, to solve SMALBP Type-2 involving various 

objectives. The objectives were minimizing cycle time, maximizing workload 

smoothness, minimizing the frequency of tool changes, minimizing the number of tools 

used, and minimizing the total penalty of assembly relations. The authors tried to find 

Pareto optimal solutions to this multiple objective assembly planning problem. The 

experiments showed that the proposed GA solved the multi-objective problem more 

quickly than conventional heuristics. The proposed GA found many feasible solutions 

which could help to choose a suitable alternative of the assembly plan for modeling a 

flexible assembly system. 

 

Miltenburg (2002) solved two problems simultaneously with a GA: U-shaped 

MMALBP Type-1 and model sequencing. The author introduced the problem as mixed–

model U-line balancing and scheduling (MMULB/S) problem and presented a 

mathematical model for it. The proposed GA produced good results in the computational 

experiments with 128 problem instances generated from Kilbridge & Webster’s 45- task 

and Arcus’ 83-task problems. 
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Valente, Lopes, & Arruda (2002) proposed a GA to solve two-sided SMALBP Type-

2. The authors tried to solve a real world application in a car assembly facility. Valente 

et al. (2002) determined the parameters of GA after several experiments. The best 

solution of the proposed GA reduced the total assembly time of the current line. 

 

Brudaru & Valmar (2004) developed a hybrid GA to solve SMALBP Type-1 with 

fuzzy processing times. The authors proposed embryonic chromosome representation, a 

special version of the task based chromosome. The only difference between the two was 

that the embryonic representation of a solution considered the subsets of solutions rather 

than the individual solutions. During the generations, the embryonic chromosome 

evolved through a full length solution, therefore the chromosome length varied 

throughout the generations. The hybrid method was found to take longer time with 

respect to the quality of solution. 

 

Martinez & Duff (2004) proposed a GA based on the method proposed by 

Pannambalam et al. (2000) to solve U-shaped SMALBP Type-1. At first, the authors 

solved the problem by modifying 10 heuristic rules found in the literature to solve 

SALBP, such as maximum ranked positional weight, maximum total number of follower 

tasks or precedence tasks, and maximum processing time. Martinez & Duff (2004) 

tested the modified heuristic rules with 8 test-bed problems of 5, 8, 9, 11, 12, and 21 

tasks. Later, the authors used the results of heuristic rules in the initialization of the 

proposed GA and illustrated it by using Jackson’s 11-task problem. It was shown that 

the addition of a GA improved the solution. 

 

Simaria & Vilarinho (2004) presented a mathematical model and developed an 

iterative GA-based procedure for the MMALBP Type-2 with parallel workstations and 

zoning constraints based on the studies of Simaria & Vilarinho (2001b) and Vilarinho & 

Simaria (2002). The objective was to minimize the cycle time while smoothing the 

workload balance within each workstation. The proposed procedure consisted of three 
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stages: a constructive heuristic for finding initial solutions and two GA procedures 

working iteratively. The computational experiments were done by using the test 

problems developed by the authors. The algorithm reached the optimal or near-optimal 

solutions and the performance was found to be efficient. 

 

Haq et al. (2006) introduced a hybrid GA to solve MMALBP Type-1. The objective 

was to minimize the number of workstations. Different models were transformed into an 

equivalent single model by using a combined precedence diagram. An illustrative 

example was used as a problem. First, the problem was solved by a classical GA 

method, and then by the modified ranked positional weight technique (RPWT) 

(Helgeson & Birnie, 1961). The results were compared and it was shown that the 

classical GA method gave superior results than modified RPWT. Next, the solutions of 

modified RPWT were randomly introduced into the initial population of GA. The hybrid 

GA gave better performance than the classical GA. 

 

Levitin et al. (2006) suggested an algorithm based on a GA approach for solving 

large and complex robotic assembly line balancing problems (RALBP), a special kind of 

SMALBP Type-2. RALBP attempted to assign the most efficient type of robots to line 

stations optimally and balance the distribution of work among the stations. The objective 

was to minimize the cycle time of an assembly line with the given number of stations 

(Type-2). Two different procedures were used for adapting GA to the defined problem: a 

recursive and a consecutive procedure. To improve the quality of solutions, the local 

exchange procedure was applied. By testing with a set of randomly generated problems, 

the best combination of the procedures and GA parameters were reached. The developed 

GA was shown to be consistent and robust. Its comparison with a B&B algorithm 

achieved solutions of higher quality. It was concluded that GA gave better results in an 

efficient way for solving large and complex problems. 

 

Baykasoglu & Ozbakir (2007) proposed a multiple-rule-based GA to solve U-shaped 

SMALBP Type-1 with stochastic processing times. The authors integrated COMSOAL 
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method, task assignment heuristics from the literature and a GA. Each gene in a 

chromosome represented a task assignment rule. For deducting a solution from a 

chromosome, the COMSOAL procedure was used iteratively. The number of tasks 

assignment rules used was 10. The task times were assumed to be normally distributed. 

The proposed algorithm was tested with 7 categories of test problems from Merten’s 7-

task, Bowman’s 8-task, Jaeschke’s 9-task, Jackson’s 11-task, Mitchell’s 21-task, 

Heskiaoff’s 28-task, Kilbridge & Webster’s 45-task problems. The results were 

compared with the optimal solutions found by Urban & Chiang (2006). The proposed 

algorithm found optimal solutions for all problems, except one case within smaller 

computational times. 

 

Guo, Wong, Leung, Fan, & Chan (2008) proposed a bi-level GA with multi-parent 

crossover for solving a kind of GALBP, a flexible assembly line balancing (FALB) 

problem with work sharing and workstation revisiting allowed. The objective function 

had two parts. One was to meet the desired cycle time of each order by using penalty 

weights and the other was to minimize the total idle time of the assembly line. The 

proposed bi-level multi-parent GA was composed of two GAs where the second-level 

GA was nested in the first-level GA. The first-level GA generated the optimal task 

assignment to workstations. The second-level GA determined the task proportion of the 

operation that was assigned to different workstations. Then, a heuristic operation routing 

rule was used to route the shared operation of each product to an appropriate 

workstation. Based on the industrial data, four experiments were conducted to validate 

the proposed optimization model. The experimental results demonstrated that the 

proposed GA solved the FALB problem effectively. 

 

Hwang, Katayama, & Gen (2008) proposed a MOGA to solve U-shaped SMALBP 

Type-1. The performance criteria were the number of workstations (the line efficiency) 

and the variation of workload. Both the traditional straight line system and the U-shaped 

assembly line system were considered. The GA provided workable solutions whereas 

the optimal U-shaped assembly line solution had an improved line efficiency compared 
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to the optimal straight line solution. The proposed approach produced good or even 

better line efficiency of workstation integration and improved the variation of workload. 

 

Gao, Sun, Wang, & Gen (2009) proposed an innovative GA hybridized with local 

search to solve robotic assembly line balancing (rALB-II) problem, a special kind of 

SMALBP Type-2. They used a partial representation technique in GA. Five local search 

procedures were developed. They tested the performance of the hybrid GA on 32 

generated rALB-II problems and compared with other methods. The results showed that 

the proposed approach was quite efficient to find out the optimal solutions for the 

problems. 

 

Hwang & Katayama (2009) proposed a multi-decision amelioration procedure with 

GA to solve U-shaped MMALBP Type-1. The number of workstations (the line 

efficiency) and the variation of workload were considered simultaneously as the 

performance criteria. They tested the proposed approach by using three well-known 

problems and one case study. The results showed that the GA provided better solutions. 

 

Kim, Song, & Kim (2009) presented a mathematical model and a neighborhood GA 

(n-GA) to solve two-sided SMALBP Type-2. The features of proposed GA were 

designed according to the specifications of two-sided SMALBP. To promote population 

diversity and search efficiency, the strategy of localized evolution and steady-state 

reproduction were adopted. This localized strategy was a structure of neighbor set, so the 

name of GA was called neighborhood GA. The performance of GA was compared with 

that of a heuristic and an existing GA with various experimental problems. The 

experimental results showed that the proposed GA outperformed the heuristic and the 

compared GA in terms of solution quality and convergence speed. 

 

Moon, Logendran, & Lee (2009) developed a GA to solve SMALBP Type-1 in which 

multi-functional workers had different salaries depending on their skills. The objective 

was to minimize the total annual workstation costs and the annual salary of the assigned 
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workers within a predetermined cycle time. The efficiency of the developed GA was 

demonstrated by numerical examples. For the small and medium-sized test problems, the 

GA found optimal solutions more rapidly than mathematical programming. 

 

4.3 Conclusions for Literature Review 

 

The summary of the literature review is given in Table 4.1 according to the type and 

the objective functions of the ALBP studied. 

 

Table 4.2 gives the summary of the studies with respect to proposed GA method, 

formation of initial population, the genetic representation of chromosomes, the 

evaluation of fitness, crossover and mutation operators, selection scheme, feasibility 

issues and the termination criteria used.   

 

In most of the articles GAs are found to be superior to the well-known methods. 

Based on the published studies, researchers employed precedence graphs to summarize 

and visualize precedence constraints rather than using more effective tools. 

 

More than half of the articles surveyed (22 out of 37) focused on GALBP, the general 

type of ALBP. A trend is noted for studying new kinds of problems or extensions of 

SALBP included in GALBP. 

 

In some of the articles, genetic operators ensured feasibility of individuals for a 

certain representation. But in some of the articles, infeasibility was allowed in the 

population. It was claimed that the presence of infeasible solutions allowed a smoother 

search space and helped in escaping from certain local minima. 
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It is noted that parameters were optimized in the recent studies. But the information 

about parameter optimization was not given in detail. There is not enough information 

about how to optimize parameters when solving ALBPs with GAs. 

 

It is noted that standardized benchmark problems were used for comparison. If the 

problem studied was new, new benchmark problems were generated using the literature 

problems.  

 

Then, based on the findings and the insights gained above, this study proposes to 

develop a GA employing a different tool for precedence relations to solve a new kind of 

ALBP, called CCALBP. In order to balance a line by addressing alternative ways of 

assembling a product, the proposed GA employs a rule-base instead of a precedence 

graph. To balance a line based on the rule-based modeling of assembly constraints, the 

proposed GA is employed to solve CCALBP. Since CCALBP is a new problem, 

benchmark problems are generated for computational experiments. 

 

The proposed GA allows infeasibility. Therefore, the objective function includes 

penalty function, and the genetic operators are not problem specific. But the 

chromosome representation is problem specific. 

 

4.4 Chapter Summary 

 

In this chapter, the summary of the main specifications with the objectives for the 

problems studied is reviewed to identify the recent research issues. The proposed GAs 

are given in chronological order. The summary of the specifications related to the 

proposed GAs such as chromosome representations, genetic operators and the fitness 

functions is reviewed and listed in Table 4.2. 



 

Table 4.2 Chronological list of GA studies for assembly line balancing with respect to GA specifications 
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1992  Falkenauer &    Standard    Random    Grouping based &    Modified BPCX    Modified BPM    -   -   Force    Up to 10000   
   Delchambre    (GGA)      variable length              generation   

 1994    Leu et al.    Standard    Random+    Task based &    OX &   Scramble &  Roulette    Elitism    Force    Up to 500   
       Heuristics &   length=no. of tasks    Pc=0.98  Pm=0.02  wheel        generation +  
       popsize=20               converge   
       (growing)                 

 1994    Anderson &    Standard    Random+    Workstation based &    One point    One point &  Stochastic    Elitism    Penalty    Up to 350   
   Ferris    & Parallel    Heuristics &    length=no of tasks    crossover &    Pm=0.005-0.04  universal        generation +   
       popsize=64      Pc=0.6-0.7-0.8    sampling        converge   

 1995    Rubinovitz &    Hybrid    Random    Task based &    Fragment    FRG mutation    Randomly    Elitism    Force    Up to T   
   Levitin    GA      length=no of tasks    Reordering  (FRGm)          generation   
           Crossover (FRG)             

 1995    Tsujimura  Standard    Random    Task based &    PMX   Swap   Elitism    Elitism    Repair    -  
   et al.        length=no of tasks      mutation           

 1996    Kim et al.    Standard    Random &    Task based &    Standard and non    Standard and    Tournament    Elitism    Repair    -  
       popsize=100    length=no. of tasks    standard crossover    non standard           
           & Pc=0.4-0.6  mutation &           
             Pm=0.2-0.4          

 1996    Suresh et al.    Standard    Random &    Workstation based &    One point    Interchange    Elitism    Elitism    Repair in    -  
       popsize=40-60    length=no. of tasks    crossover &    mutation &        std GA &     
       (with 2      Pc=0.5-0.7   Pm=0.01        penalty in    
       population)              2 pop GA     
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Table 4.2 (cont) Chronological list of GA studies for assembly line balancing with respect to GA specifications 
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 1997    Falkenauer    GGA &    Random    Grouping based &    Modified BPCX    Modified BPM    -   -   Force    -  
     Branch      variable length               
     and Bound                   

 1998    Ajenblit &    Standard    Random &    Task based &    OX    Not used    -   -   Force    -  
   Wainwright      popsize=100    length=no. of tasks               

 1998    Chan et al.    Standard    Random &    Task based &    Uniform (uniform    SSM    Roulette    Survive    Force    Terminate 
       popsize=50    length=no. of tasks    order- based)    Scramble &  wheel    children      at 5000 s   

           Pc=0.65  Pm=0.008         

 1998    Kim et al.    Heuristic    Random &    Workstation based &    HSX &    HSM &    Tournament    Elitism    Force    Converge   
     based GA    popsize=100    length=no. of tasks    Pc=0.7-0.9    Pm=0.1-0.2         

 1999    Rekiek et al.    Hybrid    Random    Grouping based &    Modified BPCX    -   -   -   Force    -  
     GGA      variable length               

 2000    Bautista et al.    Heuristic    -   Heuristic based &    -   -   -   -   No need    Up to T   
     based GA      length=no. of heuristics              generation   

 2000c    Kim et al.    Standard    Random+    group number    Structured one    Random    Tournament    Elitism    -   Up to T   
       Heuristics      point crossover    Pm=10%          generation   
           (SOX) & Pc=50%             

 2000    Ponnambalam    Standard    Random    Heuristic based &    Two point    Random    Roulette    Elitism   No need    -  
   et al.        length=14  crossover      wheel         
        (no of heuristic)               

 2000    Sabuncuoglu  Standard    Random    Task based &    Order crossover    Scramble    Roulette    Elitism    Force    Up to T   
   et al.        length=no. of tasks        wheel        generation   
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Table 4.2 (cont) Chronological list of GA studies for assembly line balancing with respect to GA specifications 
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 2001    Carnahan et al.    Hybrid    Random &    Task based &    FRG &   FRGm    Roulette    Elitism    Force    Up to T   
     GA    popsize=60    length=no. of tasks    Pc=0.6      wheel        generation +   
                     converge   

 2001a    Simaria &    Two    Random+    Workstation based &    SOX    One point    Tournament    Elitism    Repair    Up to T   
   Vilarinho    staged    Heuristics    length=no. of tasks              generation +   
     iterative                  converge   
     GA                   

 2002    Chen et al.    Standard    Random +    Workstation based &    Order1-Order2-    Swap   Roulette    Elitism   Repair    -  
       Heuristics      PMX-Cycle      wheel      using self-    
                   tuning     

 2002    Goncalves &   Standard &   Random+   Random key heuristic  Uniform   Randomly   Copy 15%    Elitism    No need    Up to  
   De Almedia    hybrid with  Heuristics &    based & crossover &  generate &         (3 X no. 
     heuristic   popsize= no    length=no. of tasks    Pc=0.7   Pm=0.2         of tasks)   
    priority rules    of tasks                 

 2002    Miltenburg    Standard    Random &   Combination of task   OX and Cycle    Swap   Rank  Elitism   Repair    Terminate 
       popsize=50   based and model        selection        at 300 s   
         sequence based &        with elitism         
         length= no of tasks+               
       model numbers               

 2002    Valente et al.    Standard    Random &    Workstation based &    One point    Simple bit    Stochastic    Elitism    Penalty    Up to 200   
       popsize=100    length=13  crossover &  mutation &  universal       generation   
        ( no. of tasks)     Pc=0.8  Pm=0.04  sampling         
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Table 4.2 (cont) Chronological list of GA studies for assembly line balancing with respect to GA specifications 

GENETIC ALGORITHM SPECIFICATIONS   

 Y
ea

r 
 

 R
es

ea
rc

he
r(

s)
  

 M
et

ho
d 

 

 In
iti

al
 

Po
pu

la
tio

n&
 S

iz
e 

of
 p

op
ul

at
io

n 
 

 C
hr

om
os

om
e 

re
pr

es
en

ta
tio

n 
 

 C
ro

ss
ov

er
 ty

pe
 &

 
pr

ob
ab

ili
ty

 (P
c)

  

 M
ut

at
io

n 
ty

pe
 &

 
pr

ob
ab

ili
ty

 (P
m

)  

 S
el

ec
tio

n 
ty

pe
   

   
   

(f
or

 m
at

in
g)

   

 S
ur

vi
va

l t
yp

e 
(r

ep
la

ce
m

en
t o

r 
re

pr
od

uc
tio

n)
  

 F
ea

si
bi

lit
y 

   
 

Fo
rc

e 
/R

ep
ai

r 
/P

en
al

ty
  

 T
er

m
in

at
io

n 
C

ri
te

ri
a 

  

 2004    Brudaru &  GA &     Embryonic &  -   -   -   -   -   -  
   Valmar    Branch&Bound      variable length               

 2004    Martinez &    Standard    Random &    Heuristic based &    -   -   -   -   No need    -  
   Duff      popsize=20    length= 10             
          (no of heuristic)               

 2004    Simaria &    Two staged    Random+    Workstation based &    SOX    One point    Tournament    Elitism    Repair    Up to T   
   Vilarinho    iterative    Heuristics    length=no. of tasks      mutation          generation +   
     GA                  converge   

 2004a    Stockton et al.    Standard      Binary    Two point    Rm=0.05-  Roulette    Elitism   Penalty    -  
 2004b            crossover &    0.025- 0.005  wheel         

           Pc=0.6-0.65-0.7-0.75           

 2005    Brown &    Standard    -   Grouping based &    Modified BPCX    -   -   -   Force    -  
   Sumichrast    (GGA)      variable length               

 2006    Levitin et al.    Hybrid GA    Random&    Task based &    FRG   Swap &  Randomly    Elitism    Force    Up to T   
       popsize=100    length=no of tasks      Pm=0.01        generation   

 2006    Noorul Haq et    Hybrid GA    Random+    -   Pc=0.8    Pm=0.05  -   -   -   -  
   al.      Heuristic                 

2007 Baykasoglu &  Hybrid with    Random&    E108Assignment rule  One-point,  Pm=0.08  Roulette    -   No need    Up to T   

  Ozbakir COMSOAL &  popsize=50  based &    two-point, uniform,    wheel        generation   

   task assignment    length=no of tasks    mixed crossover &            

    rules     Pc=0.8-1           
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Table 4.2 (cont) Chronological list of GA studies for assembly line balancing with respect to GA specifications 
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2008 Guo et al.  Two-staged (1) heuristic &  Work sharing & (1) modified  (1) modified   Tournament    -   Force    Up to T   
    two Gas (2) random  workstation revisiting  fitness-based  inversion       generation +   
    (2) nested in (1)   based & length=  scanning  (2)nonuniform       converge   

       no. of workstations (2)center of mass          

2008 Hwang et al.  Ttandard  Random &  Priority-based &  two point-based  Swap  Roulette    -   Repair    Up to T   

      popsize=100  length=no of tasks    WMX  Pm=0.3  wheel        generation +   

        Pc=0.7         converge   

                      
2009 Gao et al.  Hybrid with  -   2 chromosomes  Mixed crossover  Allele-based  -   -   Repair    Up to T   

    local search  popsize=100 (1) task sequence (1) OX (1) Pm=0.05        generation +   

    procedures  (2) robot assignment  (2) PMX (2) Pm= 0.1        

       based &  &          

      (1) length=no of tasks    Pc=0.8          

      (2) length=no. of            
         workstations             

2009 Hwang & Two-staged Random & Priority-based & Two point-based Swap  Roulette    -   Repair    Up to T   

  Katayama   popsize=100  length=no of tasks    WMX & Pm=0.3  wheel        generation +   

           Pc=0.7          converge   
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Table 4.2 (cont) Chronological list of GA studies for assembly line balancing with respect to GA specifications 
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2009 Moon et al.  Standard Heuristic & 2 chromosomes  PMX & One cut point By   -   Repair    Up to T   

     2 populations (1) task based   Pc=0.5 (1) Pm=0.3 reordering       generation +   

     popsize=100 (2) workers based  (2) Pm= 0.4 in       converge   

      (1) length=no of tasks      ascending       
      (2) length=no of tasks      order       
        no. of workstations             

2009 Kim et al.  Neighborhood   Heuristic   Group number    Laszewski's  Alteration  Roulette    -   Force    Up to T   
    GA  popsize=100    heuristic &  procedure  wheel        generation 

         Pc=0.85 Pm=0.15 & 0.05        

2009 Yu &Yin  Adaptive  Heuristic  Task based &  PMX  Feasible  The fittest  Elitism    Repair    converge   

       length=  Pc=adaptive  insertion        

       no. of tasks   procedure        

             Pm=adaptive         

 
 

 

 
 



 

CHAPTER FIVE 

THE COMPLEX-CONSTRAINED ASSEMBLY LINE BALANCING 

PROBLEM 

 

5.1 Introduction 

 
This dissertation tackles a novel generalized ALBP, the complex-constrained 

assembly line balancing problem (CCALBP), introduced by Salum & Supciller 

(2007, 2008), Supciller & Salum (2009) and Topaloglu, Salum, & Supciller (2009). 

The chapter is organized as follows. CCALBP is defined in Section 5.2. In Section 

5.3, the rule-base modeling of assembly constraints is discussed. In Section 5.4, its 

solution through constraint programming (CP) and integer programming (IP) is 

discussed. The context of this chapter is summarized in Section 5.5. 

 

5.2 A Novel Line Balancing Problem: CCALBP 

 
ALBP is the decision problem of optimally partitioning (balancing) the assembly 

work among the workstations (Scholl, 1999). ALBP is classified by researchers in 

various ways, e.g., based on the objective function (Kim et al., 1996; Scholl, 1999) 

and based on the problem structure (Baybars, 1986; Becker & Scholl, 2006; Scholl, 

1999). Generally, ALBP is classified into two main categories: SALBP and GALBP 

(Baybars, 1986). 

 

Any ALBP consists of at least three basic elements: a precedence graph which 

comprises all tasks and resources to be assigned, the stations which make up the line 

and to which those tasks are assigned, and some kind of objective to be optimized 

(Boysen et al., 2007). 

 

The ordering in which tasks must be performed (technological requirements) are 

called precedence constraints. They are technological restrictions or physical
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sequencing requirements on the assembly line. Precedence constraints are 

generally represented graphically in the form of a precedence graph (diagram) that 

indicates the sequence in which the tasks must be performed. Nodes symbolize tasks, 

and arrows connecting the nodes indicate the precedence relations. The sequence 

proceeds from left to right (Groover, 2001). An example of a precedence graph is 

given in Figure 5.1. 

 

 
                   Figure 5.1 A precedence graph 

 

There are some shortcomings of the precedence graphs. They usually fail to 

represent all the possible assembly sequences of a product in a single graph 

(Lambert, 2006), and exclude some logic statements, e.g., the precedence relation “(2 

or 3) → 7” cannot be represented properly on a precedence graph (De Fazio & 

Whitney, 1987). Hence, they allow limited flexibility. One or more parts of a 

product’s assembly process may admit alternative precedence sub-graphs, and 

because of the great difficulty of the problem and the impossibility of representing 

alternative sub-graphs in a precedence graph, a line designer selects, a priori, one of 

such alternative sub-graphs (Capacho & Pastor, 2008). According to Park et al. 

(1997), precedence graphs fail to describe some complicated constraints, e.g., 

constraints indicating that some pairs of tasks cannot be assigned into the same 

station because of incompatibility between them caused by some technological 

factors.  

 

Despite their shortcomings, researchers continue to employ precedence graphs 

without questioning (Koc, Sabuncuoglu, & Erel, 2009). There are also some 

alternative representation methods, e.g., AND/OR graphs (Homem de Mello & 

1 3 
5 

2 4 

6 
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Sanderson, 1990), used in the line balancing problem. Koc et al. (2009) prove that 

using an AND/OR graph instead of a precedence diagram leads to better solutions of 

the traditional ALBPs. Capacho & Pastor (2008) employed some alternative 

assembly sub-graphs, in which processing times and/or precedence relations of 

certain tasks may vary, and solved the ALBP by simultaneously selecting an 

assembly sub-graph and balancing the line. Park et al. (1997) introduced two sub-

problems to further consider some incompatibility constraints, range constraints, and 

partial precedence constraints. 

 

ALBP has been extensively studied in the literature. However, the literature is 

relatively sparse in addressing alternative ways of assembling a product for ALBP, 

e.g., see Capacho & Pastor (2008), Capacho, Pastor, Dolgui, & Guschinskaya (2009), 

Koc et al. (2009), and Scholl, Becker, & Fliedner (2009) in this specific area. In 

other words, the literature tackles ALBP based on traditional precedence graphs in 

general, rather than investigating more effective modeling tools than precedence 

graphs to solve ALBP. This dissertation employs a well known tool, rule-bases, in 

modeling and solving ALBP. 

 

 Senin, Groppetti, & Wallace (2000) defined an assembly plan as a sequence of 

assembly operations to make a final product from a collection of individual parts. 

When there is more than one feasible way to combine subassemblies together, 

alternative assembly plans can be generated. Traditionally, ALB and determining the 

(near) optimum assembly plan have been considered two separate problems. Most 

studies consider line balancing after choosing the best plan for an assembly process. 

However, the overall optimal solution may not be obtained by solving these two 

problems separately. In other words, because pre-specifying the whole production 

process prior to balancing the line faces the risk of loss in efficiency (Scholl et al., 

2009), alternative ways of assembling a product and their effects on task times, 

precedence relations and the line balance should be tackled simultaneously. In this 

regard, a rule-based assembly model addresses this issue. The rule-based modeling of 

assembly constraints will be discussed in Section 5.3. 
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This dissertation extends the rule-based assembly modeling (Salum & Supciller, 

2007, 2008), and introduces the complex-constrained assembly line balancing 

problem (CCALBP) (Supciller & Salum, 2009; Topaloglu et al., 2009), which is of 

the general ALBPs (Baybars, 1986), in order to model all assembly constraints 

through a rule-base to overcome the aforementioned difficulties. 

 

CCALBP can also be solved by various solution approaches, e.g. integer 

programming (IP) and constraint programming (CP) (Topaloglu et al., 2009), as 

discussed in Section 5.4. 

 

ALBP is an NP-hard combinatorial optimization problem, so that the search for 

the optimal solution of problems in large sizes has high computational cost (Gutjahr 

& Nemhauser, 1964). Heuristic methods provide good results with more reasonable 

execution times but they do not guarantee optimal solutions. Genetic algorithms 

(GA) are meta-heuristics based on the mechanisms of natural selection (survival of 

the fittest) and genetics. Since the introduction of GAs by Holland (1975), they have 

been applied successfully to solve complex combinatorial problems in various 

research areas. Researches by Kim et al. (1996) and Ponnambalam et al. (2000) have 

shown that GAs improve the performance of heuristics developed for solving 

ALBPs. For that reason, a GA based on the rule-base is proposed by Supciller & 

Salum (2009) to solve CCALBP. The detailed study will be presented in Chapter 6. 

  

5.3 Rule-based Modeling of Assembly Constraints 

 
In this section, rule-based modeling of assembly constraints is discussed through 

an illustrative example (Salum & Supciller, 2007, 2008).   

 

In practice, a precedence graph is not directly created, but derived from a table 

that shows precedence relations of an assembly, defined by workers carrying out the 

assembly process. This study also follows this convention to derive a rule-based 

model from such a table. Consider Table 5.1, which shows precedence relations of 

sewing a simple pant (jean). This table was created by workers in apparel industry. 
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For example, task 1, T1, can be assigned to any workstation without any precedence 

constraint. T5 can be assigned after T9 and T10, or T3 and T4 are assigned. T6 can be 

assigned without any precedence constraint or after T9 and T10 are assigned. Note that 

T5, T6, T9, T10 and T11 involve a precedence relation that cannot be modeled through 

conventional precedence graphs easily. Redundancies or inconsistencies among the 

relations should then be discovered, which is the line designer’s responsibility rather 

than the workers’, as discussed below. 

 

The If-then rules can then easily be derived from Table 5.1; the precedence 

relation of each task (in a row) is simply mapped to an If-then rule. Hence, there are 

as many rules as tasks with some precedence relations. Since T1 and T2 have no 

precedence relations, i.e., they are assignable initially, and T6 can always be assigned 

to a workstation without considering any precedence relation, i.e., R10 in Figure 5.2a 

is in fact redundant, the number of the rules is nine, as defined in Figure 5.2a. 

 

Note that such a rule-base does not grow rapidly in a harder, more realistic 

problem since the number of the rules is at most the number of the tasks, and the 

antecedent of a rule does not grow rapidly as technological flexibility is limited in 

practice, i.e., one does not encounter too many disjunctions in antecedents of rules in 

a realistic problem. 

 
Table 5.1 Tasks of a simple pant assembly  

Precedence 
Relation 

Task 
Ti

Time 
(min) 

Description 

⎯ 1 0.40 overlock stitch of parts of front right pocket 
⎯ 2 0.35 overlock stitch of parts of front left pocket 
1 3 0.75 overlock stitch of front right pocket and front right part 
2 4 0.80 overlock stitch of front left pocket and front left part 
(9, 10) OR (3, 4) 5 0.60 overlock stitch of front left part and front right part 
⎯  OR (9, 10)  6 0.55 overlock stitch of back left part and back right part 
5, 6 7 0.50 inside overlock stitch of back left part and back right part 
7 8 0.45 inside overlock stitch of front left part and back left part 
3 OR 8 9 0.70 outside overlock stitch of back left part and back right part 
4 OR 9  10 0.60 outside overlock stitch of front left part and back left part 
8 OR 10 11 0.80 stitch of waist  
11 12 0.50 stitch of leg opening 
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One can suggest that precedence relations in Table 5.1 can also be modeled 

through some set of precedence graphs as in Figure 5.2b, instead of a unique rule-

base as in Figure 5.2a. For example, as indicated by the sixth row in Table 5.1, T6 has 

no precedence relation in G1 in Figure 5.2b, and can be assigned after T9 and T10 in 

G2, while the sixth row directly corresponds to R10 in Figure 5.2a, which is a 

redundant rule and can be discarded from the rule base, as mentioned. However, it is 

difficult to derive precedence graphs if precedence relations are more complex. More 

importantly, it is not possible to model inclusiveness among tasks through graph-

based models. That is, graphs G1 and G2 are mutually exclusive, although Table 5.1 

indicates the inclusiveness among the tasks. In other words, Figure 5.2a, equivalent 

to Table 5.1, is not equivalent to Figure 5.2b. For example, if T2, T4 and T10 in G2 are 

assigned to a station, then T1, T3 and T5 in G1 cannot be assigned to the next station 

as the tasks in G1 and G2 are mutually exclusive. The rule-based model in Figure 5.2a 

allows this assignment, as originally indicated by Table 5.1. Recall that some 

redundant, e.g., R10 in Figure 5.2a, or inconsistent rules may be declared by users 

who provide precedence relations as in Table 5.1. Therefore, some consistency check 

should be performed on the rule-base, which is one of the issues in rule-base 

modeling. Note that a dummy task, D, is required in G2 to indicate the relevant 

precedence relation, which is not required in the rule-based model. In other words, 

each rule in Figure 5.2a directly corresponds to a row in Table 5.1. 

 
             

 
a) Rule-based model b) Graph-based model 

1
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7 8 9 10 11 12 

 1

2

3

4

5

6

7 8 

9
11 12 

10 
D

G1

G2

 ≠ 

R1: If T1 then T3
R2: If T2 then T4
R3: If (T9 AND T10) OR (T3 AND T4) then T5
R4: If T5 AND T6 then T7
R5: If T7 then T8
R6: If T3 OR T8 then T9
R7: If T4 OR T9 then T10
R8: If T8 OR T10 then T11
R9: If T11 then T12 
R10: If T6 OR (T9 AND T10) then T6

Figure 5.2 The rule-based and graph-based models derived by Table 5.1 
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 More complicated relations can also be modeled easily through rule bases. For 

example, if a constraint indicates that certain tasks cannot be assigned into the same 

station (Park et al., 1997), a rule of the form “if Tx ∈ S then Ty ∉ S OR if Ty ∈ S then 

Tx ∉ S” is used to mean that tasks Tx and Ty cannot be assigned into the same station, 

S. If some set of tasks are assembled in different sequences, e.g., see Capacho and 

Pastor (2008), these sequences can also be modeled easily through a rule-based 

model. For example, consider Figure 5.3a, where there are two alternative assembly 

sequences, also called assembly sub-graphs (Capacho and Pastor, 2008). Figure 5.3b 

gives the rules to represent the two sequences, in which XOR means exclusive OR. 

Note that some indices are used for the tasks to indicate the mutual exclusiveness of 

the sequences. This also makes it easy to consider sequence dependent task times. 

For example, C1 = 5 and C2 = 6 means that C takes 5 seconds if it is after D, and 

takes 6 seconds otherwise. Note also that even if the number of such sequences might 

be too many (n! at most), it is limited in practice due to technological constraints, 

e.g., the number of the sequences is two, not six in Figure 5.3a. 

 

A 

B D C 

E 

C D B 

S1 

S2 

If A then B1 XOR C2
If B1 then D1
If D1 then C1
If C2 then D2  
If D2 then B2
If C1 XOR B2 then E 

a) Assembly sequences                              b) The rules for the sequences 

                              
         Figure 5.3 Modeling sequences through a rule-base 

 

Consequently, the rule-based modeling is more effective than the graph-based 

modeling because a rule-based model can include precedence relations involving 

complex constraints, without the need for several precedence graphs as in Figure 

5.2b. Moreover, some fuzzy rules can easily be employed in a rule-base to model 

vagueness in assembly constraints. As a result, CCALBP addresses a wide variety of 

assembly problems involving complex constraints. 
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As mentioned, CP is used to solve CCALBP since CP easily models logical 

assertions as discussed in Section 5.4. 

 

Meta-heuristics are also commonly used solution techniques when analytic 

techniques like CP fail to find the optimum solution in a reasonable time. For 

example, if a GA is used, e.g., see Scholl & Becker (2006), the penalty term for 

precedence violations in the fitness function can be calculated easily, if necessary, by 

evaluating every rule. For the example above, if a chromosome decodes that the first 

station includes T6, T1, and T3; the second station includes T2, T4, and T7; and the 

third T5, T8, and T9, then the number of the violated precedence relations (rules) is 

one, due to R5. That is, because T6 and T5 should be completed before T7, T7 in the 

second station and T5 in the third violate R5. GA based solutions are discussed in 

more detail in Chapter 6. 

 

5.4 Line Balancing through Rule-based Models and Constraint Programming 

 
This section discusses the modeling capability of CP for CCALBPs (Topaloglu et 

al., 2009). 

 

Mapping the rule-based model to the CP model is straightforward as CP can 

express a larger variety of constraints compared to IP such as those including logical 

operators ∨, ⇒ and ≠, and global constraints that subsume a set of constraints (e.g., 

an “all different” relation on a set of variables replaces pairwise inequality 

constraints). For this reason, logic based assertions are easily modeled in CP. 

 

For the recent years, CP has been used as an alternative solution method to IP for 

solving combinatorial optimization problems. An overview of CP and its main 

techniques can be found in Smith (1995) and Brailsford, Potts, & Smith (1999). 

Traditionally a CP model is composed of a set of variables (X), a set of domains (D), 

and a set of constraints (C) specifying which assignments of values in D to variable 

X are legal. The efficiency of CP lies in powerful constraint propagation algorithms 

which remove those values generating infeasible solutions from the domain of the 
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variables. If constraint propagation is not sufficient to find a feasible solution, then a 

tree search is performed. Indeed, B&B tree developed for IP is the same as the search 

tree of CP in which each node represents a decision variable and each branch 

represents a value assignment of the variable. Typically, at each node of the search 

tree, the following steps are taken: first, a variable not yet fixed is selected and a 

remaining value of its domain is assigned to it. Then, constraint propagation occurs. 

If the domain of a variable becomes empty during the propagation, the solver has 

detected an inconsistency in the previously taken decisions, and the whole search 

process backtracks, typically by choosing another value for the variable. When the 

constraint propagation terminates while there are still some unfixed variables, the 

solver creates a new search node and goes on with the procedure just detailed. 

 

The Constraint Programming Model: 

 

Consider the line balancing problem in Figure 5.2. The proposed CP model, called 

CPR, is derived from Figure 5.2a. The notation used in the formulation is as follows: 

 

Indices & Sets 

i ∈ T = {1, 2,…, 12} for tasks 

s ∈ S = {1, 2,…, nmax} for stations, where nmax = 5 is set initially  

Si: set of stations to which task i can be assigned 

 

Parameters 

cmax: upper bound on the cycle time, where cmax = 2 minutes (the maximum time 

allowed at each workstation if the production rate is to be achieved) 

ti: time of task i 

Ei: earliest station to which task i can be assigned  

Li: latest station to which task i can be assigned 

Before a task is assigned, the total time of the tasks preceding this task must be 

assigned, and afterwards the total time of the tasks that follow it; as a result, the 

range of stations [Ei, Li] to which each task can be assigned is shown by the set Si 
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∈ [Ei, Li] (due to alternative precedence relations, these ranges are determined 

accordingly). 

  
Variables 

ls: load of station s, i.e., the sum of the task times assigned to s 

c: cycle time 

n: number of stations (n ∈ S) 

I{P} = 1 if P is true, 0 otherwise 

xi: station number to which task i is assigned (xi  ∈ Si) 

 

Min                          (5.1) cPnP 21 +
 

Subject to 

Ti
ixn

∈
= )(max                        (5.2) 

},...,2,1{ max

)(max
ns
slc

∈
=                        (5.3) 

SscItl
i

i
Ssi

sxis ∈∀≤= ∑
∈∀

= ,max
|

}{                  (5.4) 

31 xx ≤                          (5.5) 

42 xx ≤                          (5.6) 

)()( 545351059 xxxxxxxx ≤∧≤∨≤∧≤              (5.7) 

7675 xxxx ≤∧≤                      (5.8) 

87 xx ≤                          (5.9) 

9893 xxxx ≤∨≤                          (5.10) 

109104 xxxx ≤∨≤                            (5.11) 

1181110 xxxx ≤∨≤                         (5.12) 

1211 xx ≤                            (5.13) 

 

The objective is to minimize the number of the stations in the first step, and the 

cycle time in the second. Minimizing the cycle time helps to find the best balance 

among the solutions that have the same number of stations. The objective function 
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(5.1) of CPR employs P1 and P2 as the preemptive priority factors who serve only as 

a ranking symbol, and the ordering of objectives will be such that  P1 >> P2.  Thus, 

objective 1 is of the first priority level, and objective 2 is of the second priority level. 

The model is solved by optimizing the first priority objective initially. The solution 

obtained is added as a constraint to the original constraints and the model is solved 

again by optimizing the second priority objective. The description of CPR is as 

follows: constraint (5.2) gives the maximum station number, thereby the number of 

stations required, and constraint (5.3) finds the maximum station load. Constraint 

(5.4) implies that the station load should not exceed the maximum time allowed. The 

constraints from (5.5) to (5.13) correspond to rules R1-R9, respectively, in Figure 

5.2a. 

 

The solution of CPR is n = 4 and c = 1.75; hence the idle time, nc – Σti, is zero; 

i.e., the balance efficiency, (100 × Σti) / (n × c), is 100% with x2 = x4 = x10 = 1, x1 = x3 

= x5 = 2, x6 = x7 = x9 = 3, and x8 = x11 = x12 = 4. In other words, the tasks are assigned 

to the stations as follows: (T2, T4, T10), (T1, T3, T5), (T6, T7, T9) and (T8, T11, T12). 

 

The solution of the CP model of G1 and G2 in Figure 5.2b, denoted by CP1 and 

CP2, respectively, is given below. 

 

Under CP1, n = 4 and c = 1.90, hence the idle time is 0.6 (the balance efficiency is 

92%) with the assignment (T1, T2, T4), (T3, T5, T6), (T7, T8, T9) and (T10, T11, T12). 

Under CP2, n = 4 and c = 1.85, hence the idle time is 0.4 (the balance efficiency is 

95%) with the assignment (T1, T3, T9), (T2, T4, T10), (T5, T6, T7) and (T8, T11, T12). 

 

As CPR outperforms CP1 and CP2, the rule-based modeling is effective not only in 

representing ALB problems with alternative precedence relations, but also in solving 

CP models of rule-bases, since the rule-based model contains the graph-based 

models, e.g., Figure 5.2a contains all the precedence constraints in G1 and G2 in 

Figure 5.2b. 
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Recall that more complex constraints can also be effectively modeled through rule 

bases. For example, assume that T2 and T4 cannot be assigned to the same station, 

i.e., If T2 ∈ S then T4 ∉ S OR If T4 ∈ S then T2 ∉ S, and that T2 and T1 should be 

assigned to the same station, i.e., If T2 ∈ S then T1 ∈ S OR If T1 ∈ S then T2 ∈ S, 

which are to be appended to Figure 5.2a. These constraints can easily be modeled by 

CP as x2 ≠ x4, and x2 = x1, respectively. The assignment is then (T1, T2, T3), (T5, T9, 

T10), (T4, T6, T7) and (T8, T11, T12) with respective station times 1.5, 1.90, 1.85, and 

1.75, i.e., c = 1.90. As seen, these extra constraints deteriorate the performance of 

CPR. 

 

The Integer Programming Model: 

 

Another advantage of the rule-based modeling is that it also enables creation of an 

IP model, i.e., instead of a CP model, an IP model can be mapped from a rule-based 

model. The following gives the IP model of Figure 5.2a. 

 
Additional Notation Required for the IP Model 

xi, s = 1 if task i is assigned to station s, 0 otherwise 

As = 1 if station s is required, 0 otherwise 

δk ∈ [0, 1] and integer (an indicator variable for disjunctions) 

 

Min                           (5.14) cPsAP s 21 )( +
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0
2 4
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11211 ≥+ δδ                         (5.25c) 

0,12,11
1211

≤− ∑∑
∈∈

s
Ss

s
Ss

xsxs                      (5.26) 

 

The objective (5.14) is the same as in CPR. Constraint (5.15) implies that every 

task must be assigned to only one station. Constraint (5.16) ensures that the station 

load in each station that is opened should be smaller than or equal to the maximum 

time allowed (cmax), which is equivalent to constraint (5.4) in CPR. Constraint (5.17) 

is required for the cycle time minimization. The constraints from (5.18) to (5.26) 

correspond to rules in Figure 5.2a. For example, constraints from (5.20a) through 

(5.20i) are developed only to model Rule 3. Here M can be taken as the maximum 

station number nmax.  

 

The IP model gives the same solution, n = 4 and c = 1.75, with that of CPR, but 

contains more variables. Also, creation of IP models can be more difficult if the rules 

are more complex. Note that the correspondence between CPR and Figure 5.2a is 

clearer than that of IP and Figure 5.2a because of the modeling capability of CP. 

Thus CPR can be comprehended more easily.  

 

The models are solved using ILOG OPL Studio 3.7 (2003) on a 1.8 GHz CPU, 3.5 

GB memory PC. It provides access to ILOG CPLEX 9.0 (ILOG, 2005a) and ILOG 

Solver 6.0 (ILOG, 2005b) for solving the IP and CP models respectively. Computing 

time of 2000 CPU seconds is set. Since the problem is small, solution times of IP and 

CP are also small. However, a computational experiment should also be carried out 

to analyze the performances of CP and IP models with respect to modeling 

capability, solution quality and time; but this comparison is beyond the scope of this 

chapter. 

 

5.5 Chapter Summary 

 
The major drawback of precedence graphs is that they are not suitable to model 

complex assembly constraints. This dissertation introduced CCALBP to address this 
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issue. It was shown how to model all assembly constraints through the well known 

If-then rules, and how to solve the problem through CP and IP models mapped from 

the rule-based model. It was also shown how to map a rule-based model to a CP or 

an IP model. This mapping can also be automated, which enables users to easily 

create the models. On the other hand, this mapping was not possible from graph-

based models that address, though roughly, complex assembly constraints. Thus, 

CCALBP can be solved only through rule-based modeling, but not graph-based 

modeling. Some fuzzy rules can also be employed in a rule-base to model vagueness 

in assembly constraints. Rule-based and graph-based models were compared in terms 

of modeling capability. A GA based on the rule-base can also be developed to solve 

the CCALBP. The proposed GA will be discussed in detail in the next chapter. 

 
 



 

CHAPTER SIX 

A GENETIC ALGORITHM BASED APPROACH FOR SOLVING THE 

COMPLEX-CONSTRAINED ASSEMBLY LINE BALANCING PROBLEM 

 

6.1 Introduction 

 
 This dissertation employs a well known tool, rule-bases, in modeling and solving 

ALBP for the first time and extends this literature in terms of modeling scope for 

assembly constraints in line balancing. This study extends the rule-based modeling of 

assembly constraints and introduces CCALBP (Salum & Supciller, 2007, 2008; 

Topaloglu et al., 2009). Its main advantage lies in its ability to simultaneously model the 

alternative ways of assembling a product. For the comprehension of CCALBP and to 

describe the rule-based modeling, the problem is modeled and solved by IP and CP in 

the last chapter. Due to the NP-hard nature of CCALBP, the use of a mathematical 

programming model to optimally solve CCALBP in large sizes has high computational 

cost. Therefore, heuristic or meta-heuristic procedures need to be developed. In order to 

search the solution space efficiently and to provide good solutions with more reasonable 

computation times, CCALBP is solved through GAs (Supciller & Salum, 2009). The 

main contribution of this dissertation is the integration of the rule-base approach for 

modeling assembly constraints through a GA solution. 

 

In this chapter, a GA based on the rule-base is proposed to solve CCALBP. In 

Section 6.2, the proposed GA is discussed in detail. The specific characteristics of the 

proposed GA are devised with the inspiration taken from the current examples in the 

literature. These characteristics are explained on an example problem of sewing a simple 

pant. The control parameters of the GA are optimized to improve the performance in 

Section 6.3. In Section 6.4, the computational experiments are carried out on a set of 
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generated problems by adapting the case problems in the literature. Finally, in section 

6.5, the context of this chapter is summarized. 

 

6.2 Line Balancing through Rule-based Models and GA 

 
In this section, a GA based on the rule-base is proposed to solve CCALBP. The 

general GA specifications and details of objective function integrated with the proposed 

rule-base are given in the following sections.  

 

To explain how the proposed GA works, the example given in Chapter 5 is used in 

this section.  Table 6.1 shows precedence relations of this example. 

 
Table 6.1 Tasks of a simple pant assembly and its rule base 

Precedence 
Relation 

Task Time 
(min) Ti

1 0.40 ⎯ 

2 0.35 ⎯ 

1 3 0.75 

2 4 0.80 

(9, 10) OR (3, 4) 5 0.60 

6 0.55 ⎯ OR (9, 10) 

5, 6 7 0.50 

7 8 0.45 

R1: If T1 then T3
R2: If T2 then T4
R3: If (T9 AND T10) OR (T3 AND T4) then T5
R4: If T6 OR (T9 AND T10) then T6
R5: If T5 AND T6 then T7
R6: If T7 then T8
R7: If T3 OR T8 then T9
R8: If T4 OR T9 then T10
R9: If T8 OR T10 then T11
R10: If T11 then T12

3 OR 8 9 0.70 

4 OR 9  10 0.60 

8 OR 10 11 0.80 

11 12 0.50 

 

In the proposed GA, the rule-base is represented by a matrix for coding in Matlab. 

The rule-base in Table 6.1 is given as a matrix in Figure 6.1, where each column 
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represents a rule, e.g., the 3rd column is R3, i.e., IF (TASK 9 AND TASK 10) OR 

(TASK 3 AND TASK 4) THEN TASK 5. 
 

9 10 6 0 5 6
3 4 9 10 0 0

4
90

7 1
0

10
8

1
0

3
8

2
0

3 54 6 7 8 9 10
R5 R6 R7 R8R1 R2 R3 R4 R9 R10

11 12
1

 
                                

         Figure 6.1 Matrix representation of the rule-base in Table 6.1 

 

6.2.1 Representation 

 
Sequence-oriented representation, which is a kind of an order-based representation, is 

used for genetic representation because of its advantages. Especially, it can handle all 

types of ALB problems and provides flexibility in choosing genetic operators (Kim et 

al., 1996).  

 

Each task is represented by a number that is placed on a string of numbers called 

chromosomes. The length of a chromosome is the number of the tasks. All tasks are 

sequentially listed in the order of their assignment to work stations. 

  

For example, a chromosome for a 12 task problem is given below: 

 

Tasks: 2  4  3    1  8  12    9  6  5    11  7  10, which indicates the following assignments. 

 

Tasks of 1st station: 2, 4, 3 

Tasks of 2nd station: 1, 8, 12 

Tasks of 3rd station: 9, 6, 5 

Tasks of 4th station: 11, 7, 10 
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6.2.2. Initialization 

 
The initial population may be generated randomly or with the help of some heuristics 

(Sivanandam & Deepa, 2008). In this study, it is generated randomly for the small sized 

problems. Infeasible solutions, which violate some of the precedence constraints, are 

allowed in the population. 

 

For the problems which have 45 and more tasks, largest candidate rule (Groover, 

2001) is used to generate the first individual of the population. In the method of largest 

candidate rule, tasks are arranged in descending order according to their task times. Then 

they are assigned to a station by starting at the top of the list and selecting the first one 

which satisfies precedence relations and does not cause the total sum of the task times at 

that station to exceed the allowable cycle time (Groover, 2001). The rest of the 

population is generated randomly. Infeasible solutions are allowed in the population. 

 

6.2.3 The Fitness Function 

 
The objective of the example problem can be considered to minimize the number of 

work stations, subject to a given cycle time. On the other hand, one of the solutions with 

the same number of stations may be “better balanced” than the others. For example, an 

assembly line of three stations with the station times 30-50-40 is considered to be better 

balanced than the one with the times 50-50-20. Hence, a fitness function that consists of 

two objectives should be used; one minimizes the number of stations and the other 

obtains balanced station (Sabuncuoglu et al., 2000). 

 

An infeasible solution in ALB problems is defined as the violation of some 

precedence relations. A population of feasible solutions may lead to a fragmented search 

space, which increases the probability of being trapped in local minima. Therefore, 

infeasible solutions are also allowed in a population as genetic operators can lead to 

feasible solutions from an infeasible population (Suresh et al., 1996).  
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When infeasible solutions are allowed in the population, the population is forced to 

feasibility by assigning high penalty costs to infeasible solutions as discussed in 

Anderson & Ferris (1994), Ruijun, Dingfang, Yong, Zhonghua, & Xinxin (2007) and 

Guo et al. (2008). This strategy increases the amount of variability in the population 

(Tasan & Tunali, 2008).  

 

A simple method to penalize infeasible solutions is to apply a constant penalty to 

those solutions that violate feasibility in any way. The constrained problem is 

transformed into an unconstrained problem by penalizing infeasible solutions. The 

penalized objective function is then the sum of the unpenalized objective function and a 

penalty (for a minimization problem). A penalty term is added to the objective function 

for any violation of the constraints (Anderson & Ferris, 1994; Gen & Cheng, 1997; 

Michalewicz & Schoenauer, 1996). The penalty function with m constraints is then 

represented as below (for a minimization problem):  
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In the solution, the fitness function combines the two objectives, i.e. minimizing the 

number of stations and finding the best balance among the solutions that have the same 

number of stations, and includes a penalty cost as described by Cilkin (2003): 
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where Nv is the number of precedence violations, n is the number of stations, Smax is the 

maximum station time, and Sk is the kth station time.  

 

The maximum of the coefficients is 2000, and it is given to the number of precedence 

violations to force the algorithm to the feasible solutions in a faster way. The second and 

the third parts of the fitness function are used and explained by Leu et al. (1994) and 

Sabuncuoglu et al. (2000). The second part of the fitness function is taken to be the 

minimization of the mean-squared idle time. This part aims to find the best balance 

among the solutions that have the same number of stations (Leu et al., 1994). The 

minimum coefficient, 0.2, is given to the second part. The third part is to minimize mean 

idle time. The third part is assumed arbitrarily more critical than the second one. 

According to Sabuncuoglu et al. (2000), this part only minimizes the number of stations 

(Scholl & Becker, 2006). The coefficients of the fitness function are determined by 

experimenting with different values (tuning). A smaller fitness function means fewer 

workstations and more balanced workload between the workstations. 

 

The second part of the fitness function is only used for feasible solutions. When there 

is a violation of precedence constraints, the work balance among the stations cannot be 

computed. The calculation of the fitness function in an infeasible solution is explained 

below. 

 

The calculation of the fitness function in an infeasible solution 

If the example problem given in Table 6.1 is considered, a chromosome in the 

population may be as in Figure 6.2. Let the order of the tasks be as below for an 

infeasible solution, where the cycle time, C, is 2. 
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2 4 3 1 8 12 9 6 5 11 7 10 
                          

                          Figure 6.2 The order of the tasks for an infeasible solution 

 

1. Assignment of tasks to the stations: 

The tasks are then assigned to the stations sequentially subject to the cycle time 

constraint. The assignment of tasks in Figure 6.2 yields Table 6.2. 

 
Table 6.2 Assignment of tasks to the stations 

Tasks 
Task 
time 
(min) 

Station 
time 
(min) 

Station 

2 0.35   
4 0.80   
3 0.75 1.90 1 
1 0.40   
8 0.45   

12 0.50 1.35 2 
9 0.70   
6 0.55   
5 0.60 1.85 3 

11 0.80   
7 0.50   

10 0.60 1.90 4 
 

 

2. Calculating the number of precedence violations. 

 There are then three violations in Table 6.2, i.e., Nv is 3. 

 

1. Violation  

T1 is assigned to S2 and T3 is assigned to S1, which violates R1, i.e.,  

IF TASK 1 THEN TASK 3 

2. Violation 

T7 is assigned to S4 and T8 is assigned to S2, which violates R6, i.e.,  

IF TASK 7 THEN TASK 8 
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3. Violation  

T11 is assigned to S4 and T12 is assigned to S2, which violates R10, i.e.,  

IF TASK 11 THEN TASK 12 

 

3. Calculating the fitness function. 

In this order of the example chromosome given in Figure 6.2, since there are some 

violations of precedence constraints, the second part of the fitness function which gives 

the work balance among the stations cannot be computed. Then the fitness function is 

computed according to Equation 6.2 without the second part as follows: 
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15.6000Function Fitness =  

 

6.2.4 Selection 

 
The selection process in genetic algorithms is based on the natural law of survival of 

the fittest. It is the process to determine which chromosomes are selected for the next 

generation in terms of their fitness (Mitchell, 1996). 
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In this study, the tournament selection is used. In its simplest form, tournament 

selection consists of picking two members of the population randomly, and then 

selecting the best one as a parent. After two parents are selected this way, the genetic 

operators take place as usual (Mitchell, 1996). 

 

The procedure works as follows: 

Step 1. A tournament size, m, is set. 

Step 2. Randomly m individuals are selected from the population. 

Step 3. With probability r, the best of the m individuals is selected and with 

probability 1-r, a random individual among the other m-1 is selected. r is referred to as 

the tournament selection parameter. 

 

Two individuals are chosen at random from the population. A random number is then 

chosen between 0 and 1. If it is smaller than the tournament selection parameter, the 

fitter of the two individuals is selected to be a parent; otherwise the less fit one is 

selected. The two are then returned to the original population and can be selected again. 

Goldberg & Deb (1991) presented an analysis of this method. 

 

In this study, the real world tournament selection is used (Lee, Soak, Kim, Park, & 

Jeon, 2008). Two groups of 8 (8 = 23) individuals are selected randomly from the same 

tournament level. In each group, each individual is sequentially paired with a neighbor 

from the same group. When all competitions in the present tournament level are 

completed, only the winners go on to the next tournament level. The competitions are 

completed on three levels. The winners of each group are selected this way and get 

ready for crossover. 

 

6.2.5 Genetic Operators 
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To improve the adaptability of the population, two basic operators, crossover and 

mutation, are used to modify the chromosome. Crossover is the operation by which two 

parents in the current population create offspring for the next population. The mutation 

operator is used to randomly change the value of single genes within chromosomes. The 

two-point order crossover and reciprocal exchange mutation are used as genetic 

operators in the proposed genetic algorithm. 

 

The two-point order crossover is the combination of the two-point crossover and the 

order crossover (OX) which was proposed by Davis (1985). The two-point order 

crossover randomly chooses two crossover points. The crossover operator copies the 

chromosome part between the crossover points of the two parents to the respective child 

chromosome while preserving the relative order of the sequence indicated by the other 

parent. There are different versions of the two-point order crossover (Ishibuchi & 

Murata, 1998; Murata & Ishibuchi, 1996). 

 

 The two-point order crossover procedure works as follows (Gen & Cheng, 1997): 

Step 1. A substring between two crossover points is selected at random. 

Step 2. A proto-child is produced by copying the selected substring into the 

corresponding positions. 

Step 3. The tasks which are already in the substring are deleted from the second parent. 

The resulted sequence of tasks contains the tasks which the proto-child needs. 

Step 4. The tasks are placed into the unfixed positions of the proto-child from left to 

right according to the order of the sequence to produce an offspring. 

 

The procedure is illustrated in Figure 6.3. The second offspring can be produced with 

the same steps as [2 5 4 9 1 3 6 7 8 10 11 12] from the same parents. The rate of the 

crossover operation is defined by Rc. 
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a substring is selected at random 

deleted 

parent 1 1 2 3 4 5 6 7 8 9 10 11 12 

offspring 7 9 3 4 5 6 1 2 8 11 10 12 

parent 2 5 7 4 9 1 3 6 2 8 11 10 12 

 
                               

                          Figure 6.3 Illustration of the two-point crossover operator 

 

In the reciprocal exchange mutation, two positions are selected at random and then 

the tasks are swapped on these positions (Gen & Cheng, 1997). The procedure is 

illustrated in Figure 6.4. The rate of the mutation operation is defined by Rm. 

 

 
                             

                                  Figure 6.4 Illustration of the reciprocal exchange mutation operator 

 

 

1 2 3 4 5 6 7 8 9 10 11 12 

1 2 8 4 5 6 7 3 9 10 11 12 

Two positions are selected at random. 

The relative tasks are swapped. 
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6.2.6 Elitism 

 
Survival is an essential process in GAs that removes individuals with a low fitness 

and drives the population towards better solutions. A part of the existing population 

survives to the next generation and forms a new population in the next generation. To 

ensure that the best solution of the previous generation is always present in the next 

population, a procedure known as elitism is used (Sivanandam & Deepa, 2008). In this 

study, two copies of the best individual are made. Then, the first two new individuals of 

the next generation are taken as exact copies of the best individual in the first generation. 

 

6.2.7 Termination 

 
There are many stopping conditions in GAs (Sivanandam & Deepa, 2008). While 

searching the solution space of the problem, the procedure can be stopped when one of 

the following is achieved (i) the fitness function of the best solution does not improve 

after a predetermined number of generations, e.g., TG=100, or (ii) the total number of 

generations exceeds a maximum number, e.g. Tmax=1,000.  

 

In the proposed GA, the procedure stops when the fitness function is zero, or the total 

number of generations exceeds 1,000 generations. 

 

6.2.8 Results of the Proposed GA 

 
The proposed GA is coded in Matlab 7.0, and run three times for 1,000 generations 

for the example problem given in Table 6.1 in Section 6.2. The fitness value for each 

generation up to the end of the procedure for one of the runs is given in Figure 6.5. The 

minimum fitness value, zero, is reached at the 7th generation. 
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               Figure 6.5 The fitness value versus the number of generations for the example problem 

 

Table 6.3 shows the assignment for the example problem given in Table 6.1 solved 

by the proposed GA. The assignment has no violation of any precedence constraint.  

 
Table 6.3 The result for the example problem 

Tasks 
Task 
time 
(min) 

Station 
time 
(min) 

Station 

10 0.60   
4 0.80   
2 0.35 1.75 1 
1 0.40   
3 0.75   
5 0.60 1.75 2 
9 0.70   
6 0.55   
7 0.50 1.75 3 

11 0.80   
8 0.45   

12 0.50 1.75 4 

 



 103

 

6.3 Parameter Optimization 

 

The performance of GA depends on several parameters. The effects of three 

parameters considered as significant are studied for the performance of the proposed 

GA: the population size, the crossover rate and the mutation rate. Statistical design of 

experiments (Montgomery, 2001) is used to optimize the three parameters in Table 6.4.  

 

 
Table 6.4 Levels of control parameters  

Control Parameters 
Levels Population size Crossover rate Mutation rate 

1 100 0.50 0.05 
2 500 0.70 0.10 
3 1000 0.90 0.25 
 

 

As a test problem, Mitchell’s problem (Scholl, 1993) with 21 tasks from the literature 

is chosen for identifying the effect of different control parameters. 

 

Since there are three distinct parameters with three levels, 33 full factorial 

experimental design given in Table 6.5 is used to detect the possible interactions of 

factor effects and to determine the optimal parameter setting.  
 

For each design point, 5 independent GA runs are performed to determine the 

variations in the results, i.e., 135 = 33 × 5 runs are carried out. 

 

 

 

 

 

 



 104

Table 6.5 The 33 full factorial experimental design layout 

Experiment 
no Population size Crossover 

rate 
Mutation 

rate 
1 100 0,50 0,05 
2 100 0,70 0,05 
2 100 0,70 0,05 
3 100 0,90 0,05 
4 100 0,50 0,10 
5 100 0,70 0,10 
6 100 0,90 0,10 
7 100 0,50 0,25 
8 100 0,70 0,25 
9 100 0,90 0,25 

10 500 0,50 0,05 
11 500 0,70 0,05 
12 500 0,90 0,05 
13 500 0,50 0,10 
14 500 0,70 0,10 
15 500 0,90 0,10 
16 500 0,50 0,25 
17 500 0,70 0,25 
18 500 0,90 0,25 
19 1000 0,50 0,05 
20 1000 0,70 0,05 
21 1000 0,90 0,05 
22 1000 0,50 0,10 
23 1000 0,70 0,10 
24 1000 0,90 0,10 
25 1000 0,50 0,25 
26 1000 0,70 0,25 
27 1000 0,90 0,25 

 

 

The scatter plots of fitness and computation time are given in Figure 6.6 and 6.7, 

respectively. As seen in the diagrams, the computation time increases with the size of 

the population. 
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 Figure 6.6 The scatter plot of fitness 
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Figure 6.7 The scatter plot of computation time 

 

To determine the significance of each parameter effect on the fitness, analysis of 

variance (ANOVA) is used. Given level of significance is equal to 0.05. According to 

Table 6.6, the values of “Prob>F” less than 0.05 indicate model terms are significant. 

The significant main factors with respect to the fitness response are the population size 
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and the mutation rate. The crossover rate has an insignificant main effect. The 

interactions are also insignificant. 
 

Table 6.6 ANOVA results for fitness values 

Analysis of variance table for fitness 
Source F-value P-value (Prob>F)   
Model 2.35 0.0012 significant 

A - crossover rate 1.22 0.2984   
B - mutation rate 14.14 0.0001 significant 

C - population size 3.77 0.0262 significant 
AB 1.02 0.4015   
AC 0.41 0.8033   
BC 0.81 0.5202   

ABC 1.73 0.0996   
 
 

From the ANOVA analysis, the main conclusions can be summarized in the main 

effects plot for fitness in Figure 6.8, and in the main effects plot for computation time in 

Figure 6.9. According to Figure 6.8, the fitness decreases when the population size and 

mutation rate is high.  
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                                   Figure 6.8 Main effects plot for fitness 

 

 



 107

In terms of the significance of each parameter effect on computation time, the 

significant main factors with respect to computation time response are the population 

size, the mutation rate and the crossover rate according to Table 6.7.  

 
Table 6.7 ANOVA results for computation time 

Analysis of variance table for computation time 
Source F-value P-value (Prob>F)   
Model 16.81 <0.0001 significant 

A - crossover rate 11.04 <0.0001 significant 
B - mutation rate 8.90 0.0003 significant 

C - population size 178.04 <0.0001 significant 
AB 2.68 0.0354 significant 
AC 2.66 0.0367 significant 
BC 1.36 0.2512   

ABC 1.79 0.0869   
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                                      Figure 6.9 Main effects plot for computation time 

 

 

As a result, even though the crossover rate is insignificant for the fitness response, it 

has a great effect on computation time. As seen in Figure 6.9, the computation time 

increases with the population size. Yet according to Figure 6.8, the fitness decreases 

with the high level of population size. Since the fitness is more important than the 
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computation time, high level of population size can be used. The optimal levels of the 

three parameters can then be determined as 1,000 for population size, 0.50 for crossover 

rate, and 0.25 for mutation rate for the small sized problems. For the problems which 

have 45 tasks or more, crossover and mutation rates can be different. 

 

6.4 Computational Experiments 

 
Since CCALBP is a novel problem, there is no set of benchmark instances for testing. 

Therefore, self-made instances are generated by adapting well-known benchmark 

problems from the literature whose descriptions are given in Scholl (1993). Some 

alternative routes are created and added to these literature problems. 

 

6.4.1 The Instances Generated from the Example Problem 

 
For the example problem given in Table 6.1 in Section 6.2, three instances are 

generated considering different alternatives. New tasks are added to the problem for the 

alternatives, and the task times of the Mitchell’s problem (Scholl, 1993) from the 

literature are used. The cycle time, C, is taken as 14. The alternatives of the example 

problem according to their complexities are given in Table 6.8. 

 
Table 6.8 The instances generated for the example problem 

Problems The number of ORs 
in one rule 

Number of 
tasks 

The number of ORs 
in all rules 

Example Problem 1 1 12 5 
Example Problem 2 2 13 10 
Example Problem 3 3 15 15 

 

The problems and the results are given in the first three solutions below.  

 

1. Example: Problem 1 

It has one OR in one rule, 12 tasks and five ORs in total as given in Figure 6.10. 
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3 4 5 6 7 8 9 10 11 12 
1 2 3 4 6 0 5 6 7 3 4 8 11 
0 0 9 10 9 10 0 0 0 8 9 10 0 

                                 

                                  Figure 6.10 The matrix for the rule-base of example problem 1 

 

The assignment of the tasks is given in Figure 6.11: 

 

1 3 6 9 10 5 2 11 12 7 4 8 
                                      

                                             Figure 6.11 The assignment of the tasks for example  

                                              problem 1 

 

The fitness value is 1.5098. 

 

2. Example: Problem 2 

It has two ORs in one rule, 13 tasks and 10 ORs in total as given in Figure 6.12. The 

number of two ORs in all rules is three. 

 

3 4 5 6 7 8 9 10 11 12 13 
1 2 3 4 6 0 5 6 7 3 4 3 4 10 
0 0 9 10 9 10 0 0 0 8 9 8 11 12 
0 0 11 12 11 12 0 0 0 0 0 10 0 0 

                                

                               Figure 6.12 The matrix for the rule-base of example problem 2 

 

The assignment of the tasks is given in Figure 6.13: 

 

3 1 9 2 11 10 12 5 6 7 4 13 8 
                                    

                                            Figure 6.13 The assignment of the tasks for example 

                                             problem 2 

 
The fitness value is 0.2894. 
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3. Example: Problem 3 

It has three ORs in one rule, 15 tasks and 15 ORs in total as given in Figure 6.14. The 

number of three ORs in all rules is two. 

 

3 4 5 6 7 8 9 10 11 12 13 14 15 
1 2 3 4 6 0 5 6 7 3 4 3 4 3 4 14 
0 0 9 10 9 10 0 0 0 8 9 8 11 10 13 12 
0 0 11 12 11 12 0 0 0 0 0 10 0 12 0 0 
0 0 13 14 13 14 0 0 0 0 0 0 0 0 0 0 

                               

                        Figure 6.14 The matrix for the rule-base of example problem 3 

 

The assignment of the tasks is given in Figure 6.15:  

 

1 2 4 11 3 9 10 13 12 14 5 7 6 8 15 
                                 

                                    Figure 6.15 The assignment of the tasks for example problem 3 

 

The fitness value is zero. 

 

6.4.2 The Instances Generated from the Literature Problems 

 
For the other instances, 10 well-known problems are selected whose descriptions are 

given in Scholl (1993). Table 6.9 shows the data for the benchmark problems, where the 

first and the second columns give the name of the problem and the number of tasks ( n ), 

respectively. The minimum and maximum cycle times are shown in the third and fourth 

columns. The fifth and sixth columns contain the minimum ( ) and maximum task 

times ( ) in each problem, respectively. In the seventh column, the sum of the task 

times for each problem is given. The eighth column gives the order strength 

(

mint

maxt

( )( )[ ]1−×= nnrelationsprecedenceallofnumberOS ), an indicator for complexity of 
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problem instances (Scholl, 1999). The ninth column shows time variability ratio 

( minmax ttTV = ) that measures the range of variation for the task times (Scholl, 1999).  

 
Table 6.9 Data sets 

Problem # of 
tasks 

Min. 
cycle 
time 

Max. 
cycle 
time 

Min. 
task 
time 

Max. 
task 
time 

Sum of 
task 
times 

Order 
strength 

Time 
variability 

ratio 

Bowman 8  20 20 3 17  75  75.00  5.67  
Jaeschke 9 6 18 1  6  37 83.33  6.00  
Jackson 11 7 21 1  7  46 58.18  7.00  
Mitchell 21 14 39 1 13 105  70.95  13.00  
Roszieg 25  14 32 1  13  125  71.67  13.00  
Heskiaoff 28 138 342 1  108 1024  22.49 108.00 
Buxey 29 27 54 1 25  324  50.74  25.00  
Sawyer 30 25 75 1 25  324  44.83  25.00  
Kilbridge 45 56 184 3 55 552 44.55 18.33 
Arcus1 83 3786 10816 233 3691 75707 59.09  15.84  
 

 

Since CCALBP is a novel problem, the problem instances are generated by using the 

problems in Table 6.9. The original precedence relations and operation times are 

preserved, but new alternatives are added. Additionally, a real case problem from the 

apparel industry with 68 tasks is also used for experiments. For each problem, instances 

with one OR, two ORs and three ORs are generated, respectively. The rule-base for each 

problem instance is given in the appendices. 

 

A brief computational experiment is carried out by using the given problems with 

different cycle time values. A total number of 208 problem instances are solved. For 

small sized problems, 24 problem instances are considered, having the number of tasks 

from 8 to 11, and with only one alternative (one OR) with different cycle time values. 

For medium sized problems, 148 problem instances are considered, having the number 

of tasks from 21 to 45, and with up to three ORs with different cycle time values. For 

large sized problems, 36 problem instances are considered, having the number of tasks 

from 68 to 83, and with up to three ORs with different cycle time values. For each 
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problem, instances with one OR, two ORs and three ORs are solved by the proposed GA 

with the same parameters. The proposed GA is run three times for each instance. 

 

The best results of the problem instances are detailed in Table 6.10. In the first 

column of Table 6.10, the problem source is reported. The second column reports the 

number of tasks. The third column lists the cycle time values. The fourth column reports 

the minimum number of stations found in the literature for the original problems given 

in Table 6.9. The other columns report the best solutions of the generated instances with 

and without alternatives solved by the proposed GA. The number of rules with logical 

ORs is also given in Table 6.10 to evaluate the effects of alternatives on the fitness 

function. 

 

The computational experiments show that optimal solutions can only be obtained for 

small sized problem instances in a reasonable amount of time. Based on Table 6.10, the 

proposed GA is proven to perform better when new alternatives are added. As it can be 

seen in Table 6.10, a new alternative is added to the original problem in each step. The 

GA with the rule base solves each type of the problem with new alternatives 

simultaneously as well as the original problem. Table 6.10 shows that the fitness values 

are getting smaller while the number of alternatives is increasing. The fitness value 

consists of two objectives, minimizing the number of stations and obtaining balanced 

stations. When more alternatives are added, better balanced stations are obtained. As the 

number of ORs is increased, line balancing improves. 

 

It should be noted that the minimum number of stations reported in the literature is 6 

for Roszieg problem with the cycle time of 25 time units. When more alternatives are 

added, the number of stations decreases to 5, which is the lower bound for the cycle time 

of 25 time units. The same is also reported for the cycle time of 18. 



 

Table 6.10 The results of the experiments as number of stations and fitness 

No alternatives With alternatives 
  1 OR 2 ORs 3 ORs 
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all 

rules

#  of 
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with 
1 OR

Min. #  
of 

stations Fitness

#  of 
rules 

with 2 
ORs 

Min. #  
of 

stations Fitness

#  of 
rules 

with 3 
ORs 

Min. # 
of 

stations Fitness
Bowman 8 20 5 7 5 2.5933 7 2 5 2.645 -  -  -  -  - -  

                                  
6 8 8 1.699 8 1.6832  -  -  -  -  - -  
7 7 7 2.0997 8 1.6832  -  -  -  -  - -  
8 6 7 2.0997 8 1.699  -  -  -  -  - -  

10 4 4 0.9232 4 0.9232  -  -  -  -  - -  
Jaeschke 9 

18 3 

8 

3 5.9103 

8 5 

3 2.1428  -  -  -  -  - -  
                                  

7 8 8 1.5662 7 0.5976  -  -  -  -  - -  
9 6 6 1.6388 6 1.6388  -  -  -  -  - -  

10 5 5 1.0191 5 0.9789  -  -  -  -  - -  
13 4 4 0.6414 4 0.6414  -  -  -  -  - -  
14 4 4 0.6414 4 0.6414  -  -  -  -  - -  

Jackson 11 

21 3 

10 

3 0.83 

10 2 

3 0.83  -  -  -  -  - -  
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Table 6.10 (cont) The results of the experiments as number of stations and fitness 

No alternatives With alternatives 
  1 OR 2 ORs 3 ORs 
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#  of 
rules 

with 3 
ORs 

Min. # 
of 

stations Fitness
14 8 9 2.8708 8 1.0871 8 1.1095 8 1.0871 
15 8 8 1.0871 8 1.0871 8 1.0871 8 1.0871 
21 5 6 0.6414 6 0.6414 6 0.6414 5 0 
26 5 5 2.5215 5 0 5 1.2366 5 1.2366 
35 3 3 0 3 0 3 0 3 0 

Mitchell 21 

39 3 

20 

3 0 

20 2 

3 0 

2 

3 0 

1 

3 0 
                                  

18 8 8 1.699 8 0.4975 8 0.4975 7 0.2185 
21 6 7 2.6269 6 0.2483 6 0.2483 6 0.2483 
25 6 6 0.2483 6 0.2483 5 0 5 0 

Roszieg 25 

32 4 

23 

4 0.9736 

25 5 

4 0.9232 

2 

4 0.9232 

2 

4 0.9232 
                                  

138 8 8 1.2449 8 1.2449 8 1.2449 8 1.2449 
205 5 6 1.6388 6 2.8871 6 1.6797 6 0.4966 
216 5 5 0.2894 5 1.4828 5 0.2894 5 0.2894 
256 4 5 3.9155 5 1.4828 5 0.2894 5 0.2894 
324 4 4 1.2449 4 1.2449 4 0 4 0 

Heskiaoff 28 

342 3 

26 

3 0.83 

26 3 

4 1.2449 

3 

3 0.83 

3 

3 0.83 
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Table 6.10 (cont) The results of the experiments as number of stations and fitness 

No alternatives With alternatives 
  1 OR 2 ORs 3 ORs 

O
pt

im
al

 #
 o

f 
st

at
io

ns
 

C
yc

le
 ti

m
e 

# 
of

 ta
sk

s 

Pr
ob

le
m

 

# of 
all 

rules 

#  of 
all 

rules

#  of 
rules 
with 
1 OR

#  of 
rules 

with 2 
ORs 

#  of 
rules 

with 3 
ORs 

Min. #  
of 

stations 

Min. #  
of 

stations 

Min. #  
of 

stations 

Min. # 
of 

stations Fitness Fitness Fitness Fitness
27 13 13 2.6507 14 2.3528 14 2.3352 13 2.6507 
30 12 12 2.5033 13 2.6666 14 3.5248 12 2.4899 
33 11 12 2.5292 11 3.1363 12 1.3162 11 2.0316 
36 10 10 2 10 1.9688 10 2.0099 10 1.9795 Buxey 29 26 26 3 2 2 
41 8 9 2.5333 9 3.7149 9 3.7087 9 1.3944 
47 7 8 0.6732 8 0.6414 8 0.6732 8 0.6414 
54 7 7 3.4433 7 2.28 7 2.1283 7 2.28 

                                  
30 12 14 2.3642 14 2.2914 12 2.5033 12 2.4690 
33 11 12 2.5292 11 3.2986 11 3.2889 11 3.3177 
36 10 11 3.1836 11 3.284 10 1.9899 10 1.9688 
41 8 9 2.5333 9 4.1294 9 3.7149 9 2.4899 Sawyer 30 26 26 3 3 3 
47 7 8 0.6732 8 0.6732 8 0.6414 8 0.6414 
54 7 7 2.1283 7 2.1143 7 2.1283 7 2.1143 
75 5 5 1.5347 5 0.2894 5 1.4828 5 0.2894 

                                  
69 8 9 2.0496 9 2.0496 9 0.83 9 0.83 
79 7 8 1.2236 8 1.2236 8 0 8 0 
92 6 7 1.4047 7 1.4047 7 0.2185 7 0.2185 
110 6 6 1.2309 6 1.2309 6 0 6 0 
111 5 6 0 6 0 5 0.7549 5 0.7549 
138 4 4 0 4 0 4 0 4 0 

Kilbridge 45 

184 3 

40 

3 0 

40 5 

3 0 

5 

3 0 

5 

3 0 
 

 

 

115



 

 

116

Table 6.10 (cont) The results of the experiments as number of stations and fitness 

No alternatives With alternatives 
  1 OR 2 ORs 3 ORs 

Pr
ob

le
m

 

# 
of

 ta
sk

s 

C
yc

le
 ti

m
e 

O
pt

im
al

 #
 o

f 
st

at
io

ns
 

# of 
all 

rules
Min. #  

of 
stations 

Fitness 

#  of 
all 

rules

#  of 
rules 
with 
1 OR

Min. #  
of 

stations
Fitness 

#  of 
rules 
with 

2 
ORs 

Min. #  
of 

stations
Fitness

#  of 
rules 
with 

3 
ORs 

Min. # 
of 

stations 
Fitness

Real Case 68 70 - 67 29 12.0099 67 11 29 12.028 4 29 12.025 2 28 9.61 
                                  

5853 14 14 264.5 14 195.4 14 73 14 75.7 
6309 13 13 186.2 14 467.8 14 443.3 13 201.8 
6842 12 13 351.7 12 304.4 12 348.6 12 305 
6883 12 13 488.7 12 194.3 13 649.8 12 244.4 
7571 11 11 258.5 11 272.3 11 257.3 11 265.5 
8412 10 10 194.6 10 157.9 10 255.6 10 113.3 
8898 9 9 143.8 9 164.7 9 164.4 9 140.9 

Arcus 1 83 

10816 8 

82 

8 728 

82 5 

8 500.5 

2 

8 184.4 

2 

8 376.5 



 

 

117

The results of the problem instances as efficiencies are detailed in Table 6.11. In the 

first column, the problem source is reported. The second column reports the number of 

tasks and the third column reports the sum of the task times. In the fourth column, the 

cycle times are listed. The fifth column reports the minimum number of stations found in 

the literature for the original problems given in Table 6.9. The other columns report the 

best solutions of the generated instances with and without alternatives solved by the 

proposed GA. The number of rules with logical ORs is also given in Table 6.11 to 

evaluate the effects of alternatives on efficiencies. 

 

Table 6.11 shows that the number of stations is getting smaller when a new 

alternative is added to the problem. When the number of stations remains the same, the 

efficiency is higher. As a result, the solutions get better when the number of ORs is 

increased. These improvements are shown in the tables and graphics given in the 

appendices.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Table 6.11 The results of the experiments as number of stations and efficiency 

No alternatives With alternatives 
  1 OR 2 ORs 3 ORs 
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  o
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M
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%
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ll 
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s 
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M
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%
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  o
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M
ax
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n 
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e 

E
ff

. (
%

) 

# 
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O

R
s 

M
in

. #
 o

f s
ta

tio
ns

 

M
ax

. s
ta

tio
n 

tim
e 

E
ff

. (
%

) 

Bowman 8 75 20 5 7 5 17 88 7 2 5 17 88  -  -  -  - -  -   - -  
                                            

6 8 8 6 77 8 6 77  -  -  -  - -  -   - -  
7 7 7 7 76 8 6 77  -  -  -  - -  -   - -  
8 6 7 7 76 8 6 77  -  -  -  - -  -   - -  

10 4 4 10 93 4 10 93  -  -  -  - -  -   - -  
Jaeschke 9 37 

18 3 

8 

3 17 73 

8 5 

3 14 88  -  -  -  - -  -   - -  
                                            

7 8 8 7 82 7 7 94  -  -  -  - -  -   - -  
9 6 6 9 85 6 9 85  -  -  -  - -  -   - -  

10 5 5 10 92 5 10 92  -  -  -  - -  -   - -  
13 4 4 12 96 4 12 96  -  -  -  - -  -   - -  
14 4 4 12 96 4 12 96  -  -  -  - -  -   - -  

Jackson 11 46 

21 3 

10 

3 16 96 

10 2 

3 16 96  -  -  -  - -  -   - -  
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Table 6.11 (cont) The results of the experiments as number of stations and efficiency 

No alternatives With alternatives 
  1 OR 2 ORs 3 ORs 

Pr
ob

le
m

 

# 
of

 ta
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s 
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 o
f t

as
k 
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e 

O
pt
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# 
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s 
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R
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M
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 o
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tio
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M
ax

. s
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tio
n 

tim
e 

E
ff

. (
%

) 

14 8 9 14 83 8 14 94 8 14 94 8 14 94 
15 8 8 14 94 8 14 94 8 14 94 8 14 94 
21 5 6 18 97 6 18 97 6 18 97 5 21 100
26 5 5 23 91 5 21 100 5 22 95 5 22 95 
35 3 3 35 100 3 35 100 3 35 100 3 35 100

Mitchell 21 105 

39 3 

20 

3 35 100

20 2 

3 35 100

2 

3 35 100

1 

3 35 100
                                            

18 8 8 17 92 8 16 98 8 16 98 7 18 99 
21 6 7 20 89 6 21 99 6 21 99 6 21 99 
25 6 6 21 99 6 21 99 5 25 100 5 25 100

Roszieg 25 125 

32 4 

23 

4 32 98 

25 5 

4 32 98 

2 

4 32 98 

2 

4 32 98 
                                            

138 8 8 129 99 8 129 99 8 129 99 8 129 99 
205 5 6 172 99 6 173 99 6 172 99 6 171 100
216 5 5 205 100 5 206 99 5 205 100 5 205 100
256 4 5 208 98 5 206 99 5 205 100 5 205 100
324 4 4 257 100 4 257 100 4 256 100 4 256 100

Heskiaoff 28 1024 

342 3 

26 

3 342 100

26 3 

4 257 100

3 

3 342 100

3 

3 342 100
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Table 6.11 (cont) The results of the experiments as number of stations and efficiency 

No alternatives With alternatives 
  1 OR 2 ORs 3 ORs 

Pr
ob

le
m

 

# 
of

 ta
sk

s 

Su
m

 o
f t

as
k 

tim
es

 

C
yc

le
 ti

m
e 

O
pt

im
al

 #
 o

f s
ta

tio
ns

 

# 
of

 a
ll 

ru
le

s 

M
in

. #
  o

f s
ta

tio
ns

 

M
ax

. s
ta

tio
n 

tim
e 

E
ff

. (
%

) 

# 
 o

f a
ll 

ru
le

s 

# 
 o

f r
ul

es
 w

ith
 1

 O
R

 

M
in

. #
  o

f s
ta

tio
ns

 

M
ax

. s
ta

tio
n 

tim
e 

E
ff

. (
%

) 

# 
 o

f r
ul

es
 w

ith
 2

 
O

R
s 

M
in

. #
  o

f s
ta

tio
ns

 

M
ax

. s
ta

tio
n 

tim
e 

E
ff

. (
%

) 

# 
 o

f r
ul

es
 w

ith
 3

 
O

R
s 

M
in

. #
 o

f s
ta

tio
ns

 

M
ax

. s
ta

tio
n 
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E
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27 13 13 27 92 14 25 93 14 25 93 13 27 92 
30 12 12 29 93 13 27 92 14 26 89 12 29 93 
33 11 12 29 93 11 32 92 12 28 96 11 31 95 
36 10 10 34 95 10 34 95 10 34 95 10 34 95 
41 8 9 38 95 9 38 95 9 39 92 9 37 97 
47 7 8 41 99 8 41 99 8 41 99 8 41 99 

Buxey 29 324 

54 7 

26 

7 49 94 

26 3 

7 48 96 

2 

7 48 96 

2 

7 48 96 
                                            

30 12 14 25 93 14 25 93 12 29 93 12 29 93 
33 11 12 29 93 11 32 92 11 32 92 11 32 92 
36 10 11 32 92 11 32 92 10 34 95 10 34 95 
41 8 9 37 97 9 39 92 9 39 92 9 38 95 
47 7 8 41 99 8 41 99 8 41 99 8 41 99 
54 7 7 48 96 7 48 96 7 48 96 7 48 96 

Sawyer 30 324 

75 5 

26 

5 66 98 

26 3 

5 65 100

3 

5 66 98 

3 

5 65 100
                                            

69 8 9 63 97 9 63 97 9 62 99 9 62 99 
79 7 8 70 99 8 70 99 8 69 100 8 69 100
92 6 7 80 99 7 80 99 7 79 100 7 79 100
110 6 6 93 99 6 93 99 6 92 100 6 92 100
111 5 6 92 100 6 92 100 5 111 99 5 111 99 
138 4 4 138 100 4 138 100 4 138 100 4 138 100

Kilbridge 45 552 

184 3 

40 

3 184 100

40 5 

3 184 100

5 

3 184 100

5 

3 184 100

 

120



 

 

121

Table 6.11 (cont) The results of the experiments as number of stations and efficiency 

No alternatives With alternatives 
  1 OR 2 ORs 3 ORs 
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Real Case 68 1753 70 - 67 29 70 86   11 29 70 86 4 29 70 86 2 28 70 89 
                                            

5853 14 14 5621 96 14 5561 97 14 5467 99 14 5469 99 
6309 13 13 5940 98 14 5766 94 14 5766 94 13 5977 97 
6842 12 13 6087 96 12 6491 97 12 6562 96 12 6542 96 
6883 12 13 6196 94 12 6443 98 13 6345 92 12 6488 97 
7571 11 11 7091 97 11 7091 97 11 7091 97 11 6928 99 
8412 10 10 7722 98 10 7698 98 10 7768 97 10 7660 99 
8898 9 9 8528 99 9 8545 98 9 8528 99 9 8528 99 

Arcus 1 83 75707 

10816 8 

82 

8 10048 94 

82 5 

8 9862 96 

2 

8 9600 99 

2 

8 9766 97 
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The results in Table 6.10 and Table 6.11 show that CCALBP can be solved 

through the proposed GA efficiently. It is shown that balance efficiency improves 

when the number of alternatives increases. CCALBP allows alternative assembly 

processes. Therefore, precedence constraints are relaxed. As the number of 

alternatives increases, the number of stations and the fitness value get smaller. As a 

result, the proposed GA performs better when more alternatives are added to 

CCALBP.  

 

6.5 Chapter Summary 

 
In this chapter, a GA based on the rule-base was proposed to solve CCALBP. The 

specific characteristics of the proposed GA were also explained step by step on an 

example problem of sewing a simple pant.  

 

The proposed GA was developed in Matlab 7.0. By experimenting different set of 

control parameters, the robustness of the suggested approach was tested. The 

computational experiments were carried out on a set of generated problems by 

adapting the case problems in the literature. The generated benchmark problems with 

different instances were solved for this novel problem. 

 

Based on the computational experiments, it can be stated that the solution quality 

in terms of balance efficiency and the number of stations improves when the number 

of alternatives increases. 

 

 

 
 



 

CHAPTER SEVEN 

CONCLUSION 

 

7.1 Summary and Concluding Remarks 

 

From the earliest days, ancient man used assembly techniques to make tools, 

weapons, ships, machinery, furniture, and garment. Manufacturing evolved time by 

time. Assembly lines are the most commonly used methods in a mass production 

environment, because they allow the assembly of complex products by workers with 

limited training, by dedicated machines and/or by robots. Recently, mass production 

has been challenged by mass customization. Production systems and supply chains 

are designed to handle high variety of products. Today, assembly lines are still up to 

date.  

 

 The installation of an assembly line which is a long-term decision usually requires 

large capital investments. Therefore, it is important to design and balance an 

assembly line in a way that it should work as efficiently as possible. The assembly 

line balancing is the allocation of the tasks among stations so that the precedence 

relations are not violated and a given objective function is optimized. ALBP deals 

with balancing the assembly line with respect to the precedence constraints and 

objective function(s). 

 

 There are technological restrictions or/and physical sequencing requirements on 

the assembly line which are called precedence constraints. The sequence of tasks 

defined by the precedence constraints is represented by a precedence graph. But, 

there are some shortcomings of the precedence graphs. They cannot represent all the 

possible assembly sequences of a product in a single graph and cannot describe some 

complicated constraints. In order to overcome the aforementioned difficulties, a rule-

based assembly model was proposed to model all assembly constraints.
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The aim of this dissertation was to extend the rule-based assembly modeling and 

to introduce the complex-constrained assembly line balancing problem (CCALBP), 

which is of the general ALBPs, in order to model all assembly constraints through a 

rule-base to tackle alternative ways of assembling a product and their effects on task 

times, precedence relations and the line balance simultaneously. 

 

It was shown how to model all assembly constraints through the well known If-

then rules, and how to solve the problem through CP and IP models mapped from the 

rule-based model through a small real-life example. It was also shown how to map a 

rule-based model to a CP or an IP model. This mapping was not possible from graph-

based models that address, though roughly, complex assembly constraints. Thus, 

CCALBP can be solved only through rule-based modeling, but not graph-based 

modeling. Rule-based and graph-based models were compared in terms of modeling 

capability. 

 

In this dissertation, a GA integrated with the rule-base was proposed to solve 

CCALBP. The specific characteristics of the proposed GA were devised with the 

inspiration taken from the current examples in the literature. These characteristics 

were explained on an example problem of sewing a simple pant. The control 

parameters of the GA were optimized to improve the performance. 

 

Since CCALBP is a novel problem, there is no set of benchmark instances for 

testing. Therefore, the computational experiments were carried out on a set of self-

made instances generated by adapting well-known benchmark problems from the 

literature. Some alternative routes are created and added to these literature problems. 

A new alternative was added to the original problem in each step. The GA with the 

rule base solved each type of the problem with new alternatives simultaneously as 

well as the original problem. The proposed GA resulted better in the generated 

problems when new alternatives were added. The fitness value consisted of two 

objectives, minimizing the number of stations and obtaining balanced stations. When 

more alternatives were added, better balanced stations were obtained.  It was shown 
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that balance efficiency improved when the number of alternatives increased. As the 

number of alternatives increased, the number of stations and the fitness value got 

smaller. Based on the experiments, it is stated that the proposed GA performs better 

and the objectives improve when more alternatives are added to CCALBP.  

 

7.2 Contributions 

 

 The research proposed in this dissertation provides several contributions. The 

contributions are presented in this section as follows. 

 

 Extensive literature review indicates that the researchers generally use precedence 

graphs to represent the precedence constraints and the sequence of tasks in an 

assembly line. But, there are some shortcomings of the precedence graphs: 

• They cannot represent all the possible assembly sequences of a product in a 

single graph. 

• They exclude some logic statements. 

• They allow limited flexibility. 

• They cannot describe some complicated constraints. 

 

Despite their shortcomings, researchers continue to employ precedence graphs in 

ALBP. There are some alternative representation methods, but the literature is 

relatively sparse in addressing alternative ways of assembling a product for the 

ALBP. In other words, the literature tackles the ALBP based on traditional 

precedence graphs in general, rather than investigating more effective modeling tools 

than precedence graphs to solve the ALBP.  

 

 In this dissertation a well known tool, rule-base, is employed in modeling and 

solving the ALBP for the first time and extends this literature in terms of modeling 

scope for assembly constraints in line balancing.  
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This dissertation introduced a novel line balancing problem: complex-constrained 

assembly line balancing problem (CCALBP), which is of the general ALBPs, in 

order to model all assembly constraints through a rule-base to tackle alternative ways 

of assembling a product and their effects on task times, precedence relations and the 

line balance simultaneously. 

 

This dissertation extends the rule-based modeling of assembly constraints (Salum 

& Supciller, 2007, 2008), and solves CCALBP (Topaloglu et al., 2009) through GAs 

(Supciller & Salum, 2009). 

 

It was shown how to: 

• model all assembly constraints through the well known If-then rules,   

• map a rule-based model to a CP or an IP model, 

• solve CCALBP through CP and IP models mapped from the rule-based model,  

• solve CCALBP through a GA integrated with the rule-base, 

• solve a real-life case of CCALBP.  

 

Based on the experiments, it was also shown that the proposed GA performed 

better and the objectives improved when more alternatives were added to CCALBP. 

  

7.3 Future Research Directions 

 

Since assembly lines have many characteristics, any characteristic can be added to 

the new problem, CCALBP, to have a different CCALBP. Therefore many research 

directions can be added to future research topics stated in the following. 

 

The experiments performed by the proposed GA can be performed by using IP, 

CP or another meta-heuristic such as simulated annealing (SA) or tabu search (TS) 

employing the rule-base for CCALBP. In other way, the proposed GA can be 

hybridized with another solution approach. Or, in order to improve the performance 
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of the proposed GA, additional heuristic algorithm can be used. They can be 

compared in terms of solution efficiency.  

 

Different types of the problem according to the objectives can be solved such as 

cost or profit oriented CCALP. Different methods such as pareto optimization can be 

used to solve multi-objective CCALBP. 

 

Some fuzzy rules can also be employed in a rule-base to model vagueness in 

assembly constraints. 

 

Since CCALBP addresses a wide variety of assembly problems involving 

complex constraints, many complicated constraints of real-life assembly lines can be 

modeled easily through a rule-base to solve the problems more realistically. They can 

include features such as parallel workstations, two-sided workstations, U-shaped line 

layout, workload constraints, assignment restrictions such as positive or negative 

zoning constraints, multi or mixed model, and stochastic processing times.  

 

With the help of these further investigations, theoretical studies and practical 

applications can match and the gap between scientific research and industrial needs 

can be shortened. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 



 128

REFERENCES 

 

Agpak, K., & Gokcen, H. (2005). Assembly line balancing: Two resource 

constrained cases. International Journal of Production Economics, 96, 129–140. 

 

Ajenblit, D. A., & Wainwright, R. L. (1998). Applying genetic algorithms to the 

Ushaped assembly line balancing problem. In the Proceeding of the 1998 IEEE 

International Conference on Evolutionary Computation, Anchorage, Alaska, 

USA, 96-101. 

 

Amen, M. (2001). Heuristic methods for cost-oriented assembly line balancing: A 

comparison on solution quality and computing time. International Journal of 

Production Economics, 69, 255-264.  

 

Amen, M. (2006). Cost-oriented assembly line balancing: Model formulations, 

solution difficulty, upper and lower bounds. European Journal of Operational 

Research, 168, 747-770.  

 

Anderson, E. J., & Ferris, M. C. (1994). Genetic algorithms for combinatorial 

optimization: The assembly line balancing problem. ORSA Journal on 

Computing, 6, 161-173. 

 

Arcus, A. L. (1966). COMSOAL: A computer method of sequencing operations for 

assembly lines. International Journal of Production Research, 4, 259-277. 

 

Aytug, H., Khouja, M., & Vergara, F. E. (2003). Use of genetic algorithms to solve 

production and operations management problems: a review. International Journal 

of Production Research, 41(17), 3955-4009. 

 

Bard, J. F. (1989). Assembly line balancing with parallel workstations and dead time. 

International Journal of Production Research, 27(6), 1005-1018. 

 

 
 



 129

Battini, D., Faccio, M., Ferrari, E., Persona, A., & Sgarbossa, F. (2007). Design   

configuration for a mixed-model assembly system in case of low product demand. 

International Journal of Advanced Manufacturing Technology, 34(1-2), 188-200.  

 

Bautista, J., & Pereira, J. (2002). Ant algorithms for assembly line balancing. Lecture 

Notes in Computer Science, 2463, 65–75. 

 

Bautista, J., & Pereira, J. (2007). Ant algorithms for a time and space constrained 

assembly line balancing problem. European Journal of Operational Research, 

177, 2016-2032. 

 

Bautista, J., & Pereira, J. (2009). Dynamic programming based heuristic for the 

assembly line balancing problem. European Journal of Operational Research, 

194, 787-794. 

 

Bautista, J., Suarez, R., Mateo, M., & Companys, R. (2000). Local search heuristics 

for the assembly line balancing problem with incompatibilities between tasks. In 

the Proceedings of the 2000 IEEE International Conference on Robotics and 

Automation, San Francisco, CA, 2404-2409. 

 

Baybars, I. (1986). A survey of exact algorithms for the simple assembly line 

balancing problem. Management Science, 32, 909–932.  

 

Baykasoglu, A., (2006). Multi-rule multi-objective simulated annealing algorithm for 

straight and U type assembly line balancing problems. International Journal of 

Advanced Manufacturing Technology, 17, 217-232. 

 

Baykasoglu, A., & Dereli, T. (2008). Two-sided assembly line balancing using an 

ant-colony-based heuristic. International Journal of Advanced Manufacturing 

Technology, 36, 582-588. 

 

 

 
 



 130

Baykasoglu, A., & Dereli, T. (2009). Simple and U-type assembly line balancing by 

using ant colony based algorithm. Mathematical and Computational Applications, 

14(1), 1-12. 

 

Baykasoglu, A., & Ozbakir, L. (2007). Stochastic U-line balancing using genetic 

algorithms. International Journal of Advanced Manufacturing Technology, 32(1-

2), 139-147. 

 

Becker, C., & Scholl, A. (2006). A survey on problems and methods in generalized 

assembly line balancing. European Journal of Operational Research, 168, 694–

715.  

 

Blum, C., Bautista, J., & Pereira, J. (2006). Beam-ACO applied to assembly line 

balancing. ANTS 2006, LNCS, 4150, 96-107. 

 

Blum, C., & Roli, A. (2003). Metaheuristics in combinatorial optimization: 

Overview and conceptual comparison. ACM Computing Surveys, 35(3), 268-308. 

 

Boctor, F. F. (1995). A multiple rule heuristic for assembly line balancing. Journal of 

the Operational Research Society, 44, 62-69. 

 

Bowman, E. H. (1960). Assembly line balancing by linear programming. Operations 

Research, 8(3), 385-389. 

 

Boysen, N., & Fliedner, M. (2008). A versatile algorithm for assembly line 

balancing. European Journal of Operational Research, 184, 39–56. 

 

Boysen, N., Fliedner, M., & Scholl, A. (2007). A classification of assembly line 

balancing problems. European Journal of Operational Research, 183, 674–693. 

 

Boysen, N., Fliedner, M., & Scholl, A. (2008). Assembly line balancing: Which 

model to use? International Journal of Production Economics, 111, 509-528. 

 
 



 131

 

Brailsford, S. C., Potts, C. N., & Smith, B. M. (1999). Constraint satisfaction 

problems: Algorithms and applications. European Journal of Operational 

Research, 119, 57-581. 

 

Brown, E. C., & Sumichrast, R. T. (2005). Evaluating performance advantages of 

grouping genetic algorithms. Engineering Applications of Artificial Intelligence, 

18, 1-12. 

 

Brudaru, O., & Valmar, B. (2004). Genetic algorithm with embryonic chromosomes 

for assembly line balancing with fuzzy processing times. The 8th International 

Research/Expert Conference Trends in the Development of Machinery and 

Associated Technology, Neum, Bosnia and Herzegovina. 

 

Bryton, B. (1954). Balancing of a Continuous Production Line, Unpublished M.S. 

Thesis, Northwestern University. 

 

Bukchin, J., Dar-El, E. M., & Rubinovitz, J. (2002). Mixed-model assembly line 

design in a make-to-order environment. Computers and Industrial Engineering, 

41, 405–421.  

 

Bukchin, J., & Rubinovitz, J. (2003). A weighted approach for assembly line design 

with station paralleling and equipment selection. IIE Transactions, 35, 73-85. 

 

Bukchin, J., & Tzur, M. (2000). Design of flexible assembly line to minimize 

equipment cost. IIE Transactions, 32(7), 585-598. 

 

Bukchin, Y., & Rubinowitch, J. (2006). A branch-and-bound based solution 

approach for the mixed-model assembly line-balancing problem for minimizing 

stations and task duplication costs. European Journal of Operational Research, 

174, 492-508. 

 

 
 



 132

Capacho, L., & Pastor, R. (2008). ASALBP: the alternative subgraphs assembly line 

balancing problem. International Journal of Production Research, 46, 3503–

3516. 

 

Capacho, L., Pastor, R., Dolgui, A., & Guschinskaya, O. (2009). An evaluation of 

constructive heuristic methods for solving the alternative subgraphs assembly line 

balancing problem. Journal of Heuristics, 15(2), 109-132. 

 

Carnahan, B. J., Norman, B. A., & Redfern, M. S. (2001). Incorporating physical 

demand criteria into assembly line balancing. IIE Transactions, 33, 875-887. 

 

Carraway R. L. (1989). A dynamic programming approach to stochastic assembly 

line balancing. Management Science, 35(4), 459-471. 

 

Cevikcan, E., Durmusoglu, M. B., & Unal, M. E. (2009). A team-oriented design 

methodology for mixed model assembly systems. Computers & Industrial 

Engineering, 56, 576–599. 

 

Chan, C. C. K., Hui, P. C. L., Yeung, K. W., & Ng, F. S. F. (1998). Handling the 

assembly line balancing problem in the clothing industry using a genetic 

algorithm. International Journal of Clothing Science and Technology, 10(1), 21-

37. 

 

Chen, R. S., Lu, K. Y., & Yu, S. C. (2002). A hybrid genetic algorithm approach on 

multi-objective of assembly planning problem. Engineering Applications of 

Artificial Intelligence, 15, 447–457. 

 

Chiang, W. C. (1998). The application of a tabu search metaheuristic to the assembly 

line balancing problem. Annals of Operations Research, 77, 209–227. 

 

Chiang, W. C., & Urban, T. L. (2006). The stochastic U-line balancing problem: A 

heuristic approach. European Journal of Operational Research, 175, 1767-1781. 

 
 

http://www.springerlink.com/content/102935/?p=777413af13e7489db75adf764fba1269&pi=0
http://www.springerlink.com/content/r2r3155m0812/?p=777413af13e7489db75adf764fba1269&pi=0


 133

 

Choi, G. (2009). A goal programming mixed-model line balancing for processing 

time and physical workload. Computers & Industrial Engineering, 57(1), 395-

400. 

 

Cilkin, S. (2003). Line balancing with genetic algorithms. Unpublished Master 

Thesis, The Graduate School of Natural and Applied Sciences, Gazi University, 

Ankara. 

 

Coley, D. A. (1999). An introduction to genetic algorithms for scientists and 

engineers. Singapore: World Scientific. 

 

Corominas, J. P. A. (1999). Modeling and solving the SALB-E problem. 

Proceedings of the 1999 IEEE International Symposium on Assembly and Task 

Planning. Porto, Portugal, July, 356-360. 

 

Corominas, A., Pastor, R., & Plans, J. (2008). Balancing assembly line with skilled 

and unskilled workers. Omega, 36, 1126-1132. 

 

Dar-El, E. M., & Rubinovitch, Y. (1979). MUST-A multiple solutions technique for 

balancing single model assembly lines. Management Science, 25, 1105-1114. 

 

Davis, L. (1985). Applying adaptive algorithms to epistatic domains. In the 

Proceedings of the Ninth International Joint Conference on Artificial Intelligence, 

1, 162–164. 

 

De Fazio, T. L., & Whitney, D. E. (1987). Simplified generation of all mechanical 

assembly sequences. IEEE Journal of Robotics and Automation RA-3, 6, 640–658. 

 

Dimitriadis, S. G. (2006). Assembly line balancing and group working: A heuristic 

procedure for workers’ groups operating on the same product and workstation. 

Computers & Operations Research, 33, 2757–2774. 

 
 



 134

 

Dimopoulos, C., & Zalzala, A. M. S. (2000). Recent developments in evolutionary 

computation for manufacturing optimization: problems, solutions and 

comparisons. IEEE Transactions on Evolutionary Computation, 4(2), 93-113. 

 

Dorigo, M., Maniezzo, V., & Colorni, A. (1996). The ant system: optimization by a 

colony of cooperating agents. IEEE Transactions on Systems, Man, and 

Cybernetics-Part B, 26, 1-13. 

 

Dorigo, M., Di Caro, G., & Gambardella, L.M. (1999) Ant algorithms for discrete 

optimization. Artificial Life, 5, 137-172. 

 

Dowsland, K. A. (1996). Genetic Algorithms-A Tool for OR? The Journal of the 

Operational Research Society, 47(4), 550-561. 

 

Dreo, J., Siarry, P., Petrowski, A., & Taillard, E. (2006). Metaheuristics for Hard 

Optimization. Berlin Heidelberg: Springer-Verlag. 

 

Ege, Y., Azizoglu, M., & Ozdemirel, N. E. (2009) Assembly line balancing with 

station paralleling. Computers & Industrial Engineering, 57(4), 1218-1225. 

 

Eiben, A. E., Michalewicz, Z., Schoenauer, M., & Smith, J.E. (2007). Parameter 

control in evolutionary algorithms. In Studies in Computational Intelligence (SCI) 

54(19–46). Berlin Heidelberg: Springer-Verlag. 

 

Erel, E., Sabuncuoglu, I., & Aksu, B. A. (2001). Balancing of U-type assembly 

systems using simulated annealing. International Journal of Production Research, 

39, 3003–3015. 

 

Erel, E., & Sarin, S. C. (1998). A survey of the assembly line balancing procedures. 

Production Planning and Control, 9, 414–434.  

 

 
 



 135

Falkenauer, E. (1991). A genetic algorithm for grouping. In the Proceedings of the 

Fifth International Symposium on Applied Stochastic Models and Data Analysis, 

Granada, Spain. 

 

Falkenauer, E. (1997). A grouping genetic algorithm for line balancing with resource 

dependent task times. In the Proceedings of the Fourth International Conference 

on Neural Information Processing, Dunedin, New Zealand, 464-468. 

 

Falkenauer, E., & Delchambre, A. (1992). A genetic algorithm for bin packing and 

line balancing. In the Proceedings of the 1992 IEEE International Conference on 

Robotics and Automation, Nice, France, 1189-1192. 

 

Fonseca, D. J., Guest, C.L., Elam, M., & Karr, C.L. (2005). A fuzzy logic approach 

to assembly line balancing. Mathware & Soft Computing, 12, 57-74. 

 

Gamberini, R., Grassi, A., & Rimini, B. (2006). A new multi-objective heuristic 

algorithm for solving the stochastic assembly line re-balancing problem. 

International Journal of Production Economics, 102, 226–243. 

 

Gao, J., Sun, L., Wang, L., & Gen, M. (2009) An efficient approach for type II 

robotic assembly line balancing problems. Computers & Industrial Engineering, 

56, 1065–1080 

 

Gen, M., & Cheng, R. (1997). Genetic algorithms & engineering design. New York: 

John Wiley & Sons. 

 

Gen, M., Cheng, R., & Lin L. (2008). Network models and optimization: 

multiobjective genetic algorithm approach. London: Springer-Verlag. 

 

Ghosh, S., & Gagnon, R. J. (1989). A comprehensive literature review and analysis 

of the design, balancing and scheduling of assembly systems. International 

Journal of Production Research, 27, 637-670. 

 
 



 136

 

Glover, F. (1986). Future paths for integer programming and links to artificial 

intelligence. Computers and Operations Research, 13(5), 533-549. 

 

Gokcen, H., & Agpak, K. (2006). A goal programming approach to simple U-line 

balancing problem. European Journal of Operational Research, 171, 577–585.  

 

Gokcen, H., Agpak, K., & Benzer, R. (2006). Balancing of parallel assembly lines. 

International Journal of Production Economics, 103, 600–609.  

 

Gokcen, H., Agpak, K., Gencer, C., & Kizilkaya, E. (2005). A shortest route 

formulation of simple U-type assembly line balancing problem. Applied 

Mathematical Modelling, 29, 373-380. 

 

Gokcen, H., & Erel, E. (1997). A goal programming approach to mixed-model 

assembly line balancing problem. International Journal of Production Economics, 

48(2), 177-185. 

 

Goldberg, D. E. (1989) Genetic Algorithms in Search, Optimization & Machine 

Learning. Boston: Addison-Wesley. 

 

Goldberg, D. E., & Deb, K. (1991). A comparative analysis of selection schemes 

used in genetic algorithms. In G.J.E. Rawlins, (Ed.). (53-69). Foundations of 

Genetic Algorithms. San Francisco: Morgan Kaufmann. 

  

Goncalves, J. F., & De Almedia, J. R. (2002). A hybrid genetic algorithm for 

assembly line balancing. Journal of Heuristic, 8, 629-642. 

 

Groover, M. P. (2001). Automation, production systems, and computer-integrated 

manufacturing (2nd ed.). New Jersey: Prentice Hall. 

 

 
 



 137

Guerriero, F., & Miltenburg, J. (2002). The stochastic U-line balancing problem. 

Naval Research Logistics, 50(1), 31-57. 

 

Guo, Z. X., Wong, W. K., Leung, S. Y. S., Fan, J. T., & Chan, S. F. (2008). A 

genetic-algorithm-based optimization model for solving the flexible assembly line 

balancing problem with work sharing and workstation revisiting. IEEE 

Transactions on Systems, Man, and Cybernetics-Part C: Applications and 

Reviews, 38(2), 218-228. 

 

Gutjahr, A. L. & Nemhauser, G. L. (1964). An algorithm for the line balancing 

problem. Management Science, 11(2), 308-315. 

 

Haupt R. L., & Haupt S. E. (2004). Practical genetic algorithms (2nd ed.). New 

Jersey: John Wiley. 

 

Haq, A. N., Jayaprakash, J., & Rengarajan, K. (2006). A hybrid genetic algorithm 

approach to mixed-model assembly line balancing. International Journal of 

Advanced Manufacturing Technology, 28, 337–341. 

 

Held, M., & Karp, R. M., (1961) Dynamic programming approach to sequencing 

problems. Proceedings of the 16th ACM annual conference, 71.201 - 71.204.    

 

Held, M., Karp, R. M., & Shareshian, R. (1963). Assembly-line balancing-Dynamic 

programming with precedence constraints, Operations Research, 11(3), 442-460. 

 

Helgeson, N. B., & Birnie, D. P. (1961). Assembly line balancing using the ranked 

positional weight technique. Journal of Industrial Engineering, 12(6), 394-398. 

 

Helgeson, W. B., Salveson, M. E., & Smith, W. W. (1954) How to balance an 

assembly line, Technical Report, No: 7, New Caraan, Conn: Carr Press. 

 

 
 



 138

Hoffmann T. R. (1963). Assembly line balancing with a precedence matrix. 

Management Science, 9(4), 551–562. 

 

Hoffmann T. R. (1992). EUREKA: A hybrid system for assembly line balancing. 

Management Science, 38, 39–47 

 

Holland, J. H. (1975). Adaptation in Natural and Artificial Systems. Ann Arbor, 

Michigan: The University of Michigan Press. 

 

Homem de Mello, L. S., & Sanderson, A. C. (1990). AND/OR graph representation 

of assembly plans. IEEE Transactions on Robotics and Automation, 6(2), 188–

199. 

 

Hop, N. V. (2006). A heuristic solution for fuzzy mixed-model line balancing 

problem. European Journal of Operational Research, 168, 798-810. 

 

Hu, S. J., Zhu, X., Wang, H., & Koren, Y. (2008). Product variety and manufacturing 

complexity in assembly systems and supply chains. CIRP Annals - Manufacturing 

Technology, 57(1), 45-48. 

 

Hwang, R. K., & Katayama, H. (2009). A multi-decision genetic approach for 

workload balancing of mixed-model U-shaped assembly line systems. 

International Journal of Production Research, 47(14), 3797–3822. 

 

Hwang, R. K., Katayama, H., & Gen, M. (2008). U-shaped assembly line balancing 

problem with genetic algorithm. International Journal of Production Research, 

46(16), 4637–4649. 

 

ILOG OPL Studio 3.7 (2003). Language manual. ILOG SA: Gentilly. 

 

 
 

http://www.sciencedirect.com/science/journal/00078506
http://www.sciencedirect.com/science/journal/00078506
http://www.sciencedirect.com/science?_ob=PublicationURL&_tockey=%23TOC%2340087%232008%23999429998%23690163%23FLA%23&_cdi=40087&_pubType=J&view=c&_auth=y&_acct=C000038578&_version=1&_urlVersion=0&_userid=691192&md5=c25fa35160f389cf6ce40c2f2ce9a826


 139

Ishibuchi, M., & Murata, T. (1998). A multi-objective genetic local search algorithm 

and its application to flowshop scheduling. IEEE Transactions on Systems, Man, 

and Cybernetics-Part C: Applications and Reviews, 28(3), 392-403. 

 

Jiao, J., Kumar, A., & Martin, W. (2006). A web-based interactive advisor for 

assembly line balancing. International Journal of Advanced Manufacturing 

Technology, 27,  1192-1201. 

 

Jin, M. & Wu, S. D. (2002). A new heuristic method for mixed model assembly line 

balancing problem. Computers & Industrial Engineering, 44, 159–169. 

 

Jackson, J. R. (1956). A Computing Procedure for a Line Balancing Problem.  

Management Science, 2, 261-272. 

 

Johnson, R. V. (1981). Assembly line balancing algorithms: Computation 

comparisons. International Journal of Production Research, 19, 277- 287. 

 

Johnson, R. V. (1983). A branch and bound algorithm for assembly line balancing 

problems with formulation irregularities. Management Science, 29, 1309–1324.  

 

Johnson, R. V. (1988). Optimally balancing large assembly lines with “FABLE”. 

Management Science, 34(2), 240–253. 

 

Kara, Y., Ozcan, U., & Peker, A. (2007a). An approach for balancing and sequencing 

mixed-model JIT U-lines. International Journal of Advanced Manufacturing 

Technology, 32, 1218-1231. 

 

Kara, Y., Ozcan, U., & Peker, A. (2007b). Balancing and sequencing mixed-model 

just-in-time U-lines with multiple objectives. Applied Mathematics and 

Computation, 184, 566-588. 

 

 
 



 140

Kara, Y., Paksoy, T., & Chang C. (2009). A binary fuzzy goal programming 

approach to single model straight and U-shaped assembly line balancing. 

European Journal of Operational Research, 195, 335-347. 

 

Kara, Y., & Tekin, M. (2009). A mixed integer linear programming formulation for 

optimal balancing of mixed-model U-lines. International Journal of Production 

Research, 47(15), 4201-4233. 

 

Kilbridge, M. D., & Wester, L. (1961). A heuristic method of assembly line 

balancing. The Journal of Industrial Engineering, 12(4), 292-298. 

 

Kilbridge, M. D., & Wester, L. (1962). A Review of analytical systems of line 

balancing, Operations Research, 10(5), 626-638. 

 

Kilincci, O. (2010). A Petri net-based heuristic for simple assembly line balancing 

problem of type-2. International Journal of Advanced Manufacturing Technology, 

46, 329-338. 

Kilincci, O., & Bayhan, G. M. (2006). A Petri net approach for simple assembly line 

balancing problems. International Journal of Advanced Manufacturing 

Technology, 30, 1165-1173. 

 

Kilincci, O., & Bayhan, G. M. (2008). A P-invariant-based algorithm for simple 

assembly line balancing problem of type-1. International Journal of Advanced 

Manufacturing Technology, 37, 400-409. 

 

Kim, J. Y., Kim, Y & Kim, Y. K. (2001). An endosymbiotic evolutionary algorithm 

for optimization. Applied Intelligence, 15(2), 117–130.  

 

Kim, Y. J., Kim, Y. K., & Cho, Y. (1998). A heuristic-based genetic algorithm for 

workload smoothing in assembly lines. Computers and Operations Research, 

25(2), 99-111. 

 

 
 



 141

Kim, Y. K., Song, W. S., & Kim, J. H. (2009). A mathematical model and a genetic 

algorithm for two-sided assembly line balancing. Computers and Operations 

Research 36, 853 – 865. 

 

Kim, Y. K., Kim, J. Y. & Kim, Y. (2000a). A co-evolutionary algorithm for 

balancing and sequencing in mixed model assembly lines. Applied Intelligence, 

13, 247–258.  

 

Kim, Y. K., Kim, J. Y., & Kim, Y. (2006). An endosymbiotic evolutionary algorithm 

for the integration of balancing and sequencing in mixed-model U-lines. 

European Journal of Operations Research, 168, 838–852. 

 

Kim, Y. K., Kim, S. J. & Kim, J. Y. (2000b).  Balancing and sequencing mixed-

model U-lines with a co-evolutionary algorithm. Production Planning and 

Control, 11, 754–764.  

 

Kim, Y. K., Kim, Y., & Kim, Y. J. (2000c). Two-sided assembly line balancing: a 

genetic algorithm approach. Production Planning and Control, 11(1), 44-53. 

 

Kim, Y. K., Kim, Y. J., & Kim, Y. (1996). Genetic algorithms for assembly line 

balancing with various objectives. Computers and Industrial Engineering, 30(3), 

397-409.  

 

Kirkpatrick, S., Gelatt, C., & Vecchi, M. (1983). Optimization by simulated 

annealing. Science, 220(4598), 671-680. 

 

Klein, M. (1963). On assembly line balancing. Operations Research, 11, 274-281. 

 

Klein, R., & Scholl, A. (1996). Maximizing the production rate in simple assembly 

line balancing - A branch and bound procedure. European Journal of Operations 

Research, 91, 367–385. 

 

 
 



 142

Koc, A., Sabuncuoglu, I., & Erel, E. (2009). Two exact formulations for disassembly 

line balancing problems with task precedence diagram construction using an 

AND/OR graph. IIE Transactions, 41, 866–881. 

 

Lambert, A. J. D. (2006). Generation of assembly graphs by systematic analysis of 

assembly structures. European Journal of Operational Research, 168, 932-951. 

 

Lapierre, S. D. & Ruiz, A. (1999). Equilibrer une chaîne d’assemblage avec 

Microsoft ACCESS97. In Proceedings of 3rd International Industrial Engineering 

Conference, 357-364. Presses Internationales Polytechnique, Montreal. 

 

Lapierre, S. D., Ruiz, A., & Soriano, P. (2006). Balancing assembly lines with tabu 

search. European Journal of Operational Research, 168, 826–837. 

 

Lee, S., Soak, S., Kim, K., Park, H., & Jeon, M. (2008). Statistical properties analysis 

of real world tournament selection in genetic algorithms. Applied Intelligence, doi 

10.1007/s10489-007-0062-2. 

 

Leu, Y. Y., Matheson, L. A., & Rees, L. P. (1994). Assembly line balancing using 

genetic algorithms with heuristic generated initial populations and multiple 

criteria. Decision Sciences, 15, 581-606. 

 

Levitin, G., Rubinovitz, J., & Shnits, B. (2006). A genetic algorithm for robotic 

assembly line balancing. European Journal of Operational Research, 168, 811–

825. 

 

Liu, S. B., Ng, K. M., & Ong, H. L. (2008). Branch-and-bound algorithms for simple 

assembly line balancing problem. International Journal of Advanced 

Manufacturing Technology, 36, 169-177. 

 

 
 



 143

Liu, S. B., Ong, H. L., & Huang, H. C. (2005). A bidirectional heuristic for stochastic 

assembly line balancing Type II problem. International Journal of Advanced 

Manufacturing Technology, 25, 71-77. 

 

Macaskill, J. L. C. (1972). Production-line balances for mixed model lines. 

Management Science, 19, 423–434. 

 

Margulis, L. (1980). Symbiosis in cell evolution. San Fransisco: WH Freeman. 

 

Martinez, U., & Duff, W. S. (2004). Heuristic approaches to solve the U-shaped line 

balancing problem augmented by genetic algorithms. In the Proceedings of the 

2004 Systems and Information Engineering Design Symposium, 287-293. 

 

McMullen, P. R., & Frazier, G. V. (1998). Using simulated annealing to solve a 

multiobjective assembly line balancing problem with parallel workstations. 

International Journal of Production Research, 36, 2717–2741. 

 

McMullen, P. R., & Tarasewich, P. (2003). Using ant techniques to solve the 

assembly line balancing problem. IIE Transactions. 35, 605–617. 

 

McMullen, P. R., & Tarasewich, P. (2006).  Multi-objective assembly line balancing 

via a modified ant colony optimization technique. International Journal of 

Production Research, 44(1), 27-42. 

 

Mendes, A. R., Ramos A.L., Simaria A.S., & Vilarinho P.M. (2005). Combining 

heuristic procedures and simulation models for balancing a PC camera assembly 

line. Computers & Industrial Engineering, 49, 413–431. 

 

Michalewicz, Z., & Schoenauer, M. (1996). Evolutionary algorithms for constrained 

parameter optimization problems. Evolutionary Computation, 4, 1-32. 

 

 
 



 144

Miltenburg, J. (2002). Balancing and sequencing mixed-model U-shaped production 

lines. International Journal of Flexible Manufacturing Systems, 14, 119-151. 

 

Miltenburg, J., & Wijngaard, J., (1994). The U-line line balancing problem. 

Management Science, 40, 1378–1388.  

 

Miralles, C., Garcia-Sabater, J. P., Andres, C. & Cardos, M. (2008). Branch and 

bound procedures for solving the assembly line worker assignment and balancing 

problem: Application to sheltered work stations for disabled. Discrete Applied 

Mathematics, 156, 352-367. 

 

Mitchell, M. (1996). An Introduction to Genetic Algorithms. Cambridge: The MIT 

Press. 

 

Montgomery, D.C. (2001). Design and Analysis of Experiments. New York: John 

Wiley & Sons. 

 

Moodie, C. L. & Young, H. H. (1965). A heuristic method of assembly line 

balancing for assumptions of constant or variable work element times. Journal of 

Industrial Engineering, 16, 23-29. 

 

Moon, I., Logendran, R., & Lee, J. (2009). Integrated assembly line balancing with 

resource restrictions. International Journal of Production Research, 47(19), 

5525–5541 

 

Mosheiov, G. (1991). V-shaped policies for scheduling deteriorating jobs. 

Operations Research, 39, 979-991. 

 

Mosheiov, G. (2001). Scheduling problems with a learning effect. European Journal 

of Operational Research, 132, 687-693. 

 

 
 



 145

Murata, T., & Ishibuchi, M. (1996). Positive and negative combination effects of 

crossover and mutation operators in sequencing problems. In the Proceedings of 

IEEE International Conference on Evolutionary Computation, 170-175. 

 

Murata, T., Ishibuchi, M., & Tanaka, H. (1996). Multi-objective genetic algorithms 

and its application to flowshop scheduling. Computers & Industrial Engineering, 

30(4), 957-968. 

 

Nearchou, A. C. (2007). Balancing large assembly lines by a new heuristic based on 

differential evolution method. International Journal of Advanced Manufacturing 

Technology, 34, 1016–1029. 

 

Nearchou, A. C. (2008). Multi-objective balancing of assembly lines by population 

heuristic. International Journal of Production Research, 46(8), 2275–2297. 

 

Ozcan, U., & Toklu, B. (2009). Multiple-criteria decision–making in two-sided 

assembly line balancing: A goal programming and a fuzzy goal programming 

models, Computers & Operations Research, 36, 1955-1965. 

 

Park, K., Park, S., Kim, W. (1997). A heuristic for an assembly line balancing 

problem with incompatibility, range, and partial precedence constraints. 

Computers and Industrial Engineering, 32, 321–332.  

 

Pastor, R, Andris, C., Duran, A., & Pirez, M. (2002). Tabu search algorithms for an 

industrial multi-product and multi-objective assembly line balancing problem, 

with reduction of the task dispersion. Journal of the Operational Research 

Society, 53(12), 1317-1323. 

 

Patterson, J. H., & Albracht, J. J. (1975). Assembly-line balancing: Zero-one 

programming with Fibonacci Search. Operations Research, 23, 66–172. 

 

 
 



 146

Peeters, M., & Degraeve, Z. (2006). A linear programming based lower bound for 

the simple assembly line balancing problem. European Journal of Operational 

Research, 168, 716–731. 

 

Peterson, C. (1993). A tabu search procedure for the simple assembly line balancing 

problem. In the Proceedings of the Decision Science Institute Conference, 

Washington, DC, 1502-1504. 

 

Pierreval, H., Caux, C., Paris, J. L., & Viguier, F. (2003). Evolutionary approaches to 

the design and organization of manufacturing systems. Computers & Industrial 

Engineering, 44, 339-364. 

 

Pirlot, M. (1996) General local search methods. European Journal of Operational 

Research, 92, 493-511. 

 

Ponnambalam, S. G., Aravindan, P., & Naidu, G. M. (2000). A multi-objective 

genetic algorithm for solving assembly line balancing problem. The International 

Journal of Advanced Manufacturing Technology, 16, 341–352. 

 

Potter, M. A., (1997). The design and analysis of a computational model of 

cooperative coevolution. Ph.D. dissertation, George Mason University, UA. 

 

Reeves, C. R. (1997). Genetic algorithms for the operations researcher. INFORMS 

Journal on Computing, 9(3), 231–250. 

 

Reeves, C. R., & Rowe, J. E. (2003). Genetic algorithms: Principles and 

perspectives. Dordrecht: Kluwer Academic Publishers. 

 

Rekiek, B., & Delchambre, A. (2006). Assembly line design. London: Springer-

Verlag. 

 

 
 



 147

Rekiek, B., De Lit, P., & Delchambre, A. (2000). Designing Mixed-Product 

Assembly Lines. IEEE Transactions on robotics and Automation, 16(3), 268-280. 

 

Rekiek, B., De Lit, P., Pellichero, F., Falkenauer, E., & Delchambre, A. (1999). 

Applying the equal piles problem to balance assembly lines. In the Proceedings of 

the ISATP 1999, Porto, Portugal, 399-404. 

 

Rekiek, B., Dolgui, A., Delchambre, A., & Bratcu, A. (2002). State of art of 

optimization methods for assembly line design. Annual Review in Control, 26, 

163-174. 

 

Robert, S. D., & Villa, C. D. (1970). On a multi-product assembly line balancing 

problem. AIIE Transactions, 2, 361–364. 

 

Robinson, L. W., McClain, J. O., & Thomas, L. J. (1990). The good, the bad and the 

ugly: Quality on an assembly line. International Journal of Production Research, 

28, 963–980.  

 

Rothlauf, F. (2006). Representations for Genetic and Evolutionary Algorithms (2nd 

Ed.), Berlin Heidelberg: Springer. 

 

Rubinovitz, J., & Levitin, G. (1995). Genetic Algorithm for assembly line balancing. 

International Journal of Production Economics, 41, 343-354. 

 

Ruijun, Z., Dingfang, C., Yong, W., Zhonghua, Y., & Xinxin, W. (2007). Study on 

line balancing problem based on improved genetic algorithms. In the Proceedings 

of the International Conference on Wireless Communications, Networking and 

Mobile Computing, WiCom 2007, 21-25 Sept. 2007, 2033 – 2036. 

 

Sabuncuoglu, I., Erel, E., & Alp, A. (2009). Ant colony optimization for the single 

model U-type assembly line balancing problem. International Journal of 

Production Economics, 120, 287–300. 

 
 

http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=4339774
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=4339774


 148

 

Sabuncuoglu, I., Erel, E., & Tanyer, M. (2000). Assembly line balancing using 

genetic algorithms. Journal of Intelligent Manufacturing, 11, 295-310. 

 

Salum, L., & Supciller, A. A. (2007). Rule-based representation of precedence 

constraints for assembly line balancing. In the proceedings of the 27th National 

Conference on Operations Research and Industrial Engineering, in Turkish. 

 

Salum, L., & Supciller, A. A. (2008). Rule-based modeling of assembly constraints 

for line balancing. ICIC (2), LNAI, 5227, 783-789. 

 

Salveson, M. E. (1955). The assembly line balancing problem. The Journal of 

Industrial Engineering, 6 (3), 18–25.  

 

Scholl, A. (1993). Data of assembly line balancing problems. Working Paper, TH 

Darmstadt. Retrieved December 7, 2008, from http://www.assembly-line-

balancing.de/. 

 

Scholl, A. (1999). Balancing and sequencing of assembly lines (2nd ed.). New York: 

Springer-Verlag. 

 

Scholl, A., & Becker, C. (2006). State-of-the-art exact and heuristic solution 

procedures for simple assembly line balancing. European Journal of Operations 

Research, 168, 666-693.  

 

Scholl, A., Becker, C., & Fliedner, M. (2009). Optimally solving the alternative 

subgraphs assembly line balancing problem. Annals of Operations Research, 172, 

243–258. 

 

Scholl, A., & Boysen, N. (2009). Designing parallel assembly lines with split 

workplaces: Model and optimization procedure. International Journal of 

Production Economics, 119(1), 90-100. 

 
 

http://www.sciencedirect.com/science/journal/09255273
http://www.sciencedirect.com/science/journal/09255273


 149

 

Scholl, A., Fliedner, M., & Boysen, N. (2010). Absalom: Balancing assembly lines 

with assignment restrictions. European Journal of Operations Research, 200(3), 

688-701. 

 

Scholl, A., & Klein, R. (1999). Balancing assembly lines effectively - a 

computational comparison. European Journal of Operational Research, 114, 50–

58. 

 

Scholl, A., & Voss, S. (1996). Simple assembly line balancing-Heuristic approaches. 

Journal of Heuristics, 2, 217–244. 

 

Senin, N., Groppetti, R., & Wallace D. R. (2000). Concurrent assembly planning 

with genetic algorithms. Robotics and Computer Integrated Manufacturing, 16, 

65-72. 

 

Simaria, A. S., & Vilarinho, P. M. (2001a). A genetic algorithm approach for 

balancing mixed model assembly lines with parallel workstations. In the 

Proceedings of the 6thAnnual International Conference on Industrial Engineering 

Theory, Applications and Practice, November 18-20, 2001, San Francisco, USA. 

 

Simaria, A. S., & Vilarinho, P. M. (2001b). The simple assembly line balancing 

problem with parallel workstations- a simulated annealing approach. International 

Journal of Industrial Engineering, 8(3), 230-240. 

 

Simaria, A. S., & Vilarinho, P. M. (2004). A genetic algorithm based approach to the 

mixed-model assembly line balancing problem of type II. Computers & Industrial 

Engineering, 47, 391–407. 

 

Simaria, A. S., & Vilarinho, P. M. (2009). 2-ANTBAL: An ant colony optimization 

algorithm for balancing two-sided assembly line. Computers & Industrial 

Engineering, 56, 489–506. 

 
 

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6VCT-4VKXC2H-1&_user=10&_coverDate=02%2F01%2F2010&_rdoc=1&_fmt=full&_orig=na&_cdi=5963&_docanchor=&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=014e9f9410134457a80582f4cdbf0e43
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6VCT-4VKXC2H-1&_user=10&_coverDate=02%2F01%2F2010&_rdoc=1&_fmt=full&_orig=na&_cdi=5963&_docanchor=&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=014e9f9410134457a80582f4cdbf0e43
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6VCT-4VKXC2H-1&_user=10&_coverDate=02%2F01%2F2010&_rdoc=1&_fmt=full&_orig=na&_cdi=5963&_docanchor=&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=014e9f9410134457a80582f4cdbf0e43


 150

 

Sivanandam, S. N., & Deepa, S. N. (2008). Introduction to Genetic Algorithms. New 

York: Springer Berlin Heidelberg. 

 

Smith, B. (1995). A tutorial on constraint programming. Research Report 95.14, 

School of Computer Studies, University of Leeds. 

 

Smith, A. E., & Coit, D. W. (1997). Constraint-handling techniques - Penalty 

functions. In Handbook of Evolutionary Computation, Chapter C 5.2. Bristol: 

Institute of Physics Publishing and Oxford University Press. 

 

Sprecher, A. (1999). A competitive branch-and-bound algorithm for the simple 

assembly line balancing problem. International Journal of Production Research, 

37, 1787–1816. 

 

Stockton, D. J., Quinn, L., & Khalil, R. A. (2004a). Use of genetic algorithms in 

operations management Part 1: applications. Proceeding of the Institution of 

Mechanical Engineers-Part B: Journal of Engineering Manufacture, 218(3), 315-

327. 

 

Stockton, D. J., Quinn, L., & Khalil, R. A. (2004b). Use of genetic algorithms in 

operations management Part 2: results. Proceeding of the Institution of 

Mechanical Engineers-Part B: Journal of Engineering Manufacture, 218(3), 329-

343. 

 

Storn, R., & Price, K. (1997) Differential evolution - a simple and efficient heuristic 

for global optimization over continuous spaces. Journal of Global Optimization, 

11(4), 341-354. 

 

Supciller, A. A., & Salum, L. (2009). A genetic algorithm for the complex-

constrained assembly line balancing problem. 23rd European Conference on 

Operational Research, EURO 23, Bonn, Germany. 

 
 



 151

 

Suresh, G., & Sahu, S. (1994). Stochastic assembly line balancing using simulated 

annealing. International Journal of Production Research, 32(8), 1801-1810. 

 

Suresh, G., Vinod, V. V., & Sahu, S. (1996). A genetic algorithm for assembly line 

balancing. Production Planning and Control, 7(1), 38-46. 

 

Suwannarongsri, S., & Puangdownreong, D. (2008). Optimal assembly line 

balancing using tabu search with partial random permutation technique. 

International Journal of Management Science and Engineering Management, 

3(1), 3-18. 

 

Talbot, F. B. & Patterson, J. H. (1984). An integer programming algorithm with 

network cuts for solving the assembly line balancing problem. Management 

Science, 30, 85-99. 

 

Talbot, F. B., Patterson, J. H., & Gehrlein, W. V. (1986). A comparative evaluation 

of heuristic line balancing techniques. Management Science, 32, 430 - 454. 

 

Tasan, S. O., & Tunalı, S. (2008). A review of the current applications of genetic 

algorithms in assembly line balancing. Journal of Intelligent Manufacturing, 19, 

49-69. 

 

Thangavelu, S. R. & Shetty, C. M. (1971). Assembly line balancing by zero-one 

integer programming. AIIE Transactions, 3, 61–68. 

 

Toksari, M. D., Isleyen, S. K., Guner, E., & Baykoc, O. F. (2008). Simple and U-

type assembly line balancing problems with a learning effect. Applied 

Mathematical Modelling, 32, 2954-2961.  

 

 
 



 152

Toksari, M. D., Isleyen, S. K., Guner, E., & Baykoc, O. F. (2010). Assembly line 

balancing problem with deterioration tasks and learning effect. Expert Systems 

with Applications, 37(2), 1223-1228.  

 

Topaloglu, S., Salum, L., & Supciller, A. A. (2009). Constraint programming for 

solving the complex-constrained assembly line balancing problem. 23rd 

European Conference on Operational Research, EURO 23, Bonn, Germany. 

 

Tseng, H. E., & Tang, C. E. (2006) A sequential consideration for assembly 

sequence planning and assembly line balancing using the connector concept. 

International Journal of Production Research, 44(1), 97–116. 

 

Tsujimura, Y., Gen, M., & Kubota, E. (1995). Solving fuzzy assembly line balancing 

using genetic algorithms. Computers & Industrial Engineering, 29(1-4), 543-547. 

 

Ugurdag, H. F., Rachamadugu, R., & Papachristou, C. A. (1997). Designing paced 

assembly lines with fixed number of stations. European Journal of Operational 

Research, 102(3), 488-501. 

 

Urban, T. L., & Chiang, W. C. (2006). An optimal piecewise-linear optimization of 

the U-line balancing problem with stochastic task times. European Journal of 

Operational Research, 168, 771–782.  

 

Valente, S. A., Lopes, H. S., & Arruda, L. V. R. (2002). Genetic algorithms for the 

assembly line balancing problem: a real-world automotive application. In: R. Roy, 

M. Köppen, S. Ovaska, T. Fukuhashi, F. Hoffman, (Ed.). Soft Computing and 

Industry: Recent Applications (319-328), Berlin: Springer-Verlag. 

 

Van Assche, F., & Herroelen, W. S. (1979). An optimal procedure for the single 

model deterministic assembly line balancing problem. European Journal of 

Operational Research, 3, 142–149. 

 

 
 



 153

Vilarinho, P. M., & Simaria S. A. (2002). A two-stage heuristic method for balancing 

mixed-model assembly lines with parallel workstations. International Journal of 

Production Research, 40(6), 1405–1420. 

 

Vilarinho, P. M., & Simaria, A. S. (2006). ANTBAL: an ant colony optimization 

algorithm for balancing mixed-model assembly lines with parallel workstations. 

International Journal of Production Research, 44(2), 291–303.  

 

White, W. W. (1961) Comments on a paper by Bowman. Operations Research, 9(2), 

274-276.  

 

Wong, W. K., Mok, P. Y., & Leung, S. Y. S. (2006) Developing a genetic 

optimisation approach to balance an apparel assembly line. International Journal 

of Advanced Manufacturing Technology, 28, 387–394. 

 

Wu, E. F., Jin, Y., Bao, J. S., & Hu, X. F. (2008) A branch-and-bound algorithm for 

two-sided assembly line balancing. International Journal of Advanced 

Manufacturing Technology, 39, 1009-1015. 

 

Yu, J., & Yin, Y. (2009) Assembly line balancing based on an adaptive genetic 

algorithm. International Journal of Advanced Manufacturing Technology, DOI 

10.1007/s00170-009-2281-7. 

 

Yu, J., Yin, Y., & Chen, Z. (2006). Scheduling of an assembly line with a multi-

objective genetic algorithm. International Journal of Advanced Manufacturing 

Technology, 28, 551–555.  

 

Zhao, X., Ohno, K. & Lau, H.-S. (2004). A balancing problem for mixed model 

assembly lines with a paced moving conveyor. Naval Research Logistics, 51(3), 

446-464.  

 

 

 
 



 

 
 

154

APPENDICES 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

APPENDIX A1. Matrix representation for the rule-base of problems Bowman, Jaeschke, and Jackson with 1 OR 
 
BOWMAN    1 OR  

2 3 4 5 6 6 7 7 8 
1 2 2 3 3 4 5 6 6 
0 0 0 4 0 0 5 0 0 

 
 
JAESCHKE    1 OR     

2 2 3 4 4 5 6 7 8 9 9 9
1 0 1 2 3 4 4 4 5 6 7 8
3 4 0 1 0 2 2 2 0 0 0 0

 
 
JACKSON    1 OR        

2 3 4 5 6 7 7 7 8 8 9 10 10 11 11
1 1 1 1 2 3 4 5 6 7 7 8 5 9 10
0 0 0 0 0 0 0 0 6 0 0 8 0 0 0
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APPENDIX A2. Matrix representation for the rule-base of problem Mitchell with 1 OR, 2ORs and 3 ORs 
 
MITCHELL R   1 O                      

2 3 4 4 5 6 7 8 8 9 10 11 12 13 14 15 15 15 16 17 17 18 18 19 19 20 21 21
1 1 3 0 4 5 5 6 7 8 9 9 9 9 7 10 11 12 15 13 16 13 15 14 18 17 2 4
0 0 2 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 20

 
MITCHELL    2 ORs                      

2 3 4 4 5 6 7 8 8 9 10 11 12 13 14 15 15 15 16 17 17 18 18 19 19 20 21 21 21
1 1 3 0 4 5 5 6 7 8 9 9 9 9 7 10 11 12 15 13 16 13 15 14 18 17 2 4 0
0 0 2 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 4 20

 
MITCHELL    3 ORs                      

2 3 4 4 5 6 7 8 8 9 10 11 12 13 14 15 15 15 16 17 17 18 18 19 19 20 21 21 21
1 1 3 0 4 5 5 6 7 8 9 9 9 9 7 10 11 12 15 13 16 13 15 14 18 19 2 4 0
0 0 2 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 18 4 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 17 2 4 20
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0 0 0
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APPENDIX A3. Matrix representation for the rule-base of problem Roszieg with 1 OR, 2ORs and 3 ORs 
 
ROSZIEG  1 OR    
1 1 2 2 3 3 4 5 6 7 8 9 10 10 11 11 11 12 13 13 14 15 16 17 18 18 19 20 21 22 22 22 23 24 25 25 25
1 0 2 0 1 2 3 4 5 6 4 8 6 9 7 8 10 7 9 11 13 12 14 15 16 17 14 14 20 15 19 21 17 21 18 20 23
4 8 4 8 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 4 3 0 0 0 

 
ROSZIEG  2 ORs     
1 1 2 2 3 3 4 5 6 7 8 9 10 10 11 11 11 12 13 13 14 15 16 17 18 18 19 20 21 22 22 22 23 23 24 25 25 25 25 
1 0 2 0 1 2 3 4 5 6 4 8 6 9 7 8 10 7 9 11 13 12 14 15 16 17 14 14 20 15 19 21 17 0 21 18 20 23 0 
4 8 4 8 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7 2 0 8 0 30 4 3 0 0 0 1 2 1 2 2 22 
0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 0 30 0 0 0 0 0 1 2 2 24 

 
ROSZIEG  3 ORs     
1 1 2 2 3 3 4 5 6 7 8 9 10 10 11 11 11 12 13 13 14 15 16 17 18 18 19 20 21 22 22 22 23 23 24 25 25 25 25 
1 0 2 0 1 2 3 4 5 6 4 8 6 9 7 8 10 7 9 11 13 12 14 15 16 17 14 14 20 15 19 21 17 0 21 18 20 23 0 
4 8 4 8 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7 2 0 8 0 30 4 3 0 0 0 1 2 1 2 2 22 
0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 0 30 0 0 0 0 0 1 2 2 24 
0 0 0 0 0 0 0 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 0 30 0 0 0 0 0 1 2 2 21 
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APPENDIX A4. Matrix representation for the rule-base of problem Heskia with 1 OR, 2ORs and 3 ORs 
 
HESKIA    1 OR                               
3 4 5 6 7 8 9 10 10 11 12 13 14 15 15 16 17 18 18 19 20 21 22 23 24 25 26 27 28 28 28 28 28 28 28 28 28 28 
1 1 1 2 6 1 8 9 0 10 10 12 13 11 0 13 2 7 0 1 19 1 1 1 1 24 1 26 3 4 5 14 15 16 17 18 20 21 
0 0 0 0 0 0 0 9 6 0 0 0 0 11 13 0 0 7 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

         
 28 28 28 28        
 22 23 25 27        
 0 0 0 0        

 
 
HESKIA    2 OR  s                               
3 4 5 6 7 8 9 10 10 11 12 13 14 15 15 16 17 18 18 19 20 21 22 23 24 25 26 27 28 28 28 28 28 28 28 28 28 28 
1 1 1 2 6 1 8 9 0 10 10 12 13 11 0 13 2 7 0 1 19 1 1 1 1 24 1 26 3 4 5 14 15 16 17 18 20 21 
0 0 0 0 0 0 0 9 6 0 0 0 0 11 13 0 0 7 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 9 7 0 0 0 0 11 12 0 0 7 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

         
 28 28 28 28        
 22 23 25 27        
 0 0 0 0        
 0 0 0 0        
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HESKIA    3 OR  s                               
3 4 5 6 7 8 9 10 10 11 12 13 14 15 15 16 17 18 18 19 20 21 22 23 24 25 26 27 28 28 28 28 28 28 28 28 28 28
1 1 1 2 6 1 8 9 0 10 10 12 13 11 0 13 2 7 0 1 19 1 1 1 1 24 1 26 3 4 5 14 15 16 17 18 20 21
0 0 0 0 0 0 0 0 0 1 3 0 0 7 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 9 6 1 1 0 0 
0 0 0 0 0 0 0 0 0 1 2 0 0 7 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 9 7 1 1 0 0 
0 0 0 0 0 0 0 0 0 1 9 0 0 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 9 0 1 1 1 0 0 
        
 28 28 28 28       
 22 23 25 27       
 0 0 0 0       
 0 0 0 0       
 0 0 0 0       

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

159



 

APPENDIX A5. Matrix representation for the rule-base of problem Buxey with 1 OR, 2ORs and 3 ORs 
 
BUXEY     1 OR                              

3 4 5 6 8 8 9 10 11 12 13 14 15 15 16 16 17 17 18 19 20 21 22 22 23 23 24 25 25 25 26 27 28 29 29 29 29
1 3 4 2 5 7 5 0 0 2 8 4 1 3 6 5 7 1 0 2 3 1 7 0 2 6 3 4 5 7 86 7 9 8 1 1 1 1 1 1 1 1 1 19 18 2 2 2 2 2 2 2 2 2 2
0 0 0 0 4 0 0 0 7 2 0 0 0 0 0 0 0 0 0 0 0 1 0 2 0 0 0 0 0 0 06 0 0 0 1 0 0 1 1

 
BUXEY     2 OR  s                              

3 4 5 6 8 8 9 10 11 12 13 14 15 15 16 16 17 17 18 19 20 21 22 22 23 23 24 25 25 25 26 27 28 29 29 29 29
1 3 4 2 5 7 5 0 0 2 8 4 1 3 6 5 7 1 0 2 3 1 7 0 2 6 3 4 5 7 86 7 9 8 1 1 1 1 1 1 1 1 1 19 18 2 2 2 2 2 2 2 2 2 2
0 0 0 0 4 0 0 0 8 2 0 0 0 0 0 0 0 0 0 0 0 1 0 2 0 0 0 0 0 0 06 0 0 0 1 0 0 1 1
0 0 0 0 0 0 0 0 7 2 0 0 0 0 0 0 0 0 0 0 0 1 8 0 0 0 0 0 0 0 00 0 0 0 1 0 0 

 
BUXEY     3 OR  s                              

3 4 5 6 8 8 9 10 11 12 13 14 15 15 16 16 17 17 18 19 20 21 22 22 23 23 24 25 25 25 26 27 28 29 29 29 29
1 3 4 2 5 7 5 0 0 2 8 4 1 3 6 5 7 1 0 2 3 1 7 0 2 6 3 4 5 7 86 7 9 8 1 1 1 1 1 1 1 1 1 19 18 2 2 2 2 2 2 2 2 2 2
0 0 0 0 4 0 0 0 8 2 0 0 0 0 0 0 0 0 0 0 0 1 0 2 0 0 0 0 0 0 06 0 0 0 1 0 0 1 1
0 0 0 0 0 0 0 0 7 2 0 0 0 0 0 0 0 0 0 0 0 1 8 0 0 0 0 0 0 0 00 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 1 2 0 0 0 0 0 0 0 0 0 0 0 1 5 0 0 0 0 0 0 0 00 0 0 0 1 1 0 0 1
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APPENDIX A6. Matrix representation for the rule-base of problem Sawyer with 1 OR, 2ORs and 3 ORs 
 
SAWYER    1 OR                           
4 5 6 7 7 8 9 11 12 13 14 15 16 17 18 19 20 20 21 22 22 23 24 24 25 26 26 26 27 27 28 28 29 30
1 1 5 4 6 7 8 2 2 12 13 14 3 3 17 18 14 16 20 15 21 22 10 20 24 9 25 0 23 26 27 0 27 29
0 0 0 0 0 0 0 0 0 0 0 0 9 6 0 0 0 0 0 9 5 1 0 0 7 9 0 00 0 0 0 1 1 0 0 2 1 2 1

 
SAWYER    2 OR  s                           
4 5 6 7 7 8 9 11 12 13 14 15 16 17 18 19 20 20 21 22 22 23 24 24 25 26 26 26 27 27 28 28 29 30
1 1 5 4 6 7 8 2 2 12 13 14 3 3 17 18 14 16 20 15 21 22 10 20 24 9 25 0 23 26 27 0 27 29
0 0 0 0 0 0 0 0 0 0 0 0 9 6 0 0 0 0 0 9 5 1 0 0 7 9 0 00 0 0 0 1 1 0 0 2 1 2 1
0 0 0 0 0 0 0 0 0 0 0 0 1 6 0 0 0 0 0 9 5 9 0 0 7 1 0 00 0 0 0 1 1 0 0 2 1 2 1

 
SAWYER    3 OR  s                           
4 5 6 7 7 8 9 11 12 13 14 15 16 17 18 19 20 20 21 22 22 23 24 24 25 26 26 26 27 27 28 28 29 30
1 1 5 4 6 7 8 2 2 12 13 14 3 3 17 18 14 16 20 15 21 22 10 20 24 9 25 0 23 26 27 0 27 29
0 0 0 0 0 0 0 0 0 0 0 0 9 6 0 0 0 0 0 9 5 1 0 0 7 9 0 00 0 0 0 1 1 0 0 2 1 2 1
0 0 0 0 0 0 0 0 0 0 0 0 1 6 0 0 0 0 0 9 5 9 0 0 7 1 0 00 0 0 0 1 1 0 0 2 1 2 1
0 0 0 0 0 0 0 0 0 0 0 0 9 6 0 0 0 0 0 9 5 3 0 0 7 6 0 00 0 0 0 1 0 0 2 2 2 2
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APPENDIX A7. Matrix representation for the rule-base of problem Kilbridge with 1 OR, 2ORs and 3 ORs 
 
KILBRIDGE    1 OR                               
3 4 5 6 7 8 9 9 10 10 13 13 14 14 14 15 16 17 17 18 19 19 20 21 22 23 24 25 26 26 26 27 28 28 29 30 31 32
1 2 3 4 1 2 5 7 6 8 11 12 7 8 13 13 15 14 0 15 16 18 19 20 21 15 15 14 17 25 0 17 22 27 14 14 14 14
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9 14 0 0 0 0 0 0 0 0 0 10 17 25 0 0 0 0 0 0 0

         
 33 33 33 33 33 34 35 36 37 38 38 38 38 40 40 40 41 41 41 41 41 41 41 41 42 42 43 44 45
 19 23 24 27 0 33 33 33 12 26 28 34 36 35 38 0 9 10 29 30 31 32 39 40 41 0 37 42 42
 19 23 4 0 0 0 0 0 5 8 3 0 0 0 0 0 0 1 3 0 0 02 27 43 0 0 0 3 3 4 0 0 4 4

 
 
KILBRIDGE    2 ORs                               
3 4 5 6 7 8 9 9 10 10 13 13 14 14 14 15 16 17 17 18 19 19 20 21 22 23 24 25 26 26 26 27 28 28 29 30 31 32
1 2 3 4 1 2 5 7 6 8 11 12 7 8 13 13 15 14 0 15 16 18 19 20 21 15 15 14 17 25 0 17 22 27 14 14 14 14
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9 14 0 0 0 0 0 0 0 0 0 10 17 25 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 14 0 0 0 0 0 0 0 0 0 9 17 25 0 0 0 0 0 0 0

         
 33 33 33 33 33 34 35 36 37 38 38 38 38 40 40 40 41 41 41 41 41 41 41 41 42 42 43 44 45
 19 23 24 27 0 33 33 33 12 26 28 34 36 35 38 0 9 10 29 30 31 32 39 40 41 0 37 42 42
 19 23 4 0 0 0 0 0 5 8 3 0 0 0 0 0 0 1 3 0 0 02 27 43 0 0 0 3 3 4 0 0 4 4
 19 23 4 0 0 0 0 0 5 8 7 0 0 0 0 0 0 1 7 0 0 02 27 37 0 0 0 3 3 3 0 0 4 3

 
 
 
 
 
 
 
 

 

162



 

 
KILBRIDGE s   3 OR                                
3 4 5 6 7 8 9 9 10 10 13 13 14 14 14 15 16 17 17 18 19 19 20 21 22 23 24 25 26 26 26 27 28 28 29 30 31 32
1 2 3 4 1 2 5 7 6 8 11 12 7 8 13 13 15 14 0 15 16 18 19 20 21 15 15 14 17 25 0 17 22 27 14 14 14 14
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9 14 0 0 0 0 0 0 0 0 0 10 17 25 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 14 0 0 0 0 0 0 0 0 0 9 17 25 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15 14 0 0 0 0 0 0 0 0 0 15 17 25 0 0 0 0 0 0 0
                                      
 33 33 33 33 33 34 35 36 37 38 38 38 38 40 40 40 41 41 41 41 41 41 41 41 42 42 43 44 45       
 19 23 24 27 0 33 33 33 12 26 28 34 36 35 38 0 9 10 29 30 31 32 39 40 41 0 37 42 42       
 19 23 4 0 0 0 0 0 5 8 3 0 0 0 0 0 0 1 3 0 0 02 27 43 0 0 0 3 3 4 0 0 4 4       
 19 23 4 0 0 0 0 0 5 8 7 0 0 0 0 0 0 1 7 0 0 02 27 37 0 0 0 3 3 3 0 0 4 3       
 19 23 4 0 0 0 0 0 5 8 2 0 0 0 0 0 0 1 8 0 0 02 27 9 0 0 0 3 3 2 0 0 4 3       
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APPENDIX A8. Matrix representation for the rule-base of problem Arcus 83 with 1 OR, 2ORs and 3 ORs 
 
 
ARCUS    1 OR                                
2 3 4 5 6 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 20 21 22 23 24 25 26 27 27 28 28 29 30 31 32 32 33 34 35 
1 2 2 2 3 4 4 5 6 6 7 9 10 10 11 12 13 13 14 13 15 17 17 18 19 10 20 21 22 17 24 24 29 30 25 28 32 32 32 
0 0 0 0 2 0 0 3 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 01 16 0 0 0 0 0 0 
         
 36 37 38 39 39 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 69 70 
 32 33 36 15 31 36 37 38 39 39 39 41 44 45 46 47 48 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 27 49 69 
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 
         
 71 72 73 73 74 74 74 74 75 75 75 76 76 77 77 77 77 77 77 77 77 78 78 78 78 78 78 78 78 79 79 80 81 82 83 83  
 69 70 71 72 23 26 68 73 39 68 73 74 75 8 16 34 35 40 42 43 76 8 16 34 35 40 42 43 76 77 78 79 79 80 81 82  
 0 0 0 0 0 0 0 0 0 8 9 4 5 0 2 3 6 4 5 0 2 3 6 0 0 0 0 0 0 00 0 0 0 3 3 4 4 4 7 8 9 3 3 4 4 4 7  
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ARCUS    2 OR  s                                
2 3 4 5 6 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 20 21 22 23 24 25 26 27 27 28 28 29 30 31 32 32 33 34 35 
1 2 2 2 3 4 4 5 6 6 7 9 10 10 11 12 13 13 14 13 15 17 17 18 19 10 20 21 22 17 24 24 29 30 25 28 32 32 32 
0 0 0 0 2 0 9 3 2 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 01 16 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 1 1 0 0 0 
         
 36 37 38 39 39 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 69 70 
 32 33 36 15 31 36 37 38 39 39 39 41 44 45 46 47 48 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 27 49 69 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0  
 0 0 0 0 0 0 0 0 
         
 71 72 73 73 74 74 74 74 75 75 75 76 76 77 77 77 77 77 77 77 77 78 78 78 78 78 78 78 78 79 79 80 81 82 83 83  
 69 70 71 72 23 26 68 73 39 68 73 74 75 8 16 34 35 40 42 43 76 8 16 34 35 40 42 43 76 77 78 79 79 80 81 82  
 0 0 0 0 0 0 0 0 0 8 9 4 5 0 2 3 6 4 5 0 2 3 6 0 0 0 0 0 0 00 0 0 0 3 3 4 4 4 7 8 9 3 3 4 4 4 7  

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0  
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ARCUS    3 OR  s                                
2 3 4 5 6 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 20 21 22 23 24 25 26 27 27 28 28 29 30 31 32 32 33 34 35 
1 2 2 2 3 4 4 5 6 6 7 9 10 10 11 12 13 13 14 13 15 17 17 18 19 10 20 21 22 17 24 24 29 30 25 28 32 32 32 
0 0 0 0 2 0 9 3 2 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 01 16 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 1 1 0 0 0 
0 0 0 0 0 0 0 5 0 0 0 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 2 2 0 0 0 
         
 36 37 38 39 39 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 69 70 
 32 33 36 15 31 36 37 38 39 39 39 41 44 45 46 47 48 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 27 49 69 
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 
 0 0 0 0 0 0 0 0 
 0 0 0 0 0 0 0 0 
         
 71 72 73 73 74 74 74 74 75 75 75 76 76 77 77 77 77 77 77 77 77 78 78 78 78 78 78 78 78 79 79 80 81 82 83 83  
 69 70 71 72 23 26 68 73 39 68 73 74 75 8 16 34 35 40 42 43 76 8 16 34 35 40 42 43 76 77 78 79 79 80 81 82  
 0 0 0 0 0 0 0 0 0 8 9 4 5 0 2 3 6 4 5 0 2 3 6 0 0 0 0 0 0 00 0 0 0 3 3 4 4 4 7 8 9 3 3 4 4 4 7  
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0  
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0  
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APPENDIX A9. Matrix representation for the rule-base of real-case problem without OR and with 1 OR, 2ORs and 3 ORs 
 

REAL-CASE   
WITHOUT 
OR                           

2 3 4 5 6 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 22 23 24 24 24 25 26 26 27 27 28 29 30 31
1 2 1 1 4 9 1 1 2 3 1 1 6 1 8 9 0 0 0 2 4 4 8 3 5 6 7 1 9 15 6 1 8 1 1 1 1 1 2 1 21 22 6 6 1 2 6 2 2 2 2 2
        
 32 32 32 33 34 34 35 36 36 37 38 39 40 41 41 42 43 44 45 46 47 48 49 50 50 51 52 53 54 55 56 57 58 59 60
 13 30 31 32 33 67 34 28 35 36 37 38 7 39 40 41 42 43 44 45 46 47 48 17 49 50 51 52 1 54 55 1 57 58 1
        
 61 62 63 64 65 66 66 66 67 68   
 56 61 1 63 1 59 64 65 66 15   

 
 
REAL-CASE   1 OR                             
2 3 4 5 6 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 22 23 24 24 24 25 26 26 27 27 27 28 29 30
1 2 1 1 4 9 1 1 2 3 1 1 6 1 8 9 0 0 0 2 4 4 8 3 5 6 0 7 1 95 6 1 8 1 1 1 1 1 2 1 21 22 6 6 1 2 6 2 2 2 2 2
0 0 0 0 0 0 0 10 0 1 0 0 0 0 0 0 0 0 0 0 0 9 21 0 0 0 0 0 15 23 25 26 68 0 0 0
        
 31 32 32 32 33 34 34 35 36 36 37 38 39 40 41 41 41 42 43 44 45 46 47 48 49 50 50 51 52 53 54 55 56 57 58
 1 13 30 31 32 33 67 34 28 35 36 37 36 7 39 40 0 41 42 43 44 45 46 47 48 17 49 50 51 52 1 54 55 1 57
 0 0 0 0 0 0 0 0 0 0 39 36 38 0 38 40 37 0 0 0 0 0 0 0 0 0 0 0 0 0 56 0 1 0 0
        
 59 60 61 62 63 64 65 66 66 66 67 68   
 58 1 56 61 1 63 1 59 64 65 66 15   
 0 0 55 0 0 0 0 0 0 0 0 0   
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REAL-CASE   2 ORs                             
2 3 4 5 6 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 22 23 24 24 24 25 26 26 27 27 27 28 29 30
1 2 1 1 4 9 1 1 2 3 1 1 6 1 8 9 0 0 0 2 4 4 8 3 5 6 0 7 1 95 6 1 8 1 1 1 1 1 2 1 21 22 6 6 1 2 6 2 2 2 2 2
0 0 0 0 0 0 0 10 54 1 0 0 0 0 0 0 0 0 0 0 0 9 21 0 0 0 0 0 15 23 25 26 68 0 0 0
0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 5 56 0 
        
 31 32 32 32 33 34 34 35 36 36 37 38 39 40 41 41 41 42 43 44 45 46 47 48 49 50 50 51 52 53 54 55 56 57 58
 1 13 30 31 32 33 67 34 28 35 36 37 36 7 39 40 0 41 42 43 44 45 46 47 48 17 49 50 51 52 1 54 55 1 57
 0 0 0 0 0 0 0 0 0 0 39 36 38 0 38 40 37 0 0 0 0 0 0 0 0 0 0 0 0 0 56 9 1 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 0 0 0 00 0 0 0 0 0 1
        
 59 60 61 62 63 64 65 66 66 66 67 68   
 58 1 56 61 1 63 1 59 64 65 66 15   
 0 0 55 0 0 0 0 0 0 0 0 0   
 0 0 0 0 0 0 0 0 0 0 0 0   
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REAL-CASE   3 ORs                             
2 3 4 5 6 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 22 23 24 24 24 25 26 26 27 27 27 28 29 30
1 2 1 1 4 9 1 1 2 3 1 1 6 1 8 9 0 0 0 2 4 4 8 3 5 6 0 7 1 95 6 1 8 1 1 1 1 1 2 1 21 22 6 6 1 2 6 2 2 2 2 2
0 0 0 0 0 0 0 10 54 1 0 0 0 0 0 0 0 0 0 0 0 9 21 0 0 0 0 0 15 23 25 26 68 0 0 0
0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 54 55 5 56 0 
0 0 0 0 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 5 0 0 
        
 31 32 32 32 33 34 34 35 36 36 37 38 39 40 41 41 41 42 43 44 45 46 47 48 49 50 50 51 52 53 54 55 56 57 58
 1 13 30 31 32 33 67 34 28 35 36 37 36 7 39 40 0 41 42 43 44 45 46 47 48 17 49 50 51 52 1 54 55 1 57
 0 0 0 0 0 0 0 0 0 0 39 36 38 0 38 40 37 0 0 0 0 0 0 0 0 0 0 0 0 0 56 9 1 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 8 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9 0 0
0 0 0 0 0 0 

 0 0 0 0 0 0 0 
        
 59 60 61 62 63 64 65 66 66 66 67 68   
 58 1 56 61 1 63 1 59 64 65 66 15   
 0 0 55 0 0 0 0 0 0 0 0 0   
 0 0 10 0 0 0 0 0 0 0 0 0   
 0 0 0 0 0 0 0 0 0 0 0 0   

1
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APPENDIX A10. The results of the experiments as efficiency.  
 

WITHOUT WITH
Problem Cycle time OR 1 OR
Bowman 20 88 88

Jaeschke 6 77 77
7 76 7
8 76 7

10 93 93
18 73 88

Average Efficiency 79 82
Standard Deviation 8 7

Jackson 7 82 94
9 85 8

10 92 92
13 96 96
14 96 96
21 96 96

Average Efficiency 91 93
Standard Deviation 6 4

Efficiencies (%)

7
7

5
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WITHOUT WITH WITH WITH
Problem Cycle time OR 1 OR 2 ORs 3 ORs
Mitchell 14 83 94 94 94

15 94 94 94 94
21 97 97 97 100
26 91 100 95 95
35 100 100 100 100
39 100 100 100 100

Average Efficiency 94 97 97 97
Standard Deviation 6 3 3 3

Roszieg 18 92 98 98 99
21 89 99 99 99
25 99 99 100 100
32 98 98 98 98

Average Efficiency 95 98 99 99
Standard Deviation 5 1 1 1

Heskiaoff 138 99 99 99 99
205 99 99 99 100
216 100 99 100 100
256 98 99 100 100
324 100 100 100 100
342 100 100 100 100

Average Efficiency 99 99 100 100
Standard Deviation 1 0 0 0

Buxey 27 92 93 93 92
30 93 92 89 93
33 93 92 96 95
36 95 95 95 95
41 95 95 92 97
47 99 99 99 99
54 94 96 96 96

Average Efficiency 95 95 94 95
Standard Deviation 2 2 3 2

Efficiencies (%)
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WITHOUT WITH WITH WITH
Problem Cycle time OR 1 OR 2 ORs 3 ORs
Sawyer 30 93 93 93 93

33 93 92 92 92
36 92 92 95 95
41 97 92 92 95
47 99 99 99 99
54 96 96 96 96
75 98 100 98 100

Average Efficiency 95 95 95 96
Standard Deviation 3 3 3 3

Kilbridge 69 97 97 99 99
79 99 99 100 100
92 99 99 100 100

110 99 99 100 100
111 100 100 99 99
138 100 100 100 100
184 100 100 100 100

Average Efficiency 99 99 100 100
Standard Deviation 1 1 0 0

Arcus 5853 96 97 99 99
6309 98 94 94 97
6842 96 97 96 96
6883 94 98 92 97
7571 97 97 97 99
8412 98 98 97 99
8898 99 98 99 99

10816 94 96 99 97
Average Efficiency 96 97 97 98
Standard Deviation 2 2 3 1

Efficiencies (%)
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APPENDIX A11. The results of the experiments as number of stations.  
 

WITHOUT WITH
Problem Cycle time OR 1 OR
Bowman 20 5 5

Jaeschke 6 8 8
7 7 8
8 7 8

10 4 4
18 3 3

Jackson 7 8 7
9 6 6

10 5 5
13 4 4
14 4 4
21 3 3

number of better solutions 1

Number of stations
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WITHOUT WITH WITH WITH
Problem Cycle time OR 1 OR 2 ORs 3 ORs
Mitchell 14 9 8 8 8

15 8 8 8 8
21 6 6 6 5
26 5 5 5 5
35 3 3 3 3
39 3 3 3 3

number of better solutions 1 1 2

Roszieg 18 8 8 8 7
21 7 6 6 6
25 6 6 5 5
32 4 4 4 4

number of better solutions 1 2 3

Heskiaoff 138 8 8 8 8
205 6 6 6 6
216 5 5 5 5
256 5 5 5 5
324 4 4 4 4
342 3 4 3 3

number of better solutions - - -

Buxey 27 13 14 14 13
30 12 13 14 12
33 12 11 12 11
36 10 10 10 10
41 9 9 9 9
47 8 8 8 8
54 7 7 7 7

number of better solutions - - 1

Number of stations
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WITHOUT WITH WITH WITH
Problem Cycle time OR 1 OR 2 ORs 3 ORs
Sawyer 30 14 14 12 12

33 12 11 11 11
36 11 11 10 10
41 9 9 9 9
47 8 8 8 8
54 7 7 7 7
75 5 5 5 5

number of better solutions 1 3 3

Kilbridge 69 9 9 9 9
79 8 8 8 8
92 7 7 7 7

110 6 6 6 6
111 6 6 5 5
138 4 4 4 4
184 3 3 3 3

number of better solutions - - -

Arcus 5853 14 14 14 14
6309 13 14 14 13
6842 13 12 12 12
6883 13 12 13 12
7571 11 11 11 11
8412 10 10 10 10
8898 9 9 9 9

10816 8 8 8 8
number of better solutions 1 1 2

Number of stations
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APPENDIX A12. The results of the experiments as fitness value.  
 

WITHOUT WITH WITH WITH
Problem Cycle time OR 1 OR 2 ORs 3 ORs
Mitchell 14 2.8708 1.0871 1.1095 1.0871

15 1.0871 1.0871 1.0871 1.0871
21 0.6414 0.6414 0.6414 0
26 2.5215 0 1.2366 1.2366
35 0 0 0 0
39 0 0 0 0

number of better solutions 2 2 3

Roszieg 18 1.699 0.4975 0.4975 0.2185
21 2.6269 0.2483 0.2483 0.2483
25 0.2483 0.2483 0 0
32 0.9736 0.9232 0.9232 0.9232

number of better solutions 3 4 4

Heskiaoff 138 1.2449 1.2449 1.2449 1.2449
205 1.6388 2.8871 1.6797 0.4966
216 0.2894 1.4828 0.2894 0.2894
256 3.9155 1.4828 0.2894 0.2894
324 1.2449 1.2449 0 0
342 0.83 1.2449 0.83 0.83

number of better solutions 1 2 3

Buxey 27 2.6507 2.3528 2.3352 2.6507
30 2.5033 2.6666 3.5248 2.4899
33 2.5292 3.1363 1.3162 2.0316
36 2 1.9688 2.0099 1.9795
41 2.5333 3.7149 3.7087 1.3944
47 0.6732 0.6414 0.6732 0.6414
54 3.4433 2.28 2.1283 2.28

number of better solutions 3 1 6

Fitness values
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WITHOUT WITH WITH WITH
Problem Cycle time OR 1 OR 2 ORs 3 ORs
Sawyer 30 2.3642 2.2914 2.5033 2.4690

33 2.5292 3.2986 3.2889 3.3177
36 3.1836 3.284 1.9899 1.9688
41 2.5333 4.1294 3.7149 2.4899
47 0.6732 0.6732 0.6414 0.6414
54 2.1283 2.1143 2.1283 2.1143
75 1.5347 0.2894 1.4828 0.2894

number of better solutions 1 3 5

Kilbridge 69 2.0496 2.0496 0.83 0.83
79 1.2236 1.2236 0 0
92 1.4047 1.4047 0.2185 0.2185

110 1.2309 1.2309 0 0
111 0 0 0.7549 0.7549
138 0 0 0 0
184 0 0 0 0

number of better solutions - 4 4

Arcus 5853 264.5 195.4 73 75.7
6309 186.2 467.8 443.3 201.8
6842 351.7 304.4 348.6 305
6883 488.7 194.3 649.8 244.4
7571 258.5 272.3 257.3 265.5
8412 194.6 157.9 255.6 113.3
8898 143.8 164.7 164.4 140.9

10816 728 500.5 184.4 376.5
number of better solutions 4 2 6

Fitness values
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APPENDIX A13. Graphical representation for the results of the experiments as 
number of stations. 
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APPENDIX A14. Graphical representation for the results of the experiments as 
fitness value. 
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APPENDIX A15. Short model for the real-case problem  
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APPENDIX A16. Data of short model for the real-case problem 
 
NO OPERATIONS MACHINE TYPES 

STANDARD 
TIMES (Heim) 

1 Preparation Hand made 40 

2 Left fly interlining Fusing press machine 6 

3 Pick left fly Hand made 5 

4 Waistband interlining attachment Fusing press machine 12 

5 Waistband lining interlining attachment Fusing press machine 12 

6 Assembling waistband and waistband lining Lock-stitch sewing machine 30 

7 Waistband ironing Hand made 30 

8 Right front pocket sason stitching and top stitching Lock-stitch sewing machine 18 

9 Right front pocket ironing Hand made 35 

10 Right front pocket edge top stitching Two needle sewing machine 22 

11 Right back pocket edge overlock Three thread overlock machine 5 

12 Right back pocket ironing Hand made 30 

13 Right back pocket twin needle seam Two needle sewing machine 15 

14 Left fly overlock Three thread overlock machine 10 

15 Right fly edge overlock Three thread overlock machine 10 

16 Belt loop preparation Two needle sewing machine 15 

17 Belt loop cutting Hand made 15 

18 Right front part crotch overlock Three thread overlock machine 13 

19 Attach right front pocket to right front part Lock-stitch sewing machine 25 

20 Assembling right front pocket and right front part Three thread overlock machine 15 

21 Right front pocket with right front part top stitching Two needle sewing machine 20 

22 Attach right front pocket to right front part Lock-stitch sewing machine 22 

23 Assembling right front pocket to right front part Two needle sewing machine 35 

24 Assembling left fly to left front part and top stitching Lock-stitch sewing machine 18 

25 Zipper assembling to left fly Two needle sewing machine 30 

26 Zipper assembling to right fly and right front part Lock-stitch sewing machine 45 

27 Fly top stitching Two needle sewing machine 30 

28 Assembling front center Lock-stitch sewing machine 50 

29 Assembling right back parts Five thread overlock machine 18 

30 Right back parts top stitching Two needle sewing machine 20 

31 Marking the place of right back pocket Hand made 20 

32 Assembling right back pocket to right back part Two needle sewing machine 40 

33 Right back pocket bartacking Bartack machine 14 

34 Back center overlock Five thread overlock machine 30 

35 Back center top stitching Lock-stitch sewing machine 30 

36 Matching front part and back part Hand made 20 

37 Side seam Five thread overlock machine 45 

38 Side top stitching Lock-stitch sewing machine 35 

39 Inside leg stitch Five thread overlock machine 35 

40 Cutting waistband Hand made 3 

41 Waistband attaching Lock-stitch sewing machine 67 

42 Waistband edge stitching Lock-stitch sewing machine 30 

43 Inside out waistband Hand made 20 

44 Washing label assembling waistband Lock-stitch sewing machine 25 

45 Branded label assembling above the right back pocket Lock-stitch sewing machine 35 

46 Waistband top stitching Two needle sewing machine 70 
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NO OPERATIONS MACHINE TYPES 
STANDARD 

TIMES (Heim) 

47 Closing waistband Two needle sewing machine 50 

48 Inside out trouser Hand made 20 

49 Leg hem stitch Lock-stitch sewing machine 50 

50 Belt loop bartacking Bartack machine 63 

51 Button hole Button hole machine 10 

52 Button sewing Button sewing machine 20 

53 Pocket, fly and side bartacking Bartack machine 50 

54 Left front pocket sason stitching and top stitching Lock-stitch sewing machine 18 

55 Left front pocket ironing Hand made 35 

56 Left front pocket edge top stitching Two needle sewing machine 22 

57 Left back pocket edge overlock Three thread overlock machine 5 

58 Left back pocket ironing Hand made 30 

59 Left back pocket twin needle seam Two needle sewing machine 15 

60 Left front part crotch overlock Three thread overlock machine 13 

61 Attach left front pocket to left front part Lock-stitch sewing machine 22 

62 Assembling left front pocket to left front part Two needle sewing machine 35 

63 Assembling left back parts Five thread overlock machine 18 

64 Left back parts top stitching Two needle sewing machine 20 

65 Marking the place of left back pocket Hand made 20 

66 Assembling left back pocket to left back part Two needle sewing machine 40 

67 Left back pocket bartacking Bartack machine 14 

68 Right fly overlock Three thread overlock machine 13 
  Total 1753 
 (1 Heim=0.01 minute)   
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