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July, 2010
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KAPLANSKY’S THEOREM FOR VECTOR BUNDLES

ABSTRACT

In this master thesis, we focus on two classes of modules: The projective

R-modules and the almost projective R-modules for a commutative ring R with unity.

Then we center on the category of quasi-coherent sheaves over some special projective

schemes and the several ‘new’ notions of (infinite dimensional) vector bundles attained

to these classes as proposed by Drinfeld. We prove structural results relative to the

different generalization of vector bundles in terms of certain filtrations of locally

countably generated quasi-coherent sheaves. In the case in which the vector bundles

are built from the class of projective R-modules, our structural theorem yields a version

of Kaplansky’s Theorem for infinite dimensional vector bundles on these special

projective schemes.

Keywords: Projective module, countably generated projective module, almost

projective module, Kaplansky’s theorem for projective modules, quasi-coherent sheaf,

projective scheme, filtration, infinite dimensional vector bundle.
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VEKTÖR DEMETLERİ İÇİN KAPLANSKY’NİN TEOREMİ

ÖZ

Bu master tezinde birim elemanlı değişmeli bir R halkası için projektif ve

hemen hemen projektif R-modülleri olmak üzere iki modül sınıfı üzerinde çalışıldı.

Daha sonra özel bazı projektif şemalar üzerindeki yarı tutarlı desteler kategorisine ve

Drinfeld’in önerdiği gibi bu sınıflara eşleştirilen sonsuz boyutlu vektör demetlerinin

birkaç ‘yeni’ kavramı üzerine yoğunlaşıldı. Son olarak Kaplansky’nin teoremini

bu yeni tanımlı vektör demetlerine adapte edildi. Yani, sonsuz boyutlu bir vektör

demetinin yerel sayılabilir çoklukta üretilmiş vektör destelerini filtre edilerek elde

edilebileceği gösterildi.

Anahtar sözcükler: Projektif modül, sayılabilir çoklukta üreteçli projektif modül,

hemen hemen projektif modül, projektif modüller için Kaplansky’nin teoremi, yarı

tutarlı deste, projektif şema, filtrasyon, sonsuz boyutlu vektör demeti.
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CHAPTER ONE

INTRODUCTION

Let X = SpecR be an affine scheme for a commutative ring R with unity. It is

known that the category of all quasi-coherent sheaves on X is equivalent to R-Mod

(see Hartshorne (1977, Corollary 5.5)). In this equivalence, finite dimensional vector

bundles on X correspond to finitely generated projective modules (Serre, 1958). Then

a (classical) vector bundle on an arbitrary scheme X corresponds to a quasi–coherent

sheaf F such that, for each affine open subset U = SpecR, the corresponding R-module

of sections Γ(U,F ) is finitely generated and free.

Drinfeld (2006) asks the following key problem: ‘Is there a reasonable notion of

not necessarily finite dimensional vector bundles on a scheme?’. In the same paper he

proposes several possible answers to this question. Each one of these involves different

classes of modules. In this thesis, we focus on two classes: the projective R-modules

and the almost projective R-modules for a commutative ring R. Then we center on the

category of quasi-coherent sheaves over the projective scheme Pn
R = (ProjS,OProjS)

where S = R[x0, . . . ,xn] for a commutative ring R and the several ‘new’ notions of

(infinite dimensional) vector bundles attained to these classes. We prove structural

results relative to the different generalization of vector bundles in terms of filtrations

of certain locally countably generated quasi-coherent sheaves.

For the case n = 1 and when infinite dimensional vector bundles are locally

projective quasi-coherent sheaves on P1
R, our Theorem 5.2.3 may be seen as the

analogous of Grothendieck’s theorem on the decomposition of finite dimensional

vector bundles on P1
k , where k is a field, as a direct sum of line bundles (Grothendieck,

1957). Moreover, when X is affine, our theorem coincides with Kaplansky’s theorem

on the decomposition of a projective module as a direct sum of countably generated

projective modules. Therefore, our result can be thought as a ‘generalized’ version of

1
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Kaplansky’s theorem for the category Qco(Pn
R) of quasi-coherent sheaves on Pn

R.

Let us make a brief summary of the contents of this thesis. In the first chapter,

we introduce all basic notions and terminology concerning to sheaves, schemes and

quasi–coherent sheaves, as well as, projective schemes and twisted sheaves. We have

used Hartshorne (1977), Mumford (1999), Eisenbud & Harris (2000), Liu (2002) as

main sources for this chapter.

Once we have given all basic definitions, we introduce in Chapter 2 the category

of quasi-coherent R-modules associated to a quiver Q. Namely we see in Section

2.1 that given any arbitrary quiver Q, we can associate a representation R of Q by

(commutative) rings and the category of quasi-coherent modules over R (see Definition

2.1.1). We analyze some of the main properties of this category and conclude that it is

a Grothendieck category, whenever the representation of rings R satisfies the following

property: given an edge v→ w in Q, the ring R(w) is flat as a R(v)-module. This is

needed to ensure that the kernel of a morphism between two quasi-coherent R-modules

is quasi-coherent (see Lemma 2.1.3). Then, in Section 2.2, we prove that the category

Qco(X) of quasi-coherent sheaves on a scheme X is isomorphic to the category of

quasi-coherent R-modules over a certain quiver. We illustrate this equivalence by

constructing the isomorphic category of quasi-coherent R-modules corresponding to

the category Qco(Pn
R) of quasi-coherent sheaves over the projective scheme Pn

R. This

construction is crucial for our purpose in Chapter 5. For some basic introduction to

the category theory, see the book Adámek, Herrlich & Stecker (1990). This chapter is

mainly based on Enochs & Estrada (2005). But we provide detailed proofs that do not

appear in Enochs & Estrada (2005) as well as the explicit constructions of Subsection

2.2.1.

We devote Chapter 3 to focus on the category of quasi-coherent sheaves on the

projective line P1
R. In this case we prove that the family of twisted sheaves {O(n) :
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n ∈ Z} is a family of generators for Qco(P1
R) (see Proposition 3.1.4). This is known

for the category Co(Pn
A) of coherent sheaves on Pn(A), where A is a commutative

Noetherian ring (see Hartshorne (1977, Corollary 5.18)). Our proof has the advantage

that it works for any arbitrary commutative ring and for all quasi-coherent sheaves, so

not just for the coherent ones. But it has the disadvantage it only works for n = 1.

We also prove in Corollary 3.1.5 that Qco(P1
R) admits no other projective than zero,

so many of classical results in module theory involving the existence of a projective

generator, can not be extended to this setup. We finish this section stating in Theorem

3.2.2 a well-known theorem concerning to the decomposition of (classical) vector

bundles over the projective line. This was originally proved by Grothendieck (1957)

in case k = C, but the version we present here works for any arbitrary field. We point

out that Grothendieck’s theorem constitutes a particular case of the kind of filtrations

we study in the last chapter. The contents of this chapter are included in the papers

Enochs, Estrada, Garcı́a Rozas & Oyonarte, (2003, 2004a, 2004b), Enochs, Estrada &

Torrecillas, (2006).

In Chapter 4, we present, at the level of modules, our main tools to find structural

theorems on infinite dimensional vector bundles on Pn
R. Namely, we give the notion of

filtration with respect to a class C of modules (also called direct transfinite extensions

with respect to C ) and analyze some closure properties of such filtrations that will be

needed in the sequel, like Eklof’s lemma (Lemma 4.1.6). In Section 4.2 we state the

most important technical tool of this thesis: the Hill Lemma (Lemma 4.2.3). Starting

from a given filtration M = (Mα | α≤ σ) of a module M, Hill Lemma allows to expand

this single filtration into a large family satisfying additional properties, namely those

stated in Lemma 4.2.3. For some terms in the set theory, like regular cardinals, see the

book Jech (2003). The material of this chapter is contained in Göbel & Trlifaj (2006).

Chapter 5 represents our original contribution to the subject of study in this thesis.

We use all the previous tools to find structural theorems for two of the generalizations
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of vector bundles purposed by Drinfeld (2006). The first of such generalizations

involves the class of almost projective R-modules (see Definition 5.1.1) and the second

is the class of projective R-modules. The main idea of the proof is to use both

Proposition 5.1.5 and Hill Lemma to make compatible all the individual filtrations

at the level of modules to the level of quasi-coherent sheaves. In the second case we

obtain a version of Kaplansky’s theorem (see Theorem 5.2.3) for infinite dimensional

vector bundles.

Finally we would like to point up that there are some open questions in the line of

research initiated in this thesis: In the same paper, Drinfeld (2006) also purposes the

class of so called flat Mittag-Leffler modules to generalize infinite dimensional vector

bundles. We would like to know if our techniques can apply to this setting to obtain

new structural theorems. Also we would like to extend the class of schemes in which

our structural theorems holds.

In this thesis, all rings are assumed to be commutative rings with unity. Unless

otherwise stated, R always denotes a commutative ring with unity.

1.1 Basic Notions on Sheaves

Let X be a topological space. Then we can construct a category Top(X) from the

topological space X by taking objects as open subsets U of X and morphisms as the

canonical inclusions when U ⊆V .

A presheaf of rings F is a contravariant functor from Top(X) to the category of

commutative rings. That is, a presheaf F consists of two data:

- for every open subset U of X , a commutative ring F (U) and
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- for every inclusion V ⊆U of open subsets of X , a ring homomorphism

ρUV : F (U)−→ F (V )

which is called the restriction map,

satisfying the following properties:

(i) F ( /0) = 0;

(ii) ρUU = idU ;

(iii) If we have W ⊆V ⊆U , then ρUW = ρVW ◦ρUV .

We can define in the same way presheaves of abelian groups, presheaves of algebras

over a fixed ring, etc. by changing the terminal category of the presheaf F . But in our

study, we focus on the presheaves of rings.

For an element s of F (U), we shall sometimes denote ρUV (s) shortly by s|V .

Definition 1.1.1. A presheaf of rings F on a topological space X is said to be a sheaf

if for each open subset U of X and for each open covering {Ui}i∈I of U , the sequence

0−→ F (U)
f−→∏

i∈I
F (Ui)

p−q−→ ∏
i, j∈I

F (Ui∩U j) (1.1.1)

is exact, where f : s 7−→ {ρUUi(s)}i∈I , p : {si}i∈I 7−→ {ρUi∩U j(si)}i, j∈I and q :

{si}i∈I 7−→ {ρUi∩U j(s j)}i, j∈I , for all s ∈ F (U) and {si}i∈I ∈∏i∈I F (Ui).

For any open covering {Ui}i∈I of an open subset U of X , the exactness in the

sequence (1.1.1) is equivalent to the following two conditions:

(i) If s ∈ F (U) such that s|Ui = 0 for every i, then s = 0.
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(ii) If we have elements si ∈ F (Ui) for each i with the property that si|Ui∩U j =

s j|Ui∩U j for every i, j ∈ I, then there is an element s ∈ F (U) such that s|Ui = si

for all i.

Condition (ii) implies the existence of such an element and (i) implies the uniqueness

of it.

An element of Γ(U,F ) := F (U) is called the section of the preasheaf F over the

open set U . In particular, an element of Γ(X ,F ) := F (X) is called a global section.

Definition 1.1.2. Let F and G be preasheaves on a topological space X . A morphism

η from F to G is a natural transformation between the functors F and G , that is, to

each open subset U of X , there is a ring homomorphism ηU : F (U)→ G(U) such that

the diagram

F (U)
ηU //

ρUV
��

G(U)

ρ′UV
��

F (V )
ηV // G(V )

is commutative for all open subsets V ⊆U in X , where ρUV and ρ′UV are the restriction

maps of F and G , respectively.

Definition 1.1.3. Let F be a preasheaf of rings on a topological space X , and x ∈ X .

The stalk of F at x is the ring

Fx := lim−→
x∈U

F (U),

where the direct limit is taken over the open neighborhoods U of x.

Basically, the stalk of F at x consists of the equivalence classes of the disjoint union

of F (U), where U runs through all open neighborhoods of x,

Fx =
(⊔

x∈U

F (U)
)
/∼
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such that a ∼ b for a ∈ F (U) and b ∈ F (V ) if and only if there exists an open

neighborhood W ⊆U ∩V such that a|W = b|W . So, an element of Fx is represented by

sx :=<U,s > for some open neighborhood U of x such that s ∈ F (U). Actually, sx is

the image of the section s ∈ F (U) in the stalk Fx.

If we have a continuous map f : X → Y between topological spaces X ,Y and a

sheaf F on X , then it is natural to define the functor f∗F on Y as follows: for an open

subset U of Y , ( f∗F )(U) :=(F ( f−1(U))) and ρ f−1(U) f−1(V ) is its restriction map when

V ⊆U . Clearly, f∗F is a sheaf on Y .

Definition 1.1.4. A ringed (topological) space (locally ringed in local rings) involves

a topological space X endowed with a sheaf of rings OX on X such that the stalk OX ,x

is a local ring for every x ∈ X . We denote it by (X ,OX). The sheaf OX is called the

structure sheaf of (X ,OX).

Definition 1.1.5. A morphism of ringed spaces (X ,OX) and (Y,OY ) consists of a

continuous map f : X → Y and a morphism f # : OY → f∗OX such that for every x ∈ X ,

the homomorphism f #
∗ : OY,x → OX ,x induced by f # on the stalks OY,x and OX ,x is a

local homomorphism.

1.2 Basic Notions on Schemes

In this section, we define the notion of schemes. In order to define it, we start with

the basic notion of an affine scheme.

Let R be a ring. The prime spectrum of the ring R is defined to be

SpecR := {P⊂ R| P is a prime ideal of R}.

Since a prime ideal is a proper ideal, R is not in SpecR.
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For each ideal I of R, define the set

V (I) := {P ∈ SpecR| I ⊆ P}.

We have the following properties.

Proposition 1.2.1. (by Hartshorne (1977, Lemma 2.2.1)) For any ring R, we have:

(i) V (I)∪V (J) =V (I∩ J) for every pair of ideals I, J of R.

(ii)
∩

λV (Iλ) =V (∑λ Iλ) for every family {Iλ}λ of ideals of R.

(iii) V (R) = /0 and V ( /0) = SpecR.

In view of Proposition 1.2.1, the set X := SpecR can be considered as a topological

space by defining closed subsets of X to be all sets of the form V (I) where I runs

through all ideals of R. So, the open subsets are of the form D(I) := SpecR\V (I) for

some ideal I of R. This topology is called as the Zariski topology. The basic open

subsets of X are defined to be open subsets of the form

X f := D( f ) = D( f R) = SpecR\V ( f R),

where f is an element of R. It is easy to see that the family of the basic open subsets

{X f } f∈R forms a base for the topological space X = SpecR. Actually, the following

proposition shows us that there is a relation between the basic open subsets of SpecR

and R.

Proposition 1.2.2. (Mumford, 1999, Proposition 2.1.2) For a family { fa}a∈A of

elements in a ring R, the equality

SpecR =
∪
a∈A

X fa

holds if and only if the ideal I generated by { fa}a∈A is equal to R.
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A topological space is called quasi-compact if each of its open covers has a finite

subcover. The distinction between compact spaces and quasi-compact spaces exists

because some people assume that a space that is compact must be a Hausdorff space.

From this point of view, we can say that X = SpecR is a quasicompact topological

space. It is not compact because SpecR is not Hausdorff in general.

Now we will define the structure sheaf OX of rings on the prime spectrum X =

SpecR with the Zariski topology.

Let f ∈ R. Then, we have a homeomorphism between

X f ←→ Spec(R f )

by P 7→ PR f , where R f is localization of R at f and P ∈ X f .

Lemma 1.2.3. (Mumford, 1999) Let X = SpecR. Then, for f and g in R we have the

following:

(i) X f ∩Xg = X f g.

(ii) Xg ⊆ X f if and only if g ∈
√
⟨ f ⟩.

Proof. (i) Let P be a prime ideal of R. Then by property of the prime ideal, f and g

are not in P if and only if f .g is not in P. So this proves the equality.

(ii) We know that
√
⟨ f ⟩=

∩
f∈P P, where the intersection is over all prime ideals P

of R that contains f . So, g is not in
√
⟨ f ⟩ if and only if there is a prime ideal P

containing f such that g /∈ P. That is, there is a prime ideal P containing f such

that g /∈ P if and only if Xg * X f .
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For a basic open subset X f of X = SpecR, define

OX(X f ) := R f .

By Lemma 1.2.3, in case Xg ⊆ X f , we have gm = a f for some a ∈ R and m ∈ N. So,

define the restriction map

ρX f Xg : R f −→ Rg

by ρX f Xg(
r
f n ) := amr

gnm for r ∈ R and n ∈ N.

But, in order to be a sheaf, one also need to define OX(U) for open subsets U of X

different from the basic open subsets, that is, the previous construction for basic open

subsets must be extended to all open subsets. In fact, it is proved the existence of such

an extension. In order to do this, we need to give some concepts.

Definition 1.2.4. Let X be a topological space and B be a base of the topological space

X . A presheaf F0 of rings on B that is considered as the full subcategory of Top(X) is

said to be B-sheaf on X if for any open subset U of X in B and any open cover {Ui}i∈I

of U with Ui ∈ B for each i ∈ I, it satisfies the following axioms :

(i) If s ∈ F0(U) such that ρUUi(s) = 0 for each i ∈ I, then s = 0.

(ii) If we have sections si ∈ F0 for each i ∈ I such that ρUiW (si) = ρU jW (s j) for all

i, j ∈ I and all open subsets W ⊆Ui∩U j where W ∈ B , then there is an element

s of F0(U) such that ρUUi(s) = si for each i ∈ I.

From this definition, we obtain the following proposition which will be very useful

in the sequel.

Proposition 1.2.5. (Eisenbud & Harris, 2000, Proposition I.12) Let B be a base of

open subsets on X.

(i) Every B-sheaf on X extends uniquely to a sheaf on X.
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(ii) Given sheaves F and G on X and a collection of maps

φ̃(U) : F (U)→ G(U) for each U ∈ B

commuting with restrictions, there is a unique morphism φ : F → G of sheaves

such that φ(U) = φ̃(U) for all U ∈ B .

The following lemmas help us to use Proposition 1.2.5.

Lemma 1.2.6. (Mumford, 1999, Lemma 2.1.1) Let R be a ring and let X = SpecR. If

X f =
∪

α∈A X fα for some f ∈ R and a collection { fα}α∈A of elements in R, and if for

some a ∈ R f ,

ρX f X fα (a) = 0 for all α ∈ A,

then a = 0.

Lemma 1.2.7. (Mumford, 1999, Lemma 2.1.2) Let R be a ring and let X = SpecR.

Suppose that

X f =
∪

α∈A

X fα

for some f ∈R and a collection { fα}α∈A of elements in R. If we have elements gα ∈R fα

for each α ∈ A such that for every α,β ∈ A,

ρX fα X fα fβ
(gα) = ρX fβ X fα fβ

(gβ),

then there exists g ∈ R f satisfying

gα = ρX f X fα (g) for all α ∈ A.

We know that the family B of basic open subsets of X = SpecR is a base for X =

SpecR. And we have just defined above OX on all basic open subsets. Thanks to the
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Lemmas 1.2.6, 1.2.7, clearly we can say that OX is a B-sheaf. Hence, by Proposition

1.2.5 we can extend this B-sheaf to a sheaf of rings on SpecR, denoted by OSpecR. This

sheaf OSpecR is called the structure sheaf of X = SpecR and any sheaf isomorphic as a

locally ringed space to the structure sheaf OSpecR of SpecR for some ring R is called an

affine scheme. When we talk about an affine scheme, we always write (SpecR,OSpecR)

for some ring R. For any open subset U of a ringed space (X ,OX), it is easy to see that

the structure sheaf on U can be constructed by restricting OX to U ; denote it OX |U .

So, (U,OX |U) is a ringed space. An open subset U of any ringed space (X ,OX) whose

restriction (U,OX |U) to U is affine is called an affine open subset. Recall that each

basic open subset X f = D( f ), f ∈ R, of an affine scheme SpecR can be written as

X f = SpecR f

and moreover each one can define a sheaf OX f of rings over X f , by restricting the

structure sheaf OSpecR of SpecR to the basic open subset X f . Therefore, the basic open

subset X f is an affine open subset.

Finally, we have all datas in order to define a scheme.

Definition 1.2.8. A scheme X is a topological space together with a sheaf OX of rings

on X such that (X ,OX) is locally affine, that is, X is covered by a collection {Ui}i∈I of

affine open subsets of X .

A scheme is obtained by pasting the affine schemes together and the affine schemes

are the generalization of the affine spaces.

Example 1.2.9. Let k be an algebraically closed field. We know that k[x] is principial

ideal domain. So, the prime ideals in k[x] are either 0 or ⟨x−α⟩, where α ∈ k. Then,

Speck[x] = {0}∪{⟨x−α⟩| α ∈ k}.
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Take an ideal I of k[x]. Then I = ⟨ f (x)⟩ for some f (x) ∈ k[x]. Since k is algebraically

closed field,

f (x) = a0

l

∏
j=1

(x−α j)
m j ,

where α j ∈ k and m j ∈ N for each j = 1, . . . l. Hence,

V (I) = {⟨x−α1⟩, . . . ,⟨x−αl⟩}

It follows that

D(I) = {0}∪{⟨x−α⟩| α ∈ k and α ̸= α j, j = 1, . . . , l}

Identify the ideal ⟨x−α⟩ with α ∈ k. But there is no point in k corresponding to the

ideal 0, which is said generic point. So, we have

Speck[x] = A1∪{0},

where A1 is the affine line.

1.2.1 Projective Schemes

In this subsection, we construct and discuss a very important example of schemes

on which our problem is focused: projective schemes. In fact, in terms of

polynomial equations, it concerns homogeneous equations. This type of scheme is

the generalization of the projective space.

Let

S =
⊕
d≥0

Sd

be a graded ring. An element of S in Sd is called a homogeneous element of degree d.
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An ideal I of S is said to be homogeneous if it is generated by homogeneous elements.

This is equivalent to I =
⊕

d≥0 I∩Sd . The ideal of S

S+ :=
⊕
d≥1

Sd

is called the irrelevant ideal of S. Then, take the set

ProjS := { all the homogeneous prime ideals of S not containing S+}.

The reason why we ignore this irrelevant ideal is to generalize the projective space.

What we will do in the following is to endow this point set ProjS with structure of a

scheme. As in the case of an affine scheme, the set V+(I) is define as

V+(I) := {P ∈ ProjS| I ⊆ P}

for a homogeneous ideal I of S.

Proposition 1.2.10. (by Hartshorne (1977, Lemma 2.2.4)) For a graded ring S, we

have:

(i) V+(I)∪V+(J) =V+(I∩ J) for every pair of homogeneous ideals I, J of S.

(ii)
∩

λV+(Iλ) =V+(∑λ Iλ) for every family {Iλ}λ of homogeneous ideals of S.

(iii) V (S) = /0 and V ( /0) = ProjS.

Then, by taking closed subsets of ProjS as subsets of the form V+(I) where I is

a homogeneous ideal of S, ProjS can be endowed with a topology, called Zariski

topology on ProjS. As in the case of affine scheme, we may define the basic open

subsets of ProjS for a given homogeneous element f of S as

D+( f ) := ProjS\V (S f ).
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It remains to define the structure sheaf on ProjS. Clearly, the basic open subsets

cover the topological space ProjS. It can be defined a sheaf on ProjS by giving its datas

on these basic open sets. In fact, we can restrict ourselves to the basic open subsets

D+( f ) where f ∈ S+. Since V+(S+) =
∩

iV+( fi) = /0 where fi’s are the homogeneous

elements that generate R+,

ProjS =
∪

i

D+( fi).

Then it follows that for every homogeneous g ∈ S, we have

D+(g) =
∪

i

D+(g fi)

with g fi ∈ S+ for every i.

If f ∈ S is homogeneous, we denote by S( f ) the subring of the localization S f at f

such that it contains the elements of degree zero in the localization S f . That is, the

elements of S( f ) are of the form s f−n, n≥ 0, degs = ndeg f and s is homogeneous.

Lemma 1.2.11. (Liu, 2002, Lemma 3.36) Let f ∈ S+ be homogeneous element of

degree r and g ∈ S.

(i) There is a canonical homeomorphism θ : D+( f )→ SpecR( f ).

(ii) If D+(g) ⊆ D+( f ), then θ(D+(g)) = D(α), where α = gr f−degg ∈ S( f ) and we

have a canonical morphism S( f )→ S(g) which induces an isomorphism (S( f ))α∼=

S(g).

(iii) If I be a homogeneous ideal of S, then the image of V+(I)∩D+( f ) under θ is the

closed set V+(I( f )), where I( f ) := IS f ∩S(F).

(iv) If I is an ideal of S generated by homogeneous elements {h1, . . . ,hn}, then for

any f ∈ S1, I( f ) is generated by the hi/ f deghi where i = 1, . . . ,n.

By Lemma 1.2.11, it is natural to define OProjS(D+( f )) := S( f ) for a homogeneous
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element f of S. We have the structure sheaf only on the basic open sets. The following

proposition helps us to prove the existence of its extension to ProjS.

Proposition 1.2.12. (Liu, 2002, Lemma 3.38) Let S be graded ring. There is a unique

sheaf of rings on ProjS such that for any homogeneous f ∈ S+, the basic open subset

(D+( f ),OProjS|D+( f ))

is isomorphic to the affine scheme (SpecS( f ),OSpecS( f )) as locally ringed spaces.

Proof. Let X = ProjS and let B be the base for X consisting of the basic open subsets

D+( f ) with f ∈ S+. For any D+( f ) in B , define

OX(D+( f )) := S( f ).

By Lemma 1.2.11, we can easily say that OX is a B-sheaf. So we can uniquely extend

it to a sheaf OX on X . And also the ringed space (D+( f ),OX |D+( f )) is isomorphic to

the affine scheme (SpecS( f ),OSpecS( f )).

So for a graded ring S, we have endowed ProjS with sheaf OProjS. This notion

is similar to the affine prime spectrum, but the projective case differs from it by the

homogeneity requirement.

Example 1.2.13. Let S := R[x0,x1, . . . ,xn] be the polynomial ring over R with

indeterminates x0,x1, . . . ,xn and let Sd be the set of all the homogeneous polynomials

of degree d for each d ∈ N. By definition, for a homogeneous element f of degree d,

S( f ) =
{ g

f m | g ∈ S, g is homogeneous with degg = mdeg f ,m≥ 0
}
.

It is easy to see that

OProjS(D+( f )) = OProjS(D+( f n))
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for any homogeneous element f of S and n ∈ N. For the homogeneous element xi of

degree 1, we have

OProjS(D+(xi)) = S(xi)
∼= R

[
x0

xi
, . . . ,

xi−1

xi
,
xi+1

xi
, . . . ,

xn

xi

]
(1.2.1)

and

OProjS(D+(xix j)) = S(xi.x j) = (S(xi))(x j/xi)

∼= R
[

xl

xm

]
l∈{0,...,n},m=i, j

(1.2.2)

If fi are homogeneous elements of S for each i ∈ {0, . . . ,m}, then we have

m∩
i=0

D+( fi) = D+(
m

∏
i=0

fi).

Thus, for a homogeneous element ∏m
l=1 x jl

il where 0≤ i1 ≤ . . .≤ im ≤ n and jl ∈ N for

each l = 0, . . . ,m, we have

OProjS(D+(
m

∏
l=1

x jl
il )) = S

(∏m
l=1 x

jl
il
)
= S(∏m

l=1 xil )

∼= R
[

xs

xt

]
s∈{0,...,n},t∈{i1,...,lm}

. (1.2.3)

Also, for a homogeneous element g which is a factor of some homogeneous element

f , we can reach to S( f ) by inverting the other factors of f except for g in S(g). For

example, S(xi1 ...xil+1)
where 0≤ i1 < i2 < .. . < il ≤ n can be obtained from S(xi1 ...xil )

by

inverting all the elements xil+1/xi j where 1≤ j ≤ l.

By Proposition 1.2.12, we have the structure sheaf OProjS on ProjS where S =

R[x0, . . . ,xn] by taking the datas obtained above on the basic open subsets. We use the

notation Pn
R for the ringed space (ProjS,OProjS) and the notation An+1

R for the ringed
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space (SpecS,OSpecS) where S = R[x0,x2, . . . ,xn].

For any open subset U of a scheme (X ,OX), the ringed space (U,OX |U) is again

a scheme and is called the open subscheme of X . But unfortunately, we can not say

the same thing for a closed subset of X . Here we will not give the notion of a closed

subscheme of a scheme. See Hartshorne (1977, Section 2.3).

Definition 1.2.14. A projective scheme over a ring R is an R-scheme that is isomorphic

to a closed subscheme of Pn
R for some n > 0.

The following example explains the relation between the notion of a projective

scheme and the notion of a projective space.

Example 1.2.15. (Liu, 2002, Lemma 3.43) Let k be a field and V be a finite

dimensional vector space over k. We have the following equivalence relation ∼

on V/{0} : u ∼ v if there exists λ ∈ k different from zero such that u = λv. So

P(V ) :=V/∼ is a projective space in the sense of the classical projective geometry. A

point of projective space represents the line passing through zero and in the direction

of this point. Let us take V = kn+1. For α = (α0, ...,αn) ∈ kn+1 \ 0, the equivalence

class [α] is a point of P(kn+1) which is denoted by [α] = α = (α0 : ... : αn). These

αi’s are called the homogeneous coordinates of [α] and, as usual, we use the notation

[α] = α = [α0 : . . . : αn].

Assume α0 ̸= 0. Then the ideal I of k[x0, . . . ,xn] generated by α jxi−αix j, 0 ≤

i, j ≤ n is clearly homogeneous and it is a prime ideal since k[x0, . . . ,xn]/I ∼= k[x0].

Also I doesn’t contain the irrelevant ideal. So I is in Pn
k . In fact I is rational. Since

xi−a−1
0 aixi ∈ I for every i, it follows that I ∈ D+(x0). So I corresponds to the ideal of

k[xi/x0]i generated by {xi/x0−αi/α0}i by Lemma 1.2.11-(ii). Therefore k(I) = k.

Define

τ : P(kn+1)−→ Pn
k
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such that τ([α]) = I as defined above. Then τ is a bijection from the projective space

P(kn+1) onto the set Pn
k(k) of rational points of Pn

k (see Liu (2002, Definition 2.19,

Definition 3.30, Example 3.29, Lemma 3.43)).

Let [β] ∈ P(kn+1) be a point with homogeneous coordinates [β0 : . . . : βn] such that

τ([β]) = τ([α]). Then β0 ̸= 0 because otherwise x0 ∈ τ([β]). By considering the points

τ([β]),τ([α]) in D+(x0)∼= An
k , we obtain α−1

0 = β−1
0 βi for every i. So βi = (α−1

0 β0)αi

for every i. It follows that [β] = [α]. That is, τ is injective.

Let p ∈ Pn
k(n). We may assume, for example, that p ∈ D+(x0). Let αi be the image

of xi/x0 ∈O(D+(x0)) in k = k(p). Consider the point [α]∈P(kn+1) with homogeneous

coordinates [α0 : . . . : αn]. Then we have τ([α]) = p. This implies the surjectivity of τ.

1.3 Quasi-coherent Sheaves

Let (X ,OX) be a scheme. An OX -module is a sheaf F of abelian groups on X , plus,

a Γ(U,OX)-module structure on Γ(U,F ) for each open subset U of X such that if we

have open subsets V ⊆U of X , then the diagram

Γ(U,OX)×Γ(U,F )

��

// Γ(U,F )

��
Γ(V,OX)×Γ(V,F ) // Γ(V,F )

commutes.

Definition 1.3.1. Let (X ,OX) be a ringed space. An OX -module F is said to be

quasi-coherent if for every x ∈ X , there exists an open neighborhood U of x such that

the following sequence of OX -modules is exact for some indexing sets I and J

O
(J)
X |U → O

(I)
X |U → F |U → 0.
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F is said to be coherent if the sets I and J are finite.

1.3.1 Quasi-coherent Sheaves on an Affine Scheme

Now we will classify quasi-coherent sheaves on the affine scheme X = SpecR.

Let M be an R-module. It is well-known that the localization M f of M at f , where

f ∈ R, is an R f -module and the localization MP of M at a prime ideal P of R is an

RP-module. For a basic open subset D( f ) of X = SpecR, assign M f . Then similar

properties hold as in Lemmas 1.2.6 and 1.2.7. As the structure sheaf OSpecR was

constructed, it can be proved that there is a unique OX -module M̃ on X = SpecR

such that Γ(D( f ),M̃) = M f for all f ∈ R and Γ(U,M̃) is a Γ(U,OSpecR)-module

for each open subset U of X . For open subsets V ⊆ U , the restriction map fUV

of M̃ is a Γ(U,OSpecR)-module homomorphism by considering Γ(V,OSpecR) as a

Γ(U,OSpecR)-module with respect to the restriction map ρUV of the affine scheme

OSpecR.

Proposition 1.3.2. (Liu, 2002, Proposition 5.1.5) For the affine scheme X = SpecR,

we have:

(i) If {Mi}i is a family of R-modules, then ˜(
⊕

i Mi)∼=
⊕

i(M̃i).

(ii) A sequence of R-modules L → M → N is exact if and only if the associated

sequence of OX -modules L̃→ M̃→ Ñ is exact.

(iii) For any R-module M, the sheaf M̃ is quasi-coherent.

(iv) Let M,N be two R-modules. Then we have a canonical isomorphism

M̃⊗R N ∼= M̃⊗OX Ñ.
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M̃ is said to be the sheaf associated to M on SpecR. The following theorem gives

us a different view to the quasi-coherent sheaves by means of the sheaf associated to

some modules.

Theorem 1.3.3. (Liu, 2002, Theorem 5.1.7) Let X be a scheme and F be an

OX -module. Then F is quasi-coherent if and only if for every affine open subset U

of X, we have

F |U ∼= F̃ (U).

The next proposition gives us the reduced version of the previous theorem.

Proposition 1.3.4. (Hartshorne, 1977, Proposition 2.5.4) Let X be a scheme and F be

an OX -module. Then F is quasi-coherent if and only if F is locally in the form of the

sheaf modules associated to some modules, that is, X can be covered by affine open

subsets {Ui = SpecRi}i, such that there is a collection of Ri-module Mi with F |Ui
∼= M̃i.

By (Hartshorne, 1977, Proposition (2.5.2-(b,e))), we can say that an OX -module F

for some scheme X is quasi-coherent if and only if it satisfies the following conditions

on the affine open subsets:

(i) Let V ⊆ U be two affine open subsets of the scheme X . Then we have an

isomorphism of OX(V )-modules given by

OX(V )⊗OX (U) F (U)
id⊗ fUV−−−−→ OX(V )⊗OX (V ) F (V )∼= F (U)

where fUV : F (U)→ F (V ) is the restriction map of the OX -module F .

(ii) If W ⊆V ⊆U for affine open subsets W,V,U , then the composition

F (U)
fUV−−→ F (V )

fVW−→ F (W )

gives F (U)
fUW−→ F (W ).
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1.3.2 Quasi-coherent Sheaves on a Projective Scheme

In this section, we focus on quasi-coherent sheaves on a projective scheme, which

is our main concern in this thesis. On such a scheme X = ProjS, there are some special

sheaves of the form OX(n), called as twisted sheaves, that play an essential role in the

sheaf theory.

Let S be a graded ring, and let M =
⊕

n∈NMn be a graded S-module, that is, SnMm⊆

Mn+m for every n ≥ 0 and m ∈ Z. Now we will construct a quasi-coherent sheaf on

X = ProjS in the following way: Let f be a homogeneous element of the irrelevant

ideal S+. By M( f ) we denote the submodule of the localization M f of M at f containing

the elements of degree zero, that is,

M( f ) := {m f−n ∈M f | m ∈Mndeg f and n ∈ N}.

Clearly, M( f ) is a B( f )-module. Then, we have the same result as in the affine case for

constructing a quasi-coherent OX -module on ProjS.

Proposition 1.3.5. (Liu, 2002, Proposition 5.1.17) With the notation above, there exists

a unique quasi-coherent OX -module M̃ such that

(i) For any nonnilpotent homogeneous element f ∈ S+, M̃|D+( f ) is the

quasi-coherent sheaf M̃( f ) on D+( f )∼= SpecS( f ).

(ii) For any p ∈ ProjS, M̃(p) is isomorphic to M(p).

Remark 1.3.6. Let M =
⊕

n≥0 Mn be a graded S-module. Let N =
⊕

n≥n0
Mn for some

n0 > 0. Then M̃ = Ñ. Because M( f ) = N( f ) for every homogeneous element f ∈ S.

This implies, in particular, that M̃ does not determine M, contrary to the affine case.

One of the most important examples of quasi-coherent sheaves on a projective
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scheme is the twisted sheaf. Firstly we will define a twisting of a graded ring S and,

after that, a twisting of a quasi coherent OX -module.

Definition 1.3.7. Let S be a graded ring. For any n ∈ Z, let S(n) denote the graded

S-module defined by S(n)d = Sn+d . S(n) is called as ‘twist’ of S. Let X = ProjS.

Given n ∈ Z, the twisted sheaf OX(n) is the OX -module S̃(n). The twisted sheaf OX(1)

is known as the twisting sheaf of Serre.

Actually, they play an important role in the theory of projective schemes. Note that

for any homogeneous element f of degree 1 in S, we have

S(n)( f ) =

{
s
f m |s ∈ Sn+m for all m≥ 0

}
.

Definition 1.3.8. Let X = Pn
R and let F be a quasi-coherent OX -module. For n ∈ Z,

F ⊗OX OX(n) is denoted by F (n) and is called the twist of F . For the affine open

subset U of X , we have

F (U) = F (U)⊗OX (U) OX(n)(U).

In fact, the global sections of the twists of F have information about the sheaf. In

this way, the direct sum of all the global sections of its twists is defined as the graded

S-module associated to F , that is, it is the group

Γ∗F =
⊕
n∈Z

Γ(X ,F (n)).

It has the structure of a graded S-module. Because if s ∈ Sd , then s determines a global

section s ∈ Γ(X ,OX(d)) in a natural way. Then, for any t ∈ Γ(X ,F (n)), we define the

product s · t in Γ(X ,F (n+d)) by taking the tensor product s⊗ t and using the natural

map F (n)⊗OX(d)∼= F (n+d).
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On an affine scheme, a quasi-coherent sheaf F is determined by its global sections

F (X). The following proposition is an analogue of this result for projective schemes.

It shows that the quasi-coherent sheaves on the projective scheme that we are interested

in have a special form.

Proposition 1.3.9. (Hartshorne, 1977, Proposition 5.15) Let S = R[x0, . . . ,xn] be the

polynomial ring over a ring R and X = Pn
R. Let F be a quasi-coherent sheaf on X.

Then Γ∗F is a graded S-module and there is a natural isomorphism

β : Γ̃∗(F )→ F .

The next theorem of Serre is one of the most important results in the category of the

quasi-coherent sheaves over the projective scheme;for the proof see Hartshorne (1977,

Theorem 5.17).

Theorem 1.3.10. (Serre, 1955) Let X be a projective scheme over a Noetherian ring

R, let OX(1) be the twisting sheaf of Serre on X, and let F be a coherent OX -module.

Then there is an integer n0 such that for all n ≥ n0, the sheaf F (n) can be generated

by a finite number of global sections.

As a corollary of this theorem, we obtain that, over a Noetherian ring, the twisted

sheaves {O(n) : n ∈ Z} form a family of generators of the category of the coherent

sheaves on a projective scheme; in fact, so is for the category of quasi-coherent sheaves.

Corollary 1.3.11. (Hartshorne, 1977, Corollary 5.18) Let X be projective over a

noetherian ring R. Then any coherent sheaf F on X can be written as a quotient

of a sheaf ε, where ε is a finite direct sum of the twisted sheaves O(ni) for various

integers ni.



CHAPTER TWO

Qco(X) AS A CATEGORY OF REPRESENTATIONS

Let X be a scheme and Qco(X) be the category of quasi-coherent sheaves on X . The

aim of this chapter is to give a new and simpler category that is isomorphic to Qco(X).

So, it allow us to work in Qco(X) more easily.

We start by defining the category of quasi-coherent R-modules associated to a

quiver.

2.1 The Category of Quasi-coherent R-Modules

A quiver Q is a directed graph which is given by the pair (V,E), where E denotes

the set of all edges of the quiver Q and V is the set of all vertices. An edge a of the

quiver Q from a vertex v1 to a vertex v2 is denoted by a : v1→ v2.

A representation R of a quiver Q in the category of rings means that for each vertex

v ∈V we have a ring R(v) and a ring homomorphism

R(a) : R(v)−→ R(w),

for each edge a : v→ w.

Now it is reasonable to talk about an R-module. An R-module M is given by an

R(v)-module M(v), for each vertex v ∈V , and an R(v)-linear morphism

M(a) : M(v)−→M(w)

for each edge a : v→w∈ E. Since R(a) is a ring homomorphism for an edge a : v→w,

25
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the R(w)-module M(w) can be thought as a R(v)-module.

Definition 2.1.1. Let Q = (V,E) be a quiver and R be its representation in the category

of rings. An R-module M is quasi-coherent if for each edge a : v→ w, the morphism

idR(w)⊗R(v)M(a) : R(w)⊗R(v) M(v)→ R(w)⊗R(w) M(w)

is an R(w)-module isomorphism.

For a fixed quiver Q and a representation R, the category R-Mod is given by a family

of all R-modules. Any morphism f : M→ N between R-modules M and N consists

of R(v)-module homomorphisms fv : M(v)→ N(v) for every vertex v such that the

following diagram

M(v)

fv
��

M(a) // M(w)

fw
��

N(v)
N(a)

// N(w)

commutes for each edge a : v→ w in Q.

The tensor product M⊗R N, where M and N are R-modules is an R-module such

that for each vertex v

(M⊗R N)(v) := M(v)⊗R(v) N(v)

with the canonical map (M⊗R N)(a) := M(a)⊗R(v) N(a) for an edge a : v→ w.

Then we obtain the notion of a flat R-module. An R-module M is flat if and only if

id⊗ f is a monomorphism for any R-module monomorphism f : N1→ N2. It can be

shown easily that the R-module M is flat in the category of R-modules if and only if

for each vertex v, M(v) is a flat R(v)-module.

The category of quasi-coherent R-modules for a fixed quiver Q and a fixed

representation R of the quiver Q is defined as the full subcategory of the category
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R-Mod that contains all quasi-coherent R-modules. We will denote it by RQco-Mod.

Let us investigate the category RQco-Mod.

Before giving the following lemma, note that a direct sum of R-modules is defined

componentwise.

Lemma 2.1.2. Let R be a representation of a quiver Q. If we have a family {Mi}i∈I of

quasi-coherent R-modules, then their direct sum Mi is in RQco-Mod, as well.

Proof. Let {Mi}i∈I be a family of quasi-coherent R-modules. The morphism αi(a) :

Mi(v)→Mi(w) denotes the morphism Mi(a) for each edge a : v→w. By the definition,

for each edge v, we have

(⊕
i∈I

Mi

)
(v) :=

⊕
i∈I

Mi(v).

We know that the tensor product has the distribution property over direct sums.

Therefore, for each edge v→ w, we have an isomorphism

R(w)⊗R(v)

(⊕
i∈I

Mi(v)

)
∼=

⊕
i∈I

(R(w)⊗R(v) Mi(v))

and this isomorphism is natural. Since each Mi is quasi-coherent, this implies the

isomorphism of id⊗(⊕i∈Iαi(a)).

As in the case of the direct sum, we define kernel (Ker) and cokernel (Coker)

of any morphism between quasi-coherent R-modules componentwise. That is, if

f : M → N is a morphism between quasi-coherent R-modules, then (Ker f )(v) :=

Ker( fv) and (Coker f )(v) :=Coker( fv) for each vertex v and morphisms (Ker f )(a) and

(Coker f )(a) for an edge a : v→w are obtained by the properties of kernel and cokernel.

Easily, it can be shown that these are well-defined. Since the tensor product preserves

epimorphisms, clearly we have that cokernel of any morphism between quasi-coherent
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R-modules is again quasi-coherent. But it is not true for kernel. So, we need some

additional properties. The following lemma answers our problem.

Lemma 2.1.3. (by Enochs, Estrada, Garcı́a Rozas & Oyonarte (2003, Proposition

2.1)) Suppose that the representation R of a quiver has a property that R(w) is a flat

R(v)-module for each edge v→ w. Then kernel of any morphism f : M→ N between

two quasi-coherent R-modules is again quasi-coherent.

Proof. Suppose the assumption. Then we have a commutative diagram

Ker( fv)
� � //

��

M(v)
fv //

α
��

N(v)

β
��

Ker( fw)
� � // M(w)

fw // N(w)

.

By tensoring it with R(w), we have

R(w)⊗Ker( fv) //

��

R(w)⊗M(v)

id⊗α
��

id⊗ fv // R(w)⊗N(v)

id⊗β
��

R(w)⊗Ker( fw) // R(w)⊗M(w)
id⊗ fw // R(w)⊗N(w)

where id⊗α is an isomorphism. Since R(w) is a flat R(v)-module, the top and bottom

rows of the first square are monomorphisms. Also Ker(id⊗ fv) = R(w)⊗Ker( fv) and

Ker(id⊗ fw) = R(w)⊗Ker( fw). So, the left column of the diagram is an isomorphism.

Because of the property of modules, it can be directly said that if f : M→ N is

a morphism whose kernel is 0, which is zero on each vertex, then f is a kernel of

its cokernel. And vice versa for cokernel. So, under the condition that R(w) is a

flat R(v)-module for each edge v→ w, it follows that the category RQco-Mod is an

abelian category. We will say that the representation R is flat if the ring R(w) is a flat

R(v)-module for each edge a : v→ w.
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The category RQco-Mod is cocomplete. Indeed, direct limits always exist thanks to

the existence of cokernel and direct sums. It can be also computed componentwise.

Since in the category of modules the direct limit is an exact functor, the direct limit in

RQco-Mod preserves monomorphisms on each vertex. So, the direct limit is exact in

the category RQco-Mod.

Finally, this category has a system of generators as a conclusion of Enochs &

Estrada (2005, Corollary 3.5). Hence, if the representation R is flat, then the category

of quasi-coherent R-modules is a Grothendieck category.

2.2 A Category Isomorphic to Qco(X)

In the previous section, we have defined the category R-Mod and in this manner

the category RQco-Mod. After that, we have explained its structure. As we proved

before, the category RQco-Mod is a Grothendieck category for a fixed quiver and a flat

representation R. In this section, we show that for every scheme, there is a quiver and

its representation R, which is flat, such that the category of quasi-coherent sheaves and

the category of quasi-coherent R-modules are isomorphic categories.

Consider the category of quasi-coherent sheaves on a scheme (X ,OX), denoted

by Qco(X). By the definition of a scheme, the scheme X has a family B of affine

open subsets which is a base for X such that this family uniquely determines the

scheme (X ,OX). (for example, it is enough to take the family of the affine open

subsets covering X and U ∩V for all U,V in this family). And also this family

helps to uniquely determine the quasi-coherent OX -modules. That is, a quasi-coherent

OX -module is determined by giving an OX(U)-module MU for each U and a linear map

fUV : MU →MV whenever V ⊆U , V,U ∈ B , satisfying;

(i) OX(V )⊗OX (U) MU → OX(V )⊗OX (V ) MV is an isomorphism with respect to the
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morphism id⊗ fUV for all V ⊆U .

(ii) If W ⊆V ⊆U , where W,V,U ∈B , then the composition MU →MV →MW gives

MU →MW .

By this way, we are able to construct a quiver Q = (V,E) with respect to the scheme

(X ,OX). Let B be a base of the scheme X containing affine open subsets such that OX

is B-sheaf. Now, define a quiver Q having the family B as the set of vertices, and an

edge between two affine open subsets U,V ∈ B as the only one arrow U→V provided

that V ( U . Fix this quiver. Take the representation R as R(U) = OX(U) for each

U ∈ B and the restriction map ρUV : OX(U)→ OX(V ) for the edge U → V . Then the

functor

Φ : Qco(X) 7−→ RQco-Mod,

which was defined by above argument, is well-defined. In fact, it is an isomorphism of

categories.

The quiver we have just constructed is not unique for the category of quasi-coherent

OX -modules. There can be another base B such that OX is a B-sheaf. But as

it was stated, it is enough to take a family of affine open subsets covering X and

all intersections U ∩V , where U,V are in this family. Since these categories are

isomorphic, to study on the category Qco(X) are the same as on the category

RQco-Mod. To see and understand something about quasi-coherent sheaves is easier

on the category RQco-Mod. So, in the rest we will use generally this category instead

of the category Qco(X).
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2.2.1 Examples

Example 2.2.1. Let X = P1
R. Then the affine open subsets D+(x0),D+(x1) and their

intersection D+(x0)∩D+(x1) = D+(x0x1) are the desired affine open subsets in order

to obtain the isomorphic category RQco-Mod. Since we have

D+(x0)←↩ D+(x0x1) ↪→ D+(x1),

our quiver Q is

Q≡ • −→ •←− •.

And its representation is

R≡ R[x] ↪→ R[x,x−1]←↩ R[x−1],

by Example 1.2.13, where x = x1
x0

and so x−1 = x0
x1

.

Therefore, an R-module (equivalently an OP1
R
-module) M is given by

M≡M1
f1−→M

f2←−M2,

where M1 is an R[x]-module, M2 is an R[x−1]-module and M is an R[x,x−1]-module.

Then M is quasi-coherent if and only if idR[x,x−1]⊗ f1 and idR[x,x−1]⊗ f1 are

isomorphisms of R[x,x−1]-modules.

Because of the fact that R[x,x−1] ∼= S−1R[x] (the localization of R[x] at S) where

S = {1,x,x2, . . .}, we have

R[x,x−1]⊗R[x] M1 ≃ S−1R[x]⊗R[x] M1.
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It is well known that S−1R[x]⊗M1 is isomorphic to the localization S−1M1 of M1 at S

naturally. Clearly, R[x,x−1]⊗R[x,x−1] M ∼= M as R[x,x−1]-modules. So, the morphism

idR[x,x−1]⊗ f1 is precisely the map S−1 f1, which is from S−1M1 to M. By the similar

argument for the isomorphism idR[x,x−1]⊗ f2, with T = {1,x−1, . . .} instead of S, we

obtain the following equivalent condition for being quasi-coherent R-modules on the

scheme P1
R ; an R-module M is quasi-coherent if and only if S−1 f1 and T−1 f2 are

isomorphisms where S = {1,x,x2, . . .} and T = {1,x−1,x−2, . . .}. It means that we

may obtain the R[x,x−1]-module M by inverting x in the R[x]-module M1 and also by

inverting x−1 in the R[x−1]-module M2.

Example 2.2.2. Let X = P2
R. Then take the basic affine open subsets D+(x0),

D+(x1),D+(x2) and all possible intersections D+(x0)∩D+(x1) = D+(x0x1), D+(x0)∩

D+(x2) = D+(x0x2),D+(x1)∩D+(x2) = D+(x1x2),

D+(x0)∩D+(x1)∩D+(x2) = D+(x0x1x2). We have:

OP2
R
(D(x0)) = R[x0,x1,x2](x0)

∼= R[x,y],

OP2
R
(D(x1)) = R[x0,x1,x2](x1)

∼= R[x−1,z],

OP2
R
(D(x2)) = R[x0,x1,x2](x2)

∼= R[y,z−1],

OP2
R
(D(x0x1)) = R[x0,x1,x2](x0x1)

∼= R[x,x−1,y,z],

OP2
R
(D(x0x2)) = R[x0,x1,x2](x0x2)

∼= R[x,y,y−1,z−1],

OP2
R
(D(x1x2)) = R[x0,x1,x2](x1x2)

∼= R[x−1,y−1,z,z−1], and

OP2
R
(D(x0x1x2)) = R[x0,x1,x2](x1x2x3)

∼= R[x,x−1,y,y−1,z,z−1],
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where x = x1/x0, y = x2/x0, z = x2/x1. Thus, our quiver is

•

•

??~~~~~~~
•

OO

•

__@@@@@@@

•

OO ??~~~~~~~
•

__@@@@@@@

??~~~~~~~
•

__@@@@@@@

OO

and its representation is

R[x,x−1,y,y−1,z,z−1]

R[x,x−1,y,z]

55kkkkkkkkkkkkkk

R[x,y,y−1,z−1]

OO

R[x−1,y−1,z,z−1]

iiTTTTTTTTTTTTTTT

R[x,y]

OO 55kkkkkkkkkkkkkkk
R[x−1,z]

iiSSSSSSSSSSSSSS

55jjjjjjjjjjjjjjjj
R[y,z−1]

iiTTTTTTTTTTTTTTTT

OO

Example 2.2.3. Let X = Pn
R where n ∈ N. Then again take a base containing affine

open subsets D+(xi) for all i = 0, . . .n, and all possible intersections. In this case, our

base contains basic open subsets of this form

D+(∏
i∈v

xi),

where v⊆ {0,1, . . . ,n}.

So, the vertices of our quiver are all subsets of {0,1, . . . ,n} and we have only

one edge v→ w for each v ⊆ w ⊆ {0,1, . . . ,n} since D+(∏i∈w xi) ⊆ D+(∏i∈v xi). Its

representation has

ORn
R
(D(∏

i∈v
xi)) = R[x0, . . . ,xn](∏i∈v xi)

on each vertex v, and by Example 1.2.13, it is isomorphic to the polynomial ring on

the ring R with the variables x j
xi

where j = 0, . . . ,n and i ∈ v. We will denote this

polynomial ring by R[v]. Then the representation R with respect to this quiver has
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vertex R(v) = R[v] and edges R[v] ↪→ R[w] as long as v⊆ w.

Finally, an R-module M is quasi-coherent if and only if

S−1
vw fvw : S−1

vw M(v)−→ S−1
vw M(w) = M(w)

is an isomorphism as R[w]-modules for each fvw : M(v)→ M(w) where Svw is the

multiplicative group generated by the set {x j/xi| j ∈ w\ v, i ∈ v}∪{1} and v⊂ w.



CHAPTER THREE

MORE ON Qco(P1
R)

In this chapter we go on a trip through the category Qco(P1
R) to understand its

structure. We prove that Qco(P1
R) does not have any projective object. But one of

the best part of this category is that it has a nice family of generators although it has

no projective objects. Grothendieck (1957) characterized all vector bundles on P1
k by

using these nice generators. To deal with these, we use the category isomorphic to

Qco(P1
R) introduced in the previous chapter. So, throughout this chapter, we always

consider the representation R of P1
R as

R≡ R[x] ↪→ R[x,x−1]←↩ R[x−1]

where R is commutative ring and a quasi coherent sheaf over P1
R is a representation of

R of the form

M
f−→ P

g←− N

with an R[x]-module M, an R[x−1]-module N and an R[x,x−1]-module P and the

homomorphisms f ,g preserving their module structures such that

S−1 f : S−1M −→ S−1P = P

and

T−1g : T−1N −→ T−1P = P

are R[x,x−1] isomorphisms, where S = {1,x,x2, . . .} and T = {1,x−1,x−2, . . .}. Since

R[x,x−1] is the localization of R[x] at S and localizations preserve exactness, R[x,x−1]

is a flat R[x]-module. And by the same argument, it is also a flat R[x−1]-module. So,

according to the argument in Chapter 2, the category of quasi-coherent sheaves on P1
R

is a Grothendieck category.

35
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3.1 Serre’s Twisted Sheaves on P1
k as Representations of Quivers

Firstly, let us classify all the quasi-coherent sheaves of the form

R[x]
f−→ R[x,x−1]

g←− R[x−1].

Proposition 3.1.1. (Enochs, Estrada & Torrecillas, Proposition 14.3.1) Any

quasi-coherent sheaf of the form

R[x]
f−→ R[x,x−1]

g←− R[x−1]

is isomorphic to a quasi-coherent sheaf

R[x] ↪→ R[x,x−1]
xn
←− R[x−1]

for some n ∈ Z.

Proof. Let

d : R[x−1]−→ S−1R[x] = R[x,x−1]

be the homomorphism (S−1 f )−1 ◦g. Then we have a diagram

R[x]

id
��

� � // R[x,x−1]

S−1 f
��

R[x−1]
doo

id
��

R[x]
f // R[x,x−1] R[x−1]

goo

The representation

R[x] ↪→ R[x,x−1]
d←− R[x−1]

is quasi-coherent. Indeed, T−1d = T−1(S−1 f )−1 ◦ T−1g and T−1(S−1 f )−1 =

(S−1 f )−1. Since T−1g is an isomorphism, T−1d is an isomorphism. Therefore
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T−1d(1) is a unit of R[x,x−1]. Hence, d(1) = T−1d(−1) = ux−n for some unit u and

some n ∈ Z, that is, d = uxn. We can omit u because

R[x] ↪→ R[x,x−1]
uxn
←−− R[x−1]

and

R[x] ↪→ R[x,x−1]
xn
←− R[x−1]

are isomorphic. Therefore we may say that d = xn for some n ∈ Z, as desired.

In fact, the twisted sheaf referred in Proposition 3.1.1 is unique. It is easy to prove

that O(n) and O(m) are isomorphic if and only if n = m.

In Subsection 1.3.2, we motivated twisted sheaves. Essentially, in terms of

quasi-coherent R-modules, a representation

R[x] ↪→ R[x,x−1]
xn
←− R[x−1]

with n ∈ Z corresponds to the unique twisted sheaf (or line bundle) of degree n on P1
R,

which is denoted by OP1
R
(n).

Definition 3.1.2. Any R[x] ↪→ R[x,x−1]
xn
←− R[x−1] with n∈Z is denoted by OP1

R
(n) and

called as a twisted sheaf. We shall shortly use the notation O(n) for OP1
R
(n).

Proposition 3.1.3. (Enochs, Estrada & Torrecillas, Proposition 14.3.3) For any couple

of integers n,m,

O(n)⊗O(m)∼= O(n+m).

Proof. If we take the canonical isomorphisms α1 : R[x]⊗R[x]→ R[x], α2 : R[x,x−1]⊗
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R[x,x−1]→R[x,x−1] and α3 : R[x−1]⊗R[x−1]→R[x−1], we have the following diagram

R[x]⊗R[x] �
� //

α1
��

R[x,x−1]⊗R[x,x−1]

α2
��

R[x−1]⊗R[x−1]

α3
��

xn⊗xm
oo

R[x] �
� // R[x,x−1] R[x−1]

xn+m
oo

This proves the isomorphism O(n)⊗O(m)∼= O(n+m).

The following proposition shows us that the family {O(n) : n ∈ Z} constitutes a

family of flat generators for the category Qco(P1
R).

Proposition 3.1.4. (Enochs, Estrada & Torrecillas, Proposition 3.4) The family

{O(n) : n ∈ Z} generates the category of quasi-coherent sheaves on P1
R.

Proof. Let M be a quasi-coherent sheaf on P1
R. So, it is of the form

M
f−→ P

g←− N.

Let m be an element of M. Define the morphism αm : R[x]→M by αm(1) := m. With

respect to m, define βm : R[x,x−1]→ P by βm(1) := f (m). Since M is quasi-coherent,

we have the isomorphism T−1g : T−1N→ T−1P = P. So, for f (m) ∈ P, there exists a

unique xnk∈ T−1N for some n∈N such that T−1g(xnk) = xng(k) = f (m). Then define

a morphism γm : R[x−1]→ N by γm(1) := k. And by taking the twisted sheaf O(−n),

the following diagram

R[x]

αm
��

� � // R[x,x−1]

βm
��

R[x−1]
x−n

oo

γm
��

M
f // P N

goo

is commutative.
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Let n ∈ N. Likewise, define γn : R[x−1]→ N by γn(1) := n and βn : R[x,x−1]→ P

by βn(1) := g(n). Again by the condition of quasi-coherence, there is a unique v/xn′ ∈

S−1M such that f (v)/xn′ = g(n) for some n′ ∈ N. Accordingly, define the morphism

αn : R[x]→M by αn(1) := v. Thus, we have a morphism

(αn,βn,γn) : (R[x] xn′

→ R[x,x−1]←↩ R[x−1])−→ (M
f→ P

g→ N).

Since the representation R[x] xn′

→ R[x,x−1]←↩ R[x−1] is isomorphic to the twisted sheaf

O(−n′), we may see it as O(−n′).

Finally if p ∈ P, then there exists a unique m/xi ∈ S−1M and x jn ∈ T−1N such

that f (m)/xi = x jg(n) = p where i, j ∈ N. So, define the morphisms αp : R[x]→ M

by αp(1) = m, βp : R[x,x−1]→ P by βp(1) := p and γp : R[x−1]→ N by γp(1) := n.

Hence, the diagram

R[x]

αp
��

xi
// R[x,x−1]

βp
��

R[x−1]
x− j

oo

γp
��

M
f // P N

goo

is commutative. And again by Proposition 3.1.1, the representation on the top row of

the diagram is isomorphic to a unique twisted sheaf O(l) for some l ∈ Z.

In the above argument, what we have done is to cover all elements of M,N and P

by the twisted sheaves. By considering the direct sum of all O(n) that we found, we

obtain an epimorphism
⊕

O(n)→ (M
f→ P

g→ N).

Above we proved that the category of quasi-coherent sheaves on P1
R is generated by

the twisted sheaves. Now we will show that this category has no projective objects.

Corollary 3.1.5. (Enochs, Estrada, Garcı́a Rozas & Oyonarte, 2004b, Corollary 2.3)

There is no nonzero projective object in the category Qco(P1
R).
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Proof. Suppose for the contrary that P is a nonzero projective object in Qco(P1
R).

By Proposition 3.1.4 there is an epimorphism
⊕

n∈ZO(n)(xn) → P where xn ∈ N for

each n ∈ Z. Suppose that we have a morphism O(n)→ P given by (α,β,γ)n as in

the diagram above. Then for any natural number n0 we have two morphisms O(n+

n0)→ P given by (xn0α,xn0β,γ)n+n0 and (α,β,x−n0γ)n+n0 . The two morphisms give

the morphism

O(n+n0)⊕O(n+n0)→ P .

Applying this to the sum above, we obtain an epimorphism

⊕
O(n+m)(xn)⊕

⊕
O(n+n0)

(xn) −→ P

for each n0. Since P is projective, there will be a section, namely (γ1,γ,γ2). We

will prove that we can find a certain natural number n0 such that there does not exist a

nonzero morphism between P and
⊕

O(n+n0) . If 0 ̸=m∈M, then f (m) = g(a)/x−1,

that is, g(a) = x−1 f (m) for some a ∈ N. Suppose that

γ1(m) = (. . . ,ρ1(x), . . . ,ρk(x), . . .)

and

γ2(a) = (. . . ,q1(x−1), . . . ,qt(x−1), . . .).

Then

γ◦g(a) = γ(x−1 f (m)) = x−1γ( f (m)) = γ1(m) = x−1(ρ1(x), . . . ,ρk(x))

Thus ord(x−1 ρi(x)) ≥ −1 for every 1 ≤ i ≤ k. But, by the commutativity of the
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diagram, we also have

γ◦g(a) =
⊕

x−(n+n0)(γ2(a)) =
⊕

x−(n+n0)(q1(x−1), . . . ,qt(x−1))

= x−n0(r1(x−1), . . . ,rt(x−1)).

with ord(x−n0ri(x−1)) ≤ −n0 for all 1 ≤ i ≤ t. So, n0 = l + 1 gives the desired

contradiction.

3.2 Decomposition of Finite Dimensional Vector Bundles:

Grothendieck’s Theorem

As we said before, Grothendieck characterized all the vector bundles on the

projective line P1(k), where k is a field. In this section, we state Grothendieck’s

Theorem in terms of kQco-Mod. We also prove the existence of an adjoint pair between

the categories R[x]-Mod and Qco(P1
R).

Let H be a functor from Qco(P1
R) to R[x]-Mod defined as follows: For a

representation M ≡ A→ C← B in Qco(P1
R), H(M) is the R[x]-module A, and for a

morphism (α,β,γ) : M→ N between two representations, H((α,β,γ)) = α.

Proposition 3.2.1. (Enochs, Estrada, Garcı́a Rozas & Oyonarte, 2004b, Proposition

3.1) The functor H has a right adjoint.

Proof. Let D be the functor from R[x]-Mod to Qco(P1
R) defined as follows: for an

R[x]-module L,

D(L)≡ L ↪→ S−1L id←− S−1L
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and for an R[x]-morphism α : L→ N,

D(α) = (α,S−1α,S−1α).

To prove that D is the right adjoint of H, for each M ∈ Qco(P1
n) and R[x]-module L,

we must define an isomorphism τ of Abelian groups

ΦML : HomQcoP1
R
(M,D(L))→ HomR[x](H(M),L).

Define ΦML((α,β,γ)) = α for every morphism (α,β,γ) : M→ D(L). It is easy to see

that ΦML is a homomorphism of abelian groups.

Let (α′,β′,γ′) and (α,β,γ) be two morphisms between A
f→C

g←B and L ↪→ S−1L id←

S−1L such that α = α′. By commutativity, we have β′o f = α′ = α = β◦ f . So S−1(β′ ◦

f ) = S−1(β ◦ f ). This implies the equality β′ ◦ S−1 f = β ◦ S−1 f . Since S−1 f is an

isomorphism, we have β′ = β. That is, ΦML is a monomorphism.

Suppose that we are given a morphism α : A→ L. Define the morphisms β := S−1α◦

(S−1 f )−1 : C→ S−1L and γ := S−1α◦(S−1 f )−1 ◦g : B→ S−1L. Then (α,β,γ) satisfies

the commutativity between A
f→C

g← B and L ↪→ S−1L id←− S−1L and τ((α,β,γ)) = α.

Hence ΦML is an epimorphism.

It follows that ΦML is a group isomorphism. Thus, (H,D) is an adjoint pair.

By symmetry, the functor

D′ : R[x−1]-Mod→QcoP1
R
,

D′(N) ≡ T−1N → T−1N ← N, is the right adjoint of the functor H ′ : QcoP1
R
→

R[x−1]-Mod, H ′(M→ P← N) = N.
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Proposition 3.2.2. The functor H does not have a left adjoint.

Proof. Suppose for the contrary that H has a left adjoint T : R[x]-Mod→ Qco(P1
R).

Then,

HomQcoP1
R
(T (L),M)∼= HomR[x](L,H(M))

for any R[x]-module L and a quasi-coherent sheaf M. Clearly, the functor H is an

exact functor. We know that the left adjoint of an exact functor preserves projective

objects. Here, R[x] is a projective object in the category R[x]-Mod. So, T (R[x]) must

be projective. But, in the category Qco(P1
R) there is no nonzero projective object.

This implies T (R[x]) = 0 where 0≡ 0→ 0← 0. Since (T,H) is an adjoint pair, if we

apply this to the pair (R[x],R),where R ≡ R[x] ↪→ R[x,x−1]←↩ R[x−1], we obtain an

isomorphism

HomQcoP1
R
(0,R)∼= HomR[x](R[x],R[x])

which is impossible. This contradicts with our assumption. So the functor H has no

left adjoint.

Now we are turning to the case of a field, that is, we take R= k for a field k. It is well

known that vector bundles over the projective line, P1(k), are the direct sum of the line

bundles in a unique way. This is Grothendieck’s Theorem (see Grothendieck (1957)).

The representation in Qco(P1
k) which corresponds to a vector bundle is M→ P← N,

where M is a finitely generated and free k[x]-module and N is a finitely generated and

free k[x−1]-module. For an elementary proof see Enochs, Estrada & Torrecillas (2006).

Theorem 3.2.3. (Grothendieck, 1957) Each representation in Qco(P1
k) of the form

M→ P← N, with M,N finitely generated and free, is a direct sum of

O( ji)≡ k[x] ↪→ k[x,x−1]
x ji←− k[x−1] i = 1, . . . ,n
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where ji ∈ Z for i = 1 . . . ,n with j1 ≤ j2 ≤ . . .≤ jn. Moreover the integers { j1, . . . , jn}

are uniquely determined.



CHAPTER FOUR

FILTRATION IN R-MOD

In this chapter, we introduce the notion of a filtration with respect to a class C of

modules. The closure under this type of C -filtrations is often an important property

of the class, and recently the closure of a class under its filtrations has began to play

an important role in several areas of mathematics, for instance in Quillen’s theory of

model categories and in the category of cotorsion pairs.

After that we state Hill’s Lemma which allows to expand a single C -filtration to a

large family satisfying additional properties. This tool is essential in our main concern

in Chapter 5 of this thesis.

4.1 Modules Filtered by a Class and Closure Properties

Definition 4.1.1. (i) Let µ be an ordinal and A = (Aα| α ≤ µ) be a sequence of

modules. Let ( fαβ| α ≤ β ≤ µ) be a sequence of monomorphisms with fαβ ∈

HomR(Aα,Aβ) such that D = {Aα, fαβ| α≤ β≤ µ} is a direct system of modules.

D is called continuous, provided that A0 = 0 and Aα = lim−→β<α Aβ for all limit

ordinals α≤ µ.

If all the maps fαβ are inclusions, then the sequence A is called a continuous

chain of modules. Since the category of modules is a Grothendieck category, the

direct limit is exact and a continuous chain is just a sequence (Aα| α ≤ µ) of

modules satisfying A0 = 0, Aα ⊆ Aα+1 for all α < µ and Aα =
∪

β<α Aβ for all

limit ordinals α≤ µ.

(ii) Let M be a module and C be a class of modules.

M is C -filtered, provided that there are an ordinal κ and a continuous chain
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(Mα| α ≤ κ) of submodules of M such that M = Mκ, and each of the modules

Mα+1/Mα is isomorphic to an element of C , where α< κ. The chain (Mα| α≤ κ)

is called a C -filtration of M.

The following proposition shows that the direct sum decomposition is a particular

case of a filtration.

Proposition 4.1.2. Let R be a ring and L be a class of R-modules. Suppose an

R-module N has a direct sum decomposition
⊕

i∈I Ni such that Ni ∈ L for each i ∈ I.

Then N is L-filtered.

Proof. Suppose we have an R-module satisfying the assumption. We know that every

set can be well-ordered. So, we may think of the index set I as well-ordered. Take

Mi :=
⊕

j<i N j for all i < I. Then Mi+1/Mi ∼= Ni is in the class L for each i < I.

Clearly, the family (Mi| i≤ I) is an L-filtration of N.

Let M be an R-module and λ be an ordinal. The R-module M is said to be

λ-presented if there is an exact sequence R(I)→ R(λ)→M→ 0 for some I ≤ λ. Let P

be the class of all projective R-modules. By the class P<ℵ1 , we mean the class of all

< ℵ1-presented projective R-modules.

Proposition 4.1.3. Let P be a projective R-module. Then P is P<ℵ1-filtered if and only

if P is a direct sum of countably generated projective modules.

Proof. Suppose that P is a direct sum of countably generated projective modules. So

P=
⊕

i∈I Pi where Pi is a countably generated projective R-module for each i∈ I. Since

for any cardinal λ, the notions λ-presented and λ-generated are the same for projective

modules, we can say that Pi’s are < ℵ1-presented projective modules. So, this part of

proposition is the result of Proposition 4.1.2.
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Suppose P is P<ℵ1-filtered. Then it has a filtration (Mα| α ≤ σ) such that

Mα+1/Mα ∈ P<ℵ1 where α < σ. Take Pα := Mα+1/Mα for α < σ. By transfinite

induction we will prove that Mβ
∼=

⊕
α<β Pα for all β ≤ σ. Clearly, M1 ∼= P0. If

β < σ and the assumption holds for each ordinal α < β, then, since Mβ+1/Mβ is

projective, Mβ+1
∼= (Mβ+1/Mβ)⊕Mβ

∼= Pβ⊕ (
⊕

α<β Pα) =
⊕

α≤β Pα. If β is a limit

ordinal where β≤ σ and the assumption holds for all α < β, then Mβ = lim−→α<β Mα ∼=

lim−→α<β(
⊕

α′<α Pα) =
⊕

α<β Pα.

By transfinite induction, our claim follows. So we have P = Mσ ∼=⊕α<σPα, where

Pα is a countably generated projective module for all α < σ. This proves the statement.

Now we can state Kaplansky’s Theorem (Anderson, (1992, Corollary 26.2)) in

terms of filtrations. And by Proposition 4.1.3, this is equivalent to its original

formulation.

Theorem 4.1.4 (Kaplansky’s Theorem ). Every projective module is P<ℵ1-filtered.

Definition 4.1.5. Let R be a ring. For a class L of R-modules, the class ⊥L is defined

to be the class of all modules M such that Ext1R(M,L) = 0 for all objects L ∈ L , that is,

every exact sequence of R-modules

0−→ L−→ P−→M −→ 0

splits for all L ∈ L . The class L⊥ consists of all modules R-modules M such that

Ext1R(L,M) = 0, that is, every exact sequence of R-modules

0−→M −→ P−→ L−→ 0

splits for all L ∈ L .
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For a class L of R-modules, the class of all R-modules having L-filtration is denoted

by the notation Filt(L). Clearly, L ⊆ Filt(L) for any class L . The following lemma

,which is known as Eklof Lemma, states that Filt(⊥L) = ⊥L .

Lemma 4.1.6. (Eklof, 1977, Theorem 1.2) Let R be a ring and L be a class of

R-modules. If M is a module having an ⊥L-filtration, then M ∈ ⊥L .

4.2 Expanding a Single Filtration: Hill Lemma

Hill Lemma helps us to expand the filtration of module with some good properties.

It is one of the most important tools to prove our main result in this thesis.

Definition 4.2.1. Let σ be an ordinal and let M = (Mα| α≤ σ) be a continuous chain

of modules. Consider a family of modules (Aα| α < σ) such that Mα+1 = Mα+Aα for

each α < σ. A subset S of σ is said to be closed, if every β ∈ S satisfies

Mβ∩Aβ ⊆ ∑
α∈S,α<β

Aα.

If an element x∈Mβ for some β < σ, then the height of x, denoted by hgt(x), is defined

to be the least ordinal α such that α< σ and x∈Mα+1. For any subset S of σ, we define

M(S) := ∑
α∈S

Aα.

Example 4.2.2. Following the notation for M above, since M0 = 0, we have M1 = A0.

So M1 = ∑β<1 Aβ. If for α < σ the equation Mα = ∑β<α Aβ holds, then Mα+1 = Mα +

Aα = ∑β<α+1 Aβ. If α is a limit ordinal and Mβ = ∑γ<β Aγ holds for all β < α, since

M is a continuous chain,

Mα =
∪

β<α
Mβ = ∑

β<α
Mβ = ∑

β<α
Aβ.
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So, by transfinite induction, we have Mα = ∑β<α Aβ for all α ≤ σ. If we intersect the

sum Mα = ∑β<α Aβ with Aα for an ordinal α≤ σ, then we obtain Mα∩Aα ⊆∑β<α Aβ.

It follows that the ordinal α(= {β|β ∈ α}) is closed where α≤ σ.

Finally, we shall state Hill Lemma which will assist to solve our problem.

Lemma 4.2.3 (Hill Lemma). (Göbel & Trlifaj, 2006, Theorem 4.2.6) Let R be a ring, κ

an infinite regular cardinal and C a set of < κ-presented modules. Let M be a module

with a C -filtration M = (Mα| α ≤ σ) for some ordinal σ. Then there is a family H

consisting of submodules of M such that:

(i) M ⊆H .

(ii) H is closed under arbitrary sums and intersections (that is, H is a complete

sublattice of the lattice of submodules of M).

(iii) If N,P ∈ H such that N ⊆ P, then there exists a C -filtration (Pγ|γ ≤ τ) of the

module P = P/N τ ≤ σ such that and for each γ < τ, there is a β < σ with

Pγ+1/Pγ isomorphic to Mβ+1/Mβ.

(iv) If N ∈ H and X is a subset of M of cardinality < κ, then there is a P ∈ H such

that N∪X ⊆ P and P/N is κ-presented.



CHAPTER FIVE

FILTRATION IN Qco(Pn
R)

In the present chapter, we use all the previous notions and constructions to find a

Grothendieck type theorem for infinite-dimensional vector bundles on Pn
R.

In contrast to the finite-dimensional case for P1
k when k is a field, it seems unlikely

that we can obtain any kind of result like claiming that any infinite-dimensional

vector bundle is a direct sum of locally countably generated vector bundles. Our

result supports the claim that it is worthwhile studying on filtrations of quasi-coherent

sheaves.

Drinfeld (2006) purposes different classes of modules to generalize finite

dimensional vector bundles. In the next section, we deal with the first of these

generalizations, obtained by considering the class of almost projective modules.

5.1 Filtration of Locally Almost Projective Quasi-Coherent Sheaves

Let us recall from Drinfeld (2006) the definition of an almost projective module. As

we will see, this notion generalizes the notion of a projective module.

Definition 5.1.1. Let R be a ring. An elementary almost projective R-module is an

R-module isomorphic to a direct sum of a projective R-module and a finitely generated

one. An almost projective R-module is a direct summand of an elementary almost

projective module.

That is, an almost projective R-module T is a direct summand of P⊕M, where P is a

projective R-module and M is a finitely generated R-module. Clearly, every projective

R-module is almost projective. But the converse is not true.
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Proposition 5.1.2. Every almost projective module is a direct sum of countably

generated almost projective modules.

Proof. Let T be an almost projective R-module. Then there exist a projective R-module

P and a finitely generated R-module M such that T is a direct summand of P⊕M. By

Kaplansky’s theorem, we know that P is a direct sum of countably generated projective

R-modules, say P =
⊕

i∈I Pi. Then, there exists an R-module K such that

(⊕
i∈I

Pi

)
⊕M = T ⊕K.

Since T is a direct summand of a direct sum of countably generated modules, T is

again a direct sum of countably generated modules by Anderson (1992, Theorem 26).

Say T =
⊕

j∈J Tj for some index set J where Tj is a countably generated module for

every j ∈ J. Clearly, each Tj is a direct summand of P⊕M. This implies that Tj is an

almost projective R-module for each j ∈ J and T is a direct sum of countably generated

almost projective modules.

By using almost projective modules, we define locally almost projective

quasi-coherent sheaves. They generalize the classical notion of finite-dimensional

vector bundle.

Definition 5.1.3. Let (X ,OX) be a scheme. We say that a quasi-coherent OX -module

F is locally almost projective if for every basic affine open subset U of X there exists

an almost projective O(U)-module T such that F |U ∼= T̃ .

Firstly, we will study on filtrations of locally almost projective OX -modules on X =

Pn
R for n ∈ N. After that, we will present and conclude our problem as a special case.

Let T be a locally (countably generated) almost projective quasi-coherent

OPn
R
-module. If we let R be the representation of Pn

R by rings given in Example
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2.2.3, we know that there exists a unique quasi-coherent R-module T such that T (v)

corresponds to the (countably generated) almost projective R[v]-module given by T (v).

Conversely, if T is an R-module such that T (v) is an (countably generated) almost

projective R[v]-module for each vertex v, then there is a unique locally (countably

generated) almost projective quasi-coherent OPn
R
-module T (recall that in our notation

the polynomial ring R[v] refers to the polynomial ring over R with variables x j/xi for

j ∈ {0, . . . ,n} and i ∈ v). From now on, we fix the ring representation R of Pn
R as the

representation constructed in Example 2.2.3. The following proposition will allow us

to find a family of locally countably generated generators in Qco(Pn
R). Before that, we

need the next lemma.

Lemma 5.1.4. Let R′≡R[v] ↪→R[w] be a part of the ring representation R of Pn
R where

v⊆ w⊆ {0, . . . ,n}. Suppose that we have a quasi-coherent R′-module

M(v)
f−→M(w)

and two countable subsets X(v) and X(w) of M(v) and M(w), respectively. Then there

exists a quasi-coherent R′-submodule

M′(v)−→M′(w)

of M(v)
f−→ M(w) such that X(v) ⊆ M′(v) ⊆ M(v), X(w) ⊆ M′(w) ⊆ M(w) and

M′(v),M′(w) are countably generated modules over R[v] and R[w], respectively.

Proof. Let y ∈ X(w). Then, because of the quasi-coherence, there exists xy ∈ M(v)

such that y =
f (xy)

z , z ∈ Svw where Svw is the multiplicative set generated by the set

{x j/xi| j ∈ w\ v, i ∈ v}∪{1}.

Take the submodule M′(v) of M(v) generated by X(v)∪Y where Y consists of all

of xy which has been found for each y ∈ X(w) as above . Since |X(v)∪Y | ≤ ℵ0 +
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ℵ0 = ℵ0, M′(v) is countably generated. Let M′(w) be the R[w]-submodule of M(w)

generated by f (M′(v)). Clearly M′(w) is a countably generated submodule of M(w)

containing X(w). The submodule

M′(v)
f |M′(v)−−−−→M′(w)

is quasi-coherent. Since the morphism Svw f is an isomorphism (by condition of

quasi-coherence), we need only to show that Svw f |M′(v) is a homomorphism onto the

R[w]-module M′(w) = R[w] f (M′(v)). Indeed, Svw f (M′(v)) = f (M′(v))Svw is equal

to the R[w]-module generated by f (M′(v)), that is, to the R[w]-module M′(w). This

implies that M′(v)→M′(w) is a quasi-coherent R′-submodule of M(v)→M(w).

Proposition 5.1.5. Let M be a quasi-coherent sheaf on Pn
R. If X(v) ⊆ M(v) is

a countable subset for each v ⊆ {0,1, . . . ,n}, then there exists a quasi-coherent

submodule M′ of M such that X(v)⊆M′(v)⊆M(v) and M′(v) is a countably generated

R[v]-module for all v⊆ {0,1, . . . ,n}.

Proof. Let E = {ei : 0 ≤ l ≤ k} be the set of all arrows defining the quiver of Pn
R for

some natural number k. We will construct by induction a family of R-submodules

M(m) of M satisfying:

(i) X(v)⊆M(m)(v)⊆M(v) is countably generated for each v and m, l ∈ N.

(ii) Whenever m ≡ l (mod (k + 1)) for m ∈ N where l ∈ E, M(m)(v)→M(m)(w)

satisfies the quasi-coherent condition on the edge l.

(iii) M(m) ⊆M(m+1) for all m ∈ N.

When m ≥ n+ 1, think em as el , where m ≡ l (mod (k + 1)) and l ∈ E. Let us

consider the edge e0 : v → w. By applying Lemma 5.1.4 to this edge, we obtain

T (0)
0 (v)→ T (0)

0 (w) satisfying the quasi-coherent condition. And say T (0)
0 (u) := X(u)
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for all u⊆ {0, . . . ,n} different from v and w. Now from T(0)
0 , by taking T (0)

1 (u) as the

R[u]-module generated by the sets {T (0)
0 (u), fu′,u(T

(0)
0 )| fu′,u : M(u′)→ M(u)} where

each morphism fu′,u denotes the morphism M(a) where a : u′→ u (u,u′ ⊆ {0, . . . ,n}),

we obtain a locally countably generated R-submodule T(0)
1 . But it is possible that we

may have lost the quasi-coherent condition on e0 : v→ w. So, we again apply Lemma

5.1.4 to obtain T(0)
2 such that T (0)

2 (v)→ T (0)
2 (w) satisfies the quasi-coherent condition.

And by the same argument above, we can construct an R-submodule T
(0)
3 . Continuing

in this way, we obtain the family {T(0)
n }n∈N.

Define the first term M(0) as the direct union of this family on n ∈ N. Now assume

we have constructed M(m) for m ∈ N. Let us define M(m+1). Take the edge em+1 : v→

w. We apply Lemma 5.1.4 to M(m)(v)→ M(m)(w) to obtain T (m+1)
0 (v)→ T (m+1)

0 (w)

which satisfies the quasi-coherent condition. Define T (m+1)
0 (u) := M(m)(u) for every

u ̸= v,w. From this, we can construct an R-submodule T(m+1)
1 of M by the same

method we did above. Again applying Lemma 5.1.4 to T (m+1)
1 (v)→ T (m+1)

1 (w), we

find T(m+1)
2 such that T (m+1)

2 (v)→ T (m+1)
2 (w) is quasi-coherent. By proceeding in the

same way, we obtain the family {T(m+1)
n }n∈N. So, define M(m+1) :=

∪
n≥0 T(m+1)

n . So

we have constructed inductively the desired family {M(m)}m∈N.

Finally, if we let M′(v) :=
∪

m∈NM(m)(v) for all v⊆ {0,1,2, . . . ,n}, we see that the

properties of being an R-module and the quasi-coherence condition on each edge are

cofinal. So, it follows that M′ is a quasi-coherent R-submodule of M containing X(v)

for all v⊆ {0,1,2, . . . ,n} ( let I be a directed set. A subset J of I is said to be cofinal in

I if for a given i ∈ I, there is a j in J such that i≤ j). Clearly, M′ is locally countably

generated, since

|M′(v)|= |
∪

n∈N
M(m)(v)|

for each v and countable union of countable sets is again countable.



55

Let S be the class of all countably generated almost projective R-modules. We

already know that the direct sum decomposition is a special case of the filtration by

Proposition 4.1.2. Since, every almost projective R-module is a direct sum of countably

generated almost projective modules by Proposition 5.1.2, we can say that every almost

projective R-module has an S -filtration.

Let Sv be the class of all countably generated almost projective R[v]-modules for

each v⊆ {0, . . . ,n}, L be the class of all locally countably generated almost projective

quasi-coherent R-modules on Pn
R and C be the class of all locally almost projective

quasi-coherent R-modules. Then the class L contains quasi-coherent R-modules M

such that M(v) ∈ Sv for each edge v⊆ {0, . . . ,n}.

Theorem 5.1.6. (by Estrada, Guil Asensio, Prest & Trlifaj (2009, Theorem 3.8)) Every

quasi-coherent R-module in the class C has an L-filtration.

Proof. Let T be a quasi-coherent R-module belonging to the class C . By Proposition

5.1.2, we know that each T (v) has an Sv-filtration Mv for all v ⊆ {0,1,2, . . . ,n}. Let

Hv be the family associated to Mv by Hill Lemma 4.2.3 and {mv,α|α < τv} be an

R[v]-generating set of the R[v]-module M(v). Without lost of generality, we can assume

that for some ordinal τ, τ = τv for all v.

We will construct an L-filtration (Mα| α≤ τ) for T by induction on α. Let M0 = 0.

Assume that Mα is defined for some α < τ such that Mα(v) ∈Hv and mv,β ∈M(v) for

all β < α and all v⊆ {0,1,2, . . . ,n}. Set Nv,0 = Mα(v). By Hill Lemma-(iv), there is a

module Nv,1 ∈Hv such that Nv,0 ⊆ Nv,1 and Nv,1/Nv,0 is countably generated.

By Proposition 5.1.5 (with M replaced by T/Mα, and X(v) = Nv,1/Mα(v)) there

is a quasi-coherent R-submodule T1 of T such that Mα ⊆ T1 and T1/Mα is locally

countably generated. Then T1(v) = Nv,1 + ⟨Tv⟩ for a countably subset Tv ⊆ T1(v), for

each v. Again by help of Hill Lemma-(iv), there is a module Nv,2 ∈ Hv such that
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T1(v) = Nv,1 + ⟨Tv⟩ ⊆ Nv,2 and Nv,2/Nv,1 is countably generated.

Proceeding similarly, we obtain a countable chain (Tn| n < ℵ0) of quasi-coherent

R-submodule of T, as well as a countable chain (Nv,n|n < ℵ0) of R[v]-submodules of

T (v), for each v. Let Mα+1 =
∪

n<ℵ0
Tn. Then Mα+1 is a quasi-coherent subsheaf

of T satisfying Mα+1(v) =
∪

n<ℵ0
T ′n(v) for each v. By Hill Lemma-(ii), we deduce

that Mα+1(v) ∈ Hv and Mα+1(v)/Mα(v) is a countably generated almost projective

R[v]-module. Therefore Mα+1/Mα ∈ L .

Assume Mβ has been defined for all β < α where α is a limit ordinal ≤ τ. Then we

define Mα :=
∪

β<α Mβ.

Since mv,α ∈Mα+1(v) for all v and α < τ, we have Mτ(v) = M(v). So (Mα| α≤ τ)

is an L-filtration of T.

5.2 A Version of Kaplansky’s Theorem for Infinite Dimensional Vector Bundles

Definition 5.2.1. Let F be an OX -module where (X ,OX) is scheme. Then F is said to

be free if it is isomorphic to a direct sum of copies of OX . It is said to be of finite rank

if this sum is finite. It is said to be locally free if X can be covered by open subsets U

for which F |U is a free OX |U -module.

Then a locally free OX -module F of finite rank is a coherent OX -module where

F (U) is a free OX(U)-module of finite rank for all affine open subsets U of X .

Actually, it is known that there is a bijection between the class of the vector bundles

in the sense of classical algebraic geometry and the class of the locally free coherent

OX -modules of finite rank. So, in Sheaf Theory, the definition of vector bundle is

taken as locally free coherent OX -module of finite rank. But in our study, we will
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drop the conditions finiteness and freeness. This leads to Drinfeld’s definition of

infinite-dimensional vector bundles.

Definition 5.2.2. (Drinfeld, 2006, Section 2) Let (X ,OX) be a scheme. A

quasi-coherent OX -module F is said to be a vector bundle (in the sense Drinfeld

(2006)) if F (U) is a projective OX(U)-module for every affine open subset U of X .

So, if R is a representation of scheme (X ,OX), a vector bundle M corresponds to a

unique element M in RQco-Mod such that each M(u) is a projective R(u)-module for

every vertex u. In Drinfeld (2006), it is stated that the notion in 5.2.2 is a local property.

That is, conversely, if M is an R-module such that M(u) is a projective R(u)-module

for each vertex u, then there exists a unique vector bundle M on the scheme X .

Now, we restrict ourselves to vector bundles in the sense of Drinfeld on Pn
R for

n ∈ N. As we did in the Example 2.2.3, we will represent each vector bundle P on

Pn
R by P such that P(v) is a projective R[v]-module for each v ⊆ {0, . . . ,n}. Since a

projective R[v]-module P(v) is also an almost projective R[v]-module, a vector bundle

P on Pn
R is a locally almost projective R-module on Pn

R. Finally, we finish this resarch

by giving our major concern in this study as a version of Theorem 5.1.6 which we call

Kaplansky’s theorem for vector bundles on Pn
R.

Let S ′v be the class of all countably generated projective R[v]-modules for each v ⊆

{0, . . . ,n}, L ′ be the class of all locally countably generated vector bundles on Pn
R and

C ′ be the class of all vector bundles on Pn
R. Then the same method in the proof of

Theorem 5.1.6 works if we replace the classes Sv,L ,C with these classes S ′v,L
′,C ′.

So, it proves the following theorem.

Theorem 5.2.3. Every vector bundle on Pn
R is a filtration of locally countably

generated vector bundles.



CHAPTER SIX

CONCLUSIONS

In this thesis, we focused on two classes: the projective R-modules and the almost

projective R-modules for a commutative ring R. Then we centered on the category

of quasi-coherent sheaves over the projective scheme Pn
R = (ProjS,OProjS) where

S = [x0, . . . ,xn] for a commutative ring R and the several ‘new’ notions of (infinite

dimensional) vector bundles attained to these classes. We proved structural results

relative to the different generalization of vector bundles in terms of filtrations of certain

locally countably generated quasi-coherent sheaves. The first of such generalizations

involves the class of locally almost projective OX -modules (see Definition 5.1.1) and

the second is the class of infinite dimensional vector bundles.

For the case n = 1 and when infinite dimensional vector bundles are locally

projective quasi-coherent sheaves on P1
R, our Theorem 5.2.3 may be seen as the

analogous of Grothendieck’s theorem on the decomposition of finite dimensional

vector bundles on P1
k , where k is a field, as a direct sum of line bundles (Grothendieck,

1957). Moreover, when X is affine, our theorem coincides with Kaplansky’s theorem

on the decomposition of a projective module as a direct sum of countably generated

projective modules. Therefore, our result can be thought as a ‘generalized’ version of

Kaplansky’s theorem for the category Qco(Pn
R) of quasi-coherent sheaves on Pn

R.
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NOTATION

R a commutative ring with unity

k a field

Z the ring of integers

N the set of natural numbers {0,1, . . .}

idA an identity map from a set A to A

Top(X) the category consisting of open subsets of a topological space X

SpecR the spectrum of a commutative ring R

S+ the irrelevant ideal of a graded ring S

ProjS the set of homogeneous prime ideals of S not containing

S+ for a graded ring S

OX the structure sheaf of a scheme X

Γ(U,F ) the image F (U) where F is a sheaf

V (I) the set of prime ideals of a commutative ring R containing

its ideal I

D(I) SpecR\V (I)

X f the basic open subset D( f ) of SpecR, where f ∈ R

ρUV the restriction map of a sheaf X from open subsets U to V of X

s|V the image ρUV (s) of the element s ∈ F (U) where F is a sheaf

Fx the stalk of the presheaf F at x

Pn
R the projective scheme (ProjS,OProjS) where S = R[x0, . . . ,xn]

An+1
R the affine scheme (SpecS,OSpecS) where S = R[x0, . . . ,n]

P(kn+1) the projective space over the vector space kn+1 for a field k

R f the localization of the commutative ring R at f , where f ∈ R

RP the localization of the commutative ring R at the prime ideal P

M f localization of the R-module M at f , where f ∈ R

MP the localization of the R-module M at the prime ideal P

Qco(X) the category of quasi-coherent sheaves on the scheme X
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M̃ the sheaf associated to the R-module M on the scheme SpecR

S(n) the twist of the graded ring S for an integer n

OX(n) the twisted sheaf S̃(n) where X = ProjS and S is a graded ring

for an integer n

OX(1) the twisting sheaf of Serre

Γ∗F the graded S-module associated to OX -module F

Q a quiver (V,E) with the vertex set V and the edge set E

R a representation of a quiver Q in the category of rings

RQco-Mod the category of quasi-coherent R-modules where R is a

representation of a quiver in the category of rings

R[v] the polynomial ring over the ring R with variables x j
xi

,

j = 0, . . . ,n and i ∈ v⊆ {0, . . . ,n}

Svw the multiplicative group generated by { x j
xi
| j ∈ w\ v, i ∈ v}∪{1}

where v⊆ w⊆ {0, . . . ,n}

C κ the subclass of the class C of R-modules containing

< κ-presented objects for a cardinal κ

⊥L the class of R-modules M such that ExtR(M,L) = 0 for all

objects L ∈ L , where L is a class of R-modules

L⊥ the class of R-modules M such that ExtR(L,M) = 0 for all

objects L ∈ L , where L is a class of R-modules

Filt(L) the class of R-modules having F -filtration
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INDEX

ProjS, 14

affine open subset, 12

affine scheme, 12

basic open subset in ProjS, 14

basic open subsets, 8

coherent OX -module, 20

continuous chain of modules, 45

direct sum of all the global sections of

twists of a quasi-coherent sheaf ,

23

filtration, 46

free OX -module, 56

Locally free OX -module, 56

generic point, 13

homogeneous coordinate, 18

homogeneous ideal, 14

irrelevant ideal, 14

localization, 31

locally affine, 12

locally almost projective quasi-coherent

module, 51

open subscheme, 18

presheaf, 4

projective scheme, 18

projective space, 18

quasi-coherent R-module, 26

quasi-coherent OX -module, 19

quiver, 25

representation of quiver, 25

ringed topological space, 7

scheme, 12

sheaf, 5

sheaf associated to a R-module M on

SpecR, 21

spectrum, 7

stalk, 6

structure sheaf of SpecR, 12

twist of a graded ring, 23

twist of a quasi-coherent module, 23

twisted sheaf, 23, 37

twisting sheaf of Serre, 23

vector bundle, 43, 56

vector bundle in the sense of Drinfeld, 57
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Zariski topology, 8, 14


