
DOKUZ EYLÜL UNIVERSITY

GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

A NOVEL LINE BALANCING PROBLEM:

COMPLEX CONSTRAINED ASSEMBLY LINE

BALANCING

by

Aliye Ayça SUPÇİLLER

May, 2010

İZMİR

A NOVEL LINE BALANCING PROBLEM:

COMPLEX CONSTRAINED ASSEMBLY LINE

BALANCING

A Thesis Submitted to the

Graduate School of Natural and Applied Sciences of Dokuz Eylül University

In Partial Fulfillment of the Requirements for the Degree of Doctor of

Philosophy in Industrial Engineering, Industrial Engineering Program

by

Aliye Ayça SUPÇİLLER

May, 2010

İZMİR

Ph.D. THESIS EXAMINATION RESULT FORM

 We have read the thesis entitled “A NOVEL LINE BALANCING PROBLEM:

COMPLEX CONSTRAINED ASSEMBLY LINE BALANCING” completed by

ALİYE AYÇA SUPÇİLLER under supervision of ASSOC. PROF. DR. LATİF

SALUM and we certify that in our opinion it is fully adequate, in scope and in

quality, as a thesis for the degree of Doctor of Philosophy.

Assoc. Prof. Dr. Latif SALUM

Supervisor

Asst. Prof. Dr. Şeyda A. TOPALOĞLU Asst. Prof. Dr. Ahmet ÖZKURT

Thesis Committee Member Thesis Committee Member

Asst. Prof. Dr. Özcan KILINÇCI Prof. Dr. M. Bülent DURMUŞOĞLU

Examining Committee Member Examining Committee Member

 Prof. Dr. Mustafa SABUNCU
Director

Graduate School of Natural and Applied Sciences

 ii

ACKNOWLEDGMENTS

First, and foremost, I would like to thank my supervisor Assoc. Prof. Dr. Latif

SALUM for his insights and creative thinking on my research project. He

encouraged me during my doctoral program with his invaluable guidance and

suggestions. I would like to thank to thesis committee members, Asst. Prof. Dr.

Şeyda A. TOPALOĞLU and Asst. Prof. Dr. Ahmet ÖZKURT, for their valuable

comments and suggestions. In addition, I would like to thank to Prof. Dr. Bülent

DURMUŞOĞLU for his valuable comments and suggestions.

I would like to express my appreciation to the members of Industrial Engineering

Department of Dokuz Eylul University for supporting, hospitality and tolerance. I am

grateful to all my instructors and professors in Istanbul Technical University,

Pamukkale University and Dokuz Eylul University for equipping me with their

knowledge and academic skills. I have already been a member of Pamukkale

University and I would like to thank to the staff of Industrial Engineering due to their

patience.

I would like to express my special thanks to Olcay POLAT and Alper

HAMZADAYI for their help and suggestions. I would like to express my special

thanks for their best friendship and encouragement to Asst. Prof. Dr. Özcan

KILINÇCI, Asst. Prof. Dr. Bilge BİLGEN, Asst. Prof. Dr. Özlem UZUN ARAZ,

Nazan GÜNEY and all my colleagues, who are special for me and made my life

enjoyable.

This dissertation is dedicated to the memory of my father, Ömer Fevzi

Kayalıoğlu. I am forever grateful to my all family but especially to my mother and

my sister for their sincere support and tolerance. I would also like to express my deep

gratitude to my husband, Murat, for his endless love, patience and support.

Aliye Ayça SUPÇİLLER

 iii

A NOVEL LINE BALANCING PROBLEM: COMPLEX CONSTRAINED

ASSEMBLY LINE BALANCING

ABSTRACT

The primary aim of this dissertation is to extend the rule-based assembly

modeling and to introduce a novel assembly line balancing problem: complex-

constrained assembly line balancing problem (CCALBP), which is of the general

ALBPs, in order to model all assembly constraints through a rule-base to tackle

alternative ways of assembling a product and their effects on task times, precedence

relations and the line balance simultaneously.

A genetic algorithm (GA) based on the rule-base is proposed and discussed in

detail to solve CCALBP. The specific characteristics of the proposed GA are

explained on an example problem. The control parameters of the GA are optimized

to improve the performance. Since CCALBP is a novel problem, there is no set of

benchmark instances for testing. Therefore, the computational experiments are

carried out on a set of self-made instances generated by adapting well-known

benchmark problems from the literature. Some alternative routes are created and

added to these literature problems. Based on the experiments, the proposed GA is

proven to perform better. It is shown that line balancing improves when more

alternatives are added to CCALBP.

It is also shown how to map a rule-based assembly model to a constraint

programming (CP) model and an integer programming (IP) model. CCALBP can be

solved only through rule-based modeling, but not graph-based modeling. The

efficiency and modeling capability of CP and IP models are discussed, and compared

with that of traditional precedence graphs.

Keywords: Assembly line balancing, Precedence constraints, Rule-based

representation, Genetic algorithms

 iv

YENİ BİR MONTAJ HATTI DENGELEME PROBLEMİ: KARMAŞIK

KISITLI MONTAJ HATTI DENGELEME

ÖZ

Bu doktora çalışmasının temel amacı, kural tabanlı montaj modellemesini

genişletmek ve bir ürünün tüm alternatif montaj yolları ile bunların iş süreleri,

öncelik ilişkileri ve hat dengesi üzerindeki etkilerini aynı anda ele almak amacıyla

tüm montaj kısıtlarını bir kural tabanı ile modellemek için genel montaj hattı

dengeleme problemlerinden olan yeni bir montaj dengeleme problemini, karmaşık

kısıtlı montaj hattı dengeleme problemini (KKMHDP), tanıtmaktır.

KKMHDP’ni çözmek için kural tabanıyla bütünleşmiş bir genetik algoritma (GA)

önerilmiş ve detaylıca tartışılmıştır. Önerilen GA’nın performansını iyileştirmek için

kontrol parametreleri en uygun hale getirilmiştir. KKMHDP yeni bir problem olduğu

için, test etmek için kıyaslama örnekleri seti yoktur. Bu nedenle, deneyler

literatürden iyi bilinen kıyaslama problemlerinden adapte edilerek oluşturulan

problem setleri ile yapılmıştır. Bazı alternatif rotalar yaratılmış ve bu literatür

problemlerine eklenmiştir. Deneylere göre, önerilen genetik algoritma daha iyi

sonuçlar vermiştir. KKMHDP’ne yeni alternatifler eklendikçe hat dengelemenin

geliştiği gösterilmiştir.

Çalışmada bir kural tabanlı modelin kısıt programlama modeline ve tamsayılı

programlama modeline nasıl eşleştirildiği de gösterilmiştir. KKMHDP, grafik tabanlı

modelleme ile değil, yalnızca kural tabanlı modelleme ile çözülebilmektedir. Kısıt

programlama modeli ve tamsayılı programlama modelinin modelleme kabiliyetleri

ve etkinlikleri tartışılmış, geleneksel öncelik diyagramları ile karşılaştırılmıştır.

Anahtar Sözcükler: Montaj hattı dengeleme, Öncelik kısıtları, Kural tabanlı

gösterim, Genetik algoritmalar

 v

CONTENTS

Page

Ph.D. THESIS EXAMINATION RESULT FORM ... ii

ACKNOWLEDGMENTS ... iii

ABSTRACT... iv

ÖZ ... v

CHAPTER ONE - INTRODUCTION .. 1

1.1 Background and Motivations ... 1

1.2 Objectives and Research Methodology.. 3

1.3 Outline of the Thesis .. 4

CHAPTER TWO - ASSEMBLY LINE BALANCING... 5

2.1 Introduction .. 5

2.2 Assembly Line.. 5

2.2.1 Terminology ... 6

2.2.2 Characteristics of Assembly Lines ... 9

2.2.2.1 Product Variety ... 10

2.2.2.2 Line Control .. 11

2.2.2.3 Variability of Task Times ... 12

2.2.2.4 Line Configuration.. 12

2.3 Assembly Line Balancing Problem.. 15

2.4 Solution Methods for Assembly Line Balancing Problem............................... 18

2.4.1 Optimum Seeking Methods .. 21

2.4.1.1 Dynamic Programming... 21

2.4.1.2 Branch & Bound Algorithm.. 24

2.4.2 Approximation Methods... 27

2.4.2.1 Heuristic Methods... 27

2.4.2.2 Meta-Heuristics... 31

2.5 Chapter Summary... 37

 vi

CHAPTER THREE - GENETIC ALGORITHMS ... 38

3.1 Introduction .. 38

3.2 Genetic Algorithms .. 38

3.2.1 Terminology for GAs ... 40

3.2.1.1 Representation... 41

3.2.1.2 Initialization .. 42

3.2.1.3 The Fitness Function... 42

3.2.1.4 Selection.. 43

3.2.1.5 Genetic Operators ... 44

3.2.1.6 Survival ... 46

3.2.1.7 Termination... 47

3.2.2 Procedure of GAs ... 47

3.2.3 Parameter Setting for GAs.. 50

3.3 Chapter Summary... 52

CHAPTER FOUR - LITERATURE REVIEW FOR APPLICATIONS OF

GENETIC ALGORITHMS IN ASSEMBLY LINE BALANCING..................... 53

4.1 Introduction .. 53

4.2 Literature Review... 54

4.2.1 Research on SALBP ... 54

4.2.2 Research on GALBP .. 60

4.3 Conclusions for Literature Review... 67

4.4 Chapter Summary... 68

CHAPTER FIVE - THE COMPLEX-CONSTRAINED ASSEMBLY LINE

BALANCING PROBLEM ... 75

5.1 Introduction .. 75

5.2 A Novel Line Balancing Problem: CCALBP... 75

 vii

5.3 Rule-based Modeling of Assembly Constraints... 78

5.4 Line Balancing through Rule-based Models and Constraint Programming..... 82

5.5 Chapter Summary... 88

CHAPTER SIX - A GENETIC ALGORITHM BASED APPROACH FOR

SOLVING THE COMPLEX-CONSTRAINED ASSEMBLY LINE

BALANCING PROBLEM ... 90

6.1 Introduction .. 90

6.2 Line Balancing through Rule-based Models and GA 91

6.2.1 Representation .. 92

6.2.2. Initialization... 93

6.2.3 The Fitness Function .. 93

6.2.4 Selection ... 97

6.2.5 Genetic Operators ... 98

6.2.6 Elitism... 101

6.2.7 Termination .. 101

6.2.8 Results of the Proposed GA.. 101

6.3 Parameter Optimization.. 103

6.4 Computational Experiments ... 108

6.4.1 The Instances Generated from the Example Problem 108

6.4.2 The Instances Generated from the Literature Problems 110

6.5 Chapter Summary... 122

CHAPTER SEVEN - CONCLUSION .. 123

7.1 Summary and Concluding Remarks... 123

7.2 Contributions .. 125

7.3 Future Research Directions .. 126

REFERENCES.. 128

APPENDICES ... 154

 viii

CHAPTER ONE

INTRODUCTION

1.1 Background and Motivations

In ancient times assembly techniques were used to make tools, weapons, ships,

machinery, furniture, and garment. Manufacturing and assembly systems evolved

time by time and two important principles were introduced during Industrial

Revolution. The first principle is division of labor (work simplification,

standardization, and specialization) argued by Adam Smith in his book in 1776, and

the second one is interchangeable parts (individual components that make up the

final product must be interchangeable) based on efforts of Eli Whitney and others at

the beginning of the nineteenth century. In the mid- and late- 1800s, modern

production lines were used in meat packing plants. After an automotive industrialist,

Henry Ford, had observed these plants, he designed and invented an assembly line

with his friends (Groover, 2001).

Originally, assembly lines were developed in order to deal with mass production

of standardized products in a cost efficient way (Boysen, Fliedner, & Scholl, 2007).

Mass production was characterized by specialization of equipment and labor. A

single product was manufactured in large quantities with a high productivity by

designing and balancing dedicated assembly lines (Bukchin, Dar-el, & Rubinovitz,

2002).

Recently, mass production has been challenged by mass customization.

Production systems and supply chains must be designed to handle high variety of

products while at the same time achieve mass production quality and productivity

(Hu, Zhu, Wang, & Koren, 2008). They are needed to be flexible and responsive to

changes in demand for different product types. Today, assembly lines are still up to

date, because the principle to increase productivity by division of labor is

 1

 2

timeless (Amen, 2001). Assembly lines gain importance even in low volume

production of customized products (Scholl & Becker, 2006).

An assembly line is a production line which consists of a number of workstations

where assembly tasks are performed by human workers or automation. Products are

assembled as they move along the line. Work pieces are moved from station to

station manually or by a material transport system. The decision problem of

optimally partitioning the assembly work among the stations with respect to some

objectives is known as the assembly line balancing problem (ALBP) (Scholl, 1999).

The ordering in which tasks must be performed in an assembly line are called

precedence constraints. They are technological restrictions or physical sequencing

requirements on the assembly line. A precedence graph is generally used to represent

the precedence constraints. But, there are some shortcomings of the precedence

graphs. They usually fail to represent all the possible assembly sequences of a

product in a single graph (Lambert, 2006), and exclude some logic statements, e.g.,

the precedence relation “(2 or 3) → 7” cannot be represented properly on a

precedence graph (De Fazio & Whitney, 1987). Hence, they allow limited flexibility.

One or more parts of a product’s assembly process may admit alternative

precedence sub-graphs. Because of the great difficulty of the problem and the

impossibility of representing alternative sub-graphs in a precedence graph, a line

designer selects, a priori, one of such alternative sub-graphs (Capacho & Pastor,

2008).

 Precedence graphs fail to describe some complicated constraints, e.g., constraints

indicating that some pairs of tasks cannot be assigned into the same station because

of incompatibility between them caused by some technological factors (Park, Park, &

Kim, 1997).

Alternative ways of assembling a product and their effects on task times,

precedence relations and the line balance should be tackled simultaneously. In this

 3

regard, a rule-based assembly model is proposed in this dissertation to address this

issue.

1.2 Objectives and Research Methodology

The main objective of this dissertation is to extend the rule-based assembly

modeling and to introduce the complex-constrained assembly line balancing problem

(CCALBP), which is of the general ALBPs, in order to model all assembly

constraints through a rule-base to tackle alternative ways of assembling a product

and their effects on task times, precedence relations and the line balance

simultaneously.

This dissertation addresses a new ALBP that has not been considered in the

literature before. Hence, the main objectives of this dissertation are to define, to

formalize and to solve CCALBP.

CCALBP is defined and explained with an illustrative example. In order to

formalize the problem, constraint programming and integer programming

formulations are developed and are used to solve some illustrative problems.

To show how to model all assembly constraints through the well known If-then

rules, and how to solve CCALBP, a genetic algorithm (GA) based on the rule-based

model is proposed.

Since CCALBP is a new problem, benchmark problems are generated for

computational experiment to evaluate the proposed GA.

 4

1.3 Outline of the Thesis

This dissertation is divided into seven chapters. The present chapter briefly

introduces the theme of the study, points out the novel problem and presents the main

objectives of the work.

Chapter 2 gives an overview of the ALBP. It presents the main characteristics of

assembly line systems and defines the ALBP. Different types of ALBPs and

particular solution methods to tackle the line balancing problems are also presented.

Chapter 3 describes the main characteristics of the selected meta-heuristic, GA.

Chapter 4 is dedicated to review the available literature on application of GAs to

solve ALBPs. The literature review of GA applications on line balancing problems

according to their specifications is given in a chronological order.

In Chapter 5, a novel problem, the complex-constrained assembly line balancing

problem (CCALBP), is introduced. Rule-based modeling of assembly constraints is

discussed through an illustrative example. Mapping the rule-based model into the

constraint programming (CP) model and into the integer programming (IP) model is

shown. The CP model and IP model are developed to formally describe CCALBP.

The performance of the developed mathematical programming models is evaluated

by using commercial optimization software ILOG OPL Studio (2003).

In Chapter 6, a GA based on the rule base is proposed to solve CCALBP. The

proposed GA is explained through an example step by step. Since CCALBP is a new

problem, benchmark problems are generated. Conclusions are withdrawn based on a

set of computational experiments. An industrial case study is also presented.

Finally, the summary and the contributions of the dissertation are pointed out with

the directions for future research in Chapter 7.

CHAPTER TWO

ASSEMBLY LINE BALANCING

2.1 Introduction

The aim of this chapter is to provide an overview of the main features of assembly

lines and to introduce the basic concepts on assembly line balancing. This chapter is

organized as follows: First, the main features and additional characteristics of

assembly line systems are given. Next, the assembly line balancing problem is

described in detail with the classification schemes. Then, the most common solution

methods of the problem presented in the literature are discussed. Finally, the chapter

is summarized.

2.2 Assembly Lines

Assembly lines are most commonly used methods in a mass production

environment, because they allow the assembly of complex products by workers with

limited training, by dedicated machines and/or by robots.

In an assembly line, products are assembled as they move along the line, visiting

each workstation sequentially. Assembly tasks are performed at each station. Raw

material or semi-finished product enters at the one end and the desired product comes

out from the other end of the assembly line. The designers aim at increasing the

efficiency of the assembly line by maximizing the ratio between throughput and the

total cost required (Rekiek, Dolgui, Delchambre, & Bratcu, 2002).

In this section, a terminology is first given to describe assembly lines. Then,

additional characteristics of assembly line systems are given in order to understand

the assembly line balancing problem.

 5

 6

2.2.1 Terminology

 The terminology for the basic concepts of an assembly line based on Scholl

(1999) is given below:

 Assembly: It is the process of putting two or more parts, subassemblies, and

components together in order to make a finished product.

 Assembly line: It is a production line that consists of a sequence of workstations

arranged along a conveyor belt or a similar mechanical material handling equipment.

The workpieces are consecutively launched down the line and are moved from

station to station. At each station, a task is performed on each unit.

 Task: It is a portion of total work content in an assembly process, having an

operational processing time and a set of precedence relations. Tasks (operations) are

considered indivisible; they cannot be split into smaller work elements without

unnecessary additional work. When all tasks are allocated to the workstations, a

feasible solution will be obtained.

 Task time (ti): The time required to perform a task.

 Workstation (Station): It is a part of an assembly line where a certain amount of

work (a set of assigned tasks) is manually performed by workers using simple tools

or by semi-automated machines.

 Workstation time (Station time): It is total time of the tasks allocated in the

workstation. Each task assignment process updates the workstation time by adding

the time of the new assigned task to the time of the previous assigned tasks.

 Cycle time (C): The interval of time between the completions of successive

products. In the case of paced assembly lines, the cycle time represents the maximum

amount of time a product (or a job) can be processed by a station necessary. In

 7

unpaced flow lines, the cycle time is the maximum possible average station time. The

cycle time must not exceed the station time, and it must not be less than maximum

task time on the assembly line. Idle time is a positive difference between the cycle

time and the station time. The sum of idle times of all stations in the line is called the

delay time. The planning department asks for the desired cycle time (C), but due to

failures or setup-times the real cycle time by which the line will operate is the

effective cycle time (EC).

 Precedence constraints: The technological restrictions or/and physical sequencing

requirements on the assembly line.

 Precedence graph (diagram): A graphical representation of the sequence of tasks

as defined by the precedence constraints. The partial ordering in which tasks must be

performed is illustrated by means of a precedence graph. Nodes symbolize tasks, and

arrows connecting the nodes indicate the precedence relations. The sequence

proceeds from left to right. For example, in Figure 2.1, task 4 is preceded by tasks 1

and 2, and task 5 is preceded by tasks 3 and 4.

1

2

3

4

5 6

 Figure 2.1 A precedence graph

 Combined precedence graph (diagram): A graphical representation that alters

different models of a product into one equivalent single model. A product family is

composed of several product variants. Each variant has its own distinctive tasks, but

also shares some common tasks (Macaskill, 1972). Precedence relations for a set of

 8

models of a product family are defined by a single graph instead of different graphs

as given in Figure 2.2.

(a)

3

4 5

8 10

2 9

1

3 6

1 5 8 10

 (b)

1

2

3

9

6

5

4 8
10

 (c)

 Figure 2.2 Precedence diagrams of (a) model 1, (b) model 2 and (c) combined.

 9

 Line efficiency (E): A measure for the capacity utilization of the line. It is

computed as follows (n: number of stations):

() 100(%)
1

×⎥
⎦

⎤
⎢
⎣

⎡
×= ∑

=

CntE
n

i
i (2.1)

 Balance delay ratio (BR): A measure of the line efficiency which results from idle

time due to the imperfect allocation of tasks among stations. The unused capacity is

reflected by this ratio. It is computed as follows:

1001(%) 1 ×
×

−×
=−=

∑
=

Cn

tCn
EBR

n

i
i

 (2.2)

2.2.2 Characteristics of Assembly Lines

In the literature, various classification schemes of assembly lines are given by

Baybars (1986), Ghosh & Gagnon (1989), Erel & Sarin (1998), Scholl (1999),

Rekiek et al. (2002), and Boysen, Fliedner, & Scholl (2008). Scholl (1999) classified

assembly lines as in Figure 2.3. The continuous lines show that any combination of

characteristics is typical; broken lines indicate that it is unusual.

Assembly lines

Multi-model Single-model

Paced(unbuffered)

Mixed-model

Unpaced (buffered)

Deterministic Dynamic Stochastic

Figure 2.3 Classification of assembly lines (Scholl, 1999)

 10

 2.2.2.1 Product Variety

Because of the versatility of human workers, the design of assembly lines has to

deal with differences in assembled products (Groover, 2001). The number and

variety of products to be assembled on the same line have an important influence on

the line architecture. With respect to product variety, there are three types of

assembly lines described below.

 Single-Model Lines: Only one homogeneous product is continuously

manufactured in large quantities.

 Mixed-Model Lines: Several models of a basic product are manufactured on the

same line in an arbitrarily inter-mixed sequence.

 Multi-Model Lines: Family of products which present significant differences in

processes are manufactured on one or several assembly lines separately in batches.

 The different line types are illustrated in Figure 2.4, where different models are

symbolized by different geometric shapes. Depending on these line types, balancing

problems for single-model, mixed-model and multi-model versions of assembly lines

are modeled and solved.

 (a)

 (b)

(c)
 Figure 2.4 Assembly lines for (a) single-model, (b) mixed-model, and (c)

 multi-model.

 11

 2.2.2.2 Line Control

With respect to the line control, there are assembly lines that can be designed with

alternatives as given below (Groover, 2001).

 Paced Lines: In case of a paced assembly line, each workstation is given the same

amount of time to perform tasks assigned to the workstation. The synchronization is

achieved by transferring the jobs between stations at pre-determined and fixed time

intervals. This transfer takes place irrespective of whether or not the individual

stations complete their task. The station time of each station is limited to the cycle

time as a maximum value for each workpiece. Therefore, in paced lines, there is a

fixed production rate equal to the reciprocal of the cycle time. The pace is either kept

by a continuous material handling equipment, e.g. a conveyor belt, or by an

intermittent transport.

 Unpaced Lines: In the absence of a common cycle time, workpieces may have to

wait before they can enter the next station(s) and/or may get idle when they have to

wait for the next workpiece. Workpieces are transferred when all tasks are

completed, rather than being a bound to a given time span. Under asynchronous

movement, a workpiece is always moved as soon as all tasks of a station are

completed and the next station is not blocked anymore by another workpiece. By

buffers between the stations, these difficulties can be partially overcome. If there is

too much variability in the task process times, it is preferable to have unpaced or

asynchronous line. In such a line, each station works at its own pace and advances

the part to the next station whenever it completes its assigned tasks. Under

synchronous movement, all stations wait for the slowest station to finish all tasks

before workpieces are transferred at the same point in time. Buffers are then not

necessary (Boysen et al., 2008).

 12

 2.2.2.3 Variability of Task Times

The task processing time is an important parameter for assembly lines. The nature

of tasks and the skills of operators or the reliability of the machines can change the

task processing time. All these variations have a great influence on the assembly line

(Rekiek et al., 2002). With respect to variations of task times; there are three types of

assembly lines described below.

 Deterministic Time: The task times are considered to be deterministic (constant or

known with certainty) whenever the expected variance of task times is sufficiently

small, as in case of highly qualified and motivated workers or highly reliable

automated stations (Johnson, 1983).

 Stochastic Time: Significant variations of task times due to the work rate, skill and

motivation of the workers, and the failure sensitivity of complex processes require

considering task times to be stochastic (Robinson, McClain, & Thomas, 1990) rather

than to be fixed at a known value.

 Dynamic Time: Systematic reductions are possible due to learning effects

(Toksari, Isleyen, Guner, & Baykoc, 2008, 2010) or successive improvements of the

production process.

 2.2.2.4 Line Configuration

The flow of materials partially determines the layout of flow-line production

systems. There exist several line configurations (Becker & Scholl, 2006).

 Serial Lines: Single stations are arranged in a straight line along a linear conveyor

belt. Operators perform tasks on a continuous portion of the line. Figure 2.5

illustrates a serial line.

 13

Station j-1 Station j+1Station j

 Figure 2.5 Configuration of serial lines

 U-Shaped Lines: Both ends of the line are close to each other to form a narrow

“U” shape. Operators can move between the two segments of the line to perform

combinations of tasks (Miltenburg & Wijngaard, 1994). Thus, there are

improvements in the visibility of the whole process and communication of workers.

Job enrichment and enlargement lead to higher motivation, improved quality of

products and increased flexibility (Rekiek et al., 2002). Figure 2.6 illustrates the

configuration of U-shaped lines.

Group j-2

Group j

Group j-1

Group j+1 Group j+2

Station

 Figure 2.6 Configuration of U-shaped lines

 Parallel Lines: When the demand is high enough, it is common to duplicate the

entire assembly line. This has the advantage of shortening the assembly line, but may

require more equipment and tooling. If failure occurs at a given station, other lines

can continue to run. This reduces the risk of production stops. Parallel lines increase

flexibility with better line balances and horizontal job enlargement (Rekiek &

Delchambre, 2006). An example of the use of parallel lines is shown in Figure 2.7.

 14

Station j-1 Station j+1

Station j

Station j-1 Station j+1

Station j

 Figure 2.7.Configuration of parallel lines

 Parallel Stations: There are many advantages of parallelization even by installing

parallel stations in a single line. Each station in a set of parallel stations performs

similar activities. The workpieces are distributed among the operators who perform

the same tasks. This is a common layout when a series of product variations are

being manufactured. If certain task times exceed the desired cycle time, parallel

stations allow decreasing the cycle time (Becker & Scholl, 2006). Figure 2.8

illustrates the configuration of parallel stations.

Station j

Station k

 Figure 2.8 Configuration of parallel stations

 Two-sided Line: In the assembly of large-sized and heavy workpieces, such as

trucks and buses, both the left-side and the right-side of the line are used in parallel.

The operators working in opposite sides of the line perform their tasks on the same

component simultaneously. In two-sided assembly lines, some tasks can be assigned

to only one side of the two sides: L (left) and R (right)-type tasks, while others can

be assigned to either side of the line: E (either)-type tasks.

 15

2.3 The Assembly Line Balancing Problem

 The installation of an assembly line is a long-term decision and usually requires

large capital investments. Therefore, it is important to design and balance an

assembly line in a way that it should work as efficiently as possible. Most of the

studies related to the assembly lines concentrate on the assembly line balancing. The

assembly line balancing is the allocation of the tasks among stations so that the

precedence relations are not violated and a given objective function is optimized. The

assembly line balancing problem (ALBP) deals with balancing the assembly line

with respect to the precedence constraints and objective function(s).

 Based on the problem structure, ALBP can be classified into two groups as given

in Figure 2.9. The first group is the classification according to the assembly line

models, and the second group is the classification of Baybars (1986) (Gen, Cheng, &

Lin, 2008).

CLASSIFICATION OF ALBP BASED ON PROBLEM
STRUCTURE

According to
ALB model type

According to
ALB problem structure

Single-model ALB (smALB)

Multi-model ALB (muALB)

Mixed-model ALB (mALB)

Simple ALB (sALB)

General ALB (gALB)

 Figure 2.9 Classification of assembly line balancing problems based on problem structure

 16

 The classification according to the assembly line models has three kinds of ALBP.

These are Single Model assembly line balancing problem (SMALBP), Multi Model

assembly line balancing problem (MuMALBP), and Mixed Model assembly line

balancing problem (MMALBP). SMALBP includes balancing of assembly lines

producing only one product. MuMALBP includes balancing of assembly lines

producing a family of product in batches. MMALBP includes balancing of assembly

lines producing several models of a basic product in an arbitrarily inter-mixed

sequence (Boysen et al., 2008).

 According to the classification proposed by Baybars (1986) with respect to the

problem structure, the problem can be grouped into two types: The original and

simplest form of the problem is simple assembly line balancing problem (SALBP).

When additional constraints are added to the model, the problem becomes the

general assembly line balancing problem (GALBP).

If only one homogeneous product is continuously manufactured in large quantities

on the line, the problem is SMALBP. In the literature, the deterministic SMALBP is

called as simple assembly line balancing problem (SALBP) and specifies the

following assumptions (Baybars, 1986):

1. All of the parameters relating to the line must be known with certainty.

2. A task cannot be divided between two or several stations.

3. Tasks cannot be treated in an arbitrary order due to the precedence constraints.

4. All the tasks of an assembly line must be processed.

5. All the stations are equipped with various resources, and can process any task.

6. The task process time is independent of the station on which it will be

processed.

7. Any task can be made on any station.

8. The assembly line is serial, and contains neither feeding system, nor parallel

subassembly lines.

9. The assembly system is to be designed for a unique model of a single product.

 17

10. The cycle time is fixed, and the goal is to minimize the number of stations.

Or, the number of stations is fixed, and the goal is to minimize the cycle time.

 When the other restrictions or factors are introduced into the model, the problem

becomes the general assembly line balancing problem (GALBP). Thus, GALBP is a

generalization of SALBP and includes all of the problems that are not SALBP.

Multi/mixed-model cases, zoning constraints, restrictions on balance delay, parallel

stations, forms of positional restrictions, feeder or subassembly lines, parallel, U-

shaped, robotic or two-sided lines, workcenters, stochastic or dependent processing

times, cost functions, equipment selection are the factors of GALBP. Therefore,

GALBP is more realistic (Becker & Scholl, 2006; Boysen et al., 2007, 2008).

 Besides balancing a newly designed assembly line, an existing assembly line has

to be re-balanced in a periodic way or after some changes in the production process

or the production plan. Due to the long-term effect of balancing decisions, the

strategic goals of the enterprise require the objective functions be carefully chosen.

 Additionally, based on the objective function, ALBP have several versions (Kim,

Kim, & Kim, 1996). These are with objectives to minimize the number of

workstations (Type-1), to minimize cycle time (Type-2), to maximize workload

smoothness (Type-3), to maximize work relatedness (Type-4), and the multiple-

objective with the objective of Type-3 and Type-4 (Type-5). The most common type

of ALBP is Type-E, with the objective of maximizing the line efficiency by

simultaneously minimizing the cycle time and number of workstations. Another type

of ALBP is the feasibility problem (Type-F); finding a feasible balance for a given

number of stations and a given cycle time (Scholl, 1999).

 Main constraints in ALBP are the cycle time constraint and task precedence

constraints. Their explanations are given in Section 2.2.1. In addition to these

constraints, some other constraints given below may restrict possible assignments of

tasks to stations (Baybars, 1986; Scholl, 1999; Boysen et al., 2007):

 18

 Task zoning constraints: Some zoning constraints force and others forbid the

assignment of different tasks to the same workstation, being called positive or

negative zoning constraints, respectively. Positive zoning constraints are related with

the use of common equipment or tooling. Some tasks may need the same equipment

or may have similar processing conditions (temperature, moisture, etc.). Then, it is

required to assign them to the same workstation. Negative zoning constraints are

usually related with the technological issues. It may not be possible to perform some

tasks in the same workstation because of safety reasons or etc.

 Workstation related constraints: If some tasks need special equipment or material

which is only available at a determined workstation, then these tasks are assigned to

that workstation.

 Position related constraints: These constraints group tasks according to the

position in which they are performed, especially when the workpieces of large and

heavy products have a fixed position and cannot be turned.

 Operator related constraints: Some tasks require different levels of skill

depending on their complexity. A sufficiently qualified operator is assigned to a

determined task. It is better to combine more monotonous tasks and more variable

tasks in the same workstation in order to induce higher levels of job satisfaction and

motivation, from the ergonomic point of view.

2.4 Solution Methods for the Assembly Line Balancing Problem

The idea of balancing was first introduced by Bryton (1954) in his graduate thesis

(Kilbridge & Wester, 1962). The first analytical statement of ALBP was formulated

by Helgeson, Salveson, & Smith (1954), while the first published study of ALBP

modeled mathematically with a linear programming solution belonged to Salveson

(1955) (Ghosh & Gagnon, 1989). Since then, many solution procedures were

developed to solve ALBP (Agpak & Gokcen, 2005). Generally branch and bound

 19

(B&B) procedures (Amen, 2006; Peeters & Degraeve, 2006) and dynamic

programming (DP) approaches were used.

In the last decade, a large variety of heuristic approaches were in the focus of the

researchers (Gamberini, Grassi, & Rimini, 2006). These were constructive

procedures based on priority rules or enumeration techniques (Dimitriadis, 2006) and

improvement procedures using metaheuristics like tabu search (Lapierre, Ruiz, &

Soriano, 2006), ant colony optimization (Bautista & Pereira, 2002, 2007; Mcmullen

& Tarasewich, 2003, 2006), simulated annealing (Baykasoglu, 2006; Kara, Ozcan, &

Peker, 2007a, 2007b) and genetic algorithms (Baykasoglu & Ozbakir, 2007; Haq,

Jayaprakash, & Rengarajan, 2006; Levitin, Rubinovitz, & Shnits, 2006; Simaria &

Vilarinho, 2004; Tseng & Tang, 2006; Wong, Mok, & Leung, 2006; Yu, Yin, &

Chen, 2006).

 Baybars (1986) described and commented on a number of optimum seeking

methods for SALBP. The heuristic procedures for ALBP were critically examined

and summarized in details by Ghosh & Gagnon (1989) and Erel & Sarin (1998) for

SALBP and GALBP. A survey of existing solution methods for different extensions

of SALBP and GALBP was given by Rekiek et al. (2002).

 Up-to-date analysis of the bibliography and available state of the art procedures

for SALBP family of problems were given by Scholl & Becker (2006) and for

GALBP by Becker & Scholl (2006). Boysen et al. (2007) classified the ALBP

literature with a scheme including the extension of the problem and solution method.

 According to the classification of studies surveyed by Scholl & Becker (2006) and

review of existing methods by Rekiek & Delchambre (2006), Figure 2.10 gives a

classification scheme for solution approaches of ALBPs.

 20

EXACT METHODS

Dynamic Programming

Branch & Bound

APPROXIMATION

METHODS

Simple Heuristics

Ant Colony
Optimization

Tabu
Search

Genetic
Algorithm

Simulated
Annealing

Other
Evolutionary
Algorithms

Meta-Heuristics

ASSEMBLY LINE BALANCING PROBLEM

SOLUTION METHODS FOR

 Figure 2.10 Classification of solution approaches for ALBP

 21

2.4.1 Optimum Seeking Methods

 Several approaches for determining lower bounds on the objectives of ALBPs are

proposed in the literature. The lower bounds are obtained by solving problems which

are derived from the considered problem by omitting or relaxing constraints. Most of

these techniques fall into two categories, i.e., dynamic programming and branch and

bound methods. Baybars (1986) described and commented on a number of optimum

seeking methods for SALBP. A survey on exact methods for the ALBP can also be

found in Scholl (1999).

 2.4.1.1 Dynamic Programming

Dynamic programming (DP) is a very powerful algorithmic paradigm to tackle

multistage decision processes. DP is applied mostly to combinatorial optimization

problems (Rekiek & Delchambre, 2006). Any given problem is solved by identifying

a collection of sub-problems and tackling them sequentially one by one, smallest

first, using the answers to small problems to help figure out larger ones, until the

initial problem is solved by the aggregation of the sub-problem solutions. By

dynamic programming, the problem can be divided into stages with a decision

required at each stage. Each stage has a number of states associated with it. The

states describe all possible conditions of the process in the current decision stage,

which corresponds to every feasible partial solution. The decision at one stage

transforms one state into a state in the next stage. The problem is solved by finding

the optimal policy from an initial state to a final state in a chain (Bautista & Pereira,

2009). The studies given in the following are linked to DP procedures.

The first published study of ALBP formulated mathematically with a linear

programming (LP) solution belonged to Salveson (1955). Salveson’s LP model to

solve SALBP included all possible combinations of station assignments. Later,

Bowman (1960) modified the formulation. Bowman (1960) was the first to provide

“nondivisibility” constraint, by changing the LP formulation to zero-one integer

 22

programming (IP) (Baybars, 1986). Other formulations have been proposed by many

researchers, e.g. White (1961), Klein (1963), Thangavelu & Shetty (1971), Patterson

& Albracht (1975), Talbot & Patterson (1984), Ugurdag, Rachamadugu, &

Papachristou (1997), and Corominas (1999).

MMALBP with an IP model was first solved by Robert & Villa (1970). In the

model proposed, the objective was the minimization of the total idle time. The

authors stated that the formulation is of more theoretical than practical interest due to

the excessive number of constraints and variables. Later, Gokcen & Erel (1997)

proposed a zero-one IP model utilizing a precedence diagram which combines

different models of the problem. The performance of this model was superior to the

model of Robert & Villa (1970).

Agpak & Gokcen (2005) developed a zero-one IP model to solve resource

constrained SMALBP Type-1 with the objective of minimizing the number of

workstations and the number of resources used. Gokcen, Agpak, & Benzer (2006)

proposed a zero-one IP model to solve SMALBP Type-1 with parallel lines. Hop

(2006) developed a fuzzy zero-one IP model to solve MMALBP Type-1 with fuzzy

processing times. Peeters & Degraeve (2006) presented a Dantzig-Wolfe type

reformulation of SALBP Type-1, the LP-relaxation which was solved using column

generation combined with subgradient optimization. Urban & Chiang (2006)

proposed an IP model, using a piecewise approximation for the chance constraints, to

solve U-shaped SMALBP Type-1 with stochastic processing times. Corominas,

Pastor, & Plans (2008) presented a zero-one IP model to solve the rebalancing of

SMALBP with skilled and unskilled workers with the objective of minimizing the

number of unskilled temporary workers.

Toksari et al. (2010) developed a mixed nonlinear IP (MNIP) model SMALBP

Type-1 with deterioration tasks and learning effects. “Learning effect” is a

phenomenon for improving continuously as a result of repeating the same or similar

activities (Mosheiov, 2001). The processing time of a job is shorter if it is done again

later, because the processing time is dependent on learning of workers for repeating

 23

tasks. Modeling the effect of task deterioration was introduced by Mosheiov (1991).

Deterioration tasks are the tasks whose processing times are increasing functions of

their starting times.

The first DP method was developed by Jackson (1956) to solve SALBP using a

tree notion. The solution process was subdivided in stages corresponding to stations.

States were given by the feasible subsets of tasks already assigned at a given stage.

The algorithm started by generating all feasible assignments to the first station. Then,

this generated all feasible assignments to the next station, given the first station

assignments. The process was repeated, each time adding one station. The optimal

solution was searched for stage-by stage in a forward recursion (Baybars, 1986). A

number of researchers have employed DP methods, e.g. Held & Karp (1961), Held,

Karp, & Shareshian (1963), Van Assche & Herroelen (1979), Johnson (1981), Bard

(1989), and Carraway (1989).

Gutjahr & Nemhauser (1964) transformed SALBP Type-1 to an equivalent

shortest path problem. The states were represented by nodes and the station loads by

arcs which were weighted with the corresponding station idle times. Each path

corresponded to a feasible solution and each shortest path to an optimal solution of

SALBP Type-1. Later, Gokcen, Agpak, Gencer, & Kizilkaya (2005) presented a

shortest route formulation of U-shaped SMALBP Type-1 based on the study of

Gutjahr & Nemhauser (1964).

Miltenburg & Wijngaard (1994) introduced and modeled the U-shaped ALBP and

proposed a DP procedure to identify the optimal solution for problems with small

size. Guerriero & Miltenburg (2002) presented a DP approach to solve U-shaped

SMALBP Type-1 with stochastic processing times. Bautista & Pereira (2009)

proposed a new DP based heuristic, called Bounded DP, which mixed a set of

heuristic rules within a DP to solve SALBP Type-1.

Goal programming (GP) is an important technique for decision-makers to

consider simultaneously conflicting objectives in finding a set of acceptable

 24

solutions. GP models were used by researchers dealing with more than one goal in

order to utilize IP formulations of ALBPs.

Gokcen & Agpak (2006) were the first to solve U-shaped SMALBP using a GP

model with a preemptive approach as a multi-criteria decision making approach.

Kara & Tekin (2009) presented a mixed IP formulation to solve U-shaped MMALBP

Type-1. Kara, Paksoy, & Chang (2009) presented binary fuzzy GP approach and

employed IP method to solve U-shaped SMALBP with the objectives of minimizing

the number of workstations and the cycle time at the same time in a fuzzy

environment.

Ozcan & Toklu (2009) presented a new MIP model to solve two-sided SMALBP

Type-1 with an objective of minimizing the number of mated-stations. The authors

also developed a mixed-integer GP model (MIGP) and a fuzzy mixed-integer GP

model (FMIGP). The proposed goal programming models were the first multiple-

criteria decision-making approaches to solve two-sided SMALBP with multiple

objectives. Choi (2009) presented a new zero-one IP model and an algorithm based

on GP to solve MMALBP that concerned both processing time and physical

workload at the same time as total workload.

 2.4.1.2 Branch & Bound Algorithm

Branch and bound (B&B) is a general algorithm for finding optimal solutions of

various optimization problems, especially in discrete and combinatorial optimization.

It consists of a systematic enumeration of all candidate solutions, where large subsets

of fruitless candidates are discarded, by using upper and lower estimated bounds of

the quantity being optimized. The B&B algorithm consists of two main components:

the branching and the bounding. To reduce the solution effort, dominance and

reduction rules are additionally used. The initial solution of the B&B algorithm is

developed into several sub-problems, which is called branching. A multi-level

enumeration is constructed by continuously developing such sub-problems. The sub-

problems for which the optimal solution is already known and for which there is no

http://en.wikipedia.org/wiki/Algorithm
http://en.wikipedia.org/wiki/Optimization_(mathematics)
http://en.wikipedia.org/wiki/Discrete_optimization
http://en.wikipedia.org/wiki/Combinatorial_optimization

 25

need to be branched are called as leaf nodes. A leaf node is also used for nodes

which are excluded from further consideration because they cannot lead to an

optimal solution. Branch is a path from the root node to any other node of the tree.

B&B procedures differ with respect to search strategy, a sequence in which the nodes

of the enumeration tree are generated and branched: Depth-first-search and a

minimal-lower-bound strategy. Bounding is applied to reduce the size of the

enumeration trees. This is achieved by computing lower bounds at least necessary for

a feasible solution in each node. If the global lower bound is found, then an optimal

solution is found (Rekiek & Delchambre, 2006).

FABLE by Johnson (1988) and EUREKA by Hoffmann (1992) were the most

effective key developments of B&B methods introduced to solve SALBP Type-1.

Later, Klein & Scholl (1996) combined EUREKA and FABLE, and developed B&B

methods called SALOME-1 to solve SALBP Type-1 and SALOME-2 to solve

SALBP Type-2. The authors proposed the local lower bound method which was a

new enumeration technique and pointed out the similarities and differences between

proposed and existing methods, such as FABLE and EUREKA.

Scholl & Klein (1999) compared the most effective branch and bound procedures

for SALPB-1, such as Johnson’s FABLE, Nourie & Venta's OptPack, Hoffmann's

EUREKA, and Scholl & Klein's SALOME-1. In this computational comparison, the

authors used totally 268 problem instances from Talbot’s data set, Hoffmann’s data

set, and Scholl’s data set. In Hoffman’s data set OptPack was found to be the most

effective. SALOME was the most effective procedure in Talbot’s data set and in

Scholl’s data set, so that it was determined as a most effective B&B procedure in the

study. However other procedures had got some superior properties. OptPack was

very effective in reducing the size of the enumeration tree. Therefore, Scholl & Klein

(1999) extended SALOME by adding dynamic renumbering and some dominance

rules and called the new version of SALOME as SAL-All. SAL-All outperformed

previous version of SALOME for all data sets.

 26

Sprecher (1999) developed a B&B method to solve SALBP Type-1, called

adapted general sequencing algorithm (AGSA), which was based on the precedence

guided enumeration scheme introduced for dealing with resource-constrained project

scheduling problems. Sprecher (1999) reformulated this problem as a resource

constrained project scheduling problem by reflecting cycle time as a single

renewable resource whose availability varied with time.

Bukchin & Tzur (2000) presented an optimum seeking method and a heuristic to

solve SMALBP with equipment selection. They developed a B&B algorithm and

also a B&B based heuristic to solve large problems. Later, Bukchin & Rubinovitz

(2003) adapted this B&B optimal algorithm which was developed for the equipment

selection problem by Bukchin & Tzur (2000) to solve SMALBP with station

paralleling.

Amen (2006) used B&B techniques with LP-relaxation and implicit enumeration

technique to solve cost-oriented ALBP. Bukchin & Rubinowitch (2006) developed

an optimal solution procedure based on a backtracking B&B method to solve

MMALBP allowing a common task to be assigned to different stations for different

models with the objectives of minimizing the number of the workstations (Type-1)

and task duplication cost. Peeters & Degraeve (2006) developed a B&B algorithm to

solve SALBP Type-1. Liu, Ng, & Ong (2008) presented new B&B algorithms to

solve SALBP Type-1, a constructive algorithm and two destructive algorithms.

Miralles, Garcia-Sabater, Andres, & Cardos (2008) introduced a new kind of

ALBP called Assembly Line Worker Assignment and Balancing Problem

(ALWABP) Type-2 and presented a basic B&B approach with three possible search

strategies and different parameters to solve this new problem. Wu, Jin, Bao, & Hu

(2008) proposed B&B algorithms for two-sided ALBP and carried out some

experiments.

Ege, Azizoglu, & Ozdemirel (2009) proposed two B&B algorithms, one for

optimal solutions and one for near optimal solutions to solve GALBP with station

 27

paralleling. The objective was to minimize the sum of station opening and equipment

costs. Scholl & Boysen (2009) used ABSALOM, a method based on an extension of

SALOME (Klein & Scholl, 1996), to solve SMALBP Type-1 with parallel assembly

lines considered by Gokcen et al. (2006). Later, Scholl, Fliedner, & Boysen (2010)

used ABSALOM to solve SMALBP Type-1 with assignment restrictions.

2.4.2 Approximation Methods

Due to the problem size limitation of the exact methods, approximation

procedures are required to solve more realistic problems, i.e., medium and big scaled

problems. A variety of simple heuristics and meta-heuristics have been proposed in

the literature to solve ALBP. In this section, some of the well-known will be

considered.

 2.4.2.1 Heuristic Methods

Many heuristics proposed in the literature use different criteria (Talbot, Patterson,

& Gehrlein, 1986). Many proposed heuristics are a combination of these methods.

The most effective ones are: RPWT (Helgeson & Birnie, 1961), Killbridge &

Wester’s (1961), Hoffmann’s precedence matrix procedure (Hoffmann, 1963),

COMSOAL (Arcus, 1966), Moodie & Young's (1965), and Lapierre & Ruiz’s (1999)

improved COMSOAL heuristics.

One of the first proposed heuristic was the ranked positional weight technique

(RPWT) (Helgeson & Birnie, 1961). RPWT works by assigning the tasks which have

long chains of succeeding tasks. The length of the chain can be measured either by

the number of successors or the sum of the task times of the successors. The sum of

the task process time and the process times of the successors is defined as the

positional weight of the task. The tasks are then listed in descending order of weight,

and an attempt is made to assign them in that order to the assembly stations, starting

with the first station and proceeding, station by station, along the line.

 28

Killbridge & Wester (1961) proposed a method, which groups tasks into columns

in the precedence diagram where tasks are placed as far left as possible without

violating precedence relations.

Hoffmann (1963) proposed a heuristic based on a method for generating

permutations using a precedence matrix. In the procedure, from the available tasks, a

subset is selected such that the current station is loaded as much as possible. The

procedure is repeated until all tasks are assigned. The procedure tends to concentrate

tasks either at the first few stations or the last few stations depending on whether a

forward or reverse problem is solved.

Moodie & Young (1965) presented a modified formulation of the ALB problem

that includes task time variability. The developed heuristic places tasks into

workstations according to the longest task processing time. A task cannot be placed

into a station unless all of its immediate predecessors have been already assigned.

Arcus (1966) developed a heuristic known as COMSOAL, essentially a computer

simulation technique that randomly generates a number of feasible solutions and

adopts the best of these solutions by using ‘priority-based’ heuristics. In COMSOAL,

for each task in the precedence graph, the numbers of immediate predecessors of all

tasks are enumerated in a list. Then the tasks which have no immediate predecessors

in this list are determined and enumerated in a second list. A task is selected

randomly and removed from this second list. The second list is updated by moving

all the tasks which are numerated at the bottom of the selected task in the list to an

upper position. The selected task is removed from the precedence graph and the first

list is updated. These steps are repeated until all the tasks are assigned according to

the cycle time constraint.

Lapierre & Ruiz (1999) programmed the COMSOAL algorithm (Arcus, 1966) on

the software package Microsoft ACCESS97 with a modification to deal with

constraints such as the position (rear, front, centre, etc.) and the level (high and low)

 29

of tasks. Thus, the method aims to avoid grouping tasks having different levels on

the same station.

Fonseca, Guest, Elam, & Karr (2005) developed fuzzy versions of RPWT and

COMSOAL methods to solve SMALBP Type-1 with a fuzzy representation of the

time variables by triangular fuzzy numbers. Gokcen et al. (2006) developed two new

procedures based on the COMSOAL algorithm of Arcus (1966) to solve SMALBP

Type-1 with parallel lines. Jiao, Kumar, & Martin (2006) proposed the design and

implementation of a web-based advisor composed of a schedule based on various

heuristic algorithms such as RPWT, Killbridge & Wester’s method, and COMSOAL

embedded in its library to solve SALBP Type-1 and Type-2. Kara & Tekin (2009)

developed a new heuristic procedure based on the COMSOAL algorithm of Arcus

(1966) to solve U-shaped MMALBP Type-1.

Toksari et al. (2008) used the shortest task rule to solve SALBP and U-shaped

SMALBP Type-1 with learning effects. Later, Toksari et al. (2010) adapted the

COMSOAL algorithm of Arcus (1966) to solve large scale SMALBP Type-1 with

deterioration tasks and learning effects.

Boctor (1995) introduced a four-rule heuristic to solve SALBP Type-1. Bukchin

et al. (2002) presented a mathematical model and a new three-stage heuristic, in

which one of the stages was based on B&B, to solve MMALBP Type-1 in a make-

to-order environment.

Jin & Wu (2002) developed a new heuristic algorithm called “variance algorithm”

to solve MMALBP with an objective of minimizing the variance in the rate of

resources used by the units.

Zhao, Ohno, & Lau (2004) proposed a one-pass heuristic, based on the lower

bound of the total overload time, to solve paced MMALBP with an objective of

minimizing the total overload time.

 30

Liu, Ong, & Huang (2005) proposed a bi-directional heuristic to solve SMALBP

Type-2 with stochastic processing times. Hoffmann’s procedure (Hoffmann, 1963)

was applied to guarantee the best task assignment. The tasks were assigned to

workstations from two directions of the assembly line alternatively. The proposed

method was superior to Moodie & Young's (1965) method.

Chiang & Urban (2006) presented a hybrid heuristic composed of an initial

feasible solution module and a solution improvement module to solve U-shaped

SMALBP Type-1 with stochastic processing times. The first module consisted of

two approaches as “First-Fit” and “Priority Based”. The second module consisted of

approaches as “Least Number of Tasks” and “Least Task Time”.

Dimitriadis (2006) developed a heuristic based on an enumeration method,

Hoffmann’s precedence matrix procedure (Hoffmann, 1963), to solve paced ALBP

with multi-manned workstations to achieve higher space utilization while the total

effectiveness still remained optimized.

Battini, Faccio, Ferrari, Persona, & Sgarbossa (2007) introduced a new heuristic

procedure to solve unpaced MMALBP Type-2 with multi-turns circular transfer

systems, such as a multi-station rotating table.

Kilincci & Bayhan (2006) developed a Petri net based heuristic to solve SALBP

Type-1. Later, Kilincci & Bayhan (2008) developed a heuristic based on the P-

invariants of Petri nets to solve SALBP Type-1. Kilincci (2010) developed a two-

stage heuristic adapted from a Petri net approach of Kilincci & Bayhan (2006) to

solve SALBP Type-2.

Cevikcan, Durmusoglu, & Unal (2009) presented a team-oriented mathematical

programming model for creating assembly teams (physical stations) in MMALBP.

The authors developed a scheduling based heuristic algorithm for this design

methodology including horizontal and vertical balancing and model sequencing for

mixed-model assembly lines.

 31

 2.4.2.2 Meta-Heuristics

Meta-heuristics are general search principles organized in a general search

strategy used to solve combinatorial optimization problems (Pirlot, 1996). Meta-

heuristics start with an initial solution obtained with a heuristic and improve it, so

they are the natural extension of priority-based heuristics. They are able to search

large regions of the solution’s space without being trapped in local optima, a major

disadvantage of pure local search algorithms. They have provided effective

approximate solutions for difficult NP-hard combinatorial optimization problems. In

the last decade, the focus of researchers has been on improvement procedures using

meta-heuristics like Tabu Search (TS), Simulated Annealing (SA), Genetic

Algorithm (GA), and Ant Colony Optimization (ACO) to solve ALBPs. This section

focuses on literature review of their applications to ALBPs.

Tabu Search (TS) is a generalized local search procedure proposed by Glover

(1986) to guide other methods to escape the trap of local optimum. TS starts from an

initial solution and iteratively moves to a neighbor solution which either improves on

the previous solution or not. It uses problem-specific operators to explore a search

space and memory (which is called the tabu list) to keep track of parts already

visited. Some applications of TS for solving ALBP can be found in Peterson (1993),

Scholl & Voss (1996), Chiang (1998), Pastor, Andris, Duran, & Pirez (2002),

Lapierre et al. (2006), and Suwannarongsri & Puangdownreong (2008).

A TS algorithm was used to solve ALBP firstly by Peterson (1993). An initial

solution was adjusted according to tabu to improve the solution to a near-optimum

condition with this method. To solve SALBP Type-1 and Type-2, Scholl & Voss

(1996) presented basic TS algorithms. Chiang (1998) proposed another TS approach

to solve SALBP Type-1. Although both of the methods were rather simple versions

of TS, good results were obtained on classical data sets. Pastor et al. (2002) proposed

a TS algorithm for an industrial multi-product and multi-objective ALBP. Lapierre et

al. (2006) presented a new TS algorithm to solve SALBP Type-1 and discussed its

differences with respect to those in the literature. The differences of the proposed SA

 32

were the use of two different complementary neighborhoods redefinition of the

solution space and the objective function in order to allow the algorithm to visit

infeasible solutions.

A recent application of TS can be found in Suwannarongsri & Puangdownreong

(2008). The authors proposed a TS algorithm hybridized with the partial random

permutation (PRP) technique to solve SALBP with the objective of minimizing

workload variance. The TS algorithm was used to address the number of tasks

assigned for each workstation, while the PRP technique was used to arrange the

sequence of tasks.

Simulated Annealing (SA) was introduced by Kirkpatrick, Gelatt, & Vecchi

(1983) to solve NP-hard combinatorial optimization problems, by using the analogy

with the simulation of the physical annealing of solids, in order to optimize the value

of an objective function. The SA algorithm starts with a non-optimal initial solution

and tries to improve it according to an annealing schedule that controls temperature.

In each iteration, the difference between current position and the next possible

position is calculated. If there is an improvement, the change is automatically

accepted. If not, the change may still be accepted according to a probability, which

decreases exponentially with the badness of the move. Some applications of SA for

solving ALBP can be found in Suresh & Sahu (1994), McMullen & Frazer (1998),

Erel, Sabuncuoglu, & Aksu (2001), Vilarinho & Simaria (2002), Baykasoglu (2006),

and Kara et al. (2007a, 2007b).

Suresh & Sahu (1994) developed a SA algorithm to solve SMALBP with

stochastic processing times. To solve multi-objective MMALBP with parallel

stations, McMullen & Frazer (1998) presented a SA algorithm for stochastic

processing times. Erel et al. (2001) developed a heuristic based on SA to solve U-

shaped ALBP. Vilarinho & Simaria (2002) developed a two-stage SA algorithm to

solve MMALBP with additional restrictions and parallel stations.

 33

Mendes, Ramos, Simaria, & Vilarinho (2005) proposed a heuristic procedure

combined of a version of RPWT and a SA algorithm to solve MMALBP Type 1. At

first, the version of RPWT computed the initial solution, and then the SA algorithm

tried to improve the solution.

Baykasoglu (2006) presented a multi-rule multi-objective SA algorithm to solve

SALBP and U-shaped SMALBP multiple objectives with Type 1 and Type-3.

Recent applications of SA can be found in Kara et al. (2007a, 2007b). Kara et al.

(2007a) was the first to deal with simultaneously balancing and sequencing problems

of MMALBP Type-1 by using the SA method. Kara et al. (2007b) proposed a SA

algorithm to solve simultaneously balancing and sequencing problems of MMALBP

with multiple objectives of minimizing part usage rate, minimizing setup cost, and

minimizing deviations of workload across workstations.

Ant Colony Optimization (ACO) presented by Dorigo, Maniezzo, & Colorni

(1996) and Dorigo, Di Caro, & Gambardella (1999) is a population-based procedure

inspired on the behavior of real ant colonies. Ants are known for being able to find

the shortest path between their nest and a food source, without making use of visual

cues; only by following pheromone trails released by other ants. It is the colony as a

whole that coordinates the activities without a direct communication between

individual ants, as an isolated ant basically moves at random. ACO exploits a similar

mechanism for solving optimization problems. In ACO, a number of artificial ants

build solutions to an optimization problem and exchange information on the quality

of these solutions via a communication scheme that is reminiscent of the one adopted

by real ants. Some implementations of ACO to solve ALBP can be found in Bautista

& Pereira (2002, 2007), McMullen & Tarasewich (2003, 2006), Vilarinho & Simaria

(2006), Boysen & Fliedner (2008), Baykasoglu & Dereli (2008, 2009), Sabuncuoglu,

Erel, & Alp (2009), and Simaria & Vilarinho (2009).

Bautista & Pereira (2002) presented an ACO algorithm to solve SALBP-2.

McMullen & Tarasewich (2003) proposed an ACO algorithm to solve MMALBP

 34

with parallel stations and stochastic task processing times. Later McMullen &

Tarasewich (2006) presented an ACO technique to solve MMALBP with stochastic

task processing times and multiple objectives via a composite function. This study

was an extension of their previous research where only single-objective functions

were addressed.

Blum, Bautista, & Pereira (2006) proposed a Beam-ACO algorithm to solve the

time and space constrained SMALBP Type-1 with the objective of minimizing the

number of necessary work stations. This problem was denoted as TSALBP-1 in the

literature. The proposed Beam-ACO approach was a state-of-the-art meta-heuristic

that resulted from hybridizing ACO with beam search.

Vilarinho & Simaria (2006) presented an ACO algorithm to solve MMALBP for

two objectives of Type-1 and Type-3 with zoning restrictions and parallel

workstations. Bautista & Pereira (2007) presented an ACO algorithm to solve the

time and space constrained ALBP with various objectives. Boysen & Fliedner (2008)

proposed a two-stage general procedure (AVALANCHE) to solve several extensions

of SALBP and GALBP with constraints such as parallel workstations and tasks, cost

synergies, processing alternatives, zoning restrictions, stochastic processing times or

U-shaped assembly lines. In the first stage, the ACO algorithm was used for

sequence generation. Then, the task assignment was carried out by well-known

mathematical tools such as IP.

Baykasoglu & Dereli (2008) proposed an ACO based heuristic to solve two-sided

ALB problems with zoning constraints (2sALBz). This paper was one of the first

attempts to show how an ant colony heuristic (ACH) can be applied to solve 2sALBz

problems. Later, Baykasoglu & Dereli (2009) proposed an ACO algorithm integrated

with COMSOAL method and RPWT to solve SALBP and U-shaped SMALBP

Type-1. Sabuncuoglu et al. (2009) proposed an ACO algorithm to solve U-shaped

SMALBP Type-1. Simaria & Vilarinho (2009) proposed an ACO algorithm to solve

two-sided MMALBP Type-1 with additional goals. In the proposed procedure, two

ants worked simultaneously, one at each side of the line.

 35

Genetic Algorithms (GA) (Holland, 1975) are an iterative search method, based

on the biological process of natural selection and genetic inheritance, which maintain

a population of a number of candidate members over many simulated generations.

Falkenauer & Delchambre (1992) were the first to solve ALBP with GAs. Some of

the applications of GAs for solving ALBP can be found in Leu, Matheson, & Rees

(1994), Falkenauer (1997), Rekiek, De Lit, Pellichero, Falkenauer, & Delchambre

(1999), Goncalves & De Almedia (2002), Stockton, Quinn, & Khalil (2004a, 2004b),

Brown & Sumichrast (2005), and Rekiek & Delchambre (2006). A review of the GA

applications for ALBPs will be given in Chapter 4.

An iterative procedure named “balance for order”, based on a modified GA, was

proposed by Rekiek, De Lit, & Delchambre (2000) to solve problems of model

sequencing and line balancing in a mixed-model assembly line simultaneously. The

proposed algorithm was tested on randomly generated instances. The number of

operations varied from 50 to 500 and the number of models varied from 1 to 50. The

results of the experiments showed that the optimum solutions as the number of

workstations and makespan depended on both desired cycle time and maximum peak

time.

Symbiotic evolutionary algorithm (SEA), a special kind of GA, is a stochastic

search algorithm that imitates the biological co-evolution process through symbiotic

interaction (Potter, 1997). SEA maintains two or more populations (species) that

represent sub-problems. Then, an individual of a population becomes a partial

solution to the entire problem. Complete solution of the problem is constructed by

combining all the partial solutions of each population.

Kim et al. (2000a) presented a new method, called SEA, using a co-evolutionary

algorithm that could solve line balancing and model sequencing problems of

MMALBP at the same time. The objective was minimizing utility work, which was

defined as the amount of uncompleted works within the given length of a

workstation. The balancing problem and sequencing problem were defined as

 36

populations. Generation, crossover and mutation operations, genetic representations,

and adaptations of all of them to the line balancing problem were explained in detail

by representing the proposed algorithm. Thomopoulos’ 19-task and Arcus’ 111-task

problems and a real life problem with 61-task were used to perform the algorithm.

The experimental results showed that the proposed algorithm was superior to existing

approaches. Later, Kim et al. (2000b) proposed SEA to deal with the integration of

balancing and sequencing of U-shaped MMALBP simultaneously. Totally 21

problems were solved. The proposed co-evolutionary algorithm was compared with

some methods and the hierarchical approach which solved a sequencing problem

after the solution of the line balancing problem. Thomopoulos’ 19-task problem,

Arcus’ 111-task problem, and a real life problem with 61 tasks were used as test-bed

problems. The results showed that the proposed algorithm outperformed the existing

methods. Also it improved the results according to the hierarchical approach as from

%28.20 to %73.20.

Endosymbiotic evolutionary algorithm (EEA), an extension of SEA, is an

algorithm in which an evolutionary strategy imitating the endosymbiotic process is

embedded in an existing SEA. The theory of endosymbiotic evolution was first

proposed by Margulis (1980) and the basic idea was based on the algorithm by Kim

et al. (2001).

Kim et al. (2006) proposed EEA to solve simultaneously line balancing and

sequencing problems of U-shaped MMALBP Type-3. The proposed algorithm

constructed and maintained a balancing population and a sequencing population. The

individuals of each population became a partial solution of the problem. The

algorithm maintained another population consisted of individuals formed by the

integration of the two types of individuals. Then, they became the entire solution

representing a combination of work assignment and model sequence.

Differential evolution algorithm (DEA) is an evolutionary algorithm introduced

by Storn & Price (1997) for global optimization over continuous spaces.

 37

Nearchou (2007) proposed a new heuristic based on DEA to solve SALBP Type-

2. Two versions of the proposed FEA were implemented, one using random-keys

encoding scheme and the other using priority-based. Their performances were

compared with three types of GAs by testing two data sets from the literature

including 17 problems with tasks varying from 29 to 297. The results of the proposed

DEA were quite promising. Later, Nearchou (2008) proposed a multi-objective

version of DEA to solve bi-criteria SALBP Type-2. The secondary objectives were

to minimize balance delay time and workload smoothness index. The author

compared three versions of the proposed DEA against two representative multi

objective GAs, one proposed by Kim et al. (1996) and the other proposed by Murata,

Ishibuchi, & Tanaka (1996). The version which used adaptive weights estimated in

the objective function was superior to the others.

2.5 Chapter Summary

In this chapter, the terminology and characteristics of assembly lines, the

assembly line balancing problem and various types of this problem with the solution

methods were presented.

The literature review shows that there are many algorithmic developments as

exact and heuristic procedures to solve mainly SALBP, because it is a benchmark

problem with a large number of data sets with known optimal solutions. Due to the

need to solve more realistic line balancing problems, recent studies evolve towards

solving GALBPs with different extensions. There is a growing interest in the use of

meta-heuristics to solve complex real world ALBPs. Many studies showed that meta-

heuristics are able to solve SALBP and GALBP with a high performance and

flexibility.

 In this study, as a meta-heuristic approach, a GA will be employed to solve a

novel GALBP. The following chapter will present detailed information about GAs.

CHAPTER THREE

GENETIC ALGORITHMS

3.1 Introduction

Since this study involves the application of GAs to solve CCALBP, this chapter

will focus on the description of the main characteristics of GAs. The chapter is

organized as follows. In Section 3.2, an introduction of the terminology for GAs is

presented and the procedure of GAs is given. Finally, in Section 3.3, the context of

this chapter is summarized.

3.2 Genetic Algorithms

Solving the combinatorial optimization problems by exact methods such as DP or

B&B causes storage requirements and exponential growth in computation time.

Solving by heuristics such as neighborhood search causes being trapped at locally

optimal solutions. To avoid all, meta-heuristics have been developed (Pirlot, 1996).

Since the 1960s there has been an increasing interest in imitating living beings to

develop powerful algorithms to solve difficult optimization problems. Recently, the

term evolutionary computation is referred to such techniques. Many attempts have

been made to understand the adaptive processes of natural systems. These methods,

commonly called meta-heuristics, are general search principles organized in a

general search strategy used to solve combinatorial optimization problems (Pirlot,

1996). They are high level strategies for exploring search spaces by using different

methods (Blum & Roli, 2003). Figure 3.1 gives the basic chronology of well-known

meta-heuristics including GA, SA, TS, ACO, particle swarm optimization, and

differential evolution.

38

 39

1965 Evolution Strategies

 1966 Evolutionary Programming

 1975 Genetic Algorithms

1983 Simulated Annealing

1986 Tabu Search

1990 Ant Colony Optimization

1995 Particle Swarm Optimization

1997 Differential Evolution

 Figure 3.1 Chronology of meta-heuristics

The first work on GA was introduced by John Holland, from the University of

Michigan at the beginning of 1960s. The first achievement was the publication of

“Adaptation in Natural and Artificial System” in 1975 (Holland, 1975). Holland (1975)

attempted to explain the adaptive processes of natural systems and to design an artificial

system based upon these natural systems. GA as a search and optimization routine was

popularized by Goldberg’s 1989 publication “Genetic Algorithms in Search,

Optimization, and Machine Learning” (Goldberg, 1989).

GA is a stochastic search method; randomness is an essential role in GAs. GA

simulates the natural process, and randomly searches the heuristic solution in the

solution space, based on the mechanism of natural selection and natural genetics

(Goldberg, 1989). Most stochastic search methods operate on a single solution to the

problem, but GA operates on a population of solutions.

GAs have been applied for solving various combinatorial optimization problems

(COPs) in the literature and have become increasingly popular among approximation

techniques for finding optimal or near optimal solutions in a reasonable time to COPs

(Dowsland, 1996) (Reeves, 1997).

 40

GA differs from conventional optimization techniques in several ways (Goldberg,

1989):

1. GAs work with coded versions of the problem parameters and not with the

parameters themselves, i.e., GA works with the coding of solution set rather than

the solution itself.

2. Almost all conventional optimization methods search from a single point but GAs

always search from a whole population of points, i.e., GA uses population of

solutions, not a single solution for searching. This improves the chance of reaching

the global optimum and also helps in avoiding a local optimum.

3. GA uses fitness function for evaluation, not derivatives. Therefore, GAs can be

applied to any kind of optimization problem by identifying and specifying a

meaningful decoding function.

4. GAs use probabilistic transition rules rather than deterministic rules.

Beside its advantages, there are some difficulties in adjustment of the GA control

parameters (population size, crossover probability, and mutation probability), for

specification of the termination condition, and for encoding problems into fixed-length

chromosomes. There are limited available commercial software products to solve

various problems.

3.2.1 Terminology for GAs

To understand the procedure of a general GA, there are some basic components to

learn. In this section, general terminology of GA is given.

 41

 3.2.1.1 Representation

GAs do not operate directly on the solution space. The solutions are coded in the

form of symbolic strings called chromosomes. An encoding is selected in a way that

each solution in the search space is represented by one chromosome.

A chromosome is subdivided into genes. A gene is the GA’s representation of a

single factor for a control factor. Each factor in the solution set corresponds to a gene in

the chromosome. Genes are the basic “instructions” for building a GA. A chromosome is

a sequence of genes. Genes may describe a possible solution to a problem, without

actually being the solution. The most used gene type is the binary one with binary digits

as Holland (1975) used (Sivanandam & Deepa, 2008) (See Figure 3.2.a). Later, different

types of genes have been used according to the problem studied (See Figure 3.2.b).

A chromosome, in some way, stores information about solution that it represents.

That requires a mapping mechanism between the solution space and chromosome. This

mapping is called representation (encoding) of the solution, which is an abstract

representation (Sivanandam & Deepa, 2008). A chromosome representation describes an

individual in the population. There are a number of ways to represent a solution in a way

that it is suitable for GA such as binary, real number, vector of real numbers,

permutations, general data structure (array, tree, matrix and so on), and they are mostly

depend on the nature of the problem (See Figure 3.2) (Rotlauf, 2006). The first step of

designing a GA for a particular problem is to devise a suitable representation so that the

problem becomes easily solvable by GA. The suitable representation also allows for

easy application of genetic operators and computation of fitness (Suresh, Vinod, & Sahu,

1996).

 42

1 1 0 1 0 0 1 0 1 1
(a)

A C A B C D E D E E
(b)

Figure 3.2 Chromosome representations

 3.2.1.2 Initialization

Chromosomes evolve through successive iterations (generations). The set of

individuals (solutions, chromosomes) of each generation is called a population. The

diversity of a population is a measure of the number of the different solutions present.

The number of individuals in the population gives the population size.

The initial population is created during an initialization phase and often generated

randomly by assigning random values to the genes in the chromosomes. Some

knowledge can be used by the GA to start the search from promising regions of the

search space. Seeding the initial population with known good solutions or including a

high-quality solution, obtained from another heuristic technique, can help a GA find

better solutions rather more quickly than it can from a random start. However, there is

also the possibility of inducing premature convergence to a poor solution (Reeves &

Rowe, 2003).

 3.2.1.3 The Fitness Function

During each generation of a GA, the chromosomes are evaluated, using some

measures of fitness. Fitness is assigned to each chromosome in the current population by

a fitness function. The evaluation procedure rates chromosomes in terms of their fitness.

The fitness value reflects the quality of the solution represented by the chromosome. The

fitness function is the same as the objective function to be optimized, so it is adjusted to

 43

the problem at hand (Kim et al., 1996). Sometimes, the fitness function can be the

transformation of the objective function (Yu & Yin, 2009). The fitness value of each

chromosome is calculated according to the given fitness (objective) function.

 3.2.1.4 Selection

The selection mechanism determines which individuals will have all or some of their

genetic material passed to the next generation. The most fit individuals (chromosomes)

are selected from a population to form a basis for subsequent generations, i.e., for

reproduction (Haupt & Haupt, 2004).

Selection can be based on many different criteria but it is usually based on a fitness

value. The idea behind this is to select the best chromosomes for parents in a way by

combining them to produce better offspring chromosomes. A comparative analysis of

selection schemes used in GA was given by Goldberg & Deb (1991).

The most popular selection techniques are given in the following:

• Roulette Wheel Selection (RWS): This technique works like a roulette wheel in

which each slot on the wheel is paired with an individual of the population. The

size of each slot is proportional to the corresponding individual’s fitness. The

wheel is spun just many times as the population size. On each spin, the individual

under the wheel's marker is selected to be in the pool of parents for the next

generation (Mitchell, 1996). This procedure selects chromosomes proportional to

their fitness scores.

• Stochastic Universal Sampling: This method uses a single wheel spin which is

spun once, but with a number of equally spaced markers equal to the population

 44

size. This method gives each individual the proper number of trials to eliminate

selection noise (Mitchell, 1996).

• Tournament Selection: At each iteration, this method chooses a number

(tournament size) of individuals and selects the best one as a parent from this

group into the next generation. This process is repeated for every parent needed as

often as the population size (Goldberg & Deb, 1991). A larger value of tournament

size increases the selective pressure while decreasing the population diversity

(Kim et al., 1996).

• Ranking selection: The individuals of the population are ranked according to

fitness, and the expected value of each individual depends on its rank rather than

on its absolute fitness. The solutions are selected proportionally to their rank. The

population is sorted from the best to the worst one, and each individual is copied

as many times as possible, and then the proportionate selection is performed.

 3.2.1.5 Genetic Operators

Genetic operators provide the basic searching mechanism of GAs. They are used to

create new solutions based on existing solutions in the population. GAs use two main

operators: crossover and mutation. The crossover operator has the role of combining

pieces of information from different individuals in the population. The selected

individuals called parents are joined in pairs and combine their genetic material to

produce two new individuals called offspring with a probability equal to the crossover

rate (Coley, 1999). There are many types of crossover operators such as binary-coded,

real-coded, statistic-based, and permutation-based crossover operators. The popular

permutation-based crossover operators which are used generally for line balancing

problems are partially mapped crossover (PMX), order crossover (OX), cycle crossover

(CX), position-based, and uniform crossover. Figure 3.3 shows two-point crossover

 45

(2PX) which exchanges all genes between the two cutpoints mostly determined in a

random way.

 Parent 1

1 1 0 0 0 1 0 0 1 1
 Parent 2

1 0 1 0 0 1 1 1 0 1

 Randomly generated

 Offspring 1 cutpoints

1 1 0 0 0 1 1 1 1 1
 Offspring 2

1 0 1 0 0 1 0 0 0 1

 Figure 3.3 Two-point crossover

The main objective of the crossover operator is to transfer good characteristics of

parents to offspring. Crossover depends on chromosome representation and can be very

complicated. Although general crossover operations are easy to implement, building

specialized crossover operation for a specific problem can greatly improve performance

of GA (Mitchell, 1996).

After GA performs crossover, it performs mutation to finish production of new

chromosomes. Mutation alters one or more genes with a probability equal to the

mutation rate (Dreo, Siarry, Petrowski, & Taillard, 2006). Mutation makes small

random changes to encoded solution; therefore it introduces a certain amount of

randomness to the search. The aim of mutation is to prevent all solution being trapped

into local optimum and to extend search space of the algorithm. This ensures diversity

among individuals, preventing premature convergence. Mutation, as well as crossover,

 46

depends on chosen representation. There are many types of mutation operators such as

insertion, inversion, reciprocal, and scramble mutation. Figure 3.4 shows mutation of a

bit which involves flipping a bit, changing 1 to 0.

 Parent

1 0 0 1 1 0 1 0 1 0

 Randomly selected gene

 Offspring

1 0 0 0 1 0 1 0 1 0

 Figure 3.4 Mutation

 3.2.1.6 Survival

The members of the new generation can be individuals from the current generation

and/or offspring product of crossover or mutation. A survival approach is necessary to

determine which individuals stay in the next population and which are replaced by

offspring to keep the population size constant. The most common approach is elitism

which allows the best chromosome in each generation to survive in the next generation.

This is to make sure that the final population contains the best solution ever found. It is

guaranteed that the best solution obtained during the generations to be preserved without

being accidentally destroyed by genetic operators (Kim, Kim, & Cho, 1998). There are

several approaches for the replacement. It is common to make one or a few exact copies

of the best individual and place them directly in the next generation. But some

approaches do the maintenance of the parents in the population. In either case, a random

component is always present to avoid premature convergence to local optima. The

tournament strategy or a local search algorithm can also be used as well as elitism for

survival.

 47

 3.2.1.7 Termination

There are various stopping conditions for GAs as listed in the following (Sivanandam

& Deepa, 2008):

• Maximum generations: When the specified number of generations has evolved,

GA stops.

• Elapsed time: When a specified time has elapsed, GA will end. If the maximum

number of generation has been reached before the specified time has elapsed, GA

will end.

• No change in fitness: If there is no change in the best fitness of population for a

specified number of generations, GA will end. If the maximum number of

generation has been reached before the specified number of generation without

any change, GA will end.

• Stall generations: GA stops if there is no improvement in the objective function

for a sequence of consecutive generations during the length of stall generations.

• Stall time limit: GA stops if there is no improvement in the objective function

during an interval of time in seconds equal to stall time limit.

3.2.2 Procedure of GAs

In the application of GAs, there are some steps which should be taken as stated

below:

1. Choose a representation scheme for a possible solution (coding or chromosome

representation)

2. Decide on how to create the initial population.

3. Define the fitness function.

4. Define the genetic operators to be used (reproduction, crossover, mutation,

elitism).

5. Choose the parameters (population size, probability of genetic operators).

 48

6. Define the termination rule.

By initialization, GA maintains a population of individuals to start the search. Each

individual is coded as a chromosome and represents a solution to the problem at hand.

Each individual is evaluated to give measure of its fitness.

After the evaluation of the initial population, chromosomes are selected on which the

genetic operators are applied. In order to create new individuals, some individuals of the

population undergo stochastic transformations by means of genetic operations. GAs use

mainly two genetic operators, crossover and mutation, to direct the population to the

global optimum. Crossover creates new individuals by combining parts (mating) from

two individuals. This allows exchanging information between different solutions

(chromosomes). Mutation creates new individuals by making changes (mutating) in a

single individual and increases the variety in the population. Then new individuals,

called offspring, are evaluated and a new population is formed. Passing through these

steps completely is known as one generation.

After several generations (iteration number), the algorithm converges to the most fit

individual, which represents an optimal or suboptimal solution to the problem at hand.

This process is continued until a termination criterion is met. Figure 3.5 illustrates the

main steps as a general flowchart of a GA.

 49

Generate Initial

Population

Evaluate
Each Individual

 No

 Yes

Select Individuals Undergo
Genetic Operators

Crossover

Mutation

Evaluate
Offsprings

Form
New Generation

Termination
Check?

Present
Best Solution

 Figure 3.5 Main steps of a generalized genetic algorithm

 50

3.2.3 Parameter Setting for GAs

One of the important issues in implementing a GA is setting the values of the various

parameters, such as population size, crossover rate, and mutation rate. The well

determined values can cause the algorithm to find an optimal or near-optimal solution

efficiently. But suboptimal parameter values set by the user can result in a suboptimal

algorithm performance. A given parameter value can have a different optimal value in

different phases of the search. Choosing the appropriate parameter values is a hard task.

Eiben, Michalewicz, Schoenauer, & Smith (2007) classified parameter setting

approaches into two major groups: parameter tuning and parameter control as given in

Figure 3.6.

Parameter tuning is the approach of searching for good values of the parameters

before the run of the algorithm and then running the algorithm using these fixed values.

Parameter tuning is a typical approach, but it is very time consuming. The reason is that

it is done by experimenting with different values of many parameters and selecting the

ones that give the best results on the test problems at hand.

Parameter control is the approach of starting a run with initial parameter values

which are changed during the run. Different values of parameters might be optimal at

different stages of the algorithm. Methods for changing the value of a parameter can be

classified into three categories:

1. Deterministic Parameter Control: This method is used when the value of a

strategy parameter is altered by some deterministic rule. This rule modifies the

strategy parameter in a predetermined way without using any feedback from the

search. A user-specified way, such a time-varying schedule, is generally used, i.e.,

the rule will be used when a set number of generations have elapsed since the last

time the rule was activated.

 51

2. Adaptive Parameter Control: This method is used when there is some feedback

from the search to determine the direction or magnitude of the change to the

strategy parameter. The assignment of the value of the strategy parameter may be

based on the quality of solutions discovered by different operators/parameters. It is

important that the updating mechanism used to control parameter values is

externally supplied, rather than being part of the algorithm.

3. Self-Adaptive Parameter Control: To implement the self-adaptation of parameters,

the idea of the evolution of evolution can be used. The parameters are encoded

into the chromosomes and undergo mutation and recombination. The better values

of these encoded parameters lead to better individuals. In turn they are more likely

to survive and produce offspring and hence propagate these better parameter

values. An updating mechanism of different strategy parameters is entirely

implicit, i.e., they are the selection and variation operators of the algorithm itself.

 Before the run During the run

Parameter Tuning

Deterministic

Adaptive

Self-Adaptive

Parameter Control

PARAMETER SETTING

 Figure 3.6 Taxonomy for parameter setting in GAs

 52

3.3 Chapter Summary

In this chapter, main characteristics for GAs were presented in detail. The general

procedure of GAs was given and their parameter setting is explained. Our study involves

GAs for solving CCALBP; therefore the review of the literature for the application of

GA approaches in line balancing will be given in the next chapter.

CHAPTER FOUR

LITERATURE REVIEW FOR APPLICATIONS OF GENETIC ALGORITHMS

IN ASSEMBLY LINE BALANCING

4.1 Introduction

Genetic algorithms (GAs) are meta-heuristics that have been thoroughly used for

solving ALBPs. Dimopoulos & Zalzala (2000) reviewed recent developments for the use

of evolutionary computation in many manufacturing problems including assembly line

balancing. Rekiek et al. (2002) presented a survey of the methods including exact

methods, heuristics and meta-heuristics applied to ALBP. Aytug, Khouja, & Vergara

(2003) reviewed the use of GAs to solve operations problems including assembly line

balancing. Pierreval, Caux, Paris, & Viguier (2003) reviewed evolutionary approaches

for solving several types of problems encountered in the area of manufacturing systems

including ALBP. These studies have a very wide range of the application areas including

supply chain management, facility layout design, assembly lines, etc.

Up-to-date analysis of the bibliography and available state of the art procedures for

SALBP family of problems are given by Scholl & Becker (2006) and for GALBP by

Becker & Scholl (2006). Tasan & Tunali (2008) reviewed the current applications of

GAs in assembly line balancing with the focus on solving all types of ALBPs using

GAs. Their study gave a structural framework to classify the reviewed papers according

to the type of ALBP studied, the GA methodology and the performance specifications.

In this chapter, the published studies for applications of GAs in assembly line

balancing are classified based on the structural framework given by Tasan & Tunali

(2008). In Section 4.2, the literature is organized in chronological order. In Section 4.3,

53

 54

the conclusions about the literature review are given and in Section 4.4, the chapter is

summarized.

4.2 Literature Review

Referring to the classification of ALBP by Baybars (1986), the published literature is

reviewed under two types of ALBPs studied: the literature of GAs for SALBP is

reviewed in Section 4.2.1 and the literature of GAs for GALBP is reviewed in Section

4.2.2. The reviewed studies based on the type of the problem and the objective functions

are given in order in Table 4.1.

4.2.1 Research on SALBP

SALBP is the simplest version of ALBP which involves mass-production of only one

homogeneous product, paced line with fixed cycle time, deterministic and independent

processing times, no assignment restrictions besides the precedence constraints, serial

line layout, one-sided and equally equipped workstations, and fixed rate launching

SALBP was first solved with a GA by Falkenauer & Delchembre (1992). To solve

SALBP Type-1, the authors pointed out the weaknesses of a standard GA when applied

to grouping problems, and introduced the Grouping Genetic Algorithm (GGA) which

was presented by Falkenauer (1991). The GGA differed from the classic GA in two

important aspects. First, a special encoding scheme was chosen in order to make the

structure of chromosomes more group-oriented. Second, special genetic operators,

which were suitable for the chromosomes, were used with the given encoding.

Falkenauer & Delchembre (1992) presented efficient crossover and mutation operators

for the bin packing problem, and modified them to solve SALBP Type-1. The authors

tested the performance of the algorithm on randomly generated data.

 55

Table 4.1 Chronological list of GA studies for assembly line balancing

 Year Researcher(s) Problem Type Objective Function
1992 Falkenauer & Delchambre SALBP Type-1
1994 Leu et al. SALBP Type-1
1994 Anderson & Ferris SALBP Type-2
1995 Rubinovitz & Levitin SALBP Type-2
1995 Tsujimura et al. GALBP (SMALBP) Type-1
1996 Kim et al. SALBP Type-1, 2, 3, 4, 5
1996 Suresh et al. GALBP (SMALBP) Type-1
1997 Falkenauer GALBP (SMALBP) Type-1
1998 Ajenblit & Wainwright GALBP (SMALBP) Type-1
1998 Chan et al. GALBP (SMALBP) Type-1
1998 Kim et al. SALBP Type-2
1999 Rekiek et al. SALBP Equal Piles
 2000 Bautista et al. SALBP Type-1, Type-2
2000c Kim et al. GALBP (SMALBP) Type-1
2000 Ponnambalam et al. SALBP Type-1, Type-3
2000 Sabuncuoglu et al. SALBP Type-1
2001 Carnahan et al. SALBP Type-2
2001a Simaria & Vilarinho GALBP (MMALBP) Type-2
2002 Chen et al. GALBP (Assembly Planning) Type-2
2002 Goncalves & De Almedia SALBP Type-1

2002 Miltenburg GALBP (MMALBP &
sequencing simultaneously) Type-1

2002 Valente et al. GALBP (SMALBP) Type-2
2004 Brudaru & Valmar GALBP (SMALBP) Type-1
2004 Martinez & Duff GALBP (SMALBP) Type-1
2004 Simaria & Vilarinho GALBP (MMALBP) Type-2

2004a,
2004b Stockton et al. SALBP Type-1

2005 Brown & Sumichrast SALBP Type-1
2006 Haq et al. GALBP (MMALBP) Type-1
2006 Levitin et al. GALBP (SMALBP) Type-2
2007 Baykasoglu & Ozbakir GALBP (SMALBP) Type-1
2008 Guo et al. GALBP (SMALBP)
2008 Hwang et al. GALBP (SMALBP) Type-1
2009 Gao et al. GALBP (SMALBP) Type-2
2009 Hwang & Katayama GALBP (MMALBP) Type-1
2009 Moon et al. GALBP (SMALBP) Type-1
2009 Kim et al. GALBP (SMALBP) Type-2
2009 Yu &Yin SALBP Type-1, Type-3

 PROBLEM SPECIFICATIONS

 56

Leu et al. (1994) showed how a GA was used to generate feasible line balances step

by step to solve SALBP Type-1. The authors explained how to create feasible

population in the initialization, and feasible children after crossover and mutation. As

extensions, to improve GA solutions, Leu et al. (1994) used solutions of heuristic

procedures in the initial population, and also demonstrated the possibility of balancing

assembly lines with multiple criteria and side constraints such as allocating a task in a

station by itself.

Anderson & Ferris (1994) were the first to solve SALBP Type-2 with a GA. The

authors described a standard implementation of GA for SALBP and carried out

extensive computational testing for it. Anderson & Ferris (1994) also introduced an

alternative parallel version of the algorithm, and compared it with the serial

implementation.

Rubinovitz & Levitin (1995) developed a GA to solve SALBP Type-2. The authors

compared the proposed GA with MUST algorithm suggested by Dar-El & Rubinovitch

(1979). Totally 36 problems with different flexibility ratios and with different number of

stations were solved. The results showed that the proposed GA performed much faster

than MUST for problems with large number of stations (more than 20) and high

flexibility ratio.

Kim et al. (1996) presented a GA to solve SALBP with various objectives. The

objectives were to minimize the number of workstations (Type-1), to minimize cycle

time (Type-2), to maximize workload smoothness (Type-3), to maximize work

relatedness (Type-4), and the multiple-objective with the objective of Type-3 and Type-

4 (Type-5). The authors compared five standard crossover operators for the proposed

GA to solve Type-1, Type-2, Type-3, and Type-4 problems. The proposed GA was also

compared with the well-known heuristics in the literature. The results showed that in all

of the four types, the proposed GA could provide much better solutions than the other

heuristics on several test problems such as Kilbridge & Wester’s 45-task and Tonge’s

 57

70-task problems. As an extension, Kim et al. (1996) implemented a multiple objective

GA (MOGA) to solve SALBP Type-5. The authors concluded that for a multiple

objective problem (Type-5), MOGA produced diverse Pareto optimal solutions. But

according to Rekiek et al. (2002), the encoding scheme used by Kim et al. (1996) was

not well suited for the grouping problem they dealt with.

Kim et al. (1998) proposed a heuristic-based GA to solve SALBP Type-2 with the

objective of workload smoothness. The authors placed the emphasis on utilization of

problem-specific information and heuristics in order to get high quality solutions. The

experiments for the proposed GA were carried out on five test-bed problems: Kilbridge

& Wester’s 45-task, Tonge’s 70-task, Arcus’ 83-task, Arcus’ 111-task, and Bartholdi’s

148-task problems. The results of the experiments showed that the proposed GA

outperformed the three existing heuristics and the standard GA in optimizing the

workload smoothness.

Rekiek et al. (1999) presented a new algorithm using GGA, based on an Equal Piles

approach. The proposed GGA was heavily modified to respect the precedence

constraints to solve SALBP. Equal Piles approach for SALBP warranted to obtain the

desired number of stations, and tried to equalize the station workloads (Rekiek et al.,

2002). The authors applied the proposed GGA to Buxey’s 29-task problem and

presented this case study.

Bautista, Suarez, Mateo, & Companys (2000) developed a Greedy Randomized

Adaptive Search Procedure (GRASP) and a GA to solve an extension of SALBP. The

extension of SALBP, which the authors considered, had incompatibilities between

groups of tasks. If two tasks were incompatible, they could not be assigned to the same

workstation. The objectives were, first, to minimize the number of workstations (Type-

1), and then, minimize the cycle time (Type-2) with the determined number of stations.

GRASP was obtained from the application of some classic heuristics, based on priority

rules. Bautista et al. (2000) used weights for revising GRASP and also proposed Greedy

 58

Randomized Weighted Adaptive Search Procedure (GRWASP). The authors carried a

comparative study and found that the proposed GA and GRWASP performed better than

the greedy heuristics and GRASP.

Ponnambalam, Aravindan, & Naidu (2000) proposed a MOGA to solve SALBP with

multi-objectives. The performance criteria, to optimize simultaneously, were the number

of workstations (Type-1), line efficiency and the smoothness index (Type-3). The

developed GA was compared with six popular heuristic algorithms from the literature. A

set of 20 networks from the literature were used for comparison. Each network was

solved for five different cycle times. The number of tasks varied from 7 to 50. The

authors found that the proposed GA performed better than the heuristics in all of the

performance measures; however, the execution times were longer because of more

iterations for global optimal solutions.

Sabuncuoglu, Erel, & Tanyer (2000) proposed a GA with a special chromosome

structure partitioned dynamically through the evolutionary process to solve SALBP. By

using some concepts of simulated annealing (SA), a new elitism structure was

implemented in the model to determine the survival of the individual solutions. The

authors used a fitness function including two parts. The first part aimed at reducing the

imbalance, and the second one at minimizing the number of stations (Type-1). The

proposed GA was compared with the well-known heuristics in the literature. The results

showed that the proposed GA outperformed the other heuristics on several test problems

such as Kilbridge & Wester’s 45-task and Tonge’s 70-task problems.

Carnahan, Norman, & Redfern (2001) developed three heuristics to solve SALBP

Type-2 with the objectives of minimizing the worker’s fatigue and the cycle time to

explore the incorporation of physical demand criteria in line balancing. The developed

heuristics were a multiple ranking heuristic, a combinatorial GA, and a problem space

GA. Each heuristic was tested using a set of 100 Type-2 ALB problems. The literature

problems were Buxey’s 29-task, Sawyer’s 30-task, Gunther's 35-task, Kilbridge &

 59

Wester’s 45-task, Hahn’s 53-task, Warnecke’s 58-task, Wee-Mag’s 75-task, Arcus’ 83-

task, Lutz’s 89-task, Lutz’s 89-task, Muckherje’s 94-task and Bartholdi’s 148-task

problems. The results showed that the problem space GA was found to be the best of all

three heuristics.

Goncalves & De Almedia (2002) developed a hybrid GA that combined a heuristic

priority rule, a local search procedure and a GA to solve SALBP Type-1. The proposed

hybrid GA used a random key alphabet, an elitist selection and a parameterized uniform

crossover. The authors presented computational experiments on 269 instances of three

problem sets found in the literature: The Talbot set, the Hoffman set, and the Scholl set.

The results showed that the algorithm performed remarkably well.

Stockton et al. (2004a, 2004b) researched the applications of GAs for solving

problems in various areas such as designing and planning of manufacturing operations.

These problems were assortment planning, aggregate planning, lot sizing in material

requirement planning, line balancing and facilities layout. The authors applied a GA to

solve SALBP Type-1 in Stockton et al. (2004a). The authors also performed

computational experiments in Stockton et al. (2004b). With the help of these

experiments, the relationships between problem characteristics and performance of

individual operator types and parameter values were identified as a set of guidelines.

Brown & Sumichrast (2005) compared the performance of a GGA (Falkenauer, 1991)

against the performance of a standard GA for solution quality and run time. The types of

grouping problems selected to test were the bin packing problem, machine part cell

formation problem and SALBP Type-1. Both GA and GGA obtained optimal solutions

for all test problems, but the GA required much more time.

Yu & Yin (2009) developed an adaptive GA using adaptive crossover and mutation

operators to solve SALBP. The authors considered to minimize the number of

workstations (Type-1) and to maximize the workload smoothness (Type-3). In the

 60

proposed adaptive GA, the probability of crossover and mutation was dynamically

adjusted according to the individual’s fitness value. The individuals with higher fitness

values were assigned to lower probabilities of genetic operators. Two computational

examples demonstrated that the proposed approach was better than the Kilbridge-Wester

algorithm and Monte-Carlo algorithm. The adaptive GA provided an effective

convergence and efficient computation speed.

4.2.2 Research on GALBP

GALBP include all of the problems which are not SALBP. These are balancing

problems with different additional characteristics such as single or mixed model

production, cost functions, equipment selection, paralleling, U-shaped or two-sided line

layouts with stochastic, fuzzy or dependent processing times.

GALBP was first solved with a GA by Tsujimura, Gen, & Kubota (1995). The

authors proposed a GA to solve SMALBP Type-1. In order to treat the data of real world

problems, the authors used fuzzy numbers by triangular membership functions to

represent task times. Special mechanisms and operators ensured the feasibility of

solutions. Tsujimura et al. (1995) illustrated the application of the proposed GA on an

80-task problem.

Suresh et al. (1996) proposed a general approach to solve SMALPB Type-1 with

stochastic processing times using GAs. First, the authors presented a GA working with

only feasible solutions. Then, an alternative version of the proposed GA working with

two populations, one allowing only feasible solutions and the other allowing a certain

amount of infeasible solutions, was presented. Suresh et al. (1996) claimed that the

presence of infeasible solutions allowed a smoother search space and helped in escaping

from certain local minima. The modified version of GA gave better results than the first

one with only feasible solutions according to the results of the experiments.

 61

Falkenauer (1997) developed a GA based on GGA proposed by Falkenauer &

Delchembre (1992) and Branch & Bound (B&B) algorithm to solve SMALP Type-1. By

GGA, tasks with resource dependent processing times were assigned to workstations

along the line by minimizing the number of the stations; and then by B&B algorithm, the

equipments were selected to carry out the operations by minimizing the cost of the line.

Ajenblit & Wainwright (1998) were the first to solve U-shaped SMALBP Type-1 by

using a GA. The authors considered three possible definitions for fitness function. One

was to minimize total idle time, one was to minimize mean-squared idle time for

balancing workload among the stations, and the other was a combination of both.

Ajenblit & Wainwright (1998) developed six assignment algorithms in order to

determine how a particular order of tasks in a chromosome can be assigned to

workstations. The proposed algorithm was tested with 61 test instances from Merten’s 7-

task, Bowman’s 8-task, Jaeschke’s 9-task, Jackson’s 11-task, Dar-El’s 11-task,

Mitchell’s 21-task, Heskiaoff’s 28-task, Kilbridge & Webster’s 45- task, Tonge’s 70-

task, Arcus’ 83-task, and Arcus’ 111-task problems. The proposed GA obtained the

same results as previous researchers in 49 case, and superior results in 11 cases.

Chan, Hui, Yeung, & Ng (1998) applied a GA to solve SMALBP Type-1 in the

clothing industry. In their study, line balance was achieved by the assignment of workers

with varying skill levels to workstations. The objective was to smooth system’s

throughput while minimizing slack time in the apparel industry. The authors compared

the proposed GA with a greedy algorithm by using a 41-task real case problem. The

results showed that the proposed GA was much superior to the greedy algorithm.

Kim et al. (2000c) developed a new GA to solve a two-sided SMALBP Type-1. In a

two-sided assembly line, different assembly tasks were performed on the same product

item in parallel at both sides of the line for producing large-sized high-volume products.

The positional constraints due to facility layout were also considered in their study. The

 62

objective was to minimize the number of workstations. The proposed GA was tested

with five test-bed problems of 9, 12, 24, 65, and 148 tasks. The performance of GA was

compared to integer programming (IP) and the first-fit rule heuristic, and the GA

showed the best performance.

Simaria & Vilarinho (2001a) proposed a GA to solve MMALBP Type-2 with parallel

workstations. The proposed GA was based on a model developed in Simaria &

Vilarinho (2001b) to solve SMALBP Type-2 by using a simulated annealing (SA)

approach. The authors proposed and illustrated an iterative search procedure that solved

MMALBP Type-2 at first, and then the GA was employed to minimize the cycle time

and the workload balance (Tasan & Tunali, 2008).

Chen, Lu, & Yu (2002) proposed a hybrid GA combined with a self-tuning

mechanism, which changed the infeasible sequence of chromosomes as to prevent the

violation of precedence relations, to solve SMALBP Type-2 involving various

objectives. The objectives were minimizing cycle time, maximizing workload

smoothness, minimizing the frequency of tool changes, minimizing the number of tools

used, and minimizing the total penalty of assembly relations. The authors tried to find

Pareto optimal solutions to this multiple objective assembly planning problem. The

experiments showed that the proposed GA solved the multi-objective problem more

quickly than conventional heuristics. The proposed GA found many feasible solutions

which could help to choose a suitable alternative of the assembly plan for modeling a

flexible assembly system.

Miltenburg (2002) solved two problems simultaneously with a GA: U-shaped

MMALBP Type-1 and model sequencing. The author introduced the problem as mixed–

model U-line balancing and scheduling (MMULB/S) problem and presented a

mathematical model for it. The proposed GA produced good results in the computational

experiments with 128 problem instances generated from Kilbridge & Webster’s 45- task

and Arcus’ 83-task problems.

 63

Valente, Lopes, & Arruda (2002) proposed a GA to solve two-sided SMALBP Type-

2. The authors tried to solve a real world application in a car assembly facility. Valente

et al. (2002) determined the parameters of GA after several experiments. The best

solution of the proposed GA reduced the total assembly time of the current line.

Brudaru & Valmar (2004) developed a hybrid GA to solve SMALBP Type-1 with

fuzzy processing times. The authors proposed embryonic chromosome representation, a

special version of the task based chromosome. The only difference between the two was

that the embryonic representation of a solution considered the subsets of solutions rather

than the individual solutions. During the generations, the embryonic chromosome

evolved through a full length solution, therefore the chromosome length varied

throughout the generations. The hybrid method was found to take longer time with

respect to the quality of solution.

Martinez & Duff (2004) proposed a GA based on the method proposed by

Pannambalam et al. (2000) to solve U-shaped SMALBP Type-1. At first, the authors

solved the problem by modifying 10 heuristic rules found in the literature to solve

SALBP, such as maximum ranked positional weight, maximum total number of follower

tasks or precedence tasks, and maximum processing time. Martinez & Duff (2004)

tested the modified heuristic rules with 8 test-bed problems of 5, 8, 9, 11, 12, and 21

tasks. Later, the authors used the results of heuristic rules in the initialization of the

proposed GA and illustrated it by using Jackson’s 11-task problem. It was shown that

the addition of a GA improved the solution.

Simaria & Vilarinho (2004) presented a mathematical model and developed an

iterative GA-based procedure for the MMALBP Type-2 with parallel workstations and

zoning constraints based on the studies of Simaria & Vilarinho (2001b) and Vilarinho &

Simaria (2002). The objective was to minimize the cycle time while smoothing the

workload balance within each workstation. The proposed procedure consisted of three

 64

stages: a constructive heuristic for finding initial solutions and two GA procedures

working iteratively. The computational experiments were done by using the test

problems developed by the authors. The algorithm reached the optimal or near-optimal

solutions and the performance was found to be efficient.

Haq et al. (2006) introduced a hybrid GA to solve MMALBP Type-1. The objective

was to minimize the number of workstations. Different models were transformed into an

equivalent single model by using a combined precedence diagram. An illustrative

example was used as a problem. First, the problem was solved by a classical GA

method, and then by the modified ranked positional weight technique (RPWT)

(Helgeson & Birnie, 1961). The results were compared and it was shown that the

classical GA method gave superior results than modified RPWT. Next, the solutions of

modified RPWT were randomly introduced into the initial population of GA. The hybrid

GA gave better performance than the classical GA.

Levitin et al. (2006) suggested an algorithm based on a GA approach for solving

large and complex robotic assembly line balancing problems (RALBP), a special kind of

SMALBP Type-2. RALBP attempted to assign the most efficient type of robots to line

stations optimally and balance the distribution of work among the stations. The objective

was to minimize the cycle time of an assembly line with the given number of stations

(Type-2). Two different procedures were used for adapting GA to the defined problem: a

recursive and a consecutive procedure. To improve the quality of solutions, the local

exchange procedure was applied. By testing with a set of randomly generated problems,

the best combination of the procedures and GA parameters were reached. The developed

GA was shown to be consistent and robust. Its comparison with a B&B algorithm

achieved solutions of higher quality. It was concluded that GA gave better results in an

efficient way for solving large and complex problems.

Baykasoglu & Ozbakir (2007) proposed a multiple-rule-based GA to solve U-shaped

SMALBP Type-1 with stochastic processing times. The authors integrated COMSOAL

 65

method, task assignment heuristics from the literature and a GA. Each gene in a

chromosome represented a task assignment rule. For deducting a solution from a

chromosome, the COMSOAL procedure was used iteratively. The number of tasks

assignment rules used was 10. The task times were assumed to be normally distributed.

The proposed algorithm was tested with 7 categories of test problems from Merten’s 7-

task, Bowman’s 8-task, Jaeschke’s 9-task, Jackson’s 11-task, Mitchell’s 21-task,

Heskiaoff’s 28-task, Kilbridge & Webster’s 45-task problems. The results were

compared with the optimal solutions found by Urban & Chiang (2006). The proposed

algorithm found optimal solutions for all problems, except one case within smaller

computational times.

Guo, Wong, Leung, Fan, & Chan (2008) proposed a bi-level GA with multi-parent

crossover for solving a kind of GALBP, a flexible assembly line balancing (FALB)

problem with work sharing and workstation revisiting allowed. The objective function

had two parts. One was to meet the desired cycle time of each order by using penalty

weights and the other was to minimize the total idle time of the assembly line. The

proposed bi-level multi-parent GA was composed of two GAs where the second-level

GA was nested in the first-level GA. The first-level GA generated the optimal task

assignment to workstations. The second-level GA determined the task proportion of the

operation that was assigned to different workstations. Then, a heuristic operation routing

rule was used to route the shared operation of each product to an appropriate

workstation. Based on the industrial data, four experiments were conducted to validate

the proposed optimization model. The experimental results demonstrated that the

proposed GA solved the FALB problem effectively.

Hwang, Katayama, & Gen (2008) proposed a MOGA to solve U-shaped SMALBP

Type-1. The performance criteria were the number of workstations (the line efficiency)

and the variation of workload. Both the traditional straight line system and the U-shaped

assembly line system were considered. The GA provided workable solutions whereas

the optimal U-shaped assembly line solution had an improved line efficiency compared

 66

to the optimal straight line solution. The proposed approach produced good or even

better line efficiency of workstation integration and improved the variation of workload.

Gao, Sun, Wang, & Gen (2009) proposed an innovative GA hybridized with local

search to solve robotic assembly line balancing (rALB-II) problem, a special kind of

SMALBP Type-2. They used a partial representation technique in GA. Five local search

procedures were developed. They tested the performance of the hybrid GA on 32

generated rALB-II problems and compared with other methods. The results showed that

the proposed approach was quite efficient to find out the optimal solutions for the

problems.

Hwang & Katayama (2009) proposed a multi-decision amelioration procedure with

GA to solve U-shaped MMALBP Type-1. The number of workstations (the line

efficiency) and the variation of workload were considered simultaneously as the

performance criteria. They tested the proposed approach by using three well-known

problems and one case study. The results showed that the GA provided better solutions.

Kim, Song, & Kim (2009) presented a mathematical model and a neighborhood GA

(n-GA) to solve two-sided SMALBP Type-2. The features of proposed GA were

designed according to the specifications of two-sided SMALBP. To promote population

diversity and search efficiency, the strategy of localized evolution and steady-state

reproduction were adopted. This localized strategy was a structure of neighbor set, so the

name of GA was called neighborhood GA. The performance of GA was compared with

that of a heuristic and an existing GA with various experimental problems. The

experimental results showed that the proposed GA outperformed the heuristic and the

compared GA in terms of solution quality and convergence speed.

Moon, Logendran, & Lee (2009) developed a GA to solve SMALBP Type-1 in which

multi-functional workers had different salaries depending on their skills. The objective

was to minimize the total annual workstation costs and the annual salary of the assigned

 67

workers within a predetermined cycle time. The efficiency of the developed GA was

demonstrated by numerical examples. For the small and medium-sized test problems, the

GA found optimal solutions more rapidly than mathematical programming.

4.3 Conclusions for Literature Review

The summary of the literature review is given in Table 4.1 according to the type and

the objective functions of the ALBP studied.

Table 4.2 gives the summary of the studies with respect to proposed GA method,

formation of initial population, the genetic representation of chromosomes, the

evaluation of fitness, crossover and mutation operators, selection scheme, feasibility

issues and the termination criteria used.

In most of the articles GAs are found to be superior to the well-known methods.

Based on the published studies, researchers employed precedence graphs to summarize

and visualize precedence constraints rather than using more effective tools.

More than half of the articles surveyed (22 out of 37) focused on GALBP, the general

type of ALBP. A trend is noted for studying new kinds of problems or extensions of

SALBP included in GALBP.

In some of the articles, genetic operators ensured feasibility of individuals for a

certain representation. But in some of the articles, infeasibility was allowed in the

population. It was claimed that the presence of infeasible solutions allowed a smoother

search space and helped in escaping from certain local minima.

68

It is noted that parameters were optimized in the recent studies. But the information

about parameter optimization was not given in detail. There is not enough information

about how to optimize parameters when solving ALBPs with GAs.

It is noted that standardized benchmark problems were used for comparison. If the

problem studied was new, new benchmark problems were generated using the literature

problems.

Then, based on the findings and the insights gained above, this study proposes to

develop a GA employing a different tool for precedence relations to solve a new kind of

ALBP, called CCALBP. In order to balance a line by addressing alternative ways of

assembling a product, the proposed GA employs a rule-base instead of a precedence

graph. To balance a line based on the rule-based modeling of assembly constraints, the

proposed GA is employed to solve CCALBP. Since CCALBP is a new problem,

benchmark problems are generated for computational experiments.

The proposed GA allows infeasibility. Therefore, the objective function includes

penalty function, and the genetic operators are not problem specific. But the

chromosome representation is problem specific.

4.4 Chapter Summary

In this chapter, the summary of the main specifications with the objectives for the

problems studied is reviewed to identify the recent research issues. The proposed GAs

are given in chronological order. The summary of the specifications related to the

proposed GAs such as chromosome representations, genetic operators and the fitness

functions is reviewed and listed in Table 4.2.

Table 4.2 Chronological list of GA studies for assembly line balancing with respect to GA specifications

GENETIC ALGORITHM SPECIFICATIONS

 Y
ea

r

 R
es

ea
rc

he
r(

s)

 M
et

ho
d

 In
iti

al
 P

op
ul

at
io

n&

Si
ze

 o
f p

op
ul

at
io

n

 C
hr

om
os

om
e

re
pr

es
en

ta
tio

n

 C
ro

ss
ov

er
 ty

pe
 &

pr

ob
ab

ili
ty

 (P
c)

 M
ut

at
io

n
ty

pe
 &

pr

ob
ab

ili
ty

 (P
m

)

 S
el

ec
tio

n
ty

pe

(f
or

 m
at

in
g)

 S
ur

vi
va

l t
yp

e
(r

ep
la

ce
m

en
t o

r
re

pr
od

uc
tio

n)

 F
ea

si
bi

lit
y

 F

or
ce

/R

ep
ai

r
/P

en
al

ty

 T
er

m
in

at
io

n
C

ri
te

ri
a

1992 Falkenauer & Standard Random Grouping based & Modified BPCX Modified BPM - - Force Up to 10000
 Delchambre (GGA) variable length generation

 1994 Leu et al. Standard Random+ Task based & OX & Scramble & Roulette Elitism Force Up to 500
 Heuristics & length=no. of tasks Pc=0.98 Pm=0.02 wheel generation +
 popsize=20 converge
 (growing)

 1994 Anderson & Standard Random+ Workstation based & One point One point & Stochastic Elitism Penalty Up to 350
 Ferris & Parallel Heuristics & length=no of tasks crossover & Pm=0.005-0.04 universal generation +
 popsize=64 Pc=0.6-0.7-0.8 sampling converge

 1995 Rubinovitz & Hybrid Random Task based & Fragment FRG mutation Randomly Elitism Force Up to T
 Levitin GA length=no of tasks Reordering (FRGm) generation
 Crossover (FRG)

 1995 Tsujimura Standard Random Task based & PMX Swap Elitism Elitism Repair -
 et al. length=no of tasks mutation

 1996 Kim et al. Standard Random & Task based & Standard and non Standard and Tournament Elitism Repair -
 popsize=100 length=no. of tasks standard crossover non standard
 & Pc=0.4-0.6 mutation &
 Pm=0.2-0.4

 1996 Suresh et al. Standard Random & Workstation based & One point Interchange Elitism Elitism Repair in -
 popsize=40-60 length=no. of tasks crossover & mutation & std GA &
 (with 2 Pc=0.5-0.7 Pm=0.01 penalty in
 population) 2 pop GA

69

Table 4.2 (cont) Chronological list of GA studies for assembly line balancing with respect to GA specifications

GENETIC ALGORITHM SPECIFICATIONS

 Y
ea

r

 R
es

ea
rc

he
r(

s)

 M
et

ho
d

 In
iti

al

Po
pu

la
tio

n&
 S

iz
e

of
 p

op
ul

at
io

n

 C
hr

om
os

om
e

re
pr

es
en

ta
tio

n

 C
ro

ss
ov

er
 ty

pe
 &

pr

ob
ab

ili
ty

 (P
c)

 M
ut

at
io

n
ty

pe
 &

pr

ob
ab

ili
ty

 (P
m

)

 S
el

ec
tio

n
ty

pe

(f
or

 m
at

in
g)

 S
ur

vi
va

l t
yp

e
(r

ep
la

ce
m

en
t o

r
re

pr
od

uc
tio

n)

 F
ea

si
bi

lit
y

Fo
rc

e
/R

ep
ai

r
/P

en
al

ty

 T
er

m
in

at
io

n
C

ri
te

ri
a

 1997 Falkenauer GGA & Random Grouping based & Modified BPCX Modified BPM - - Force -
 Branch variable length
 and Bound

 1998 Ajenblit & Standard Random & Task based & OX Not used - - Force -
 Wainwright popsize=100 length=no. of tasks

 1998 Chan et al. Standard Random & Task based & Uniform (uniform SSM Roulette Survive Force Terminate
 popsize=50 length=no. of tasks order- based) Scramble & wheel children at 5000 s

 Pc=0.65 Pm=0.008

 1998 Kim et al. Heuristic Random & Workstation based & HSX & HSM & Tournament Elitism Force Converge
 based GA popsize=100 length=no. of tasks Pc=0.7-0.9 Pm=0.1-0.2

 1999 Rekiek et al. Hybrid Random Grouping based & Modified BPCX - - - Force -
 GGA variable length

 2000 Bautista et al. Heuristic - Heuristic based & - - - - No need Up to T
 based GA length=no. of heuristics generation

 2000c Kim et al. Standard Random+ group number Structured one Random Tournament Elitism - Up to T
 Heuristics point crossover Pm=10% generation
 (SOX) & Pc=50%

 2000 Ponnambalam Standard Random Heuristic based & Two point Random Roulette Elitism No need -
 et al. length=14 crossover wheel
 (no of heuristic)

 2000 Sabuncuoglu Standard Random Task based & Order crossover Scramble Roulette Elitism Force Up to T
 et al. length=no. of tasks wheel generation

70

Table 4.2 (cont) Chronological list of GA studies for assembly line balancing with respect to GA specifications

GENETIC ALGORITHM SPECIFICATIONS

 Y
ea

r

 R
es

ea
rc

he
r(

s)

 M
et

ho
d

 In
iti

al

Po
pu

la
tio

n&
 S

iz
e

of
 p

op
ul

at
io

n

 C
hr

om
os

om
e

re
pr

es
en

ta
tio

n

 C
ro

ss
ov

er
 ty

pe
 &

pr

ob
ab

ili
ty

 (P
c)

 M
ut

at
io

n
ty

pe
 &

pr

ob
ab

ili
ty

 (P
m

)

 S
el

ec
tio

n
ty

pe

(f
or

 m
at

in
g)

 S
ur

vi
va

l t
yp

e
(r

ep
la

ce
m

en
t o

r
re

pr
od

uc
tio

n)

 F
ea

si
bi

lit
y

Fo
rc

e
/R

ep
ai

r
/P

en
al

ty

 T
er

m
in

at
io

n
C

ri
te

ri
a

 2001 Carnahan et al. Hybrid Random & Task based & FRG & FRGm Roulette Elitism Force Up to T
 GA popsize=60 length=no. of tasks Pc=0.6 wheel generation +
 converge

 2001a Simaria & Two Random+ Workstation based & SOX One point Tournament Elitism Repair Up to T
 Vilarinho staged Heuristics length=no. of tasks generation +
 iterative converge
 GA

 2002 Chen et al. Standard Random + Workstation based & Order1-Order2- Swap Roulette Elitism Repair -
 Heuristics PMX-Cycle wheel using self-
 tuning

 2002 Goncalves & Standard & Random+ Random key heuristic Uniform Randomly Copy 15% Elitism No need Up to
 De Almedia hybrid with Heuristics & based & crossover & generate & (3 X no.
 heuristic popsize= no length=no. of tasks Pc=0.7 Pm=0.2 of tasks)
 priority rules of tasks

 2002 Miltenburg Standard Random & Combination of task OX and Cycle Swap Rank Elitism Repair Terminate
 popsize=50 based and model selection at 300 s
 sequence based & with elitism
 length= no of tasks+
 model numbers

 2002 Valente et al. Standard Random & Workstation based & One point Simple bit Stochastic Elitism Penalty Up to 200
 popsize=100 length=13 crossover & mutation & universal generation
 (no. of tasks) Pc=0.8 Pm=0.04 sampling

71

Table 4.2 (cont) Chronological list of GA studies for assembly line balancing with respect to GA specifications

GENETIC ALGORITHM SPECIFICATIONS

 Y
ea

r

 R
es

ea
rc

he
r(

s)

 M
et

ho
d

 In
iti

al

Po
pu

la
tio

n&
 S

iz
e

of
 p

op
ul

at
io

n

 C
hr

om
os

om
e

re
pr

es
en

ta
tio

n

 C
ro

ss
ov

er
 ty

pe
 &

pr

ob
ab

ili
ty

 (P
c)

 M
ut

at
io

n
ty

pe
 &

pr

ob
ab

ili
ty

 (P
m

)

 S
el

ec
tio

n
ty

pe

(f
or

 m
at

in
g)

 S
ur

vi
va

l t
yp

e
(r

ep
la

ce
m

en
t o

r
re

pr
od

uc
tio

n)

 F
ea

si
bi

lit
y

Fo
rc

e
/R

ep
ai

r
/P

en
al

ty

 T
er

m
in

at
io

n
C

ri
te

ri
a

 2004 Brudaru & GA & Embryonic & - - - - - -
 Valmar Branch&Bound variable length

 2004 Martinez & Standard Random & Heuristic based & - - - - No need -
 Duff popsize=20 length= 10
 (no of heuristic)

 2004 Simaria & Two staged Random+ Workstation based & SOX One point Tournament Elitism Repair Up to T
 Vilarinho iterative Heuristics length=no. of tasks mutation generation +
 GA converge

 2004a Stockton et al. Standard Binary Two point Rm=0.05- Roulette Elitism Penalty -
 2004b crossover & 0.025- 0.005 wheel

 Pc=0.6-0.65-0.7-0.75

 2005 Brown & Standard - Grouping based & Modified BPCX - - - Force -
 Sumichrast (GGA) variable length

 2006 Levitin et al. Hybrid GA Random& Task based & FRG Swap & Randomly Elitism Force Up to T
 popsize=100 length=no of tasks Pm=0.01 generation

 2006 Noorul Haq et Hybrid GA Random+ - Pc=0.8 Pm=0.05 - - - -
 al. Heuristic

2007 Baykasoglu & Hybrid with Random& E108Assignment rule One-point, Pm=0.08 Roulette - No need Up to T

 Ozbakir COMSOAL & popsize=50 based & two-point, uniform, wheel generation

 task assignment length=no of tasks mixed crossover &

 rules Pc=0.8-1

72

Table 4.2 (cont) Chronological list of GA studies for assembly line balancing with respect to GA specifications

GENETIC ALGORITHM SPECIFICATIONS

 Y
ea

r

 R
es

ea
rc

he
r(

s)

 M
et

ho
d

 In
iti

al

Po
pu

la
tio

n&
 S

iz
e

of
 p

op
ul

at
io

n

 C
hr

om
os

om
e

re
pr

es
en

ta
tio

n

 C
ro

ss
ov

er
 ty

pe
 &

pr

ob
ab

ili
ty

 (P
c)

 M
ut

at
io

n
ty

pe
 &

pr

ob
ab

ili
ty

 (P
m

)

 S
el

ec
tio

n
ty

pe

(f
or

 m
at

in
g)

 S
ur

vi
va

l t
yp

e
(r

ep
la

ce
m

en
t o

r
re

pr
od

uc
tio

n)

 F
ea

si
bi

lit
y

Fo
rc

e
/R

ep
ai

r
/P

en
al

ty

 T
er

m
in

at
io

n
C

ri
te

ri
a

2008 Guo et al. Two-staged (1) heuristic & Work sharing & (1) modified (1) modified Tournament - Force Up to T
 two Gas (2) random workstation revisiting fitness-based inversion generation +
 (2) nested in (1) based & length= scanning (2)nonuniform converge

 no. of workstations (2)center of mass

2008 Hwang et al. Ttandard Random & Priority-based & two point-based Swap Roulette - Repair Up to T

 popsize=100 length=no of tasks WMX Pm=0.3 wheel generation +

 Pc=0.7 converge

2009 Gao et al. Hybrid with - 2 chromosomes Mixed crossover Allele-based - - Repair Up to T

 local search popsize=100 (1) task sequence (1) OX (1) Pm=0.05 generation +

 procedures (2) robot assignment (2) PMX (2) Pm= 0.1

 based & &

 (1) length=no of tasks Pc=0.8

 (2) length=no. of
 workstations

2009 Hwang & Two-staged Random & Priority-based & Two point-based Swap Roulette - Repair Up to T

 Katayama popsize=100 length=no of tasks WMX & Pm=0.3 wheel generation +

 Pc=0.7 converge

73

74

Table 4.2 (cont) Chronological list of GA studies for assembly line balancing with respect to GA specifications

GENETIC ALGORITHM SPECIFICATIONS

 Y
ea

r

 R
es

ea
rc

he
r(

s)

 M
et

ho
d

 In
iti

al

Po
pu

la
tio

n&
 S

iz
e

of
 p

op
ul

at
io

n

 C
hr

om
os

om
e

re
pr

es
en

ta
tio

n

 C
ro

ss
ov

er
 ty

pe
 &

pr

ob
ab

ili
ty

 (P
c)

 M
ut

at
io

n
ty

pe
 &

pr

ob
ab

ili
ty

 (P
m

)

 S
el

ec
tio

n
ty

pe

(f
or

 m
at

in
g)

 S
ur

vi
va

l t
yp

e
(r

ep
la

ce
m

en
t o

r
re

pr
od

uc
tio

n)

 F
ea

si
bi

lit
y

Fo
rc

e
/R

ep
ai

r
/P

en
al

ty

 T
er

m
in

at
io

n
C

ri
te

ri
a

2009 Moon et al. Standard Heuristic & 2 chromosomes PMX & One cut point By - Repair Up to T

 2 populations (1) task based Pc=0.5 (1) Pm=0.3 reordering generation +

 popsize=100 (2) workers based (2) Pm= 0.4 in converge

 (1) length=no of tasks ascending
 (2) length=no of tasks order
 no. of workstations

2009 Kim et al. Neighborhood Heuristic Group number Laszewski's Alteration Roulette - Force Up to T
 GA popsize=100 heuristic & procedure wheel generation

 Pc=0.85 Pm=0.15 & 0.05

2009 Yu &Yin Adaptive Heuristic Task based & PMX Feasible The fittest Elitism Repair converge

 length= Pc=adaptive insertion

 no. of tasks procedure

 Pm=adaptive

CHAPTER FIVE

THE COMPLEX-CONSTRAINED ASSEMBLY LINE BALANCING

PROBLEM

5.1 Introduction

This dissertation tackles a novel generalized ALBP, the complex-constrained

assembly line balancing problem (CCALBP), introduced by Salum & Supciller

(2007, 2008), Supciller & Salum (2009) and Topaloglu, Salum, & Supciller (2009).

The chapter is organized as follows. CCALBP is defined in Section 5.2. In Section

5.3, the rule-base modeling of assembly constraints is discussed. In Section 5.4, its

solution through constraint programming (CP) and integer programming (IP) is

discussed. The context of this chapter is summarized in Section 5.5.

5.2 A Novel Line Balancing Problem: CCALBP

ALBP is the decision problem of optimally partitioning (balancing) the assembly

work among the workstations (Scholl, 1999). ALBP is classified by researchers in

various ways, e.g., based on the objective function (Kim et al., 1996; Scholl, 1999)

and based on the problem structure (Baybars, 1986; Becker & Scholl, 2006; Scholl,

1999). Generally, ALBP is classified into two main categories: SALBP and GALBP

(Baybars, 1986).

Any ALBP consists of at least three basic elements: a precedence graph which

comprises all tasks and resources to be assigned, the stations which make up the line

and to which those tasks are assigned, and some kind of objective to be optimized

(Boysen et al., 2007).

The ordering in which tasks must be performed (technological requirements) are

called precedence constraints. They are technological restrictions or physical

75

 76

sequencing requirements on the assembly line. Precedence constraints are

generally represented graphically in the form of a precedence graph (diagram) that

indicates the sequence in which the tasks must be performed. Nodes symbolize tasks,

and arrows connecting the nodes indicate the precedence relations. The sequence

proceeds from left to right (Groover, 2001). An example of a precedence graph is

given in Figure 5.1.

 Figure 5.1 A precedence graph

There are some shortcomings of the precedence graphs. They usually fail to

represent all the possible assembly sequences of a product in a single graph

(Lambert, 2006), and exclude some logic statements, e.g., the precedence relation “(2

or 3) → 7” cannot be represented properly on a precedence graph (De Fazio &

Whitney, 1987). Hence, they allow limited flexibility. One or more parts of a

product’s assembly process may admit alternative precedence sub-graphs, and

because of the great difficulty of the problem and the impossibility of representing

alternative sub-graphs in a precedence graph, a line designer selects, a priori, one of

such alternative sub-graphs (Capacho & Pastor, 2008). According to Park et al.

(1997), precedence graphs fail to describe some complicated constraints, e.g.,

constraints indicating that some pairs of tasks cannot be assigned into the same

station because of incompatibility between them caused by some technological

factors.

Despite their shortcomings, researchers continue to employ precedence graphs

without questioning (Koc, Sabuncuoglu, & Erel, 2009). There are also some

alternative representation methods, e.g., AND/OR graphs (Homem de Mello &

1 3
5

2 4

6

 77

Sanderson, 1990), used in the line balancing problem. Koc et al. (2009) prove that

using an AND/OR graph instead of a precedence diagram leads to better solutions of

the traditional ALBPs. Capacho & Pastor (2008) employed some alternative

assembly sub-graphs, in which processing times and/or precedence relations of

certain tasks may vary, and solved the ALBP by simultaneously selecting an

assembly sub-graph and balancing the line. Park et al. (1997) introduced two sub-

problems to further consider some incompatibility constraints, range constraints, and

partial precedence constraints.

ALBP has been extensively studied in the literature. However, the literature is

relatively sparse in addressing alternative ways of assembling a product for ALBP,

e.g., see Capacho & Pastor (2008), Capacho, Pastor, Dolgui, & Guschinskaya (2009),

Koc et al. (2009), and Scholl, Becker, & Fliedner (2009) in this specific area. In

other words, the literature tackles ALBP based on traditional precedence graphs in

general, rather than investigating more effective modeling tools than precedence

graphs to solve ALBP. This dissertation employs a well known tool, rule-bases, in

modeling and solving ALBP.

 Senin, Groppetti, & Wallace (2000) defined an assembly plan as a sequence of

assembly operations to make a final product from a collection of individual parts.

When there is more than one feasible way to combine subassemblies together,

alternative assembly plans can be generated. Traditionally, ALB and determining the

(near) optimum assembly plan have been considered two separate problems. Most

studies consider line balancing after choosing the best plan for an assembly process.

However, the overall optimal solution may not be obtained by solving these two

problems separately. In other words, because pre-specifying the whole production

process prior to balancing the line faces the risk of loss in efficiency (Scholl et al.,

2009), alternative ways of assembling a product and their effects on task times,

precedence relations and the line balance should be tackled simultaneously. In this

regard, a rule-based assembly model addresses this issue. The rule-based modeling of

assembly constraints will be discussed in Section 5.3.

 78

This dissertation extends the rule-based assembly modeling (Salum & Supciller,

2007, 2008), and introduces the complex-constrained assembly line balancing

problem (CCALBP) (Supciller & Salum, 2009; Topaloglu et al., 2009), which is of

the general ALBPs (Baybars, 1986), in order to model all assembly constraints

through a rule-base to overcome the aforementioned difficulties.

CCALBP can also be solved by various solution approaches, e.g. integer

programming (IP) and constraint programming (CP) (Topaloglu et al., 2009), as

discussed in Section 5.4.

ALBP is an NP-hard combinatorial optimization problem, so that the search for

the optimal solution of problems in large sizes has high computational cost (Gutjahr

& Nemhauser, 1964). Heuristic methods provide good results with more reasonable

execution times but they do not guarantee optimal solutions. Genetic algorithms

(GA) are meta-heuristics based on the mechanisms of natural selection (survival of

the fittest) and genetics. Since the introduction of GAs by Holland (1975), they have

been applied successfully to solve complex combinatorial problems in various

research areas. Researches by Kim et al. (1996) and Ponnambalam et al. (2000) have

shown that GAs improve the performance of heuristics developed for solving

ALBPs. For that reason, a GA based on the rule-base is proposed by Supciller &

Salum (2009) to solve CCALBP. The detailed study will be presented in Chapter 6.

5.3 Rule-based Modeling of Assembly Constraints

In this section, rule-based modeling of assembly constraints is discussed through

an illustrative example (Salum & Supciller, 2007, 2008).

In practice, a precedence graph is not directly created, but derived from a table

that shows precedence relations of an assembly, defined by workers carrying out the

assembly process. This study also follows this convention to derive a rule-based

model from such a table. Consider Table 5.1, which shows precedence relations of

sewing a simple pant (jean). This table was created by workers in apparel industry.

 79

For example, task 1, T1, can be assigned to any workstation without any precedence

constraint. T5 can be assigned after T9 and T10, or T3 and T4 are assigned. T6 can be

assigned without any precedence constraint or after T9 and T10 are assigned. Note that

T5, T6, T9, T10 and T11 involve a precedence relation that cannot be modeled through

conventional precedence graphs easily. Redundancies or inconsistencies among the

relations should then be discovered, which is the line designer’s responsibility rather

than the workers’, as discussed below.

The If-then rules can then easily be derived from Table 5.1; the precedence

relation of each task (in a row) is simply mapped to an If-then rule. Hence, there are

as many rules as tasks with some precedence relations. Since T1 and T2 have no

precedence relations, i.e., they are assignable initially, and T6 can always be assigned

to a workstation without considering any precedence relation, i.e., R10 in Figure 5.2a

is in fact redundant, the number of the rules is nine, as defined in Figure 5.2a.

Note that such a rule-base does not grow rapidly in a harder, more realistic

problem since the number of the rules is at most the number of the tasks, and the

antecedent of a rule does not grow rapidly as technological flexibility is limited in

practice, i.e., one does not encounter too many disjunctions in antecedents of rules in

a realistic problem.

Table 5.1 Tasks of a simple pant assembly

Precedence
Relation

Task
Ti

Time
(min)

Description

⎯ 1 0.40 overlock stitch of parts of front right pocket
⎯ 2 0.35 overlock stitch of parts of front left pocket
1 3 0.75 overlock stitch of front right pocket and front right part
2 4 0.80 overlock stitch of front left pocket and front left part
(9, 10) OR (3, 4) 5 0.60 overlock stitch of front left part and front right part
⎯ OR (9, 10) 6 0.55 overlock stitch of back left part and back right part
5, 6 7 0.50 inside overlock stitch of back left part and back right part
7 8 0.45 inside overlock stitch of front left part and back left part
3 OR 8 9 0.70 outside overlock stitch of back left part and back right part
4 OR 9 10 0.60 outside overlock stitch of front left part and back left part
8 OR 10 11 0.80 stitch of waist
11 12 0.50 stitch of leg opening

 80

One can suggest that precedence relations in Table 5.1 can also be modeled

through some set of precedence graphs as in Figure 5.2b, instead of a unique rule-

base as in Figure 5.2a. For example, as indicated by the sixth row in Table 5.1, T6 has

no precedence relation in G1 in Figure 5.2b, and can be assigned after T9 and T10 in

G2, while the sixth row directly corresponds to R10 in Figure 5.2a, which is a

redundant rule and can be discarded from the rule base, as mentioned. However, it is

difficult to derive precedence graphs if precedence relations are more complex. More

importantly, it is not possible to model inclusiveness among tasks through graph-

based models. That is, graphs G1 and G2 are mutually exclusive, although Table 5.1

indicates the inclusiveness among the tasks. In other words, Figure 5.2a, equivalent

to Table 5.1, is not equivalent to Figure 5.2b. For example, if T2, T4 and T10 in G2 are

assigned to a station, then T1, T3 and T5 in G1 cannot be assigned to the next station

as the tasks in G1 and G2 are mutually exclusive. The rule-based model in Figure 5.2a

allows this assignment, as originally indicated by Table 5.1. Recall that some

redundant, e.g., R10 in Figure 5.2a, or inconsistent rules may be declared by users

who provide precedence relations as in Table 5.1. Therefore, some consistency check

should be performed on the rule-base, which is one of the issues in rule-base

modeling. Note that a dummy task, D, is required in G2 to indicate the relevant

precedence relation, which is not required in the rule-based model. In other words,

each rule in Figure 5.2a directly corresponds to a row in Table 5.1.

a) Rule-based model b) Graph-based model

1

2

3

4

5

6

7 8 9 10 11 12

 1

2

3

4

5

6

7 8

9
11 12

10
D

G1

G2

 ≠

R1: If T1 then T3
R2: If T2 then T4
R3: If (T9 AND T10) OR (T3 AND T4) then T5
R4: If T5 AND T6 then T7
R5: If T7 then T8
R6: If T3 OR T8 then T9
R7: If T4 OR T9 then T10
R8: If T8 OR T10 then T11
R9: If T11 then T12
R10: If T6 OR (T9 AND T10) then T6

Figure 5.2 The rule-based and graph-based models derived by Table 5.1

 81

 More complicated relations can also be modeled easily through rule bases. For

example, if a constraint indicates that certain tasks cannot be assigned into the same

station (Park et al., 1997), a rule of the form “if Tx ∈ S then Ty ∉ S OR if Ty ∈ S then

Tx ∉ S” is used to mean that tasks Tx and Ty cannot be assigned into the same station,

S. If some set of tasks are assembled in different sequences, e.g., see Capacho and

Pastor (2008), these sequences can also be modeled easily through a rule-based

model. For example, consider Figure 5.3a, where there are two alternative assembly

sequences, also called assembly sub-graphs (Capacho and Pastor, 2008). Figure 5.3b

gives the rules to represent the two sequences, in which XOR means exclusive OR.

Note that some indices are used for the tasks to indicate the mutual exclusiveness of

the sequences. This also makes it easy to consider sequence dependent task times.

For example, C1 = 5 and C2 = 6 means that C takes 5 seconds if it is after D, and

takes 6 seconds otherwise. Note also that even if the number of such sequences might

be too many (n! at most), it is limited in practice due to technological constraints,

e.g., the number of the sequences is two, not six in Figure 5.3a.

A

B D C

E

C D B

S1

S2

If A then B1 XOR C2
If B1 then D1
If D1 then C1
If C2 then D2
If D2 then B2
If C1 XOR B2 then E

a) Assembly sequences b) The rules for the sequences

 Figure 5.3 Modeling sequences through a rule-base

Consequently, the rule-based modeling is more effective than the graph-based

modeling because a rule-based model can include precedence relations involving

complex constraints, without the need for several precedence graphs as in Figure

5.2b. Moreover, some fuzzy rules can easily be employed in a rule-base to model

vagueness in assembly constraints. As a result, CCALBP addresses a wide variety of

assembly problems involving complex constraints.

 82

As mentioned, CP is used to solve CCALBP since CP easily models logical

assertions as discussed in Section 5.4.

Meta-heuristics are also commonly used solution techniques when analytic

techniques like CP fail to find the optimum solution in a reasonable time. For

example, if a GA is used, e.g., see Scholl & Becker (2006), the penalty term for

precedence violations in the fitness function can be calculated easily, if necessary, by

evaluating every rule. For the example above, if a chromosome decodes that the first

station includes T6, T1, and T3; the second station includes T2, T4, and T7; and the

third T5, T8, and T9, then the number of the violated precedence relations (rules) is

one, due to R5. That is, because T6 and T5 should be completed before T7, T7 in the

second station and T5 in the third violate R5. GA based solutions are discussed in

more detail in Chapter 6.

5.4 Line Balancing through Rule-based Models and Constraint Programming

This section discusses the modeling capability of CP for CCALBPs (Topaloglu et

al., 2009).

Mapping the rule-based model to the CP model is straightforward as CP can

express a larger variety of constraints compared to IP such as those including logical

operators ∨, ⇒ and ≠, and global constraints that subsume a set of constraints (e.g.,

an “all different” relation on a set of variables replaces pairwise inequality

constraints). For this reason, logic based assertions are easily modeled in CP.

For the recent years, CP has been used as an alternative solution method to IP for

solving combinatorial optimization problems. An overview of CP and its main

techniques can be found in Smith (1995) and Brailsford, Potts, & Smith (1999).

Traditionally a CP model is composed of a set of variables (X), a set of domains (D),

and a set of constraints (C) specifying which assignments of values in D to variable

X are legal. The efficiency of CP lies in powerful constraint propagation algorithms

which remove those values generating infeasible solutions from the domain of the

 83

variables. If constraint propagation is not sufficient to find a feasible solution, then a

tree search is performed. Indeed, B&B tree developed for IP is the same as the search

tree of CP in which each node represents a decision variable and each branch

represents a value assignment of the variable. Typically, at each node of the search

tree, the following steps are taken: first, a variable not yet fixed is selected and a

remaining value of its domain is assigned to it. Then, constraint propagation occurs.

If the domain of a variable becomes empty during the propagation, the solver has

detected an inconsistency in the previously taken decisions, and the whole search

process backtracks, typically by choosing another value for the variable. When the

constraint propagation terminates while there are still some unfixed variables, the

solver creates a new search node and goes on with the procedure just detailed.

The Constraint Programming Model:

Consider the line balancing problem in Figure 5.2. The proposed CP model, called

CPR, is derived from Figure 5.2a. The notation used in the formulation is as follows:

Indices & Sets

i ∈ T = {1, 2,…, 12} for tasks

s ∈ S = {1, 2,…, nmax} for stations, where nmax = 5 is set initially

Si: set of stations to which task i can be assigned

Parameters

cmax: upper bound on the cycle time, where cmax = 2 minutes (the maximum time

allowed at each workstation if the production rate is to be achieved)

ti: time of task i

Ei: earliest station to which task i can be assigned

Li: latest station to which task i can be assigned

Before a task is assigned, the total time of the tasks preceding this task must be

assigned, and afterwards the total time of the tasks that follow it; as a result, the

range of stations [Ei, Li] to which each task can be assigned is shown by the set Si

 84

∈ [Ei, Li] (due to alternative precedence relations, these ranges are determined

accordingly).

Variables

ls: load of station s, i.e., the sum of the task times assigned to s

c: cycle time

n: number of stations (n ∈ S)

I{P} = 1 if P is true, 0 otherwise

xi: station number to which task i is assigned (xi ∈ Si)

Min (5.1) cPnP 21 +

Subject to

Ti
ixn

∈
=)(max (5.2)

},...,2,1{ max

)(max
ns
slc

∈
= (5.3)

SscItl
i

i
Ssi

sxis ∈∀≤= ∑
∈∀

= ,max
|

}{ (5.4)

31 xx ≤ (5.5)

42 xx ≤ (5.6)

)()(545351059 xxxxxxxx ≤∧≤∨≤∧≤ (5.7)

7675 xxxx ≤∧≤ (5.8)

87 xx ≤ (5.9)

9893 xxxx ≤∨≤ (5.10)

109104 xxxx ≤∨≤ (5.11)

1181110 xxxx ≤∨≤ (5.12)

1211 xx ≤ (5.13)

The objective is to minimize the number of the stations in the first step, and the

cycle time in the second. Minimizing the cycle time helps to find the best balance

among the solutions that have the same number of stations. The objective function

 85

(5.1) of CPR employs P1 and P2 as the preemptive priority factors who serve only as

a ranking symbol, and the ordering of objectives will be such that P1 >> P2. Thus,

objective 1 is of the first priority level, and objective 2 is of the second priority level.

The model is solved by optimizing the first priority objective initially. The solution

obtained is added as a constraint to the original constraints and the model is solved

again by optimizing the second priority objective. The description of CPR is as

follows: constraint (5.2) gives the maximum station number, thereby the number of

stations required, and constraint (5.3) finds the maximum station load. Constraint

(5.4) implies that the station load should not exceed the maximum time allowed. The

constraints from (5.5) to (5.13) correspond to rules R1-R9, respectively, in Figure

5.2a.

The solution of CPR is n = 4 and c = 1.75; hence the idle time, nc – Σti, is zero;

i.e., the balance efficiency, (100 × Σti) / (n × c), is 100% with x2 = x4 = x10 = 1, x1 = x3

= x5 = 2, x6 = x7 = x9 = 3, and x8 = x11 = x12 = 4. In other words, the tasks are assigned

to the stations as follows: (T2, T4, T10), (T1, T3, T5), (T6, T7, T9) and (T8, T11, T12).

The solution of the CP model of G1 and G2 in Figure 5.2b, denoted by CP1 and

CP2, respectively, is given below.

Under CP1, n = 4 and c = 1.90, hence the idle time is 0.6 (the balance efficiency is

92%) with the assignment (T1, T2, T4), (T3, T5, T6), (T7, T8, T9) and (T10, T11, T12).

Under CP2, n = 4 and c = 1.85, hence the idle time is 0.4 (the balance efficiency is

95%) with the assignment (T1, T3, T9), (T2, T4, T10), (T5, T6, T7) and (T8, T11, T12).

As CPR outperforms CP1 and CP2, the rule-based modeling is effective not only in

representing ALB problems with alternative precedence relations, but also in solving

CP models of rule-bases, since the rule-based model contains the graph-based

models, e.g., Figure 5.2a contains all the precedence constraints in G1 and G2 in

Figure 5.2b.

 86

Recall that more complex constraints can also be effectively modeled through rule

bases. For example, assume that T2 and T4 cannot be assigned to the same station,

i.e., If T2 ∈ S then T4 ∉ S OR If T4 ∈ S then T2 ∉ S, and that T2 and T1 should be

assigned to the same station, i.e., If T2 ∈ S then T1 ∈ S OR If T1 ∈ S then T2 ∈ S,

which are to be appended to Figure 5.2a. These constraints can easily be modeled by

CP as x2 ≠ x4, and x2 = x1, respectively. The assignment is then (T1, T2, T3), (T5, T9,

T10), (T4, T6, T7) and (T8, T11, T12) with respective station times 1.5, 1.90, 1.85, and

1.75, i.e., c = 1.90. As seen, these extra constraints deteriorate the performance of

CPR.

The Integer Programming Model:

Another advantage of the rule-based modeling is that it also enables creation of an

IP model, i.e., instead of a CP model, an IP model can be mapped from a rule-based

model. The following gives the IP model of Figure 5.2a.

Additional Notation Required for the IP Model

xi, s = 1 if task i is assigned to station s, 0 otherwise

As = 1 if station s is required, 0 otherwise

δk ∈ [0, 1] and integer (an indicator variable for disjunctions)

Min (5.14) cPsAP s 21)(+

Subject to

Tix
iSs

si ∈∀=∑
∈

,1, (5.15)

SsAcxt s
Ssi

sii
i

∈∀≤∑
∈∀

,max
|

, (5.16)

 (5.17) Sscxt
iSsi

sii ∈∀≤∑
∈∀

,
|

,

0
1 3

,31 ≤−∑ ∑
∈ ∈Ss

s
Ss

,s xssx (5.18)

 87

0
2 4

,4,2 ≤−∑ ∑
∈ ∈Ss

s
Ss

s xssx (5.19)

)1(M 1,5,9
59

δ−≤− ∑∑
∈∈

s
Ss

s
Ss

xsxs (5.20a)

)1(M 2,5,10
510

δ−≤− ∑∑
∈∈

s
Ss

s
Ss

xsxs (5.20b)

)1(M 3,5,3
53

δ−≤− ∑∑
∈∈

s
Ss

s
Ss

xsxs (5.20c)

)1(M 4,5,4
54

δ−≤− ∑∑
∈∈

s
Ss

s
Ss

xsxs (5.20d)

02 521 ≥−+ δδδ (5.20e)

1521 ≤−+ δδδ (5.20f)

02 643 ≥−+ δδδ (5.20g)

1643 ≤−+ δδδ (5.20h)

165 ≥+δδ (5.20i)

0,7,5
75

≤− ∑∑
∈∈

s
Ss

s
Ss

xsxs (5.21a)

0,7,6
76

≤− ∑∑
∈∈

s
Ss

s
Ss

xsxs (5.21b)

0,8,7
87

≤− ∑∑
∈∈

s
Ss

s
Ss

xsxs (5.22)

)1(M 7,9,3
93

δ−≤− ∑∑
∈∈

s
Ss

s
Ss

xsxs (5.23a)

)1(M 8,9,8
98

δ−≤− ∑∑
∈∈

s
Ss

s
Ss

xsxs (5.23b)

187 ≥+δδ (5.23c)

)1(M 9,10,4
104

δ−≤− ∑∑
∈∈

s
Ss

s
Ss

xsxs (5.24a)

)1(M 10,10,9
109

δ−≤− ∑∑
∈∈

s
Ss

s
Ss

xsxs (5.24b)

1109 ≥+δδ (5.24c)

)1(M 11,11,8
118

δ−≤− ∑∑
∈∈

s
Ss

s
Ss

xsxs (5.25a)

)1(M 12,11,10
1110

δ−≤− ∑∑
∈∈

s
Ss

s
Ss

xsxs (5.25b)

 88

11211 ≥+ δδ (5.25c)

0,12,11
1211

≤− ∑∑
∈∈

s
Ss

s
Ss

xsxs (5.26)

The objective (5.14) is the same as in CPR. Constraint (5.15) implies that every

task must be assigned to only one station. Constraint (5.16) ensures that the station

load in each station that is opened should be smaller than or equal to the maximum

time allowed (cmax), which is equivalent to constraint (5.4) in CPR. Constraint (5.17)

is required for the cycle time minimization. The constraints from (5.18) to (5.26)

correspond to rules in Figure 5.2a. For example, constraints from (5.20a) through

(5.20i) are developed only to model Rule 3. Here M can be taken as the maximum

station number nmax.

The IP model gives the same solution, n = 4 and c = 1.75, with that of CPR, but

contains more variables. Also, creation of IP models can be more difficult if the rules

are more complex. Note that the correspondence between CPR and Figure 5.2a is

clearer than that of IP and Figure 5.2a because of the modeling capability of CP.

Thus CPR can be comprehended more easily.

The models are solved using ILOG OPL Studio 3.7 (2003) on a 1.8 GHz CPU, 3.5

GB memory PC. It provides access to ILOG CPLEX 9.0 (ILOG, 2005a) and ILOG

Solver 6.0 (ILOG, 2005b) for solving the IP and CP models respectively. Computing

time of 2000 CPU seconds is set. Since the problem is small, solution times of IP and

CP are also small. However, a computational experiment should also be carried out

to analyze the performances of CP and IP models with respect to modeling

capability, solution quality and time; but this comparison is beyond the scope of this

chapter.

5.5 Chapter Summary

The major drawback of precedence graphs is that they are not suitable to model

complex assembly constraints. This dissertation introduced CCALBP to address this

 89

issue. It was shown how to model all assembly constraints through the well known

If-then rules, and how to solve the problem through CP and IP models mapped from

the rule-based model. It was also shown how to map a rule-based model to a CP or

an IP model. This mapping can also be automated, which enables users to easily

create the models. On the other hand, this mapping was not possible from graph-

based models that address, though roughly, complex assembly constraints. Thus,

CCALBP can be solved only through rule-based modeling, but not graph-based

modeling. Some fuzzy rules can also be employed in a rule-base to model vagueness

in assembly constraints. Rule-based and graph-based models were compared in terms

of modeling capability. A GA based on the rule-base can also be developed to solve

the CCALBP. The proposed GA will be discussed in detail in the next chapter.

CHAPTER SIX

A GENETIC ALGORITHM BASED APPROACH FOR SOLVING THE

COMPLEX-CONSTRAINED ASSEMBLY LINE BALANCING PROBLEM

6.1 Introduction

 This dissertation employs a well known tool, rule-bases, in modeling and solving

ALBP for the first time and extends this literature in terms of modeling scope for

assembly constraints in line balancing. This study extends the rule-based modeling of

assembly constraints and introduces CCALBP (Salum & Supciller, 2007, 2008;

Topaloglu et al., 2009). Its main advantage lies in its ability to simultaneously model the

alternative ways of assembling a product. For the comprehension of CCALBP and to

describe the rule-based modeling, the problem is modeled and solved by IP and CP in

the last chapter. Due to the NP-hard nature of CCALBP, the use of a mathematical

programming model to optimally solve CCALBP in large sizes has high computational

cost. Therefore, heuristic or meta-heuristic procedures need to be developed. In order to

search the solution space efficiently and to provide good solutions with more reasonable

computation times, CCALBP is solved through GAs (Supciller & Salum, 2009). The

main contribution of this dissertation is the integration of the rule-base approach for

modeling assembly constraints through a GA solution.

In this chapter, a GA based on the rule-base is proposed to solve CCALBP. In

Section 6.2, the proposed GA is discussed in detail. The specific characteristics of the

proposed GA are devised with the inspiration taken from the current examples in the

literature. These characteristics are explained on an example problem of sewing a simple

pant. The control parameters of the GA are optimized to improve the performance in

Section 6.3. In Section 6.4, the computational experiments are carried out on a set of

 90

 91

generated problems by adapting the case problems in the literature. Finally, in section

6.5, the context of this chapter is summarized.

6.2 Line Balancing through Rule-based Models and GA

In this section, a GA based on the rule-base is proposed to solve CCALBP. The

general GA specifications and details of objective function integrated with the proposed

rule-base are given in the following sections.

To explain how the proposed GA works, the example given in Chapter 5 is used in

this section. Table 6.1 shows precedence relations of this example.

Table 6.1 Tasks of a simple pant assembly and its rule base

Precedence
Relation

Task Time
(min) Ti

1 0.40 ⎯

2 0.35 ⎯

1 3 0.75

2 4 0.80

(9, 10) OR (3, 4) 5 0.60

6 0.55 ⎯ OR (9, 10)

5, 6 7 0.50

7 8 0.45

R1: If T1 then T3
R2: If T2 then T4
R3: If (T9 AND T10) OR (T3 AND T4) then T5
R4: If T6 OR (T9 AND T10) then T6
R5: If T5 AND T6 then T7
R6: If T7 then T8
R7: If T3 OR T8 then T9
R8: If T4 OR T9 then T10
R9: If T8 OR T10 then T11
R10: If T11 then T12

3 OR 8 9 0.70

4 OR 9 10 0.60

8 OR 10 11 0.80

11 12 0.50

In the proposed GA, the rule-base is represented by a matrix for coding in Matlab.

The rule-base in Table 6.1 is given as a matrix in Figure 6.1, where each column

 92

represents a rule, e.g., the 3rd column is R3, i.e., IF (TASK 9 AND TASK 10) OR

(TASK 3 AND TASK 4) THEN TASK 5.

9 10 6 0 5 6
3 4 9 10 0 0

4
90

7 1
0

10
8

1
0

3
8

2
0

3 54 6 7 8 9 10
R5 R6 R7 R8R1 R2 R3 R4 R9 R10

11 12
1

 Figure 6.1 Matrix representation of the rule-base in Table 6.1

6.2.1 Representation

Sequence-oriented representation, which is a kind of an order-based representation, is

used for genetic representation because of its advantages. Especially, it can handle all

types of ALB problems and provides flexibility in choosing genetic operators (Kim et

al., 1996).

Each task is represented by a number that is placed on a string of numbers called

chromosomes. The length of a chromosome is the number of the tasks. All tasks are

sequentially listed in the order of their assignment to work stations.

For example, a chromosome for a 12 task problem is given below:

Tasks: 2 4 3 1 8 12 9 6 5 11 7 10, which indicates the following assignments.

Tasks of 1st station: 2, 4, 3

Tasks of 2nd station: 1, 8, 12

Tasks of 3rd station: 9, 6, 5

Tasks of 4th station: 11, 7, 10

 93

6.2.2. Initialization

The initial population may be generated randomly or with the help of some heuristics

(Sivanandam & Deepa, 2008). In this study, it is generated randomly for the small sized

problems. Infeasible solutions, which violate some of the precedence constraints, are

allowed in the population.

For the problems which have 45 and more tasks, largest candidate rule (Groover,

2001) is used to generate the first individual of the population. In the method of largest

candidate rule, tasks are arranged in descending order according to their task times. Then

they are assigned to a station by starting at the top of the list and selecting the first one

which satisfies precedence relations and does not cause the total sum of the task times at

that station to exceed the allowable cycle time (Groover, 2001). The rest of the

population is generated randomly. Infeasible solutions are allowed in the population.

6.2.3 The Fitness Function

The objective of the example problem can be considered to minimize the number of

work stations, subject to a given cycle time. On the other hand, one of the solutions with

the same number of stations may be “better balanced” than the others. For example, an

assembly line of three stations with the station times 30-50-40 is considered to be better

balanced than the one with the times 50-50-20. Hence, a fitness function that consists of

two objectives should be used; one minimizes the number of stations and the other

obtains balanced station (Sabuncuoglu et al., 2000).

An infeasible solution in ALB problems is defined as the violation of some

precedence relations. A population of feasible solutions may lead to a fragmented search

space, which increases the probability of being trapped in local minima. Therefore,

infeasible solutions are also allowed in a population as genetic operators can lead to

feasible solutions from an infeasible population (Suresh et al., 1996).

 94

When infeasible solutions are allowed in the population, the population is forced to

feasibility by assigning high penalty costs to infeasible solutions as discussed in

Anderson & Ferris (1994), Ruijun, Dingfang, Yong, Zhonghua, & Xinxin (2007) and

Guo et al. (2008). This strategy increases the amount of variability in the population

(Tasan & Tunali, 2008).

A simple method to penalize infeasible solutions is to apply a constant penalty to

those solutions that violate feasibility in any way. The constrained problem is

transformed into an unconstrained problem by penalizing infeasible solutions. The

penalized objective function is then the sum of the unpenalized objective function and a

penalty (for a minimization problem). A penalty term is added to the objective function

for any violation of the constraints (Anderson & Ferris, 1994; Gen & Cheng, 1997;

Michalewicz & Schoenauer, 1996). The penalty function with m constraints is then

represented as below (for a minimization problem):

)1.6()()(
1
∑
=

+=
m

i
iip Cxfxf δ

where { 1, if constraint is violated
0, if constraint is satisfied

i

i

i
i

δ
δ
=
=

)(xf p is the penalized objective function, is the unpenalized objective function

and is the constant imposed for the violation of the constraint (Smith & Coit, 1997).

)(xf

iC

In the solution, the fitness function combines the two objectives, i.e. minimizing the

number of stations and finding the best balance among the solutions that have the same

number of stations, and includes a penalty cost as described by Cilkin (2003):

 95

() ()
)2.6(2.0*2000Function Fitness 1

max

2

1
max

n

SS

n

SS
N

n

k
k

n

k
k

v

∑∑
==

−
+

−
+=

where Nv is the number of precedence violations, n is the number of stations, Smax is the

maximum station time, and Sk is the kth station time.

The maximum of the coefficients is 2000, and it is given to the number of precedence

violations to force the algorithm to the feasible solutions in a faster way. The second and

the third parts of the fitness function are used and explained by Leu et al. (1994) and

Sabuncuoglu et al. (2000). The second part of the fitness function is taken to be the

minimization of the mean-squared idle time. This part aims to find the best balance

among the solutions that have the same number of stations (Leu et al., 1994). The

minimum coefficient, 0.2, is given to the second part. The third part is to minimize mean

idle time. The third part is assumed arbitrarily more critical than the second one.

According to Sabuncuoglu et al. (2000), this part only minimizes the number of stations

(Scholl & Becker, 2006). The coefficients of the fitness function are determined by

experimenting with different values (tuning). A smaller fitness function means fewer

workstations and more balanced workload between the workstations.

The second part of the fitness function is only used for feasible solutions. When there

is a violation of precedence constraints, the work balance among the stations cannot be

computed. The calculation of the fitness function in an infeasible solution is explained

below.

The calculation of the fitness function in an infeasible solution

If the example problem given in Table 6.1 is considered, a chromosome in the

population may be as in Figure 6.2. Let the order of the tasks be as below for an

infeasible solution, where the cycle time, C, is 2.

 96

2 4 3 1 8 12 9 6 5 11 7 10

 Figure 6.2 The order of the tasks for an infeasible solution

1. Assignment of tasks to the stations:

The tasks are then assigned to the stations sequentially subject to the cycle time

constraint. The assignment of tasks in Figure 6.2 yields Table 6.2.

Table 6.2 Assignment of tasks to the stations

Tasks
Task
time
(min)

Station
time
(min)

Station

2 0.35
4 0.80
3 0.75 1.90 1
1 0.40
8 0.45

12 0.50 1.35 2
9 0.70
6 0.55
5 0.60 1.85 3

11 0.80
7 0.50

10 0.60 1.90 4

2. Calculating the number of precedence violations.

 There are then three violations in Table 6.2, i.e., Nv is 3.

1. Violation

T1 is assigned to S2 and T3 is assigned to S1, which violates R1, i.e.,

IF TASK 1 THEN TASK 3

2. Violation

T7 is assigned to S4 and T8 is assigned to S2, which violates R6, i.e.,

IF TASK 7 THEN TASK 8

 97

3. Violation

T11 is assigned to S4 and T12 is assigned to S2, which violates R10, i.e.,

IF TASK 11 THEN TASK 12

3. Calculating the fitness function.

In this order of the example chromosome given in Figure 6.2, since there are some

violations of precedence constraints, the second part of the fitness function which gives

the work balance among the stations cannot be computed. Then the fitness function is

computed according to Equation 6.2 without the second part as follows:

() ()
)2.6(2.02000Function Fitness 1

max

2

1
max

n

SS

n

SS
N

n

k
k

n

k
k

v

∑∑
==

−
+

−
+×=

4
)90.190.1()85.190.1()35.190.1()90.190.1(32000Function Fitness −+−+−+−

+×=

15.032000Function Fitness +×=

15.6000Function Fitness =

6.2.4 Selection

The selection process in genetic algorithms is based on the natural law of survival of

the fittest. It is the process to determine which chromosomes are selected for the next

generation in terms of their fitness (Mitchell, 1996).

 98

In this study, the tournament selection is used. In its simplest form, tournament

selection consists of picking two members of the population randomly, and then

selecting the best one as a parent. After two parents are selected this way, the genetic

operators take place as usual (Mitchell, 1996).

The procedure works as follows:

Step 1. A tournament size, m, is set.

Step 2. Randomly m individuals are selected from the population.

Step 3. With probability r, the best of the m individuals is selected and with

probability 1-r, a random individual among the other m-1 is selected. r is referred to as

the tournament selection parameter.

Two individuals are chosen at random from the population. A random number is then

chosen between 0 and 1. If it is smaller than the tournament selection parameter, the

fitter of the two individuals is selected to be a parent; otherwise the less fit one is

selected. The two are then returned to the original population and can be selected again.

Goldberg & Deb (1991) presented an analysis of this method.

In this study, the real world tournament selection is used (Lee, Soak, Kim, Park, &

Jeon, 2008). Two groups of 8 (8 = 23) individuals are selected randomly from the same

tournament level. In each group, each individual is sequentially paired with a neighbor

from the same group. When all competitions in the present tournament level are

completed, only the winners go on to the next tournament level. The competitions are

completed on three levels. The winners of each group are selected this way and get

ready for crossover.

6.2.5 Genetic Operators

 99

To improve the adaptability of the population, two basic operators, crossover and

mutation, are used to modify the chromosome. Crossover is the operation by which two

parents in the current population create offspring for the next population. The mutation

operator is used to randomly change the value of single genes within chromosomes. The

two-point order crossover and reciprocal exchange mutation are used as genetic

operators in the proposed genetic algorithm.

The two-point order crossover is the combination of the two-point crossover and the

order crossover (OX) which was proposed by Davis (1985). The two-point order

crossover randomly chooses two crossover points. The crossover operator copies the

chromosome part between the crossover points of the two parents to the respective child

chromosome while preserving the relative order of the sequence indicated by the other

parent. There are different versions of the two-point order crossover (Ishibuchi &

Murata, 1998; Murata & Ishibuchi, 1996).

 The two-point order crossover procedure works as follows (Gen & Cheng, 1997):

Step 1. A substring between two crossover points is selected at random.

Step 2. A proto-child is produced by copying the selected substring into the

corresponding positions.

Step 3. The tasks which are already in the substring are deleted from the second parent.

The resulted sequence of tasks contains the tasks which the proto-child needs.

Step 4. The tasks are placed into the unfixed positions of the proto-child from left to

right according to the order of the sequence to produce an offspring.

The procedure is illustrated in Figure 6.3. The second offspring can be produced with

the same steps as [2 5 4 9 1 3 6 7 8 10 11 12] from the same parents. The rate of the

crossover operation is defined by Rc.

 100

a substring is selected at random

deleted

parent 1 1 2 3 4 5 6 7 8 9 10 11 12

offspring 7 9 3 4 5 6 1 2 8 11 10 12

parent 2 5 7 4 9 1 3 6 2 8 11 10 12

 Figure 6.3 Illustration of the two-point crossover operator

In the reciprocal exchange mutation, two positions are selected at random and then

the tasks are swapped on these positions (Gen & Cheng, 1997). The procedure is

illustrated in Figure 6.4. The rate of the mutation operation is defined by Rm.

 Figure 6.4 Illustration of the reciprocal exchange mutation operator

1 2 3 4 5 6 7 8 9 10 11 12

1 2 8 4 5 6 7 3 9 10 11 12

Two positions are selected at random.

The relative tasks are swapped.

 101

6.2.6 Elitism

Survival is an essential process in GAs that removes individuals with a low fitness

and drives the population towards better solutions. A part of the existing population

survives to the next generation and forms a new population in the next generation. To

ensure that the best solution of the previous generation is always present in the next

population, a procedure known as elitism is used (Sivanandam & Deepa, 2008). In this

study, two copies of the best individual are made. Then, the first two new individuals of

the next generation are taken as exact copies of the best individual in the first generation.

6.2.7 Termination

There are many stopping conditions in GAs (Sivanandam & Deepa, 2008). While

searching the solution space of the problem, the procedure can be stopped when one of

the following is achieved (i) the fitness function of the best solution does not improve

after a predetermined number of generations, e.g., TG=100, or (ii) the total number of

generations exceeds a maximum number, e.g. Tmax=1,000.

In the proposed GA, the procedure stops when the fitness function is zero, or the total

number of generations exceeds 1,000 generations.

6.2.8 Results of the Proposed GA

The proposed GA is coded in Matlab 7.0, and run three times for 1,000 generations

for the example problem given in Table 6.1 in Section 6.2. The fitness value for each

generation up to the end of the procedure for one of the runs is given in Figure 6.5. The

minimum fitness value, zero, is reached at the 7th generation.

 102

1 2 3 4 5 6 7
0

500

1000

1500

2000

2500

Generations

Fi
tn

es
s

fu
nc

tio
n

 Figure 6.5 The fitness value versus the number of generations for the example problem

Table 6.3 shows the assignment for the example problem given in Table 6.1 solved

by the proposed GA. The assignment has no violation of any precedence constraint.

Table 6.3 The result for the example problem

Tasks
Task
time
(min)

Station
time
(min)

Station

10 0.60
4 0.80
2 0.35 1.75 1
1 0.40
3 0.75
5 0.60 1.75 2
9 0.70
6 0.55
7 0.50 1.75 3

11 0.80
8 0.45

12 0.50 1.75 4

 103

6.3 Parameter Optimization

The performance of GA depends on several parameters. The effects of three

parameters considered as significant are studied for the performance of the proposed

GA: the population size, the crossover rate and the mutation rate. Statistical design of

experiments (Montgomery, 2001) is used to optimize the three parameters in Table 6.4.

Table 6.4 Levels of control parameters

Control Parameters
Levels Population size Crossover rate Mutation rate

1 100 0.50 0.05
2 500 0.70 0.10
3 1000 0.90 0.25

As a test problem, Mitchell’s problem (Scholl, 1993) with 21 tasks from the literature

is chosen for identifying the effect of different control parameters.

Since there are three distinct parameters with three levels, 33 full factorial

experimental design given in Table 6.5 is used to detect the possible interactions of

factor effects and to determine the optimal parameter setting.

For each design point, 5 independent GA runs are performed to determine the

variations in the results, i.e., 135 = 33 × 5 runs are carried out.

 104

Table 6.5 The 33 full factorial experimental design layout

Experiment
no Population size Crossover

rate
Mutation

rate
1 100 0,50 0,05
2 100 0,70 0,05
2 100 0,70 0,05
3 100 0,90 0,05
4 100 0,50 0,10
5 100 0,70 0,10
6 100 0,90 0,10
7 100 0,50 0,25
8 100 0,70 0,25
9 100 0,90 0,25

10 500 0,50 0,05
11 500 0,70 0,05
12 500 0,90 0,05
13 500 0,50 0,10
14 500 0,70 0,10
15 500 0,90 0,10
16 500 0,50 0,25
17 500 0,70 0,25
18 500 0,90 0,25
19 1000 0,50 0,05
20 1000 0,70 0,05
21 1000 0,90 0,05
22 1000 0,50 0,10
23 1000 0,70 0,10
24 1000 0,90 0,10
25 1000 0,50 0,25
26 1000 0,70 0,25
27 1000 0,90 0,25

The scatter plots of fitness and computation time are given in Figure 6.6 and 6.7,

respectively. As seen in the diagrams, the computation time increases with the size of

the population.

 105

0 9 18 27

runs

fit
ne

ss
1. replication
2. replication
3 replication
4. replication
5. replication

 Figure 6.6 The scatter plot of fitness

0 9 18 27

runs

time

1. replication
2. replication
3. replication
4. replication
5. replication

Figure 6.7 The scatter plot of computation time

To determine the significance of each parameter effect on the fitness, analysis of

variance (ANOVA) is used. Given level of significance is equal to 0.05. According to

Table 6.6, the values of “Prob>F” less than 0.05 indicate model terms are significant.

The significant main factors with respect to the fitness response are the population size

 106

and the mutation rate. The crossover rate has an insignificant main effect. The

interactions are also insignificant.

Table 6.6 ANOVA results for fitness values

Analysis of variance table for fitness
Source F-value P-value (Prob>F)
Model 2.35 0.0012 significant

A - crossover rate 1.22 0.2984
B - mutation rate 14.14 0.0001 significant

C - population size 3.77 0.0262 significant
AB 1.02 0.4015
AC 0.41 0.8033
BC 0.81 0.5202

ABC 1.73 0.0996

From the ANOVA analysis, the main conclusions can be summarized in the main

effects plot for fitness in Figure 6.8, and in the main effects plot for computation time in

Figure 6.9. According to Figure 6.8, the fitness decreases when the population size and

mutation rate is high.

CrossoverMutationPop size

0,90,70,5
0,250,100,051000 5

00
 1

00

1800

1550

1300

1050

800

F
itn

es
s

Main Effects Plot - Data Means for Fitness

 Figure 6.8 Main effects plot for fitness

 107

In terms of the significance of each parameter effect on computation time, the

significant main factors with respect to computation time response are the population

size, the mutation rate and the crossover rate according to Table 6.7.

Table 6.7 ANOVA results for computation time

Analysis of variance table for computation time
Source F-value P-value (Prob>F)
Model 16.81 <0.0001 significant

A - crossover rate 11.04 <0.0001 significant
B - mutation rate 8.90 0.0003 significant

C - population size 178.04 <0.0001 significant
AB 2.68 0.0354 significant
AC 2.66 0.0367 significant
BC 1.36 0.2512

ABC 1.79 0.0869

Pop size Mutation Crossover

 1
00

 5
00

1000 0,05 0,10 0,25 0,5 0,7 0,9

3000

4000

5000

6000

7000

Ti
m

e

Main Effects Plot - Data Means for Time

 Figure 6.9 Main effects plot for computation time

As a result, even though the crossover rate is insignificant for the fitness response, it

has a great effect on computation time. As seen in Figure 6.9, the computation time

increases with the population size. Yet according to Figure 6.8, the fitness decreases

with the high level of population size. Since the fitness is more important than the

 108

computation time, high level of population size can be used. The optimal levels of the

three parameters can then be determined as 1,000 for population size, 0.50 for crossover

rate, and 0.25 for mutation rate for the small sized problems. For the problems which

have 45 tasks or more, crossover and mutation rates can be different.

6.4 Computational Experiments

Since CCALBP is a novel problem, there is no set of benchmark instances for testing.

Therefore, self-made instances are generated by adapting well-known benchmark

problems from the literature whose descriptions are given in Scholl (1993). Some

alternative routes are created and added to these literature problems.

6.4.1 The Instances Generated from the Example Problem

For the example problem given in Table 6.1 in Section 6.2, three instances are

generated considering different alternatives. New tasks are added to the problem for the

alternatives, and the task times of the Mitchell’s problem (Scholl, 1993) from the

literature are used. The cycle time, C, is taken as 14. The alternatives of the example

problem according to their complexities are given in Table 6.8.

Table 6.8 The instances generated for the example problem

Problems The number of ORs
in one rule

Number of
tasks

The number of ORs
in all rules

Example Problem 1 1 12 5
Example Problem 2 2 13 10
Example Problem 3 3 15 15

The problems and the results are given in the first three solutions below.

1. Example: Problem 1

It has one OR in one rule, 12 tasks and five ORs in total as given in Figure 6.10.

 109

3 4 5 6 7 8 9 10 11 12
1 2 3 4 6 0 5 6 7 3 4 8 11
0 0 9 10 9 10 0 0 0 8 9 10 0

 Figure 6.10 The matrix for the rule-base of example problem 1

The assignment of the tasks is given in Figure 6.11:

1 3 6 9 10 5 2 11 12 7 4 8

 Figure 6.11 The assignment of the tasks for example

 problem 1

The fitness value is 1.5098.

2. Example: Problem 2

It has two ORs in one rule, 13 tasks and 10 ORs in total as given in Figure 6.12. The

number of two ORs in all rules is three.

3 4 5 6 7 8 9 10 11 12 13
1 2 3 4 6 0 5 6 7 3 4 3 4 10
0 0 9 10 9 10 0 0 0 8 9 8 11 12
0 0 11 12 11 12 0 0 0 0 0 10 0 0

 Figure 6.12 The matrix for the rule-base of example problem 2

The assignment of the tasks is given in Figure 6.13:

3 1 9 2 11 10 12 5 6 7 4 13 8

 Figure 6.13 The assignment of the tasks for example

 problem 2

The fitness value is 0.2894.

 110

3. Example: Problem 3

It has three ORs in one rule, 15 tasks and 15 ORs in total as given in Figure 6.14. The

number of three ORs in all rules is two.

3 4 5 6 7 8 9 10 11 12 13 14 15
1 2 3 4 6 0 5 6 7 3 4 3 4 3 4 14
0 0 9 10 9 10 0 0 0 8 9 8 11 10 13 12
0 0 11 12 11 12 0 0 0 0 0 10 0 12 0 0
0 0 13 14 13 14 0 0 0 0 0 0 0 0 0 0

 Figure 6.14 The matrix for the rule-base of example problem 3

The assignment of the tasks is given in Figure 6.15:

1 2 4 11 3 9 10 13 12 14 5 7 6 8 15

 Figure 6.15 The assignment of the tasks for example problem 3

The fitness value is zero.

6.4.2 The Instances Generated from the Literature Problems

For the other instances, 10 well-known problems are selected whose descriptions are

given in Scholl (1993). Table 6.9 shows the data for the benchmark problems, where the

first and the second columns give the name of the problem and the number of tasks (n),

respectively. The minimum and maximum cycle times are shown in the third and fourth

columns. The fifth and sixth columns contain the minimum () and maximum task

times () in each problem, respectively. In the seventh column, the sum of the task

times for each problem is given. The eighth column gives the order strength

(

mint

maxt

()()[]1−×= nnrelationsprecedenceallofnumberOS), an indicator for complexity of

 111

problem instances (Scholl, 1999). The ninth column shows time variability ratio

(minmax ttTV =) that measures the range of variation for the task times (Scholl, 1999).

Table 6.9 Data sets

Problem # of
tasks

Min.
cycle
time

Max.
cycle
time

Min.
task
time

Max.
task
time

Sum of
task
times

Order
strength

Time
variability

ratio

Bowman 8 20 20 3 17 75 75.00 5.67
Jaeschke 9 6 18 1 6 37 83.33 6.00
Jackson 11 7 21 1 7 46 58.18 7.00
Mitchell 21 14 39 1 13 105 70.95 13.00
Roszieg 25 14 32 1 13 125 71.67 13.00
Heskiaoff 28 138 342 1 108 1024 22.49 108.00
Buxey 29 27 54 1 25 324 50.74 25.00
Sawyer 30 25 75 1 25 324 44.83 25.00
Kilbridge 45 56 184 3 55 552 44.55 18.33
Arcus1 83 3786 10816 233 3691 75707 59.09 15.84

Since CCALBP is a novel problem, the problem instances are generated by using the

problems in Table 6.9. The original precedence relations and operation times are

preserved, but new alternatives are added. Additionally, a real case problem from the

apparel industry with 68 tasks is also used for experiments. For each problem, instances

with one OR, two ORs and three ORs are generated, respectively. The rule-base for each

problem instance is given in the appendices.

A brief computational experiment is carried out by using the given problems with

different cycle time values. A total number of 208 problem instances are solved. For

small sized problems, 24 problem instances are considered, having the number of tasks

from 8 to 11, and with only one alternative (one OR) with different cycle time values.

For medium sized problems, 148 problem instances are considered, having the number

of tasks from 21 to 45, and with up to three ORs with different cycle time values. For

large sized problems, 36 problem instances are considered, having the number of tasks

from 68 to 83, and with up to three ORs with different cycle time values. For each

112

problem, instances with one OR, two ORs and three ORs are solved by the proposed GA

with the same parameters. The proposed GA is run three times for each instance.

The best results of the problem instances are detailed in Table 6.10. In the first

column of Table 6.10, the problem source is reported. The second column reports the

number of tasks. The third column lists the cycle time values. The fourth column reports

the minimum number of stations found in the literature for the original problems given

in Table 6.9. The other columns report the best solutions of the generated instances with

and without alternatives solved by the proposed GA. The number of rules with logical

ORs is also given in Table 6.10 to evaluate the effects of alternatives on the fitness

function.

The computational experiments show that optimal solutions can only be obtained for

small sized problem instances in a reasonable amount of time. Based on Table 6.10, the

proposed GA is proven to perform better when new alternatives are added. As it can be

seen in Table 6.10, a new alternative is added to the original problem in each step. The

GA with the rule base solves each type of the problem with new alternatives

simultaneously as well as the original problem. Table 6.10 shows that the fitness values

are getting smaller while the number of alternatives is increasing. The fitness value

consists of two objectives, minimizing the number of stations and obtaining balanced

stations. When more alternatives are added, better balanced stations are obtained. As the

number of ORs is increased, line balancing improves.

It should be noted that the minimum number of stations reported in the literature is 6

for Roszieg problem with the cycle time of 25 time units. When more alternatives are

added, the number of stations decreases to 5, which is the lower bound for the cycle time

of 25 time units. The same is also reported for the cycle time of 18.

Table 6.10 The results of the experiments as number of stations and fitness

No alternatives With alternatives
 1 OR 2 ORs 3 ORs

Pr
ob

le
m

of

 ta
sk

s

C
yc

le
 ti

m
e

O
pt

im
al

 #
 o

f
st

at
io

ns

of
all

rules Min. #
of

stations Fitness

of
all

rules

of
rules
with
1 OR

Min. #
of

stations Fitness

of
rules

with 2
ORs

Min. #
of

stations Fitness

of
rules

with 3
ORs

Min. #
of

stations Fitness
Bowman 8 20 5 7 5 2.5933 7 2 5 2.645 - - - - - -

6 8 8 1.699 8 1.6832 - - - - - -
7 7 7 2.0997 8 1.6832 - - - - - -
8 6 7 2.0997 8 1.699 - - - - - -

10 4 4 0.9232 4 0.9232 - - - - - -
Jaeschke 9

18 3

8

3 5.9103

8 5

3 2.1428 - - - - - -

7 8 8 1.5662 7 0.5976 - - - - - -
9 6 6 1.6388 6 1.6388 - - - - - -

10 5 5 1.0191 5 0.9789 - - - - - -
13 4 4 0.6414 4 0.6414 - - - - - -
14 4 4 0.6414 4 0.6414 - - - - - -

Jackson 11

21 3

10

3 0.83

10 2

3 0.83 - - - - - -

113

Table 6.10 (cont) The results of the experiments as number of stations and fitness

No alternatives With alternatives
 1 OR 2 ORs 3 ORs

Pr
ob

le
m

of

 ta
sk

s

C
yc

le
 ti

m
e

O
pt

im
al

 #
 o

f
st

at
io

ns

of
all

rules Min. #
of

stations Fitness

of
all

rules

of
rules
with
1 OR

Min. #
of

stations Fitness

of
rules

with 2
ORs

Min. #
of

stations Fitness

of
rules

with 3
ORs

Min. #
of

stations Fitness
14 8 9 2.8708 8 1.0871 8 1.1095 8 1.0871
15 8 8 1.0871 8 1.0871 8 1.0871 8 1.0871
21 5 6 0.6414 6 0.6414 6 0.6414 5 0
26 5 5 2.5215 5 0 5 1.2366 5 1.2366
35 3 3 0 3 0 3 0 3 0

Mitchell 21

39 3

20

3 0

20 2

3 0

2

3 0

1

3 0

18 8 8 1.699 8 0.4975 8 0.4975 7 0.2185
21 6 7 2.6269 6 0.2483 6 0.2483 6 0.2483
25 6 6 0.2483 6 0.2483 5 0 5 0

Roszieg 25

32 4

23

4 0.9736

25 5

4 0.9232

2

4 0.9232

2

4 0.9232

138 8 8 1.2449 8 1.2449 8 1.2449 8 1.2449
205 5 6 1.6388 6 2.8871 6 1.6797 6 0.4966
216 5 5 0.2894 5 1.4828 5 0.2894 5 0.2894
256 4 5 3.9155 5 1.4828 5 0.2894 5 0.2894
324 4 4 1.2449 4 1.2449 4 0 4 0

Heskiaoff 28

342 3

26

3 0.83

26 3

4 1.2449

3

3 0.83

3

3 0.83

114

Table 6.10 (cont) The results of the experiments as number of stations and fitness

No alternatives With alternatives
 1 OR 2 ORs 3 ORs

O
pt

im
al

 #
 o

f
st

at
io

ns

C
yc

le
 ti

m
e

of

 ta
sk

s

Pr
ob

le
m

of
all

rules

of
all

rules

of
rules
with
1 OR

of
rules

with 2
ORs

of
rules

with 3
ORs

Min. #
of

stations

Min. #
of

stations

Min. #
of

stations

Min. #
of

stations Fitness Fitness Fitness Fitness
27 13 13 2.6507 14 2.3528 14 2.3352 13 2.6507
30 12 12 2.5033 13 2.6666 14 3.5248 12 2.4899
33 11 12 2.5292 11 3.1363 12 1.3162 11 2.0316
36 10 10 2 10 1.9688 10 2.0099 10 1.9795 Buxey 29 26 26 3 2 2
41 8 9 2.5333 9 3.7149 9 3.7087 9 1.3944
47 7 8 0.6732 8 0.6414 8 0.6732 8 0.6414
54 7 7 3.4433 7 2.28 7 2.1283 7 2.28

30 12 14 2.3642 14 2.2914 12 2.5033 12 2.4690
33 11 12 2.5292 11 3.2986 11 3.2889 11 3.3177
36 10 11 3.1836 11 3.284 10 1.9899 10 1.9688
41 8 9 2.5333 9 4.1294 9 3.7149 9 2.4899 Sawyer 30 26 26 3 3 3
47 7 8 0.6732 8 0.6732 8 0.6414 8 0.6414
54 7 7 2.1283 7 2.1143 7 2.1283 7 2.1143
75 5 5 1.5347 5 0.2894 5 1.4828 5 0.2894

69 8 9 2.0496 9 2.0496 9 0.83 9 0.83
79 7 8 1.2236 8 1.2236 8 0 8 0
92 6 7 1.4047 7 1.4047 7 0.2185 7 0.2185
110 6 6 1.2309 6 1.2309 6 0 6 0
111 5 6 0 6 0 5 0.7549 5 0.7549
138 4 4 0 4 0 4 0 4 0

Kilbridge 45

184 3

40

3 0

40 5

3 0

5

3 0

5

3 0

115

116

Table 6.10 (cont) The results of the experiments as number of stations and fitness

No alternatives With alternatives
 1 OR 2 ORs 3 ORs

Pr
ob

le
m

of

 ta
sk

s

C
yc

le
 ti

m
e

O
pt

im
al

 #
 o

f
st

at
io

ns

of
all

rules
Min. #

of
stations

Fitness

of
all

rules

of
rules
with
1 OR

Min. #
of

stations
Fitness

of
rules
with

2
ORs

Min. #
of

stations
Fitness

of
rules
with

3
ORs

Min. #
of

stations
Fitness

Real Case 68 70 - 67 29 12.0099 67 11 29 12.028 4 29 12.025 2 28 9.61

5853 14 14 264.5 14 195.4 14 73 14 75.7
6309 13 13 186.2 14 467.8 14 443.3 13 201.8
6842 12 13 351.7 12 304.4 12 348.6 12 305
6883 12 13 488.7 12 194.3 13 649.8 12 244.4
7571 11 11 258.5 11 272.3 11 257.3 11 265.5
8412 10 10 194.6 10 157.9 10 255.6 10 113.3
8898 9 9 143.8 9 164.7 9 164.4 9 140.9

Arcus 1 83

10816 8

82

8 728

82 5

8 500.5

2

8 184.4

2

8 376.5

117

The results of the problem instances as efficiencies are detailed in Table 6.11. In the

first column, the problem source is reported. The second column reports the number of

tasks and the third column reports the sum of the task times. In the fourth column, the

cycle times are listed. The fifth column reports the minimum number of stations found in

the literature for the original problems given in Table 6.9. The other columns report the

best solutions of the generated instances with and without alternatives solved by the

proposed GA. The number of rules with logical ORs is also given in Table 6.11 to

evaluate the effects of alternatives on efficiencies.

Table 6.11 shows that the number of stations is getting smaller when a new

alternative is added to the problem. When the number of stations remains the same, the

efficiency is higher. As a result, the solutions get better when the number of ORs is

increased. These improvements are shown in the tables and graphics given in the

appendices.

Table 6.11 The results of the experiments as number of stations and efficiency

No alternatives With alternatives
 1 OR 2 ORs 3 ORs

Pr
ob

le
m

of

 ta
sk

s

Su
m

 o
f t

as
k

tim
es

C
yc

le
 ti

m
e

O
pt

im
al

 #
 o

f s
ta

tio
ns

of

 a
ll

ru
le

s

M
in

. #
 o

f s
ta

tio
ns

M
ax

. s
ta

tio
n

tim
e

E
ff

. (
%

)

 o

f a
ll

ru
le

s

 o

f r
ul

es
 w

ith
 1

 O
R

M
in

. #
 o

f s
ta

tio
ns

M
ax

. s
ta

tio
n

tim
e

E
ff

. (
%

)

 o

f r
ul

es
 w

ith
 2

O

R
s

M
in

. #
 o

f s
ta

tio
ns

M
ax

. s
ta

tio
n

tim
e

E
ff

. (
%

)

 o

f r
ul

es
 w

ith
 3

O

R
s

M
in

. #
 o

f s
ta

tio
ns

M
ax

. s
ta

tio
n

tim
e

E
ff

. (
%

)

Bowman 8 75 20 5 7 5 17 88 7 2 5 17 88 - - - - - - - -

6 8 8 6 77 8 6 77 - - - - - - - -
7 7 7 7 76 8 6 77 - - - - - - - -
8 6 7 7 76 8 6 77 - - - - - - - -

10 4 4 10 93 4 10 93 - - - - - - - -
Jaeschke 9 37

18 3

8

3 17 73

8 5

3 14 88 - - - - - - - -

7 8 8 7 82 7 7 94 - - - - - - - -
9 6 6 9 85 6 9 85 - - - - - - - -

10 5 5 10 92 5 10 92 - - - - - - - -
13 4 4 12 96 4 12 96 - - - - - - - -
14 4 4 12 96 4 12 96 - - - - - - - -

Jackson 11 46

21 3

10

3 16 96

10 2

3 16 96 - - - - - - - -

118

Table 6.11 (cont) The results of the experiments as number of stations and efficiency

No alternatives With alternatives
 1 OR 2 ORs 3 ORs

Pr
ob

le
m

of

 ta
sk

s

Su
m

 o
f t

as
k

tim
es

C
yc

le
 ti

m
e

O
pt

im
al

 #
 o

f s
ta

tio
ns

of

 a
ll

ru
le

s

M
in

. #
 o

f s
ta

tio
ns

M
ax

. s
ta

tio
n

tim
e

E
ff

. (
%

)

 o

f a
ll

ru
le

s

 o

f r
ul

es
 w

ith
 1

 O
R

M
in

. #
 o

f s
ta

tio
ns

M
ax

. s
ta

tio
n

tim
e

E
ff

. (
%

)

 o

f r
ul

es
 w

ith
 2

O

R
s

M
in

. #
 o

f s
ta

tio
ns

M
ax

. s
ta

tio
n

tim
e

E
ff

. (
%

)

 o

f r
ul

es
 w

ith
 3

O

R
s

M
in

. #
 o

f s
ta

tio
ns

M
ax

. s
ta

tio
n

tim
e

E
ff

. (
%

)

14 8 9 14 83 8 14 94 8 14 94 8 14 94
15 8 8 14 94 8 14 94 8 14 94 8 14 94
21 5 6 18 97 6 18 97 6 18 97 5 21 100
26 5 5 23 91 5 21 100 5 22 95 5 22 95
35 3 3 35 100 3 35 100 3 35 100 3 35 100

Mitchell 21 105

39 3

20

3 35 100

20 2

3 35 100

2

3 35 100

1

3 35 100

18 8 8 17 92 8 16 98 8 16 98 7 18 99
21 6 7 20 89 6 21 99 6 21 99 6 21 99
25 6 6 21 99 6 21 99 5 25 100 5 25 100

Roszieg 25 125

32 4

23

4 32 98

25 5

4 32 98

2

4 32 98

2

4 32 98

138 8 8 129 99 8 129 99 8 129 99 8 129 99
205 5 6 172 99 6 173 99 6 172 99 6 171 100
216 5 5 205 100 5 206 99 5 205 100 5 205 100
256 4 5 208 98 5 206 99 5 205 100 5 205 100
324 4 4 257 100 4 257 100 4 256 100 4 256 100

Heskiaoff 28 1024

342 3

26

3 342 100

26 3

4 257 100

3

3 342 100

3

3 342 100

119

Table 6.11 (cont) The results of the experiments as number of stations and efficiency

No alternatives With alternatives
 1 OR 2 ORs 3 ORs

Pr
ob

le
m

of

 ta
sk

s

Su
m

 o
f t

as
k

tim
es

C
yc

le
 ti

m
e

O
pt

im
al

 #
 o

f s
ta

tio
ns

of

 a
ll

ru
le

s

M
in

. #
 o

f s
ta

tio
ns

M
ax

. s
ta

tio
n

tim
e

E
ff

. (
%

)

 o

f a
ll

ru
le

s

 o

f r
ul

es
 w

ith
 1

 O
R

M
in

. #
 o

f s
ta

tio
ns

M
ax

. s
ta

tio
n

tim
e

E
ff

. (
%

)

 o

f r
ul

es
 w

ith
 2

O

R
s

M
in

. #
 o

f s
ta

tio
ns

M
ax

. s
ta

tio
n

tim
e

E
ff

. (
%

)

 o

f r
ul

es
 w

ith
 3

O

R
s

M
in

. #
 o

f s
ta

tio
ns

M
ax

. s
ta

tio
n

tim
e

E
ff

. (
%

)

27 13 13 27 92 14 25 93 14 25 93 13 27 92
30 12 12 29 93 13 27 92 14 26 89 12 29 93
33 11 12 29 93 11 32 92 12 28 96 11 31 95
36 10 10 34 95 10 34 95 10 34 95 10 34 95
41 8 9 38 95 9 38 95 9 39 92 9 37 97
47 7 8 41 99 8 41 99 8 41 99 8 41 99

Buxey 29 324

54 7

26

7 49 94

26 3

7 48 96

2

7 48 96

2

7 48 96

30 12 14 25 93 14 25 93 12 29 93 12 29 93
33 11 12 29 93 11 32 92 11 32 92 11 32 92
36 10 11 32 92 11 32 92 10 34 95 10 34 95
41 8 9 37 97 9 39 92 9 39 92 9 38 95
47 7 8 41 99 8 41 99 8 41 99 8 41 99
54 7 7 48 96 7 48 96 7 48 96 7 48 96

Sawyer 30 324

75 5

26

5 66 98

26 3

5 65 100

3

5 66 98

3

5 65 100

69 8 9 63 97 9 63 97 9 62 99 9 62 99
79 7 8 70 99 8 70 99 8 69 100 8 69 100
92 6 7 80 99 7 80 99 7 79 100 7 79 100
110 6 6 93 99 6 93 99 6 92 100 6 92 100
111 5 6 92 100 6 92 100 5 111 99 5 111 99
138 4 4 138 100 4 138 100 4 138 100 4 138 100

Kilbridge 45 552

184 3

40

3 184 100

40 5

3 184 100

5

3 184 100

5

3 184 100

120

121

Table 6.11 (cont) The results of the experiments as number of stations and efficiency

No alternatives With alternatives
 1 OR 2 ORs 3 ORs

Pr
ob

le
m

of

 ta
sk

s

Su
m

 o
f t

as
k

tim
es

C
yc

le
 ti

m
e

O
pt

im
al

 #
 o

f s
ta

tio
ns

of

 a
ll

ru
le

s

M
in

. #
 o

f s
ta

tio
ns

M
ax

. s
ta

tio
n

tim
e

E
ff

. (
%

)

 o

f a
ll

ru
le

s

 o

f r
ul

es
 w

ith
 1

 O
R

M
in

. #
 o

f s
ta

tio
ns

M
ax

. s
ta

tio
n

tim
e

E
ff

. (
%

)

 o

f r
ul

es
 w

ith
 2

O

R
s

M
in

. #
 o

f s
ta

tio
ns

M
ax

. s
ta

tio
n

tim
e

E
ff

. (
%

)

 o

f r
ul

es
 w

ith
 3

O

R
s

M
in

. #
 o

f s
ta

tio
ns

M
ax

. s
ta

tio
n

tim
e

E
ff

. (
%

)

Real Case 68 1753 70 - 67 29 70 86 11 29 70 86 4 29 70 86 2 28 70 89

5853 14 14 5621 96 14 5561 97 14 5467 99 14 5469 99
6309 13 13 5940 98 14 5766 94 14 5766 94 13 5977 97
6842 12 13 6087 96 12 6491 97 12 6562 96 12 6542 96
6883 12 13 6196 94 12 6443 98 13 6345 92 12 6488 97
7571 11 11 7091 97 11 7091 97 11 7091 97 11 6928 99
8412 10 10 7722 98 10 7698 98 10 7768 97 10 7660 99
8898 9 9 8528 99 9 8545 98 9 8528 99 9 8528 99

Arcus 1 83 75707

10816 8

82

8 10048 94

82 5

8 9862 96

2

8 9600 99

2

8 9766 97

 122

The results in Table 6.10 and Table 6.11 show that CCALBP can be solved

through the proposed GA efficiently. It is shown that balance efficiency improves

when the number of alternatives increases. CCALBP allows alternative assembly

processes. Therefore, precedence constraints are relaxed. As the number of

alternatives increases, the number of stations and the fitness value get smaller. As a

result, the proposed GA performs better when more alternatives are added to

CCALBP.

6.5 Chapter Summary

In this chapter, a GA based on the rule-base was proposed to solve CCALBP. The

specific characteristics of the proposed GA were also explained step by step on an

example problem of sewing a simple pant.

The proposed GA was developed in Matlab 7.0. By experimenting different set of

control parameters, the robustness of the suggested approach was tested. The

computational experiments were carried out on a set of generated problems by

adapting the case problems in the literature. The generated benchmark problems with

different instances were solved for this novel problem.

Based on the computational experiments, it can be stated that the solution quality

in terms of balance efficiency and the number of stations improves when the number

of alternatives increases.

CHAPTER SEVEN

CONCLUSION

7.1 Summary and Concluding Remarks

From the earliest days, ancient man used assembly techniques to make tools,

weapons, ships, machinery, furniture, and garment. Manufacturing evolved time by

time. Assembly lines are the most commonly used methods in a mass production

environment, because they allow the assembly of complex products by workers with

limited training, by dedicated machines and/or by robots. Recently, mass production

has been challenged by mass customization. Production systems and supply chains

are designed to handle high variety of products. Today, assembly lines are still up to

date.

 The installation of an assembly line which is a long-term decision usually requires

large capital investments. Therefore, it is important to design and balance an

assembly line in a way that it should work as efficiently as possible. The assembly

line balancing is the allocation of the tasks among stations so that the precedence

relations are not violated and a given objective function is optimized. ALBP deals

with balancing the assembly line with respect to the precedence constraints and

objective function(s).

 There are technological restrictions or/and physical sequencing requirements on

the assembly line which are called precedence constraints. The sequence of tasks

defined by the precedence constraints is represented by a precedence graph. But,

there are some shortcomings of the precedence graphs. They cannot represent all the

possible assembly sequences of a product in a single graph and cannot describe some

complicated constraints. In order to overcome the aforementioned difficulties, a rule-

based assembly model was proposed to model all assembly constraints.

123

 124

The aim of this dissertation was to extend the rule-based assembly modeling and

to introduce the complex-constrained assembly line balancing problem (CCALBP),

which is of the general ALBPs, in order to model all assembly constraints through a

rule-base to tackle alternative ways of assembling a product and their effects on task

times, precedence relations and the line balance simultaneously.

It was shown how to model all assembly constraints through the well known If-

then rules, and how to solve the problem through CP and IP models mapped from the

rule-based model through a small real-life example. It was also shown how to map a

rule-based model to a CP or an IP model. This mapping was not possible from graph-

based models that address, though roughly, complex assembly constraints. Thus,

CCALBP can be solved only through rule-based modeling, but not graph-based

modeling. Rule-based and graph-based models were compared in terms of modeling

capability.

In this dissertation, a GA integrated with the rule-base was proposed to solve

CCALBP. The specific characteristics of the proposed GA were devised with the

inspiration taken from the current examples in the literature. These characteristics

were explained on an example problem of sewing a simple pant. The control

parameters of the GA were optimized to improve the performance.

Since CCALBP is a novel problem, there is no set of benchmark instances for

testing. Therefore, the computational experiments were carried out on a set of self-

made instances generated by adapting well-known benchmark problems from the

literature. Some alternative routes are created and added to these literature problems.

A new alternative was added to the original problem in each step. The GA with the

rule base solved each type of the problem with new alternatives simultaneously as

well as the original problem. The proposed GA resulted better in the generated

problems when new alternatives were added. The fitness value consisted of two

objectives, minimizing the number of stations and obtaining balanced stations. When

more alternatives were added, better balanced stations were obtained. It was shown

 125

that balance efficiency improved when the number of alternatives increased. As the

number of alternatives increased, the number of stations and the fitness value got

smaller. Based on the experiments, it is stated that the proposed GA performs better

and the objectives improve when more alternatives are added to CCALBP.

7.2 Contributions

 The research proposed in this dissertation provides several contributions. The

contributions are presented in this section as follows.

 Extensive literature review indicates that the researchers generally use precedence

graphs to represent the precedence constraints and the sequence of tasks in an

assembly line. But, there are some shortcomings of the precedence graphs:

• They cannot represent all the possible assembly sequences of a product in a

single graph.

• They exclude some logic statements.

• They allow limited flexibility.

• They cannot describe some complicated constraints.

Despite their shortcomings, researchers continue to employ precedence graphs in

ALBP. There are some alternative representation methods, but the literature is

relatively sparse in addressing alternative ways of assembling a product for the

ALBP. In other words, the literature tackles the ALBP based on traditional

precedence graphs in general, rather than investigating more effective modeling tools

than precedence graphs to solve the ALBP.

 In this dissertation a well known tool, rule-base, is employed in modeling and

solving the ALBP for the first time and extends this literature in terms of modeling

scope for assembly constraints in line balancing.

 126

This dissertation introduced a novel line balancing problem: complex-constrained

assembly line balancing problem (CCALBP), which is of the general ALBPs, in

order to model all assembly constraints through a rule-base to tackle alternative ways

of assembling a product and their effects on task times, precedence relations and the

line balance simultaneously.

This dissertation extends the rule-based modeling of assembly constraints (Salum

& Supciller, 2007, 2008), and solves CCALBP (Topaloglu et al., 2009) through GAs

(Supciller & Salum, 2009).

It was shown how to:

• model all assembly constraints through the well known If-then rules,

• map a rule-based model to a CP or an IP model,

• solve CCALBP through CP and IP models mapped from the rule-based model,

• solve CCALBP through a GA integrated with the rule-base,

• solve a real-life case of CCALBP.

Based on the experiments, it was also shown that the proposed GA performed

better and the objectives improved when more alternatives were added to CCALBP.

7.3 Future Research Directions

Since assembly lines have many characteristics, any characteristic can be added to

the new problem, CCALBP, to have a different CCALBP. Therefore many research

directions can be added to future research topics stated in the following.

The experiments performed by the proposed GA can be performed by using IP,

CP or another meta-heuristic such as simulated annealing (SA) or tabu search (TS)

employing the rule-base for CCALBP. In other way, the proposed GA can be

hybridized with another solution approach. Or, in order to improve the performance

 127

of the proposed GA, additional heuristic algorithm can be used. They can be

compared in terms of solution efficiency.

Different types of the problem according to the objectives can be solved such as

cost or profit oriented CCALP. Different methods such as pareto optimization can be

used to solve multi-objective CCALBP.

Some fuzzy rules can also be employed in a rule-base to model vagueness in

assembly constraints.

Since CCALBP addresses a wide variety of assembly problems involving

complex constraints, many complicated constraints of real-life assembly lines can be

modeled easily through a rule-base to solve the problems more realistically. They can

include features such as parallel workstations, two-sided workstations, U-shaped line

layout, workload constraints, assignment restrictions such as positive or negative

zoning constraints, multi or mixed model, and stochastic processing times.

With the help of these further investigations, theoretical studies and practical

applications can match and the gap between scientific research and industrial needs

can be shortened.

 128

REFERENCES

Agpak, K., & Gokcen, H. (2005). Assembly line balancing: Two resource

constrained cases. International Journal of Production Economics, 96, 129–140.

Ajenblit, D. A., & Wainwright, R. L. (1998). Applying genetic algorithms to the

Ushaped assembly line balancing problem. In the Proceeding of the 1998 IEEE

International Conference on Evolutionary Computation, Anchorage, Alaska,

USA, 96-101.

Amen, M. (2001). Heuristic methods for cost-oriented assembly line balancing: A

comparison on solution quality and computing time. International Journal of

Production Economics, 69, 255-264.

Amen, M. (2006). Cost-oriented assembly line balancing: Model formulations,

solution difficulty, upper and lower bounds. European Journal of Operational

Research, 168, 747-770.

Anderson, E. J., & Ferris, M. C. (1994). Genetic algorithms for combinatorial

optimization: The assembly line balancing problem. ORSA Journal on

Computing, 6, 161-173.

Arcus, A. L. (1966). COMSOAL: A computer method of sequencing operations for

assembly lines. International Journal of Production Research, 4, 259-277.

Aytug, H., Khouja, M., & Vergara, F. E. (2003). Use of genetic algorithms to solve

production and operations management problems: a review. International Journal

of Production Research, 41(17), 3955-4009.

Bard, J. F. (1989). Assembly line balancing with parallel workstations and dead time.

International Journal of Production Research, 27(6), 1005-1018.

 129

Battini, D., Faccio, M., Ferrari, E., Persona, A., & Sgarbossa, F. (2007). Design

configuration for a mixed-model assembly system in case of low product demand.

International Journal of Advanced Manufacturing Technology, 34(1-2), 188-200.

Bautista, J., & Pereira, J. (2002). Ant algorithms for assembly line balancing. Lecture

Notes in Computer Science, 2463, 65–75.

Bautista, J., & Pereira, J. (2007). Ant algorithms for a time and space constrained

assembly line balancing problem. European Journal of Operational Research,

177, 2016-2032.

Bautista, J., & Pereira, J. (2009). Dynamic programming based heuristic for the

assembly line balancing problem. European Journal of Operational Research,

194, 787-794.

Bautista, J., Suarez, R., Mateo, M., & Companys, R. (2000). Local search heuristics

for the assembly line balancing problem with incompatibilities between tasks. In

the Proceedings of the 2000 IEEE International Conference on Robotics and

Automation, San Francisco, CA, 2404-2409.

Baybars, I. (1986). A survey of exact algorithms for the simple assembly line

balancing problem. Management Science, 32, 909–932.

Baykasoglu, A., (2006). Multi-rule multi-objective simulated annealing algorithm for

straight and U type assembly line balancing problems. International Journal of

Advanced Manufacturing Technology, 17, 217-232.

Baykasoglu, A., & Dereli, T. (2008). Two-sided assembly line balancing using an

ant-colony-based heuristic. International Journal of Advanced Manufacturing

Technology, 36, 582-588.

 130

Baykasoglu, A., & Dereli, T. (2009). Simple and U-type assembly line balancing by

using ant colony based algorithm. Mathematical and Computational Applications,

14(1), 1-12.

Baykasoglu, A., & Ozbakir, L. (2007). Stochastic U-line balancing using genetic

algorithms. International Journal of Advanced Manufacturing Technology, 32(1-

2), 139-147.

Becker, C., & Scholl, A. (2006). A survey on problems and methods in generalized

assembly line balancing. European Journal of Operational Research, 168, 694–

715.

Blum, C., Bautista, J., & Pereira, J. (2006). Beam-ACO applied to assembly line

balancing. ANTS 2006, LNCS, 4150, 96-107.

Blum, C., & Roli, A. (2003). Metaheuristics in combinatorial optimization:

Overview and conceptual comparison. ACM Computing Surveys, 35(3), 268-308.

Boctor, F. F. (1995). A multiple rule heuristic for assembly line balancing. Journal of

the Operational Research Society, 44, 62-69.

Bowman, E. H. (1960). Assembly line balancing by linear programming. Operations

Research, 8(3), 385-389.

Boysen, N., & Fliedner, M. (2008). A versatile algorithm for assembly line

balancing. European Journal of Operational Research, 184, 39–56.

Boysen, N., Fliedner, M., & Scholl, A. (2007). A classification of assembly line

balancing problems. European Journal of Operational Research, 183, 674–693.

Boysen, N., Fliedner, M., & Scholl, A. (2008). Assembly line balancing: Which

model to use? International Journal of Production Economics, 111, 509-528.

 131

Brailsford, S. C., Potts, C. N., & Smith, B. M. (1999). Constraint satisfaction

problems: Algorithms and applications. European Journal of Operational

Research, 119, 57-581.

Brown, E. C., & Sumichrast, R. T. (2005). Evaluating performance advantages of

grouping genetic algorithms. Engineering Applications of Artificial Intelligence,

18, 1-12.

Brudaru, O., & Valmar, B. (2004). Genetic algorithm with embryonic chromosomes

for assembly line balancing with fuzzy processing times. The 8th International

Research/Expert Conference Trends in the Development of Machinery and

Associated Technology, Neum, Bosnia and Herzegovina.

Bryton, B. (1954). Balancing of a Continuous Production Line, Unpublished M.S.

Thesis, Northwestern University.

Bukchin, J., Dar-El, E. M., & Rubinovitz, J. (2002). Mixed-model assembly line

design in a make-to-order environment. Computers and Industrial Engineering,

41, 405–421.

Bukchin, J., & Rubinovitz, J. (2003). A weighted approach for assembly line design

with station paralleling and equipment selection. IIE Transactions, 35, 73-85.

Bukchin, J., & Tzur, M. (2000). Design of flexible assembly line to minimize

equipment cost. IIE Transactions, 32(7), 585-598.

Bukchin, Y., & Rubinowitch, J. (2006). A branch-and-bound based solution

approach for the mixed-model assembly line-balancing problem for minimizing

stations and task duplication costs. European Journal of Operational Research,

174, 492-508.

 132

Capacho, L., & Pastor, R. (2008). ASALBP: the alternative subgraphs assembly line

balancing problem. International Journal of Production Research, 46, 3503–

3516.

Capacho, L., Pastor, R., Dolgui, A., & Guschinskaya, O. (2009). An evaluation of

constructive heuristic methods for solving the alternative subgraphs assembly line

balancing problem. Journal of Heuristics, 15(2), 109-132.

Carnahan, B. J., Norman, B. A., & Redfern, M. S. (2001). Incorporating physical

demand criteria into assembly line balancing. IIE Transactions, 33, 875-887.

Carraway R. L. (1989). A dynamic programming approach to stochastic assembly

line balancing. Management Science, 35(4), 459-471.

Cevikcan, E., Durmusoglu, M. B., & Unal, M. E. (2009). A team-oriented design

methodology for mixed model assembly systems. Computers & Industrial

Engineering, 56, 576–599.

Chan, C. C. K., Hui, P. C. L., Yeung, K. W., & Ng, F. S. F. (1998). Handling the

assembly line balancing problem in the clothing industry using a genetic

algorithm. International Journal of Clothing Science and Technology, 10(1), 21-

37.

Chen, R. S., Lu, K. Y., & Yu, S. C. (2002). A hybrid genetic algorithm approach on

multi-objective of assembly planning problem. Engineering Applications of

Artificial Intelligence, 15, 447–457.

Chiang, W. C. (1998). The application of a tabu search metaheuristic to the assembly

line balancing problem. Annals of Operations Research, 77, 209–227.

Chiang, W. C., & Urban, T. L. (2006). The stochastic U-line balancing problem: A

heuristic approach. European Journal of Operational Research, 175, 1767-1781.

http://www.springerlink.com/content/102935/?p=777413af13e7489db75adf764fba1269&pi=0
http://www.springerlink.com/content/r2r3155m0812/?p=777413af13e7489db75adf764fba1269&pi=0

 133

Choi, G. (2009). A goal programming mixed-model line balancing for processing

time and physical workload. Computers & Industrial Engineering, 57(1), 395-

400.

Cilkin, S. (2003). Line balancing with genetic algorithms. Unpublished Master

Thesis, The Graduate School of Natural and Applied Sciences, Gazi University,

Ankara.

Coley, D. A. (1999). An introduction to genetic algorithms for scientists and

engineers. Singapore: World Scientific.

Corominas, J. P. A. (1999). Modeling and solving the SALB-E problem.

Proceedings of the 1999 IEEE International Symposium on Assembly and Task

Planning. Porto, Portugal, July, 356-360.

Corominas, A., Pastor, R., & Plans, J. (2008). Balancing assembly line with skilled

and unskilled workers. Omega, 36, 1126-1132.

Dar-El, E. M., & Rubinovitch, Y. (1979). MUST-A multiple solutions technique for

balancing single model assembly lines. Management Science, 25, 1105-1114.

Davis, L. (1985). Applying adaptive algorithms to epistatic domains. In the

Proceedings of the Ninth International Joint Conference on Artificial Intelligence,

1, 162–164.

De Fazio, T. L., & Whitney, D. E. (1987). Simplified generation of all mechanical

assembly sequences. IEEE Journal of Robotics and Automation RA-3, 6, 640–658.

Dimitriadis, S. G. (2006). Assembly line balancing and group working: A heuristic

procedure for workers’ groups operating on the same product and workstation.

Computers & Operations Research, 33, 2757–2774.

 134

Dimopoulos, C., & Zalzala, A. M. S. (2000). Recent developments in evolutionary

computation for manufacturing optimization: problems, solutions and

comparisons. IEEE Transactions on Evolutionary Computation, 4(2), 93-113.

Dorigo, M., Maniezzo, V., & Colorni, A. (1996). The ant system: optimization by a

colony of cooperating agents. IEEE Transactions on Systems, Man, and

Cybernetics-Part B, 26, 1-13.

Dorigo, M., Di Caro, G., & Gambardella, L.M. (1999) Ant algorithms for discrete

optimization. Artificial Life, 5, 137-172.

Dowsland, K. A. (1996). Genetic Algorithms-A Tool for OR? The Journal of the

Operational Research Society, 47(4), 550-561.

Dreo, J., Siarry, P., Petrowski, A., & Taillard, E. (2006). Metaheuristics for Hard

Optimization. Berlin Heidelberg: Springer-Verlag.

Ege, Y., Azizoglu, M., & Ozdemirel, N. E. (2009) Assembly line balancing with

station paralleling. Computers & Industrial Engineering, 57(4), 1218-1225.

Eiben, A. E., Michalewicz, Z., Schoenauer, M., & Smith, J.E. (2007). Parameter

control in evolutionary algorithms. In Studies in Computational Intelligence (SCI)

54(19–46). Berlin Heidelberg: Springer-Verlag.

Erel, E., Sabuncuoglu, I., & Aksu, B. A. (2001). Balancing of U-type assembly

systems using simulated annealing. International Journal of Production Research,

39, 3003–3015.

Erel, E., & Sarin, S. C. (1998). A survey of the assembly line balancing procedures.

Production Planning and Control, 9, 414–434.

 135

Falkenauer, E. (1991). A genetic algorithm for grouping. In the Proceedings of the

Fifth International Symposium on Applied Stochastic Models and Data Analysis,

Granada, Spain.

Falkenauer, E. (1997). A grouping genetic algorithm for line balancing with resource

dependent task times. In the Proceedings of the Fourth International Conference

on Neural Information Processing, Dunedin, New Zealand, 464-468.

Falkenauer, E., & Delchambre, A. (1992). A genetic algorithm for bin packing and

line balancing. In the Proceedings of the 1992 IEEE International Conference on

Robotics and Automation, Nice, France, 1189-1192.

Fonseca, D. J., Guest, C.L., Elam, M., & Karr, C.L. (2005). A fuzzy logic approach

to assembly line balancing. Mathware & Soft Computing, 12, 57-74.

Gamberini, R., Grassi, A., & Rimini, B. (2006). A new multi-objective heuristic

algorithm for solving the stochastic assembly line re-balancing problem.

International Journal of Production Economics, 102, 226–243.

Gao, J., Sun, L., Wang, L., & Gen, M. (2009) An efficient approach for type II

robotic assembly line balancing problems. Computers & Industrial Engineering,

56, 1065–1080

Gen, M., & Cheng, R. (1997). Genetic algorithms & engineering design. New York:

John Wiley & Sons.

Gen, M., Cheng, R., & Lin L. (2008). Network models and optimization:

multiobjective genetic algorithm approach. London: Springer-Verlag.

Ghosh, S., & Gagnon, R. J. (1989). A comprehensive literature review and analysis

of the design, balancing and scheduling of assembly systems. International

Journal of Production Research, 27, 637-670.

 136

Glover, F. (1986). Future paths for integer programming and links to artificial

intelligence. Computers and Operations Research, 13(5), 533-549.

Gokcen, H., & Agpak, K. (2006). A goal programming approach to simple U-line

balancing problem. European Journal of Operational Research, 171, 577–585.

Gokcen, H., Agpak, K., & Benzer, R. (2006). Balancing of parallel assembly lines.

International Journal of Production Economics, 103, 600–609.

Gokcen, H., Agpak, K., Gencer, C., & Kizilkaya, E. (2005). A shortest route

formulation of simple U-type assembly line balancing problem. Applied

Mathematical Modelling, 29, 373-380.

Gokcen, H., & Erel, E. (1997). A goal programming approach to mixed-model

assembly line balancing problem. International Journal of Production Economics,

48(2), 177-185.

Goldberg, D. E. (1989) Genetic Algorithms in Search, Optimization & Machine

Learning. Boston: Addison-Wesley.

Goldberg, D. E., & Deb, K. (1991). A comparative analysis of selection schemes

used in genetic algorithms. In G.J.E. Rawlins, (Ed.). (53-69). Foundations of

Genetic Algorithms. San Francisco: Morgan Kaufmann.

Goncalves, J. F., & De Almedia, J. R. (2002). A hybrid genetic algorithm for

assembly line balancing. Journal of Heuristic, 8, 629-642.

Groover, M. P. (2001). Automation, production systems, and computer-integrated

manufacturing (2nd ed.). New Jersey: Prentice Hall.

 137

Guerriero, F., & Miltenburg, J. (2002). The stochastic U-line balancing problem.

Naval Research Logistics, 50(1), 31-57.

Guo, Z. X., Wong, W. K., Leung, S. Y. S., Fan, J. T., & Chan, S. F. (2008). A

genetic-algorithm-based optimization model for solving the flexible assembly line

balancing problem with work sharing and workstation revisiting. IEEE

Transactions on Systems, Man, and Cybernetics-Part C: Applications and

Reviews, 38(2), 218-228.

Gutjahr, A. L. & Nemhauser, G. L. (1964). An algorithm for the line balancing

problem. Management Science, 11(2), 308-315.

Haupt R. L., & Haupt S. E. (2004). Practical genetic algorithms (2nd ed.). New

Jersey: John Wiley.

Haq, A. N., Jayaprakash, J., & Rengarajan, K. (2006). A hybrid genetic algorithm

approach to mixed-model assembly line balancing. International Journal of

Advanced Manufacturing Technology, 28, 337–341.

Held, M., & Karp, R. M., (1961) Dynamic programming approach to sequencing

problems. Proceedings of the 16th ACM annual conference, 71.201 - 71.204.

Held, M., Karp, R. M., & Shareshian, R. (1963). Assembly-line balancing-Dynamic

programming with precedence constraints, Operations Research, 11(3), 442-460.

Helgeson, N. B., & Birnie, D. P. (1961). Assembly line balancing using the ranked

positional weight technique. Journal of Industrial Engineering, 12(6), 394-398.

Helgeson, W. B., Salveson, M. E., & Smith, W. W. (1954) How to balance an

assembly line, Technical Report, No: 7, New Caraan, Conn: Carr Press.

 138

Hoffmann T. R. (1963). Assembly line balancing with a precedence matrix.

Management Science, 9(4), 551–562.

Hoffmann T. R. (1992). EUREKA: A hybrid system for assembly line balancing.

Management Science, 38, 39–47

Holland, J. H. (1975). Adaptation in Natural and Artificial Systems. Ann Arbor,

Michigan: The University of Michigan Press.

Homem de Mello, L. S., & Sanderson, A. C. (1990). AND/OR graph representation

of assembly plans. IEEE Transactions on Robotics and Automation, 6(2), 188–

199.

Hop, N. V. (2006). A heuristic solution for fuzzy mixed-model line balancing

problem. European Journal of Operational Research, 168, 798-810.

Hu, S. J., Zhu, X., Wang, H., & Koren, Y. (2008). Product variety and manufacturing

complexity in assembly systems and supply chains. CIRP Annals - Manufacturing

Technology, 57(1), 45-48.

Hwang, R. K., & Katayama, H. (2009). A multi-decision genetic approach for

workload balancing of mixed-model U-shaped assembly line systems.

International Journal of Production Research, 47(14), 3797–3822.

Hwang, R. K., Katayama, H., & Gen, M. (2008). U-shaped assembly line balancing

problem with genetic algorithm. International Journal of Production Research,

46(16), 4637–4649.

ILOG OPL Studio 3.7 (2003). Language manual. ILOG SA: Gentilly.

http://www.sciencedirect.com/science/journal/00078506
http://www.sciencedirect.com/science/journal/00078506
http://www.sciencedirect.com/science?_ob=PublicationURL&_tockey=%23TOC%2340087%232008%23999429998%23690163%23FLA%23&_cdi=40087&_pubType=J&view=c&_auth=y&_acct=C000038578&_version=1&_urlVersion=0&_userid=691192&md5=c25fa35160f389cf6ce40c2f2ce9a826

 139

Ishibuchi, M., & Murata, T. (1998). A multi-objective genetic local search algorithm

and its application to flowshop scheduling. IEEE Transactions on Systems, Man,

and Cybernetics-Part C: Applications and Reviews, 28(3), 392-403.

Jiao, J., Kumar, A., & Martin, W. (2006). A web-based interactive advisor for

assembly line balancing. International Journal of Advanced Manufacturing

Technology, 27, 1192-1201.

Jin, M. & Wu, S. D. (2002). A new heuristic method for mixed model assembly line

balancing problem. Computers & Industrial Engineering, 44, 159–169.

Jackson, J. R. (1956). A Computing Procedure for a Line Balancing Problem.

Management Science, 2, 261-272.

Johnson, R. V. (1981). Assembly line balancing algorithms: Computation

comparisons. International Journal of Production Research, 19, 277- 287.

Johnson, R. V. (1983). A branch and bound algorithm for assembly line balancing

problems with formulation irregularities. Management Science, 29, 1309–1324.

Johnson, R. V. (1988). Optimally balancing large assembly lines with “FABLE”.

Management Science, 34(2), 240–253.

Kara, Y., Ozcan, U., & Peker, A. (2007a). An approach for balancing and sequencing

mixed-model JIT U-lines. International Journal of Advanced Manufacturing

Technology, 32, 1218-1231.

Kara, Y., Ozcan, U., & Peker, A. (2007b). Balancing and sequencing mixed-model

just-in-time U-lines with multiple objectives. Applied Mathematics and

Computation, 184, 566-588.

 140

Kara, Y., Paksoy, T., & Chang C. (2009). A binary fuzzy goal programming

approach to single model straight and U-shaped assembly line balancing.

European Journal of Operational Research, 195, 335-347.

Kara, Y., & Tekin, M. (2009). A mixed integer linear programming formulation for

optimal balancing of mixed-model U-lines. International Journal of Production

Research, 47(15), 4201-4233.

Kilbridge, M. D., & Wester, L. (1961). A heuristic method of assembly line

balancing. The Journal of Industrial Engineering, 12(4), 292-298.

Kilbridge, M. D., & Wester, L. (1962). A Review of analytical systems of line

balancing, Operations Research, 10(5), 626-638.

Kilincci, O. (2010). A Petri net-based heuristic for simple assembly line balancing

problem of type-2. International Journal of Advanced Manufacturing Technology,

46, 329-338.

Kilincci, O., & Bayhan, G. M. (2006). A Petri net approach for simple assembly line

balancing problems. International Journal of Advanced Manufacturing

Technology, 30, 1165-1173.

Kilincci, O., & Bayhan, G. M. (2008). A P-invariant-based algorithm for simple

assembly line balancing problem of type-1. International Journal of Advanced

Manufacturing Technology, 37, 400-409.

Kim, J. Y., Kim, Y & Kim, Y. K. (2001). An endosymbiotic evolutionary algorithm

for optimization. Applied Intelligence, 15(2), 117–130.

Kim, Y. J., Kim, Y. K., & Cho, Y. (1998). A heuristic-based genetic algorithm for

workload smoothing in assembly lines. Computers and Operations Research,

25(2), 99-111.

 141

Kim, Y. K., Song, W. S., & Kim, J. H. (2009). A mathematical model and a genetic

algorithm for two-sided assembly line balancing. Computers and Operations

Research 36, 853 – 865.

Kim, Y. K., Kim, J. Y. & Kim, Y. (2000a). A co-evolutionary algorithm for

balancing and sequencing in mixed model assembly lines. Applied Intelligence,

13, 247–258.

Kim, Y. K., Kim, J. Y., & Kim, Y. (2006). An endosymbiotic evolutionary algorithm

for the integration of balancing and sequencing in mixed-model U-lines.

European Journal of Operations Research, 168, 838–852.

Kim, Y. K., Kim, S. J. & Kim, J. Y. (2000b). Balancing and sequencing mixed-

model U-lines with a co-evolutionary algorithm. Production Planning and

Control, 11, 754–764.

Kim, Y. K., Kim, Y., & Kim, Y. J. (2000c). Two-sided assembly line balancing: a

genetic algorithm approach. Production Planning and Control, 11(1), 44-53.

Kim, Y. K., Kim, Y. J., & Kim, Y. (1996). Genetic algorithms for assembly line

balancing with various objectives. Computers and Industrial Engineering, 30(3),

397-409.

Kirkpatrick, S., Gelatt, C., & Vecchi, M. (1983). Optimization by simulated

annealing. Science, 220(4598), 671-680.

Klein, M. (1963). On assembly line balancing. Operations Research, 11, 274-281.

Klein, R., & Scholl, A. (1996). Maximizing the production rate in simple assembly

line balancing - A branch and bound procedure. European Journal of Operations

Research, 91, 367–385.

 142

Koc, A., Sabuncuoglu, I., & Erel, E. (2009). Two exact formulations for disassembly

line balancing problems with task precedence diagram construction using an

AND/OR graph. IIE Transactions, 41, 866–881.

Lambert, A. J. D. (2006). Generation of assembly graphs by systematic analysis of

assembly structures. European Journal of Operational Research, 168, 932-951.

Lapierre, S. D. & Ruiz, A. (1999). Equilibrer une chaîne d’assemblage avec

Microsoft ACCESS97. In Proceedings of 3rd International Industrial Engineering

Conference, 357-364. Presses Internationales Polytechnique, Montreal.

Lapierre, S. D., Ruiz, A., & Soriano, P. (2006). Balancing assembly lines with tabu

search. European Journal of Operational Research, 168, 826–837.

Lee, S., Soak, S., Kim, K., Park, H., & Jeon, M. (2008). Statistical properties analysis

of real world tournament selection in genetic algorithms. Applied Intelligence, doi

10.1007/s10489-007-0062-2.

Leu, Y. Y., Matheson, L. A., & Rees, L. P. (1994). Assembly line balancing using

genetic algorithms with heuristic generated initial populations and multiple

criteria. Decision Sciences, 15, 581-606.

Levitin, G., Rubinovitz, J., & Shnits, B. (2006). A genetic algorithm for robotic

assembly line balancing. European Journal of Operational Research, 168, 811–

825.

Liu, S. B., Ng, K. M., & Ong, H. L. (2008). Branch-and-bound algorithms for simple

assembly line balancing problem. International Journal of Advanced

Manufacturing Technology, 36, 169-177.

 143

Liu, S. B., Ong, H. L., & Huang, H. C. (2005). A bidirectional heuristic for stochastic

assembly line balancing Type II problem. International Journal of Advanced

Manufacturing Technology, 25, 71-77.

Macaskill, J. L. C. (1972). Production-line balances for mixed model lines.

Management Science, 19, 423–434.

Margulis, L. (1980). Symbiosis in cell evolution. San Fransisco: WH Freeman.

Martinez, U., & Duff, W. S. (2004). Heuristic approaches to solve the U-shaped line

balancing problem augmented by genetic algorithms. In the Proceedings of the

2004 Systems and Information Engineering Design Symposium, 287-293.

McMullen, P. R., & Frazier, G. V. (1998). Using simulated annealing to solve a

multiobjective assembly line balancing problem with parallel workstations.

International Journal of Production Research, 36, 2717–2741.

McMullen, P. R., & Tarasewich, P. (2003). Using ant techniques to solve the

assembly line balancing problem. IIE Transactions. 35, 605–617.

McMullen, P. R., & Tarasewich, P. (2006). Multi-objective assembly line balancing

via a modified ant colony optimization technique. International Journal of

Production Research, 44(1), 27-42.

Mendes, A. R., Ramos A.L., Simaria A.S., & Vilarinho P.M. (2005). Combining

heuristic procedures and simulation models for balancing a PC camera assembly

line. Computers & Industrial Engineering, 49, 413–431.

Michalewicz, Z., & Schoenauer, M. (1996). Evolutionary algorithms for constrained

parameter optimization problems. Evolutionary Computation, 4, 1-32.

 144

Miltenburg, J. (2002). Balancing and sequencing mixed-model U-shaped production

lines. International Journal of Flexible Manufacturing Systems, 14, 119-151.

Miltenburg, J., & Wijngaard, J., (1994). The U-line line balancing problem.

Management Science, 40, 1378–1388.

Miralles, C., Garcia-Sabater, J. P., Andres, C. & Cardos, M. (2008). Branch and

bound procedures for solving the assembly line worker assignment and balancing

problem: Application to sheltered work stations for disabled. Discrete Applied

Mathematics, 156, 352-367.

Mitchell, M. (1996). An Introduction to Genetic Algorithms. Cambridge: The MIT

Press.

Montgomery, D.C. (2001). Design and Analysis of Experiments. New York: John

Wiley & Sons.

Moodie, C. L. & Young, H. H. (1965). A heuristic method of assembly line

balancing for assumptions of constant or variable work element times. Journal of

Industrial Engineering, 16, 23-29.

Moon, I., Logendran, R., & Lee, J. (2009). Integrated assembly line balancing with

resource restrictions. International Journal of Production Research, 47(19),

5525–5541

Mosheiov, G. (1991). V-shaped policies for scheduling deteriorating jobs.

Operations Research, 39, 979-991.

Mosheiov, G. (2001). Scheduling problems with a learning effect. European Journal

of Operational Research, 132, 687-693.

 145

Murata, T., & Ishibuchi, M. (1996). Positive and negative combination effects of

crossover and mutation operators in sequencing problems. In the Proceedings of

IEEE International Conference on Evolutionary Computation, 170-175.

Murata, T., Ishibuchi, M., & Tanaka, H. (1996). Multi-objective genetic algorithms

and its application to flowshop scheduling. Computers & Industrial Engineering,

30(4), 957-968.

Nearchou, A. C. (2007). Balancing large assembly lines by a new heuristic based on

differential evolution method. International Journal of Advanced Manufacturing

Technology, 34, 1016–1029.

Nearchou, A. C. (2008). Multi-objective balancing of assembly lines by population

heuristic. International Journal of Production Research, 46(8), 2275–2297.

Ozcan, U., & Toklu, B. (2009). Multiple-criteria decision–making in two-sided

assembly line balancing: A goal programming and a fuzzy goal programming

models, Computers & Operations Research, 36, 1955-1965.

Park, K., Park, S., Kim, W. (1997). A heuristic for an assembly line balancing

problem with incompatibility, range, and partial precedence constraints.

Computers and Industrial Engineering, 32, 321–332.

Pastor, R, Andris, C., Duran, A., & Pirez, M. (2002). Tabu search algorithms for an

industrial multi-product and multi-objective assembly line balancing problem,

with reduction of the task dispersion. Journal of the Operational Research

Society, 53(12), 1317-1323.

Patterson, J. H., & Albracht, J. J. (1975). Assembly-line balancing: Zero-one

programming with Fibonacci Search. Operations Research, 23, 66–172.

 146

Peeters, M., & Degraeve, Z. (2006). A linear programming based lower bound for

the simple assembly line balancing problem. European Journal of Operational

Research, 168, 716–731.

Peterson, C. (1993). A tabu search procedure for the simple assembly line balancing

problem. In the Proceedings of the Decision Science Institute Conference,

Washington, DC, 1502-1504.

Pierreval, H., Caux, C., Paris, J. L., & Viguier, F. (2003). Evolutionary approaches to

the design and organization of manufacturing systems. Computers & Industrial

Engineering, 44, 339-364.

Pirlot, M. (1996) General local search methods. European Journal of Operational

Research, 92, 493-511.

Ponnambalam, S. G., Aravindan, P., & Naidu, G. M. (2000). A multi-objective

genetic algorithm for solving assembly line balancing problem. The International

Journal of Advanced Manufacturing Technology, 16, 341–352.

Potter, M. A., (1997). The design and analysis of a computational model of

cooperative coevolution. Ph.D. dissertation, George Mason University, UA.

Reeves, C. R. (1997). Genetic algorithms for the operations researcher. INFORMS

Journal on Computing, 9(3), 231–250.

Reeves, C. R., & Rowe, J. E. (2003). Genetic algorithms: Principles and

perspectives. Dordrecht: Kluwer Academic Publishers.

Rekiek, B., & Delchambre, A. (2006). Assembly line design. London: Springer-

Verlag.

 147

Rekiek, B., De Lit, P., & Delchambre, A. (2000). Designing Mixed-Product

Assembly Lines. IEEE Transactions on robotics and Automation, 16(3), 268-280.

Rekiek, B., De Lit, P., Pellichero, F., Falkenauer, E., & Delchambre, A. (1999).

Applying the equal piles problem to balance assembly lines. In the Proceedings of

the ISATP 1999, Porto, Portugal, 399-404.

Rekiek, B., Dolgui, A., Delchambre, A., & Bratcu, A. (2002). State of art of

optimization methods for assembly line design. Annual Review in Control, 26,

163-174.

Robert, S. D., & Villa, C. D. (1970). On a multi-product assembly line balancing

problem. AIIE Transactions, 2, 361–364.

Robinson, L. W., McClain, J. O., & Thomas, L. J. (1990). The good, the bad and the

ugly: Quality on an assembly line. International Journal of Production Research,

28, 963–980.

Rothlauf, F. (2006). Representations for Genetic and Evolutionary Algorithms (2nd

Ed.), Berlin Heidelberg: Springer.

Rubinovitz, J., & Levitin, G. (1995). Genetic Algorithm for assembly line balancing.

International Journal of Production Economics, 41, 343-354.

Ruijun, Z., Dingfang, C., Yong, W., Zhonghua, Y., & Xinxin, W. (2007). Study on

line balancing problem based on improved genetic algorithms. In the Proceedings

of the International Conference on Wireless Communications, Networking and

Mobile Computing, WiCom 2007, 21-25 Sept. 2007, 2033 – 2036.

Sabuncuoglu, I., Erel, E., & Alp, A. (2009). Ant colony optimization for the single

model U-type assembly line balancing problem. International Journal of

Production Economics, 120, 287–300.

http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=4339774
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=4339774

 148

Sabuncuoglu, I., Erel, E., & Tanyer, M. (2000). Assembly line balancing using

genetic algorithms. Journal of Intelligent Manufacturing, 11, 295-310.

Salum, L., & Supciller, A. A. (2007). Rule-based representation of precedence

constraints for assembly line balancing. In the proceedings of the 27th National

Conference on Operations Research and Industrial Engineering, in Turkish.

Salum, L., & Supciller, A. A. (2008). Rule-based modeling of assembly constraints

for line balancing. ICIC (2), LNAI, 5227, 783-789.

Salveson, M. E. (1955). The assembly line balancing problem. The Journal of

Industrial Engineering, 6 (3), 18–25.

Scholl, A. (1993). Data of assembly line balancing problems. Working Paper, TH

Darmstadt. Retrieved December 7, 2008, from http://www.assembly-line-

balancing.de/.

Scholl, A. (1999). Balancing and sequencing of assembly lines (2nd ed.). New York:

Springer-Verlag.

Scholl, A., & Becker, C. (2006). State-of-the-art exact and heuristic solution

procedures for simple assembly line balancing. European Journal of Operations

Research, 168, 666-693.

Scholl, A., Becker, C., & Fliedner, M. (2009). Optimally solving the alternative

subgraphs assembly line balancing problem. Annals of Operations Research, 172,

243–258.

Scholl, A., & Boysen, N. (2009). Designing parallel assembly lines with split

workplaces: Model and optimization procedure. International Journal of

Production Economics, 119(1), 90-100.

http://www.sciencedirect.com/science/journal/09255273
http://www.sciencedirect.com/science/journal/09255273

 149

Scholl, A., Fliedner, M., & Boysen, N. (2010). Absalom: Balancing assembly lines

with assignment restrictions. European Journal of Operations Research, 200(3),

688-701.

Scholl, A., & Klein, R. (1999). Balancing assembly lines effectively - a

computational comparison. European Journal of Operational Research, 114, 50–

58.

Scholl, A., & Voss, S. (1996). Simple assembly line balancing-Heuristic approaches.

Journal of Heuristics, 2, 217–244.

Senin, N., Groppetti, R., & Wallace D. R. (2000). Concurrent assembly planning

with genetic algorithms. Robotics and Computer Integrated Manufacturing, 16,

65-72.

Simaria, A. S., & Vilarinho, P. M. (2001a). A genetic algorithm approach for

balancing mixed model assembly lines with parallel workstations. In the

Proceedings of the 6thAnnual International Conference on Industrial Engineering

Theory, Applications and Practice, November 18-20, 2001, San Francisco, USA.

Simaria, A. S., & Vilarinho, P. M. (2001b). The simple assembly line balancing

problem with parallel workstations- a simulated annealing approach. International

Journal of Industrial Engineering, 8(3), 230-240.

Simaria, A. S., & Vilarinho, P. M. (2004). A genetic algorithm based approach to the

mixed-model assembly line balancing problem of type II. Computers & Industrial

Engineering, 47, 391–407.

Simaria, A. S., & Vilarinho, P. M. (2009). 2-ANTBAL: An ant colony optimization

algorithm for balancing two-sided assembly line. Computers & Industrial

Engineering, 56, 489–506.

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6VCT-4VKXC2H-1&_user=10&_coverDate=02%2F01%2F2010&_rdoc=1&_fmt=full&_orig=na&_cdi=5963&_docanchor=&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=014e9f9410134457a80582f4cdbf0e43
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6VCT-4VKXC2H-1&_user=10&_coverDate=02%2F01%2F2010&_rdoc=1&_fmt=full&_orig=na&_cdi=5963&_docanchor=&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=014e9f9410134457a80582f4cdbf0e43
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6VCT-4VKXC2H-1&_user=10&_coverDate=02%2F01%2F2010&_rdoc=1&_fmt=full&_orig=na&_cdi=5963&_docanchor=&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=014e9f9410134457a80582f4cdbf0e43

 150

Sivanandam, S. N., & Deepa, S. N. (2008). Introduction to Genetic Algorithms. New

York: Springer Berlin Heidelberg.

Smith, B. (1995). A tutorial on constraint programming. Research Report 95.14,

School of Computer Studies, University of Leeds.

Smith, A. E., & Coit, D. W. (1997). Constraint-handling techniques - Penalty

functions. In Handbook of Evolutionary Computation, Chapter C 5.2. Bristol:

Institute of Physics Publishing and Oxford University Press.

Sprecher, A. (1999). A competitive branch-and-bound algorithm for the simple

assembly line balancing problem. International Journal of Production Research,

37, 1787–1816.

Stockton, D. J., Quinn, L., & Khalil, R. A. (2004a). Use of genetic algorithms in

operations management Part 1: applications. Proceeding of the Institution of

Mechanical Engineers-Part B: Journal of Engineering Manufacture, 218(3), 315-

327.

Stockton, D. J., Quinn, L., & Khalil, R. A. (2004b). Use of genetic algorithms in

operations management Part 2: results. Proceeding of the Institution of

Mechanical Engineers-Part B: Journal of Engineering Manufacture, 218(3), 329-

343.

Storn, R., & Price, K. (1997) Differential evolution - a simple and efficient heuristic

for global optimization over continuous spaces. Journal of Global Optimization,

11(4), 341-354.

Supciller, A. A., & Salum, L. (2009). A genetic algorithm for the complex-

constrained assembly line balancing problem. 23rd European Conference on

Operational Research, EURO 23, Bonn, Germany.

 151

Suresh, G., & Sahu, S. (1994). Stochastic assembly line balancing using simulated

annealing. International Journal of Production Research, 32(8), 1801-1810.

Suresh, G., Vinod, V. V., & Sahu, S. (1996). A genetic algorithm for assembly line

balancing. Production Planning and Control, 7(1), 38-46.

Suwannarongsri, S., & Puangdownreong, D. (2008). Optimal assembly line

balancing using tabu search with partial random permutation technique.

International Journal of Management Science and Engineering Management,

3(1), 3-18.

Talbot, F. B. & Patterson, J. H. (1984). An integer programming algorithm with

network cuts for solving the assembly line balancing problem. Management

Science, 30, 85-99.

Talbot, F. B., Patterson, J. H., & Gehrlein, W. V. (1986). A comparative evaluation

of heuristic line balancing techniques. Management Science, 32, 430 - 454.

Tasan, S. O., & Tunalı, S. (2008). A review of the current applications of genetic

algorithms in assembly line balancing. Journal of Intelligent Manufacturing, 19,

49-69.

Thangavelu, S. R. & Shetty, C. M. (1971). Assembly line balancing by zero-one

integer programming. AIIE Transactions, 3, 61–68.

Toksari, M. D., Isleyen, S. K., Guner, E., & Baykoc, O. F. (2008). Simple and U-

type assembly line balancing problems with a learning effect. Applied

Mathematical Modelling, 32, 2954-2961.

 152

Toksari, M. D., Isleyen, S. K., Guner, E., & Baykoc, O. F. (2010). Assembly line

balancing problem with deterioration tasks and learning effect. Expert Systems

with Applications, 37(2), 1223-1228.

Topaloglu, S., Salum, L., & Supciller, A. A. (2009). Constraint programming for

solving the complex-constrained assembly line balancing problem. 23rd

European Conference on Operational Research, EURO 23, Bonn, Germany.

Tseng, H. E., & Tang, C. E. (2006) A sequential consideration for assembly

sequence planning and assembly line balancing using the connector concept.

International Journal of Production Research, 44(1), 97–116.

Tsujimura, Y., Gen, M., & Kubota, E. (1995). Solving fuzzy assembly line balancing

using genetic algorithms. Computers & Industrial Engineering, 29(1-4), 543-547.

Ugurdag, H. F., Rachamadugu, R., & Papachristou, C. A. (1997). Designing paced

assembly lines with fixed number of stations. European Journal of Operational

Research, 102(3), 488-501.

Urban, T. L., & Chiang, W. C. (2006). An optimal piecewise-linear optimization of

the U-line balancing problem with stochastic task times. European Journal of

Operational Research, 168, 771–782.

Valente, S. A., Lopes, H. S., & Arruda, L. V. R. (2002). Genetic algorithms for the

assembly line balancing problem: a real-world automotive application. In: R. Roy,

M. Köppen, S. Ovaska, T. Fukuhashi, F. Hoffman, (Ed.). Soft Computing and

Industry: Recent Applications (319-328), Berlin: Springer-Verlag.

Van Assche, F., & Herroelen, W. S. (1979). An optimal procedure for the single

model deterministic assembly line balancing problem. European Journal of

Operational Research, 3, 142–149.

 153

Vilarinho, P. M., & Simaria S. A. (2002). A two-stage heuristic method for balancing

mixed-model assembly lines with parallel workstations. International Journal of

Production Research, 40(6), 1405–1420.

Vilarinho, P. M., & Simaria, A. S. (2006). ANTBAL: an ant colony optimization

algorithm for balancing mixed-model assembly lines with parallel workstations.

International Journal of Production Research, 44(2), 291–303.

White, W. W. (1961) Comments on a paper by Bowman. Operations Research, 9(2),

274-276.

Wong, W. K., Mok, P. Y., & Leung, S. Y. S. (2006) Developing a genetic

optimisation approach to balance an apparel assembly line. International Journal

of Advanced Manufacturing Technology, 28, 387–394.

Wu, E. F., Jin, Y., Bao, J. S., & Hu, X. F. (2008) A branch-and-bound algorithm for

two-sided assembly line balancing. International Journal of Advanced

Manufacturing Technology, 39, 1009-1015.

Yu, J., & Yin, Y. (2009) Assembly line balancing based on an adaptive genetic

algorithm. International Journal of Advanced Manufacturing Technology, DOI

10.1007/s00170-009-2281-7.

Yu, J., Yin, Y., & Chen, Z. (2006). Scheduling of an assembly line with a multi-

objective genetic algorithm. International Journal of Advanced Manufacturing

Technology, 28, 551–555.

Zhao, X., Ohno, K. & Lau, H.-S. (2004). A balancing problem for mixed model

assembly lines with a paced moving conveyor. Naval Research Logistics, 51(3),

446-464.

154

APPENDICES

APPENDIX A1. Matrix representation for the rule-base of problems Bowman, Jaeschke, and Jackson with 1 OR

BOWMAN 1 OR

2 3 4 5 6 6 7 7 8
1 2 2 3 3 4 5 6 6
0 0 0 4 0 0 5 0 0

JAESCHKE 1 OR

2 2 3 4 4 5 6 7 8 9 9 9
1 0 1 2 3 4 4 4 5 6 7 8
3 4 0 1 0 2 2 2 0 0 0 0

JACKSON 1 OR

2 3 4 5 6 7 7 7 8 8 9 10 10 11 11
1 1 1 1 2 3 4 5 6 7 7 8 5 9 10
0 0 0 0 0 0 0 0 6 0 0 8 0 0 0

155

APPENDIX A2. Matrix representation for the rule-base of problem Mitchell with 1 OR, 2ORs and 3 ORs

MITCHELL R 1 O

2 3 4 4 5 6 7 8 8 9 10 11 12 13 14 15 15 15 16 17 17 18 18 19 19 20 21 21
1 1 3 0 4 5 5 6 7 8 9 9 9 9 7 10 11 12 15 13 16 13 15 14 18 17 2 4
0 0 2 3 0 4 20

MITCHELL 2 ORs

2 3 4 4 5 6 7 8 8 9 10 11 12 13 14 15 15 15 16 17 17 18 18 19 19 20 21 21 21
1 1 3 0 4 5 5 6 7 8 9 9 9 9 7 10 11 12 15 13 16 13 15 14 18 17 2 4 0
0 0 2 3 0 4 0 0
0 2 4 20

MITCHELL 3 ORs

2 3 4 4 5 6 7 8 8 9 10 11 12 13 14 15 15 15 16 17 17 18 18 19 19 20 21 21 21
1 1 3 0 4 5 5 6 7 8 9 9 9 9 7 10 11 12 15 13 16 13 15 14 18 19 2 4 0
0 0 2 3 0 18 4 0 0
0 17 2 4 20
0 10 0 0 0

156

APPENDIX A3. Matrix representation for the rule-base of problem Roszieg with 1 OR, 2ORs and 3 ORs

ROSZIEG 1 OR
1 1 2 2 3 3 4 5 6 7 8 9 10 10 11 11 11 12 13 13 14 15 16 17 18 18 19 20 21 22 22 22 23 24 25 25 25
1 0 2 0 1 2 3 4 5 6 4 8 6 9 7 8 10 7 9 11 13 12 14 15 16 17 14 14 20 15 19 21 17 21 18 20 23
4 8 4 8 0 0 0 3 00 4 3 0 0 0

ROSZIEG 2 ORs
1 1 2 2 3 3 4 5 6 7 8 9 10 10 11 11 11 12 13 13 14 15 16 17 18 18 19 20 21 22 22 22 23 23 24 25 25 25 25
1 0 2 0 1 2 3 4 5 6 4 8 6 9 7 8 10 7 9 11 13 12 14 15 16 17 14 14 20 15 19 21 17 0 21 18 20 23 0
4 8 4 8 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7 2 0 8 0 30 4 3 0 0 0 1 2 1 2 2 22
0 0 0 0 0 0 0 5 0 8 0 30 0 0 0 0 0 1 2 2 24

ROSZIEG 3 ORs
1 1 2 2 3 3 4 5 6 7 8 9 10 10 11 11 11 12 13 13 14 15 16 17 18 18 19 20 21 22 22 22 23 23 24 25 25 25 25
1 0 2 0 1 2 3 4 5 6 4 8 6 9 7 8 10 7 9 11 13 12 14 15 16 17 14 14 20 15 19 21 17 0 21 18 20 23 0
4 8 4 8 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7 2 0 8 0 30 4 3 0 0 0 1 2 1 2 2 22
0 0 0 0 0 0 0 5 0 8 0 30 0 0 0 0 0 1 2 2 24
0 0 0 0 0 0 0 7 0 8 0 30 0 0 0 0 0 1 2 2 21

157

APPENDIX A4. Matrix representation for the rule-base of problem Heskia with 1 OR, 2ORs and 3 ORs

HESKIA 1 OR
3 4 5 6 7 8 9 10 10 11 12 13 14 15 15 16 17 18 18 19 20 21 22 23 24 25 26 27 28 28 28 28 28 28 28 28 28 28
1 1 1 2 6 1 8 9 0 10 10 12 13 11 0 13 2 7 0 1 19 1 1 1 1 24 1 26 3 4 5 14 15 16 17 18 20 21
0 0 0 0 0 0 0 9 6 0 0 0 0 11 13 0 0 7 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 28 28 28 28
 22 23 25 27
 0 0 0 0

HESKIA 2 OR s
3 4 5 6 7 8 9 10 10 11 12 13 14 15 15 16 17 18 18 19 20 21 22 23 24 25 26 27 28 28 28 28 28 28 28 28 28 28
1 1 1 2 6 1 8 9 0 10 10 12 13 11 0 13 2 7 0 1 19 1 1 1 1 24 1 26 3 4 5 14 15 16 17 18 20 21
0 0 0 0 0 0 0 9 6 0 0 0 0 11 13 0 0 7 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 9 7 0 0 0 0 11 12 0 0 7 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 28 28 28 28
 22 23 25 27
 0 0 0 0
 0 0 0 0

158

HESKIA 3 OR s
3 4 5 6 7 8 9 10 10 11 12 13 14 15 15 16 17 18 18 19 20 21 22 23 24 25 26 27 28 28 28 28 28 28 28 28 28 28
1 1 1 2 6 1 8 9 0 10 10 12 13 11 0 13 2 7 0 1 19 1 1 1 1 24 1 26 3 4 5 14 15 16 17 18 20 21
0 0 0 0 0 0 0 0 0 1 3 0 0 7 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 9 6 1 1 0 0
0 0 0 0 0 0 0 0 0 1 2 0 0 7 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 9 7 1 1 0 0
0 0 0 0 0 0 0 0 0 1 9 0 0 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 9 0 1 1 1 0 0

 28 28 28 28
 22 23 25 27
 0 0 0 0
 0 0 0 0
 0 0 0 0

159

APPENDIX A5. Matrix representation for the rule-base of problem Buxey with 1 OR, 2ORs and 3 ORs

BUXEY 1 OR

3 4 5 6 8 8 9 10 11 12 13 14 15 15 16 16 17 17 18 19 20 21 22 22 23 23 24 25 25 25 26 27 28 29 29 29 29
1 3 4 2 5 7 5 0 0 2 8 4 1 3 6 5 7 1 0 2 3 1 7 0 2 6 3 4 5 7 86 7 9 8 1 1 1 1 1 1 1 1 1 19 18 2 2 2 2 2 2 2 2 2 2
0 0 0 0 4 0 0 0 7 2 0 0 0 0 0 0 0 0 0 0 0 1 0 2 0 0 0 0 0 0 06 0 0 0 1 0 0 1 1

BUXEY 2 OR s

3 4 5 6 8 8 9 10 11 12 13 14 15 15 16 16 17 17 18 19 20 21 22 22 23 23 24 25 25 25 26 27 28 29 29 29 29
1 3 4 2 5 7 5 0 0 2 8 4 1 3 6 5 7 1 0 2 3 1 7 0 2 6 3 4 5 7 86 7 9 8 1 1 1 1 1 1 1 1 1 19 18 2 2 2 2 2 2 2 2 2 2
0 0 0 0 4 0 0 0 8 2 0 0 0 0 0 0 0 0 0 0 0 1 0 2 0 0 0 0 0 0 06 0 0 0 1 0 0 1 1
0 0 0 0 0 0 0 0 7 2 0 0 0 0 0 0 0 0 0 0 0 1 8 0 0 0 0 0 0 0 00 0 0 0 1 0 0

BUXEY 3 OR s

3 4 5 6 8 8 9 10 11 12 13 14 15 15 16 16 17 17 18 19 20 21 22 22 23 23 24 25 25 25 26 27 28 29 29 29 29
1 3 4 2 5 7 5 0 0 2 8 4 1 3 6 5 7 1 0 2 3 1 7 0 2 6 3 4 5 7 86 7 9 8 1 1 1 1 1 1 1 1 1 19 18 2 2 2 2 2 2 2 2 2 2
0 0 0 0 4 0 0 0 8 2 0 0 0 0 0 0 0 0 0 0 0 1 0 2 0 0 0 0 0 0 06 0 0 0 1 0 0 1 1
0 0 0 0 0 0 0 0 7 2 0 0 0 0 0 0 0 0 0 0 0 1 8 0 0 0 0 0 0 0 00 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 2 0 0 0 0 0 0 0 0 0 0 0 1 5 0 0 0 0 0 0 0 00 0 0 0 1 1 0 0 1

160

APPENDIX A6. Matrix representation for the rule-base of problem Sawyer with 1 OR, 2ORs and 3 ORs

SAWYER 1 OR
4 5 6 7 7 8 9 11 12 13 14 15 16 17 18 19 20 20 21 22 22 23 24 24 25 26 26 26 27 27 28 28 29 30
1 1 5 4 6 7 8 2 2 12 13 14 3 3 17 18 14 16 20 15 21 22 10 20 24 9 25 0 23 26 27 0 27 29
0 0 0 0 0 0 0 0 0 0 0 0 9 6 0 0 0 0 0 9 5 1 0 0 7 9 0 00 0 0 0 1 1 0 0 2 1 2 1

SAWYER 2 OR s
4 5 6 7 7 8 9 11 12 13 14 15 16 17 18 19 20 20 21 22 22 23 24 24 25 26 26 26 27 27 28 28 29 30
1 1 5 4 6 7 8 2 2 12 13 14 3 3 17 18 14 16 20 15 21 22 10 20 24 9 25 0 23 26 27 0 27 29
0 0 0 0 0 0 0 0 0 0 0 0 9 6 0 0 0 0 0 9 5 1 0 0 7 9 0 00 0 0 0 1 1 0 0 2 1 2 1
0 0 0 0 0 0 0 0 0 0 0 0 1 6 0 0 0 0 0 9 5 9 0 0 7 1 0 00 0 0 0 1 1 0 0 2 1 2 1

SAWYER 3 OR s
4 5 6 7 7 8 9 11 12 13 14 15 16 17 18 19 20 20 21 22 22 23 24 24 25 26 26 26 27 27 28 28 29 30
1 1 5 4 6 7 8 2 2 12 13 14 3 3 17 18 14 16 20 15 21 22 10 20 24 9 25 0 23 26 27 0 27 29
0 0 0 0 0 0 0 0 0 0 0 0 9 6 0 0 0 0 0 9 5 1 0 0 7 9 0 00 0 0 0 1 1 0 0 2 1 2 1
0 0 0 0 0 0 0 0 0 0 0 0 1 6 0 0 0 0 0 9 5 9 0 0 7 1 0 00 0 0 0 1 1 0 0 2 1 2 1
0 0 0 0 0 0 0 0 0 0 0 0 9 6 0 0 0 0 0 9 5 3 0 0 7 6 0 00 0 0 0 1 0 0 2 2 2 2

161

APPENDIX A7. Matrix representation for the rule-base of problem Kilbridge with 1 OR, 2ORs and 3 ORs

KILBRIDGE 1 OR
3 4 5 6 7 8 9 9 10 10 13 13 14 14 14 15 16 17 17 18 19 19 20 21 22 23 24 25 26 26 26 27 28 28 29 30 31 32
1 2 3 4 1 2 5 7 6 8 11 12 7 8 13 13 15 14 0 15 16 18 19 20 21 15 15 14 17 25 0 17 22 27 14 14 14 14
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9 14 0 0 0 0 0 0 0 0 0 10 17 25 0 0 0 0 0 0 0

 33 33 33 33 33 34 35 36 37 38 38 38 38 40 40 40 41 41 41 41 41 41 41 41 42 42 43 44 45
 19 23 24 27 0 33 33 33 12 26 28 34 36 35 38 0 9 10 29 30 31 32 39 40 41 0 37 42 42
 19 23 4 0 0 0 0 0 5 8 3 0 0 0 0 0 0 1 3 0 0 02 27 43 0 0 0 3 3 4 0 0 4 4

KILBRIDGE 2 ORs
3 4 5 6 7 8 9 9 10 10 13 13 14 14 14 15 16 17 17 18 19 19 20 21 22 23 24 25 26 26 26 27 28 28 29 30 31 32
1 2 3 4 1 2 5 7 6 8 11 12 7 8 13 13 15 14 0 15 16 18 19 20 21 15 15 14 17 25 0 17 22 27 14 14 14 14
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9 14 0 0 0 0 0 0 0 0 0 10 17 25 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 14 0 0 0 0 0 0 0 0 0 9 17 25 0 0 0 0 0 0 0

 33 33 33 33 33 34 35 36 37 38 38 38 38 40 40 40 41 41 41 41 41 41 41 41 42 42 43 44 45
 19 23 24 27 0 33 33 33 12 26 28 34 36 35 38 0 9 10 29 30 31 32 39 40 41 0 37 42 42
 19 23 4 0 0 0 0 0 5 8 3 0 0 0 0 0 0 1 3 0 0 02 27 43 0 0 0 3 3 4 0 0 4 4
 19 23 4 0 0 0 0 0 5 8 7 0 0 0 0 0 0 1 7 0 0 02 27 37 0 0 0 3 3 3 0 0 4 3

162

KILBRIDGE s 3 OR
3 4 5 6 7 8 9 9 10 10 13 13 14 14 14 15 16 17 17 18 19 19 20 21 22 23 24 25 26 26 26 27 28 28 29 30 31 32
1 2 3 4 1 2 5 7 6 8 11 12 7 8 13 13 15 14 0 15 16 18 19 20 21 15 15 14 17 25 0 17 22 27 14 14 14 14
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9 14 0 0 0 0 0 0 0 0 0 10 17 25 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 14 0 0 0 0 0 0 0 0 0 9 17 25 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15 14 0 0 0 0 0 0 0 0 0 15 17 25 0 0 0 0 0 0 0

 33 33 33 33 33 34 35 36 37 38 38 38 38 40 40 40 41 41 41 41 41 41 41 41 42 42 43 44 45
 19 23 24 27 0 33 33 33 12 26 28 34 36 35 38 0 9 10 29 30 31 32 39 40 41 0 37 42 42
 19 23 4 0 0 0 0 0 5 8 3 0 0 0 0 0 0 1 3 0 0 02 27 43 0 0 0 3 3 4 0 0 4 4
 19 23 4 0 0 0 0 0 5 8 7 0 0 0 0 0 0 1 7 0 0 02 27 37 0 0 0 3 3 3 0 0 4 3
 19 23 4 0 0 0 0 0 5 8 2 0 0 0 0 0 0 1 8 0 0 02 27 9 0 0 0 3 3 2 0 0 4 3

163

APPENDIX A8. Matrix representation for the rule-base of problem Arcus 83 with 1 OR, 2ORs and 3 ORs

ARCUS 1 OR
2 3 4 5 6 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 20 21 22 23 24 25 26 27 27 28 28 29 30 31 32 32 33 34 35
1 2 2 2 3 4 4 5 6 6 7 9 10 10 11 12 13 13 14 13 15 17 17 18 19 10 20 21 22 17 24 24 29 30 25 28 32 32 32
0 0 0 0 2 0 0 3 0 0 0 4 01 16 0 0 0 0 0 0

 36 37 38 39 39 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 69 70
 32 33 36 15 31 36 37 38 39 39 39 41 44 45 46 47 48 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 27 49 69
 00 0 0 0 0 0 0

 71 72 73 73 74 74 74 74 75 75 75 76 76 77 77 77 77 77 77 77 77 78 78 78 78 78 78 78 78 79 79 80 81 82 83 83
 69 70 71 72 23 26 68 73 39 68 73 74 75 8 16 34 35 40 42 43 76 8 16 34 35 40 42 43 76 77 78 79 79 80 81 82
 0 0 0 0 0 0 0 0 0 8 9 4 5 0 2 3 6 4 5 0 2 3 6 0 0 0 0 0 0 00 0 0 0 3 3 4 4 4 7 8 9 3 3 4 4 4 7

164

ARCUS 2 OR s
2 3 4 5 6 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 20 21 22 23 24 25 26 27 27 28 28 29 30 31 32 32 33 34 35
1 2 2 2 3 4 4 5 6 6 7 9 10 10 11 12 13 13 14 13 15 17 17 18 19 10 20 21 22 17 24 24 29 30 25 28 32 32 32
0 0 0 0 2 0 9 3 2 0 0 4 01 16 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0 0 5 00 0 0 0 1 1 0 0 0

 36 37 38 39 39 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 69 70
 32 33 36 15 31 36 37 38 39 39 39 41 44 45 46 47 48 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 27 49 69

0 0
0 0

0 0 0 0 0 0
 0 0 0 0 0 0 0 0

 71 72 73 73 74 74 74 74 75 75 75 76 76 77 77 77 77 77 77 77 77 78 78 78 78 78 78 78 78 79 79 80 81 82 83 83
 69 70 71 72 23 26 68 73 39 68 73 74 75 8 16 34 35 40 42 43 76 8 16 34 35 40 42 43 76 77 78 79 79 80 81 82
 0 0 0 0 0 0 0 0 0 8 9 4 5 0 2 3 6 4 5 0 2 3 6 0 0 0 0 0 0 00 0 0 0 3 3 4 4 4 7 8 9 3 3 4 4 4 7

 00 0 0 0 0 0

165

ARCUS 3 OR s
2 3 4 5 6 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 20 21 22 23 24 25 26 27 27 28 28 29 30 31 32 32 33 34 35
1 2 2 2 3 4 4 5 6 6 7 9 10 10 11 12 13 13 14 13 15 17 17 18 19 10 20 21 22 17 24 24 29 30 25 28 32 32 32
0 0 0 0 2 0 9 3 2 0 0 4 01 16 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0 0 5 00 0 0 0 1 1 0 0 0
0 0 0 0 0 0 0 5 0 0 0 7 00 0 0 0 2 2 0 0 0

 36 37 38 39 39 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 69 70
 32 33 36 15 31 36 37 38 39 39 39 41 44 45 46 47 48 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 27 49 69
 0

0 0
0 0

0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0

 71 72 73 73 74 74 74 74 75 75 75 76 76 77 77 77 77 77 77 77 77 78 78 78 78 78 78 78 78 79 79 80 81 82 83 83
 69 70 71 72 23 26 68 73 39 68 73 74 75 8 16 34 35 40 42 43 76 8 16 34 35 40 42 43 76 77 78 79 79 80 81 82
 0 0 0 0 0 0 0 0 0 8 9 4 5 0 2 3 6 4 5 0 2 3 6 0 0 0 0 0 0 00 0 0 0 3 3 4 4 4 7 8 9 3 3 4 4 4 7
 00 0 0 0 0 0
 00 0 0 0 0 0

166

APPENDIX A9. Matrix representation for the rule-base of real-case problem without OR and with 1 OR, 2ORs and 3 ORs

REAL-CASE
WITHOUT
OR

2 3 4 5 6 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 22 23 24 24 24 25 26 26 27 27 28 29 30 31
1 2 1 1 4 9 1 1 2 3 1 1 6 1 8 9 0 0 0 2 4 4 8 3 5 6 7 1 9 15 6 1 8 1 1 1 1 1 2 1 21 22 6 6 1 2 6 2 2 2 2 2

 32 32 32 33 34 34 35 36 36 37 38 39 40 41 41 42 43 44 45 46 47 48 49 50 50 51 52 53 54 55 56 57 58 59 60
 13 30 31 32 33 67 34 28 35 36 37 38 7 39 40 41 42 43 44 45 46 47 48 17 49 50 51 52 1 54 55 1 57 58 1

 61 62 63 64 65 66 66 66 67 68
 56 61 1 63 1 59 64 65 66 15

REAL-CASE 1 OR
2 3 4 5 6 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 22 23 24 24 24 25 26 26 27 27 27 28 29 30
1 2 1 1 4 9 1 1 2 3 1 1 6 1 8 9 0 0 0 2 4 4 8 3 5 6 0 7 1 95 6 1 8 1 1 1 1 1 2 1 21 22 6 6 1 2 6 2 2 2 2 2
0 0 0 0 0 0 0 10 0 1 0 0 0 0 0 0 0 0 0 0 0 9 21 0 0 0 0 0 15 23 25 26 68 0 0 0

 31 32 32 32 33 34 34 35 36 36 37 38 39 40 41 41 41 42 43 44 45 46 47 48 49 50 50 51 52 53 54 55 56 57 58
 1 13 30 31 32 33 67 34 28 35 36 37 36 7 39 40 0 41 42 43 44 45 46 47 48 17 49 50 51 52 1 54 55 1 57
 0 0 0 0 0 0 0 0 0 0 39 36 38 0 38 40 37 0 0 0 0 0 0 0 0 0 0 0 0 0 56 0 1 0 0

 59 60 61 62 63 64 65 66 66 66 67 68
 58 1 56 61 1 63 1 59 64 65 66 15
 0 0 55 0 0 0 0 0 0 0 0 0

167

REAL-CASE 2 ORs
2 3 4 5 6 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 22 23 24 24 24 25 26 26 27 27 27 28 29 30
1 2 1 1 4 9 1 1 2 3 1 1 6 1 8 9 0 0 0 2 4 4 8 3 5 6 0 7 1 95 6 1 8 1 1 1 1 1 2 1 21 22 6 6 1 2 6 2 2 2 2 2
0 0 0 0 0 0 0 10 54 1 0 0 0 0 0 0 0 0 0 0 0 9 21 0 0 0 0 0 15 23 25 26 68 0 0 0
0 0 0 0 0 5 00 0 0 0 5 56 0

 31 32 32 32 33 34 34 35 36 36 37 38 39 40 41 41 41 42 43 44 45 46 47 48 49 50 50 51 52 53 54 55 56 57 58
 1 13 30 31 32 33 67 34 28 35 36 37 36 7 39 40 0 41 42 43 44 45 46 47 48 17 49 50 51 52 1 54 55 1 57
 0 0 0 0 0 0 0 0 0 0 39 36 38 0 38 40 37 0 0 0 0 0 0 0 0 0 0 0 0 0 56 9 1 0 0
 0 8 0 0 0 00 0 0 0 0 0 1

 59 60 61 62 63 64 65 66 66 66 67 68
 58 1 56 61 1 63 1 59 64 65 66 15
 0 0 55 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0

168

169

REAL-CASE 3 ORs
2 3 4 5 6 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 22 23 24 24 24 25 26 26 27 27 27 28 29 30
1 2 1 1 4 9 1 1 2 3 1 1 6 1 8 9 0 0 0 2 4 4 8 3 5 6 0 7 1 95 6 1 8 1 1 1 1 1 2 1 21 22 6 6 1 2 6 2 2 2 2 2
0 0 0 0 0 0 0 10 54 1 0 0 0 0 0 0 0 0 0 0 0 9 21 0 0 0 0 0 15 23 25 26 68 0 0 0
0 0 0 0 0 5 00 0 54 55 5 56 0
0 0 0 0 0 6 00 0 0 0 5 0 0

 31 32 32 32 33 34 34 35 36 36 37 38 39 40 41 41 41 42 43 44 45 46 47 48 49 50 50 51 52 53 54 55 56 57 58
 1 13 30 31 32 33 67 34 28 35 36 37 36 7 39 40 0 41 42 43 44 45 46 47 48 17 49 50 51 52 1 54 55 1 57
 0 0 0 0 0 0 0 0 0 0 39 36 38 0 38 40 37 0 0 0 0 0 0 0 0 0 0 0 0 0 56 9 1 0 0
 0 8 8 0 0 0

0 9 0 0
0 0 0 0 0 0

 0 0 0 0 0 0 0

 59 60 61 62 63 64 65 66 66 66 67 68
 58 1 56 61 1 63 1 59 64 65 66 15
 0 0 55 0 0 0 0 0 0 0 0 0
 0 0 10 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0

1

 170

APPENDIX A10. The results of the experiments as efficiency.

WITHOUT WITH
Problem Cycle time OR 1 OR
Bowman 20 88 88

Jaeschke 6 77 77
7 76 7
8 76 7

10 93 93
18 73 88

Average Efficiency 79 82
Standard Deviation 8 7

Jackson 7 82 94
9 85 8

10 92 92
13 96 96
14 96 96
21 96 96

Average Efficiency 91 93
Standard Deviation 6 4

Efficiencies (%)

7
7

5

 171

WITHOUT WITH WITH WITH
Problem Cycle time OR 1 OR 2 ORs 3 ORs
Mitchell 14 83 94 94 94

15 94 94 94 94
21 97 97 97 100
26 91 100 95 95
35 100 100 100 100
39 100 100 100 100

Average Efficiency 94 97 97 97
Standard Deviation 6 3 3 3

Roszieg 18 92 98 98 99
21 89 99 99 99
25 99 99 100 100
32 98 98 98 98

Average Efficiency 95 98 99 99
Standard Deviation 5 1 1 1

Heskiaoff 138 99 99 99 99
205 99 99 99 100
216 100 99 100 100
256 98 99 100 100
324 100 100 100 100
342 100 100 100 100

Average Efficiency 99 99 100 100
Standard Deviation 1 0 0 0

Buxey 27 92 93 93 92
30 93 92 89 93
33 93 92 96 95
36 95 95 95 95
41 95 95 92 97
47 99 99 99 99
54 94 96 96 96

Average Efficiency 95 95 94 95
Standard Deviation 2 2 3 2

Efficiencies (%)

 172

WITHOUT WITH WITH WITH
Problem Cycle time OR 1 OR 2 ORs 3 ORs
Sawyer 30 93 93 93 93

33 93 92 92 92
36 92 92 95 95
41 97 92 92 95
47 99 99 99 99
54 96 96 96 96
75 98 100 98 100

Average Efficiency 95 95 95 96
Standard Deviation 3 3 3 3

Kilbridge 69 97 97 99 99
79 99 99 100 100
92 99 99 100 100

110 99 99 100 100
111 100 100 99 99
138 100 100 100 100
184 100 100 100 100

Average Efficiency 99 99 100 100
Standard Deviation 1 1 0 0

Arcus 5853 96 97 99 99
6309 98 94 94 97
6842 96 97 96 96
6883 94 98 92 97
7571 97 97 97 99
8412 98 98 97 99
8898 99 98 99 99

10816 94 96 99 97
Average Efficiency 96 97 97 98
Standard Deviation 2 2 3 1

Efficiencies (%)

 173

APPENDIX A11. The results of the experiments as number of stations.

WITHOUT WITH
Problem Cycle time OR 1 OR
Bowman 20 5 5

Jaeschke 6 8 8
7 7 8
8 7 8

10 4 4
18 3 3

Jackson 7 8 7
9 6 6

10 5 5
13 4 4
14 4 4
21 3 3

number of better solutions 1

Number of stations

 174

WITHOUT WITH WITH WITH
Problem Cycle time OR 1 OR 2 ORs 3 ORs
Mitchell 14 9 8 8 8

15 8 8 8 8
21 6 6 6 5
26 5 5 5 5
35 3 3 3 3
39 3 3 3 3

number of better solutions 1 1 2

Roszieg 18 8 8 8 7
21 7 6 6 6
25 6 6 5 5
32 4 4 4 4

number of better solutions 1 2 3

Heskiaoff 138 8 8 8 8
205 6 6 6 6
216 5 5 5 5
256 5 5 5 5
324 4 4 4 4
342 3 4 3 3

number of better solutions - - -

Buxey 27 13 14 14 13
30 12 13 14 12
33 12 11 12 11
36 10 10 10 10
41 9 9 9 9
47 8 8 8 8
54 7 7 7 7

number of better solutions - - 1

Number of stations

 175

WITHOUT WITH WITH WITH
Problem Cycle time OR 1 OR 2 ORs 3 ORs
Sawyer 30 14 14 12 12

33 12 11 11 11
36 11 11 10 10
41 9 9 9 9
47 8 8 8 8
54 7 7 7 7
75 5 5 5 5

number of better solutions 1 3 3

Kilbridge 69 9 9 9 9
79 8 8 8 8
92 7 7 7 7

110 6 6 6 6
111 6 6 5 5
138 4 4 4 4
184 3 3 3 3

number of better solutions - - -

Arcus 5853 14 14 14 14
6309 13 14 14 13
6842 13 12 12 12
6883 13 12 13 12
7571 11 11 11 11
8412 10 10 10 10
8898 9 9 9 9

10816 8 8 8 8
number of better solutions 1 1 2

Number of stations

 176

APPENDIX A12. The results of the experiments as fitness value.

WITHOUT WITH WITH WITH
Problem Cycle time OR 1 OR 2 ORs 3 ORs
Mitchell 14 2.8708 1.0871 1.1095 1.0871

15 1.0871 1.0871 1.0871 1.0871
21 0.6414 0.6414 0.6414 0
26 2.5215 0 1.2366 1.2366
35 0 0 0 0
39 0 0 0 0

number of better solutions 2 2 3

Roszieg 18 1.699 0.4975 0.4975 0.2185
21 2.6269 0.2483 0.2483 0.2483
25 0.2483 0.2483 0 0
32 0.9736 0.9232 0.9232 0.9232

number of better solutions 3 4 4

Heskiaoff 138 1.2449 1.2449 1.2449 1.2449
205 1.6388 2.8871 1.6797 0.4966
216 0.2894 1.4828 0.2894 0.2894
256 3.9155 1.4828 0.2894 0.2894
324 1.2449 1.2449 0 0
342 0.83 1.2449 0.83 0.83

number of better solutions 1 2 3

Buxey 27 2.6507 2.3528 2.3352 2.6507
30 2.5033 2.6666 3.5248 2.4899
33 2.5292 3.1363 1.3162 2.0316
36 2 1.9688 2.0099 1.9795
41 2.5333 3.7149 3.7087 1.3944
47 0.6732 0.6414 0.6732 0.6414
54 3.4433 2.28 2.1283 2.28

number of better solutions 3 1 6

Fitness values

 177

WITHOUT WITH WITH WITH
Problem Cycle time OR 1 OR 2 ORs 3 ORs
Sawyer 30 2.3642 2.2914 2.5033 2.4690

33 2.5292 3.2986 3.2889 3.3177
36 3.1836 3.284 1.9899 1.9688
41 2.5333 4.1294 3.7149 2.4899
47 0.6732 0.6732 0.6414 0.6414
54 2.1283 2.1143 2.1283 2.1143
75 1.5347 0.2894 1.4828 0.2894

number of better solutions 1 3 5

Kilbridge 69 2.0496 2.0496 0.83 0.83
79 1.2236 1.2236 0 0
92 1.4047 1.4047 0.2185 0.2185

110 1.2309 1.2309 0 0
111 0 0 0.7549 0.7549
138 0 0 0 0
184 0 0 0 0

number of better solutions - 4 4

Arcus 5853 264.5 195.4 73 75.7
6309 186.2 467.8 443.3 201.8
6842 351.7 304.4 348.6 305
6883 488.7 194.3 649.8 244.4
7571 258.5 272.3 257.3 265.5
8412 194.6 157.9 255.6 113.3
8898 143.8 164.7 164.4 140.9

10816 728 500.5 184.4 376.5
number of better solutions 4 2 6

Fitness values

 178

APPENDIX A13. Graphical representation for the results of the experiments as
number of stations.

JACKSON

0

2

4

6

8

10

7 9 10 13 14 21

Cycle time

N
um

be
r

of
 st

at
io

ns

WITHOUT ORs
WITH 1 OR

ROSZIEG

0

2

4

6

8

10

18 21 25 32

Cycle time

N
um

be
r

of
 st

at
io

ns

WITHOUT ORs
WITH 1 OR
WITH 2 ORs
WITH 3 ORs

MITCHELL

0

2

4

6

8

10

14 15 21 26 35 39

Cycle time

N
um

be
r

of
 st

at
io

ns

WITHOUT ORs
WITH 1 OR
WITH 2 ORs
WITH 3 ORs

 179

ROSZIEG

0

2

4

6

8

10

18 21 25 32

Cycle time

N
um

be
r

of
 st

at
io

ns

WITHOUT ORs
WITH 1 OR
WITH 2 ORs
WITH 3 ORs

BUXEY

0

5

10

15

27 30 33 36 41 47 54

Cycle time

N
um

be
r

of
 st

at
io

ns

WITHOUT ORs
WITH 1 OR
WITH 2 ORs
WITH 3 ORs

SAWYER

0

5

10

15

30 33 36 41 47 54 75

Cycle time

N
um

be
r

of
 st

at
io

ns

WITHOUT ORs
WITH 1 OR
WITH 2 ORs
WITH 3 ORs

 180

ARCUS

0

5

10

15

5853 6309 6842 6883 7571 8412 8898 10816

Cycle time

N
um

be
r

of
 st

at
io

ns

WITHOUT ORs
WITH 1 OR
WITH 2 ORs
WITH 3 ORs

 181

APPENDIX A14. Graphical representation for the results of the experiments as
fitness value.

MITCHELL

0
0.5

1
1.5

2
2.5

3
3.5

14 15 21 26 35 39

Cycle time

Fi
tn

es
s v

al
ue WITHOUT ORs

WITH 1 OR
WITH 2 ORs
WITH 3 ORs

ROSZIEG

0
0.5

1
1.5

2
2.5

3

18 21 25 32

Cycle time

Fi
tn

es
s v

al
ue WITHOUT ORs

WITH 1 OR
WITH 2 ORs
WITH 3 ORs

HESKIAOFF

0

1

2

3

4

5

138 205 216 256 324 342

Cycle time

Fi
tn

es
s v

al
ue WITHOUT ORs

WITH 1 OR
WITH 2 ORs
WITH 3 ORs

 182

BUXEY

0

1

2

3

4

27 30 33 36 41 47 54

Cycle time

Fi
tn

es
s v

al
ue WITHOUT ORs

WITH 1 OR
WITH 2 ORs
WITH 3 ORs

SAWYER

0

1

2

3

4

5

30 33 36 41 47 54 75

Cycle time

Fi
tn

es
s v

al
ue WITHOUT ORs

WITH 1 OR
WITH 2 ORs
WITH 3 ORs

KILBRIDGE

0

0.5

1

1.5

2

2.5

69 79 92 110 111 138 184

Cycle time

Fi
tn

es
s v

al
ue WITHOUT ORs

WITH 1 OR
WITH 2 ORs
WITH 3 ORs

183

ARCUS

0

200

400

600

800

5853 6309 6842 6883 7571 8412 8898 10816

Cycle time

Fi
tn

es
s v

al
ue WITHOUT ORs

WITH 1 OR
WITH 2 ORs
WITH 3 ORs

184

APPENDIX A15. Short model for the real-case problem

 185

APPENDIX A16. Data of short model for the real-case problem

NO OPERATIONS MACHINE TYPES

STANDARD
TIMES (Heim)

1 Preparation Hand made 40

2 Left fly interlining Fusing press machine 6

3 Pick left fly Hand made 5

4 Waistband interlining attachment Fusing press machine 12

5 Waistband lining interlining attachment Fusing press machine 12

6 Assembling waistband and waistband lining Lock-stitch sewing machine 30

7 Waistband ironing Hand made 30

8 Right front pocket sason stitching and top stitching Lock-stitch sewing machine 18

9 Right front pocket ironing Hand made 35

10 Right front pocket edge top stitching Two needle sewing machine 22

11 Right back pocket edge overlock Three thread overlock machine 5

12 Right back pocket ironing Hand made 30

13 Right back pocket twin needle seam Two needle sewing machine 15

14 Left fly overlock Three thread overlock machine 10

15 Right fly edge overlock Three thread overlock machine 10

16 Belt loop preparation Two needle sewing machine 15

17 Belt loop cutting Hand made 15

18 Right front part crotch overlock Three thread overlock machine 13

19 Attach right front pocket to right front part Lock-stitch sewing machine 25

20 Assembling right front pocket and right front part Three thread overlock machine 15

21 Right front pocket with right front part top stitching Two needle sewing machine 20

22 Attach right front pocket to right front part Lock-stitch sewing machine 22

23 Assembling right front pocket to right front part Two needle sewing machine 35

24 Assembling left fly to left front part and top stitching Lock-stitch sewing machine 18

25 Zipper assembling to left fly Two needle sewing machine 30

26 Zipper assembling to right fly and right front part Lock-stitch sewing machine 45

27 Fly top stitching Two needle sewing machine 30

28 Assembling front center Lock-stitch sewing machine 50

29 Assembling right back parts Five thread overlock machine 18

30 Right back parts top stitching Two needle sewing machine 20

31 Marking the place of right back pocket Hand made 20

32 Assembling right back pocket to right back part Two needle sewing machine 40

33 Right back pocket bartacking Bartack machine 14

34 Back center overlock Five thread overlock machine 30

35 Back center top stitching Lock-stitch sewing machine 30

36 Matching front part and back part Hand made 20

37 Side seam Five thread overlock machine 45

38 Side top stitching Lock-stitch sewing machine 35

39 Inside leg stitch Five thread overlock machine 35

40 Cutting waistband Hand made 3

41 Waistband attaching Lock-stitch sewing machine 67

42 Waistband edge stitching Lock-stitch sewing machine 30

43 Inside out waistband Hand made 20

44 Washing label assembling waistband Lock-stitch sewing machine 25

45 Branded label assembling above the right back pocket Lock-stitch sewing machine 35

46 Waistband top stitching Two needle sewing machine 70

 186

NO OPERATIONS MACHINE TYPES
STANDARD

TIMES (Heim)

47 Closing waistband Two needle sewing machine 50

48 Inside out trouser Hand made 20

49 Leg hem stitch Lock-stitch sewing machine 50

50 Belt loop bartacking Bartack machine 63

51 Button hole Button hole machine 10

52 Button sewing Button sewing machine 20

53 Pocket, fly and side bartacking Bartack machine 50

54 Left front pocket sason stitching and top stitching Lock-stitch sewing machine 18

55 Left front pocket ironing Hand made 35

56 Left front pocket edge top stitching Two needle sewing machine 22

57 Left back pocket edge overlock Three thread overlock machine 5

58 Left back pocket ironing Hand made 30

59 Left back pocket twin needle seam Two needle sewing machine 15

60 Left front part crotch overlock Three thread overlock machine 13

61 Attach left front pocket to left front part Lock-stitch sewing machine 22

62 Assembling left front pocket to left front part Two needle sewing machine 35

63 Assembling left back parts Five thread overlock machine 18

64 Left back parts top stitching Two needle sewing machine 20

65 Marking the place of left back pocket Hand made 20

66 Assembling left back pocket to left back part Two needle sewing machine 40

67 Left back pocket bartacking Bartack machine 14

68 Right fly overlock Three thread overlock machine 13
 Total 1753
 (1 Heim=0.01 minute)

	Ph.D. THESIS EXAMINATION RESULT FORM
	ACKNOWLEDGMENTS
	ABSTRACT
	ÖZ
	CHAPTER ONE
	INTRODUCTION
	1.1 Background and Motivations
	1.2 Objectives and Research Methodology
	1.3 Outline of the Thesis
	CHAPTER TWO
	ASSEMBLY LINE BALANCING
	2.1 Introduction
	2.2 Assembly Lines
	2.2.1 Terminology
	2.2.2 Characteristics of Assembly Lines
	 2.2.2.1 Product Variety
	 2.2.2.2 Line Control
	 2.2.2.3 Variability of Task Times
	 2.2.2.4 Line Configuration

	2.3 The Assembly Line Balancing Problem
	2.4 Solution Methods for the Assembly Line Balancing Problem
	2.4.1 Optimum Seeking Methods
	 2.4.1.1 Dynamic Programming
	 2.4.1.2 Branch & Bound Algorithm

	2.4.2 Approximation Methods
	 2.4.2.1 Heuristic Methods
	 2.4.2.2 Meta-Heuristics

	2.5 Chapter Summary

	CHAPTER THREE
	GENETIC ALGORITHMS
	3.1 Introduction
	3.2 Genetic Algorithms
	3.2.1 Terminology for GAs
	 3.2.1.1 Representation
	 3.2.1.2 Initialization
	 3.2.1.3 The Fitness Function
	 3.2.1.4 Selection
	 3.2.1.5 Genetic Operators
	 3.2.1.6 Survival
	 3.2.1.7 Termination

	3.2.2 Procedure of GAs
	3.2.3 Parameter Setting for GAs

	3.3 Chapter Summary

	CHAPTER FOUR
	LITERATURE REVIEW FOR APPLICATIONS OF GENETIC ALGORITHMS IN ASSEMBLY LINE BALANCING
	
	4.1 Introduction
	4.2 Literature Review
	4.2.1 Research on SALBP
	4.2.2 Research on GALBP

	4.3 Conclusions for Literature Review
	4.4 Chapter Summary

	CHAPTER FIVE
	THE COMPLEX-CONSTRAINED ASSEMBLY LINE BALANCING PROBLEM
	5.1 Introduction
	5.2 A Novel Line Balancing Problem: CCALBP
	5.3 Rule-based Modeling of Assembly Constraints
	5.4 Line Balancing through Rule-based Models and Constraint Programming
	5.5 Chapter Summary

	CHAPTER SIX
	A GENETIC ALGORITHM BASED APPROACH FOR SOLVING THE COMPLEX-CONSTRAINED ASSEMBLY LINE BALANCING PROBLEM
	6.1 Introduction
	6.2 Line Balancing through Rule-based Models and GA
	6.2.1 Representation
	6.2.2. Initialization
	6.2.3 The Fitness Function
	6.2.4 Selection
	6.2.5 Genetic Operators

	
	6.2.6 Elitism
	6.2.7 Termination
	6.2.8 Results of the Proposed GA

	
	6.3 Parameter Optimization
	6.4 Computational Experiments
	6.4.1 The Instances Generated from the Example Problem
	6.4.2 The Instances Generated from the Literature Problems

	6.5 Chapter Summary

	CHAPTER SEVEN
	CONCLUSION
	7.1 Summary and Concluding Remarks
	7.2 Contributions
	7.3 Future Research Directions

	REFERENCES
	APPENDICES

