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ON BERNSTEIN-SCHOENBERG OPERATOR

ABSTRACT

In this thesis, we investigate the properties of Bernstein-Schoenberg

operator on general knot sequences and on the q-integers. Also we use this

operator to give another proof of some theorems of Bernstein operator. We give the

transformation matrix between spline basis and Bernstein basis.

Keywords: B-splines, Marsden’s Identity, Bernstein-Schoenberg Operator, q-integers
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BERNSTEIN-SCHOENBERG OPERATÖRÜ ÜZERİNE

ÖZ

Bernstein-Schoenberg Operatörünün özellikleri genel nokta dizilerinde ve

q-tamsayı noktalarında incelendi. Bernstein operatörüyle ilgili bazı teoremlerin

ispatları bu operatörü kullanılarak yapıldı. Spline bazları ve Bernstein bazları

arasındaki geçiş matrisi verildi.

Anahtar sözcükler: B-spline, Marsden Özdeşliği, Bernstein-Schoenberg Operatörü,

q-tamsayıları
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CHAPTER ONE

INTRODUCTION

A spline function consists of polynomial pieces on subintervals joined together with

certain continuity conditions. Formally, suppose that k +1 points u0, . . . ,uk have been

specified and satisfy u0 < · · · < uk. These points are called knots. Suppose also that

an integer m≥ 0 has been prescribed. A spline function of degree m−1 having knots

u0, . . . ,uk is a function S such that

i. On each interval [u j−1,u j) is a polynomial of order ≤ m.

ii. S has a continuous (m−2)st derivative on [u0,uk].

The term spline comes from the flexible spline devices used by shipbuilders and

drafters to draw smooth shapes. The theory splines is a good example of an area in

mathematics which was developed in response to practical needs. Spline curves were

first used as a drafting tool for aircraft and ship building industries. A loft man’s spline

is a flexible strip of material, which can be clamped or weighted so it will pass through

any number of points with smooth deformation.

Lobachevsky investigated B-splines as early as the nineteenth century, they were

constructed as convolutions of certain probability distributions. Spline functions

are currently used in diverse domains of numerical analysis (interpolation, computer

aided geometric design, data smoothing, numerical solution of differential and integral

equations, etc.). In 1946, Schoenberg used B-splines for statistical data smoothing, and

his paper started the modern theory of spline approximation. Gordon and Reisenfield

formally introduced B-splines into computer aided design.

We first give some basics of B-splines which may be found in (Phillips, 2003). For

splines of fixed order on a fixed partition, this is a question of choice of basis, since
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such splines form a linear space. Only three kinds of bases for spline spaces have

actually been given serious attention; those consisting of truncated power functions, of

cardinal splines, and of B-splines.

B-splines form a basis for spline spaces, see (Phillips, 2003). B-splines are

splines which have smallest possible support, in other words, they are zero on a large

set. For the evaluation of splines, it is desirable to have basis functions with this

property. Moreover, a stable evaluation of B-splines with the aid of a recurrence

relation is possible. It is shown that B-splines form a partition of unity.

1.1 B-Splines

Let · · · < u−2 < u−1 < u0 < u1 < u2 < · · · be the knot sequence where u−i →−∞ as

i→ ∞ and ui → ∞ as i→ ∞ with i > 0.

Definition 1.1.1. The B-splines of order one are piecewise constants defined by

N1
i (x) =





1, ui < x≤ ui+1,

0, otherwise.

and N2
i (x) are piecewise linear functions on [ui,ui+2], and zero elsewhere.

(a) N1
i (x) (b) N2

i (x)

Figure 1.1 Graphs of N1
i (x) and N2

i (x) jhfdhfjshdfjdshfjdhfsjhfjdfjdsfgfghfg
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The original definition of the B-spline basis functions uses the idea of divided

differences. Hence equivalently we can define B-splines as a multiple of a divided

difference of a truncated power where truncated power is defined as

(t− x)m−1
+ =





(t− x)m−1, x≤ t,

0, otherwise.
(1.1.1)

Theorem 1.1.1. For any n≥ 0 and all i,

Nm
i (x) = (ui+m−ui).[ui, . . . ,ui+m](t− x)m−1

+ , (1.1.2)

where [ui, . . . ,ui+m] denotes a divided difference operator of order m that is applied to

the truncated power (t− x)m−1
+ , regarded as a function of the variable t.

See de Boor (1972), Carl de Boor established in the early 1970’s a recursive

relationship for the B-spline basis. By applying Leibniz’ theorem, de Boor was able to

derive the following formula for B-spline basis functions

Nm
i (x) =

(
x−ui

ui+m−1−ui

)
Nm−1

i (x)+
(

ui+m− x
ui+m−ui+1

)
Nm−1

i+1 (x),

starting with N1
i (x).

1.1.1 Properties of B-splines

Definition 1.1.2. Let S denote a spline defined on the whole real line. The interval o f

support of the spline S is the smallest closed interval outside which S is zero.

Theorem 1.1.2. The interval of support of the B-spline Nm
i is [ui,ui+m], and Nm

i is

positive in the interior of this interval.

The next result shows that the derivative of a spline function is also a spline function.
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Theorem 1.1.3. For m−1≥ 0, we have

d
dx

Nm
i (x) =

(
m−1

ui+m−1−ui

)
Nm−1

i (x)−
(

m−1
ui+m−ui+1

)
Nm−1

i+1 (x) (1.1.3)

for all real x. For m = 2, equation (1.1.3) holds for all x except at the three knots

ui,ui+1, and ui+2, where the derivative of N2
i is not defined.

In the remainder of the thesis B-splines are computed with a knot sequence

u0, . . . ,uk and defined over all R, and the algorithms described are independent of

the chosen interval [a,b] (with the condition that um−1 ≤ a and uk−m+1 ≥ b); in the

algorithms described below, we have set l = k−m. Notice that dimension of the space

is l +1. We will see that a spline approximation is

S(x) =
l

∑
i=0

aiNm
i (x), (1.1.4)

a sum of multiples of all B-splines of order m whose interval of support contains one

of the subintervals [u j,u j+1] where j = m−1, . . . ,k−m.

1.1.2 Marsden’s identity and its consequences

It is obtained in (Marsden, 1970) that

(z− x)m−1 =
l

∑
j=0

(z−u j+1)(z−u j+2) . . .(z−u j+m−1)Nm
j (x) (1.1.5)

for all real or complex z and all real x restricted to the interval

I = {x : um−1 ≤ x≤ uk−m+1} (1.1.6)
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It is useful to give the definition of elementary symmetric functions which can be

found in (Phillips, 2003) since we use these functions in the next theorem.

Definition 1.1.3. The elementary symmetric function σr(x0,x1, . . . ,xn), for, r ≥ 1, is

the sum of all products of r distinct variables chosen from the set {x0,x1, . . . ,xn}, and

we define σ0(x0,x1, . . . ,xn) = 1. Namely we have

σr(x0, . . . ,xn) = ∑
0≤i1<i2<···<ir≤n

xi1 · · ·xir (1.1.7)

As a consequence of Definition 1.1.3 we have

σr(x0,x1, . . . ,xn) = 0 if r > n+1. (1.1.8)

Since

(1+ x0x)(1+ x1x) · · ·(1+ xnx) =
n+1

∑
r=0

σr(x0,x1, . . . ,xn)xr (1.1.9)

the polynomial (1+x0x)(1+x1x) · · ·(1+xnx) is the generating function for elementary

symmetric functions.

The following theorem illustrates the relationship between monomials and

B-splines. It can be proved easily using Marsden’s Identity.

Theorem 1.1.4. For any given integer r ≥ 0 we can express any monomial xr as a

linear combination of B-splines Nm
i (x), for any fixed m−1≥ r, in the form

(
m−1

r

)
xr =

l

∑
i=0

σr(ui+1, . . . ,ui+m−1)Nm
i (x) (1.1.10)

where σr(ui+1, . . . ,ui+m−1) is the elementary symmetric function of order r in the

variables ui+1, . . . ,ui+m−1. Furthermore, if r = 0 in (1.1.10) we have

l

∑
i=0

Nm
i (x) = 1 (1.1.11)
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and thus the B-spline of order m form a partition of unity.

Proof. It follows from (1.1.9) that

(1+ui+1x) . . .(1+ui+m−1x) =
m−1

∑
r=0

σr(ui+1, . . . ,ui+m−1)xr. (1.1.12)

By replacing x by −1/z and multiplying through zm−1, we find that

(z−ui+1) . . .(z−ui+m−1) = zm−1
m−1

∑
r=0

σr(ui+1, . . . ,ui+m−1)(−z)(−r). (1.1.13)

Combining (1.1.5) and (1.1.13) gives

(z− x)m−1 =
l

∑
i=0

(
m−1

∑
r=0

(−1)rσr(ui+1, . . . ,ui+m−1)zm−1−r

)
Nm

i (x) (1.1.14)

Equating the coefficients of zm−1−r on both sides gives

(
m−1

r

)
xr =

l

∑
i=0

σr(ui+1, . . . ,ui+m−1)Nm
i (x).

Note that comparing the coefficient of zm−1 in (1.1.14) yields

l

∑
j=0

Nm
j (x) = 1 if x ∈ I, (1.1.15)

and that of zm−2 gives
l

∑
j=0

ξ jN j(x) = x if x ∈ I (1.1.16)

where

ξ j =
1

m−1
(u j+1 +u j+2 + · · ·+u j+m−1) j = 0,1, . . . , l. (1.1.17)
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This is called Greville Abscissae. We see from (1.1.17) and u0 < · · ·< uk that Greville

Abscissaes are ordered

u0 < ξ0 < ξ1 < .. . < ξl < uk. (1.1.18)

1.1.3 Further Results of Marsden’s Identity

We have seen in the last section that one can express the monomials as a linear

combination of B-splines. So we have a transformation matrix A of size m× (l + 1)

between the monomials and the spline basis. That is,




1

x
...

xm−1




= A




Nm
0 (x)

Nm
1 (x)
...

Nm
l (x)




Let N be the vector containing B-splines and A be the transformation matrix between

the monomials and B-splines. It can be seen from the equation (1.1.10) that the entries

of A are

Ai, j =
1(m−1
i

)σi(u j+1, . . . ,u j+m−1) (1.1.19)

for i = 0, . . . ,m−1 and j = 0, . . . ,m+n−2. Let B be the vector containing Bernstein

polynomials and M be the matrix between the monomials and Bernstein basis. Then

from (Oruç & Phillips, 2003) we have
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1

x
...

xm−1




= M




Bm−1
0 (x)

Bm−1
1 (x)

...

Bm−1
m−1(x)




where Bm−1
i (x) dentoes the ith Bernstein basis of degree m−1 such that

Bm−1
i (x) =

(
m−1

i

)
xi(1− x)m−1−i (1.1.20)

and M is an upper triangular matrix such that

Mi j =

( j
i

)
(m−1

i

) for i = 0, . . . ,m−1, j = 0, . . . ,m−1 (1.1.21)

Then it follows that

AN = MB (1.1.22)

Since M is an invertible matrix we have

B = M−1AN (1.1.23)

where

(M−1)i j = (−1) j−i
(

m−1
j

)(
j
i

)
for i = 0, . . . ,m−1, j = 0, . . . ,m−1 (1.1.24)

Notice that we generate a transformation matrix between Bernstein basis and spline

basis.



CHAPTER TWO

BERNSTEIN-SCHOENBERG OPERATOR

In this chapter we shall discuss the properties of Bernstein-Schoenberg Operator

for general knot sequences. In (Schoenberg, 1967) Schoenberg introduced a spline

approximation operator which generalised the Bernstein polynomial and we shall refer

to as the Bernstein-Schoenberg operator.

We call Sm,n the Bernstein-Schoenberg Operator; it maps a function f , defined on

[a,b], to Sm,n f , where the function Sm,n f evaluated at x is denoted by Sm,n( f ;x).

In approximation theory it is often useful to have an approximation Sm,n f to a

function f which is not only close to f but whose graph has a similar shape to that

of the graph of f . Goodman discussed in (Goodman, 1994) the advantages of variation

diminishing property when designing the curves or constructing approximation

operators. Like the Bernstein polynomials Bernstein-Schoenberg operator has

variation diminishing and therefore has certain shape preserving properties. Goodman

and Sharma discussed in (Goodman & Sharma, 1985) the convexity properties for of

Bernstein-Schoenberg operator for special knot sequence.

In the remainder of this note we investigate the operator for the functions f which

are defined on the interval [0,1].

2.1 Preliminaries

If f (x) is defined in the interval [u0,uk] we construct the spline function

Sm,n( f ;x) =
l

∑
j=0

f (ξ j)Nm
j (x) (2.1.1)

9
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where

• m is the order of B-splines, that is each piecewise polynomial is of degree m−1

• n is the number of intervals in [0,1]

• l = m+n−2

• ξi = 1
m−1(ui+1 + . . .+ui+m−1), the Greville abscissae.

and we have the knot sequence;

u0 = u1 = · · ·= um−1 = 0

um

... (2.1.2)

um+n−2

um+n−1 = · · ·= ul+m = 1

The importance of taking the first m knots 0 and the last m knots 1 is the fact

Sm,n( f ;0) = f (0) , Sm,n( f ;1) = f (1)

which is known as end-point interpolation. The following figure shows

Bernstein-Schoenberg approximation to f (x) = x2.



11

Figure 2.1 The graph of S3,4(x2;x) and f (x) = x2 hjgjhgjhgjhgjhgjhghjhjfhk

Notice that when we choose the knot sequence as above we have I = [u0,uk] in

(1.1.6). So we can use Marsden’s Identity in the whole interval [0,1]. It follows from

l

∑
i=0

Nm
i (x) = 1 and

l

∑
i=0

ξiNm
i (x) = x

that Sm,n f (x) = f (x) for any linear function f (x) = ax+b

2.2 The Relationship Between Bernstein-Schoenberg Operator and Bernstein

Operator

The Bernstein polynomials is first introduced by S. Bernstein in 1912. Then it is

investigately vastly see (Phillips, 2003) for further information.
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Definition 2.2.1. For a given function f on [0,1], we define the Bernstein Polynomial

Bn( f ;x) =
n

∑
i=0

f
(

i
n

)(
n
i

)
xi(1− x)n−i (2.2.1)

for each positive integer n which denotes the degree of the polynomial. We call Bn the

Bernstein Operator.

One of the most important properties of the Bernstein-Schoenberg operator is that

if we select the knot sequence in a special case we obtain Bernstein polynomials. That

is, if we choose n = 1 in equation (2.1.2) the knot sequence becomes;

u0 = u1 = · · ·= um−1 = 0

um = u1 = · · ·= ul+m = 1

we obtain

Sm,n( f ;x) = Bm−1( f ;x) (2.2.2)

Therefore Bernstein-Schoenberg operator may be viewed as a generalization to the

Bernstein operator.

2.3 Convexity of Bernstein-Schoenberg Operator

In this section we look into the splines for a convex function f . We first give the

definition of a convex function.

Definition 2.3.1. A function f is said to be convex on [a,b] if for any x1,x2 ∈ [a,b],

λ f (x1)+(1−λ) f (x2)≥ f (λx1 +(1−λ)x2) (2.3.1)
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for any λ ∈ [0,1]. Geometrically, this is saying that a chord connecting any two points

on the convex curve y = f (x) is never below the curve.

Alternatively, if f : I → R is a twice differentiable function then f is convex if and only

if f ′′(x)≥ 0 for all x ∈ I.

From (Goodman, 1994) we state the following important facts.

i. If the function f ∈ C[0,1] is increasing (respectively decreasing), then Sm,n f is

increasing (respectively decreasing).

ii. If f is convex on [0,1], then Sm,n f is also convex.

However, we propose an alternative proof for the latter property. Firstly we need the

Jensen’s Inequality, see (Webster, 1994).

Jensen’s Inequality: Let f be continuous and convex on an interval I. If x1,x2, . . . ,xn

are in I and 0 < λ1,λ2, . . . ,λn < 1 with λ1 + · · ·+λn = 1, then

λ1 f (x1)+ · · ·+λn f (xn)≥ f (λ1x1 + · · ·+λnxn)

Theorem 2.3.1. If f (x) is convex on [0,1] then

Sm,n( f ;x)≥ f (x) 0≤ x≤ 1 (2.3.2)

Proof. Let ξi = 1
m−1(ui+1 + . . .+ ui+m−1) and λi = Nm

i (x), we see that λi ≥ 0 for all

x ∈ [0,1] and as in (1.1.11)

λ0 +λ1 + . . .+λl = 1, (2.3.3)

and

λ0ξ0 +λ1ξ1 + . . .+λlξl = x. (2.3.4)
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Then we obtain from Jensen’s Inequality that

Sm,n( f ;x) =
l

∑
i=0

λi f (ξi)≥ f

(
l

∑
i=0

λiξi

)
= f (x) (2.3.5)

and this completes the proof.

Theorem 2.3.2. If f is a convex function defined on [0,1] then Bm−1( f ;x) is also

convex.

Note that as a special case, for n = 1 we have

Sm,1( f ;x) = Bm−1( f ;x)≥ f (x). (2.3.6)

Proof. Our aim is to show that

d2

dx2 Sm,1( f ;x)≥ 0.

Using (1.1.3) we have

d
dx

Sm,1( f ;x) =
d
dx

l

∑
i=0

f (ξi)Nm
i (x)

=
l

∑
i=0

f (ξi)
[

m−1
ui+m−1−ui

Nm−1
i (x)− m−1

ui+m−ui+1
Nm−1

i+1 (x)
]

= (m−1)

{
m−1

∑
i=1

f (ξi)Nm−1
i (x)−

m−1

∑
i=1

f (ξi−1)Nm−1
i (x)

}

= (m−1)
m−1

∑
i=1

[ f (ξi)− f (ξi−1)]Nm−1
i (x). (2.3.7)

For simplicity set bi = f (ξi)− f (ξi−1). Differentiating the equation (2.3.7) one more
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time gives

d2

dx2 Sm,1( f ;x) =
d
dx

(m−1)
m−1

∑
i=1

biNm−1
i (x)

= (m−1)
m−1

∑
i=1

bi

[
m−2

ui+m−2−ui
Nm−2

i (x)− m−2
ui+m+1−ui+1

Nm−2
i+1 (x)

]

= (m−1)(m−2)
m−1

∑
i=2

biNm−2
i (x)−

m−1

∑
i=2

bi−1Nm−2
i (x)

= (m−1)(m−2)
m−1

∑
i=2

[bi−bi−1]Nm−2
i (x).

It follows that

bi−bi−1 =
1
2

(
1
2

f (ξi)− f (ξi−1)+
1
2

f (ξi−2)
)

.

Substituting ξi = i
m−1 gives

d2

dx2 Sm,1( f ;x) =
1
2
(m−1)(m−2)

m−1

∑
i=2

(
1
2

f (
i

m−1
)− f (

i−1
m−1

)+
1
2

f (
i−2
m−1

)
)

Nm−2
i (x)

Notice that Nm−2
i (x)≥ 0 for all i. So it is enough to show that

1
2

f
(

i
m−1

)
− f

(
i−1
m−1

)
+

1
2

f
(

i−2
m−1

)
≥ 0.

Since f is convex we have, with

λ =
1
2
, x1 =

i
m−1

and x2 =
i−2
m−1

in (2.3.1)

1
2

f
(

i
m−1

)
+

(
1− 1

2

)
f
(

i−2
m−1

)
≥ f

(
1
2

i
m−1

+
(

1− 1
2

)
i−2
m−1

)
= f

(
i−1
m−1

)

This completes the proof.
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Figure 2.2 The graph of S3,1(x2;x), S4,1(x2;x) and f (x) = x2 hghjgjhgjhkfjsk

2.4 Monotonicity of Bernstein-Schoenberg Operator

It can be easily seen that Sm,n is a monotone operator. That is, suppose that f (x)≥ g(x),

for all x ∈ [0,1]. So,

Sm,n( f ;x) =
l

∑
i=0

f (ξi)Nm
i (x)≥

l

∑
i=0

g(ξi)Nm
i (x) = Sm,n(g;x)

giving Sm,n( f ;x)≥ Sm,n(g;x)

As a consequence of monotonicity of Sm,n and the fact that Sm,n(1;x) = 1, if m ≤
f (x) ≤ M, x ∈ [0,1] then m ≤ Sm,n( f ;x) ≤ M for all x ∈ [0,1]. (Marsden &

Schoenberg, 1966) shows that for the knot sequence
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u0 = u1 = · · ·= um−1 = 0

um =
1
n
, . . . ,ul =

n−1
n

ul+1 = · · ·= ul+m = 1

Sm,n(x2;x) converges to x2 uniformly as m→∞. Note that this is also true as n→∞. It

follows from Bohman-Korovkin Theorem that Sm,n converges uniformly to the function

f where f ∈C[0,1] since Sm,n f converges uniformly to f (x) = 1,x,x2.

Let us recall Bohman-Korovkin Theorem, see (Kincaid & Cheney, 1996)

Theorem 2.4.1. (Bohman-Korovkin Theorem) Let Ln (n≥ 1) be a sequence of positive

linear operators defined on C[a,b] and taking values in the same space. If ‖Ln f −
f‖∞ → 0 for the three functions f (x) = 1,x, and x2, then the same is true for all f ∈
C[a,b].

2.5 Modulus of Continuity

It is not important that f is continuous or not, we define the modulus of continuity by

the equation

ω( f ;δ) = sup
|s−t|≤δ

| f (s)− f (t)|

If f is a continuous function defined on an interval [a,b], then it is uniformly

continuous. This means for any ε > 0, there is a δ > 0 such that for all s and t in

[a,b],

|s− t|< δ implies | f (s)− f (t)|< ε

Hence, ω( f ;δ) ≤ ε. In other words, for a continuous function f on a closed and

bounded interval, the modulus of continuity ω( f ;δ) converges to 0 as δ converges
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to 0.

By the mean value theorem, if f ′ exists, continuous and | f ′(x)| ≤M, we have

| f (s)− f (t)|= | f (ξ)||s− t| ≤M|s− t|

Thus, ω( f ;δ)≤Mδ.

Theorem 2.5.1. If f is a function on [u0,uk], then the spline function g where g =

∑l
i=0 f (ui+2)Nm

i satisfies

sup
u0≤x≤uk

| f (x)−g(x)| ≤ (m−1)ω( f ;δ)

where δ = sup
m−1≤i≤k−m

|ui−ui−1|, see (Kincaid & Cheney, 1996)

Let Sm
k denotes the family of all splines which are piecewise polynomials of order

≤ m on the intervals [u0,u1], . . . , [uk−1,uk].

Denote the function dist; distance from a function f to a subspace G in a normed

space is defined by

dist( f ,G) = inf
g∈G

‖ f −g‖

From above theorem, we have

dist( f ,Sm
k )≤ (m−1)ω( f ;δ). (2.5.1)

If f is continuous, then

lim
δ→0

ω( f ;δ) = 0.
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Hence, as the density of the knots is increased, the upper bound in equation (2.5.1)

will approach zero, showing that the distance between a continuous function and its

spline approximant can be made as close as we wish.



CHAPTER THREE

BERNSTEIN-SCHOENBERG OPERATOR on q-INTEGERS

In this chapter, we investigate the properties of Bernstein-Schoenberg operator that is

defined on q-integers, geometrically spaced knot sequence. We denote this operator on

q-integers by Sm,n( f ;x,q).

In the remainder of this chapter we use the knot sequence

u0 = u1 = · · ·= um−1 = 0

um =
1
[n]

, . . . ,ul =
[n−1]

[n]

ul+1 = · · ·= ul+m = 1

Here [i] denotes a q-integer, defined by

[i] =





(1−qi)/(1−q), q 6= 1,

i, q = 1.
(3.0.2)

3.1 B-splines based on q-integers

Koçak and Phillips, (Koçak & Phillips, 1994) studied B-splines based on q-integers,

which is a generalization of the similarly particularly simple properties of the uniform

B-splines. Notice that in this section we have a fixed real parameter q > 0. B-splines

on the q-integers are defined by

20
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N1
i (x) =





1, [i] < x≤ [i+1],

0, otherwise,

and recursively ,

Nm
i (x) =

(
x− [i]

qi[m−1]

)
Nm−1

i (x)+
(

[i+m]− x
qi+1[m−1]

)
Nm−1

i+1 (x).

The B-splines with knots at the q-integers satisfy the relation

Nm
i (x) = Nm

i+1(qx+1).

More generally

Nm
i (x) = Nm

i+k(q
kx+[k]).

Although the uniform B-splines are symmetric about the midpoint of the interval of

support, the B-splines with knots at the q-integers are not.

3.2 Properties of Generalized Operator

Since we choose a special knot sequence, the properties for general knot sequence also

satisfy. This means;

1. Generalized Bernstein-Schoenberg operator is also linear, i.e,

Sm,n(λ f +g;x,q) = λSm,n( f ;x,q)+Sm,n(g;x,q)

2. If | f (x))| ≤M then |Sm,n( f ;x,q)| ≤M for all for any q > 0.
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3. It also has the variation diminishing property.

4. Suppose that f is convex on [0,1] then Sm,n( f ;x,q) is convex for any q > 0.

5. If f (x) is convex on [0,1] then

Sm,n( f ;x,q)≥ f (x), for 0≤ x≤ 1 and q > 0. (3.2.1)

6. Sq
m,n is also a monotone operator.

Remark. A great deal of research papers have appeared on q−Bernstein Bézier

polynomials which is first introduced by G.M. Phillips in (Phillips, 1997) as a

generalization of Bernstein polynomials. See full details in a recent survey paper by

G. M. Phillips (Phillips, 2008). He defines q-Bernstein polynomials as;

Bq
n( f ;x) =

n

∑
r=0

fr

[
n
r

]
xr

n−r−1

∏
s=0

(1−qsx)

where fr = f
(

[r]
[n]

)
. The q−binomial coefficient

[n
i

]
, which is also called a

Gaussian polynomial, in (Andrews, 1998), is defined as

[
n
i

]
=

[n][n−1] · · · [n− i+1]
[i][i−1] · · · [1]

(3.2.2)

for 0 6 i 6 n, and has the value 0 otherwise. The generalized Bernstein

polynomials Bq
n f , holds an interesting relation when we vary the parameter. That is;

for 0 < q≤ r < 1 and a convex function f convex on [0,1], we have

Br
n( f ,x)≤ Bq

n( f ,x), 0≤ x≤ 1

However, for 0 < q < r < 1 then there is no relation between Sm,n( f ;x,q) and

Sm,n( f ;x,r) for n > 1, i.e, we do not have

Sm,n( f ;x,q)≤ Sm,n( f ;x,r) or Sm,n( f ;x,r)≤ Sm,n( f ;x,q). (3.2.3)
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Example 3.2.1. .

Figure 3.1 The graph of S3,2(x2;x,3/4), S3,2(x2;x,1/6) and f (x) = x2 hgghfg

where

S3,2(x2;x,3/4) =





11
16x2 + 2

7x, 0 < x < 4
7 ,

5
6x2 + 5

42x+ 1
21 , 4

7 < x < 1,

0, otherwise

(3.2.4)

S3,2(x2;x,1/6) =





13
24x2 + 3

7x, 0 < x < 6
7 ,

2x2− 29
14x+ 15

14 , 6
7 < x < 1,

0, otherwise

(3.2.5)
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Notice that for x = 0.2

S3,2(x2;0.2,3/4) = 0.0846

S3,2(x2;0.2,1/6) = 0.1073,

we have

S3,2(x2;0.2,3/4)−S3,2(x2;0.2,1/6)) =−0.0227 < 0

and for x = 0.9

S3,2(x2;0.9,3/4) = 0.8297

S3,2(x2;0.9,1/6) = 0.8271.

S3,2(x2;0.9,3/4)−S3,2(x2;0.9,1/6) = 0.0026 > 0

It is easily seen in the next figure that error function changes sign in the interval.
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Figure 3.2 The graph of S3,2(x2;x,3/4)−S3,2(x2;x,1/6) jgjhgjhggfghffgfghj

3.3 Error Analysis for f (x) = x2

Due to the Bohman-Korovskin’s theorem, analysing the error between f (x) = x2 and

Sm,n(x2;x,q) is vital. The approximating spline function for x2 is

Sm,n(x2;x,q) =
l

∑
j=0

(ξ j)2Nm
j (x;q).

We define the error function by

Em,n(x;q) =
l

∑
j=0

(ξ j)2Nm
j (x;q)− x2. (3.3.1)

Since

x2 =
l

∑
j=0

ξ(2)
j Nm

j (x;q),

then

ξ(2)
j =

1(m−1
2

) ∑
j+1≤r<s≤ j+m−1

urus.
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Thus we have

Em,n(x;q) =
l

∑
j=0

λ jNm
j (x;q). (3.3.2)

Here we set

λ j = (ξ j)2−ξ(2)
j

After some computations, we find that

λ j =
1

(m−1)2(m−2) ∑
j+1≤r<s≤ j+m−1

(us−ur)2. (3.3.3)

We claim that if m≥ 3, we have

i. Em,n(0;q) = Em,n(1;q) = 0, Em,n(x;q) > 0, if 0 < x < 1

ii. Em,n(x;q) = Em,n((1− x);1/q) for 0≤ x≤ 1

Proof. (i.) Since the Bernstein-Schoenberg operator interpolates the end points, we

have

Em,n(0;q) = Em,n(1;q) = 0.

By equation (3.3.3)

Em,n(x;q) =
l

∑
j=0

λ jNm
j (x;q)

λ j > 0 for j = 1, . . . , l−1. It can be seen that

Em,n(x;q) > 0, if 0 < x < 1.

(ii.) Let u be the knot sequence that we use for Nm
j (x;q) and t be the knot sequence

for Nm
j (x;1/q) where
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u0 = · · ·= um−1 = 0

um =
1

[n]q
, · · · ,ul =

[n−1]q
[n]q

ul+1 = · · ·= ul+m = 1

and

t0 = · · ·= tm−1 = 0

tm =
1

[n]1/q
= 1−ul, · · · , tl =

[n−1]1/q

[n]1/q
= 1−um

tl+1 = · · ·= tl+m = 1

One may see that ui = 1− tl+m−i for i = 0, . . . , l. We have

Em,n(x;q) =
l

∑
j=0

λ jNm
j (x,q) and Em,n(x;1/q) =

l

∑
j=0

β jNm
j (x,1/q)

where

β j =
1

(m−1)2(m−2) ∑
j+1≤r<s≤ j+m−1

(ts− tr)2. (3.3.4)

Our aim is to show that

l

∑
j=0

λ jNm
j (x;q) =

l

∑
j=0

βl− jNm
l− j(1− x;1/q).

If we can show that λ j = βl− j and Nm
j (x;q) = Nm

l− j(1−x;1/q) for j = 0, . . . , l, then the
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proof will be completed. Using divided differences of truncated powers we have

Nm
j (x;q) = (u j+m−u j)[u j, . . . ,u j+m](u− x)m−1

+

= ((1− t j)− (1− tl+m− j))[1− tl+m− j, . . . ,1− tl− j](u− x)m−1
+

= (tl+m− j− tl− j)[tl− j, . . . , tl+m− j](t− (1− x))m−1
+

= Nm
l− j(1− x;1/q).

To show λ j = βl− j, an induction argument is imposed.

For j = 0;

λ0 = A ∑
1≤r<s≤m−1

(us−ur)2 = 0,

βl = A ∑
l+1≤r<s≤l+m−1

(ts− tr)2 = 0.

So, it is true for j = 0. Suppose it is true for any arbitrary integer j = k for 0 < k < l.

Our aim is to get λk+1 = βl−k−1. By inductive hypothesis we have

A ∑
k+1≤r<s≤k+m−1

(us−ur)2 = A ∑
l−k+1≤r<s≤l−k+m−1

(ts− tr)2. (3.3.5)

Since,

λk+1 = A ∑
k+2≤r<s≤k+m

(us−ur)2 = λk−A
k+m−1

∑
s=k+2

(us−uk+1)2 +A
k+m−1

∑
r=k+2

(uk+m−ur)2 (3.3.6)

we write

k+m−1

∑
r=k+2

(uk+m−ur)2 =
k+m−1

∑
r=k+2

((1−ur)− (1−uk+m))2 =
k+m−1

∑
r=k+2

(tl+m−r− tl−k)2 (3.3.7)
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and

k+m−1

∑
s=k+2

(us−uk+1)2 =
k+m−1

∑
s=k+2

((1−uk+1)− (1−us))2

=
k+m−1

∑
s=k+2

(tl+m−s− tl+m−k−1)2. (3.3.8)

Substituting (3.3.5), (3.3.7) and (3.3.8) in (3.3.6) gives

λk+1 = A ∑
l−k+1≤r<s≤l−k+m−1

(ts− tr)2−A
k+m−1

∑
s=k+2

(tl+m−s− tl+m−k−1)2

+A
k+m−1

∑
r=k+2

(tl+m−r− tl−k)2

= A

(
∑

l−k+1≤r<s≤l−k+m−1
(ts− tr)2−

l−k+m−2

∑
r=l−k+1

(tl+m−k−1− tr)2

+
l−k+m−2

∑
s=l−k+1

(ts− tl−k)2

)

= A ∑
l−k≤r<s≤l−k+m−2

(ts− tr)2

= βl−k−1.

Hence we have λ j = βl− j for j = 0, . . . , l. This completes the proof.



CHAPTER FOUR

CONCLUSION

The properties of Bernstein-Schoenberg operator on general knot sequences and on the

q-integers are studied. Some special results for Bernstein-Schoenberg operator based

on q-integers are obtained. We use this operator to give an alternative proof for a

theorem on the convexity of Bernstein Operator. Analytical and geometric properties

of Bernstein operator and Bernstein-Schoenberg operator are compared. We show in

the second chapter that some properties of them coincide and in the last chapter we give

a remark that they also have different properties. We give the transformation matrix

between spline basis and Bernstein basis. This gives us a chance to obtain Bèzier

curves by using B-splines instead of Bernstein polynomials.
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of Computational and Applied Mathematics, 151, 1-12.

Phillips, G.M. (1997). Bernstein polynomials based on the q-integers. Annals of

Numerical Mathematics, 4, 511-518.



32

Phillips, G.M. (2003). Interpolation and Approximation by Polynomials. New York:

Springer-Verlag.

Phillips, G.M. (2008). Survey of results on the q−Bernstein polynomials. Personal

correspondence.

Schoenberg, I. J. (1967). On Spline Functions. Inequalities (Proc. Sympos.

Wright-Patterson Air Force Base, Ohio, 1965) , 255-291.

Webster, R. (1994). Convexity, USA: Oxford University Press Inc.


