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VIBRATION ANALYSIS OF CRACKED  
FRAME STRUCTURES 

 

ABSTRACT 

 
In this work, the effects of crack depth and crack location on the in-plane free 

vibration, buckling and dynamic stability of cracked frame structures have been 

investigated numerically by using The Finite Element Method. For the rectangular 

cross-section beam a crack element is developed by using the principles of fracture 

mechanics. The effects of crack depth and location on the first four natural 

frequency, first critical buckling load and the first dynamic unstable region of multi-

bay and multi-store frame structures are presented in 3D graphs. The comparison 

between the present work and the results obtained from ANSYS and SolidWorks 

shows a very good agreement.   

 

Keywords: cracked frame, free vibration, multi-bay, multi-story, finite element 

method, buckling, dynamic stability. 
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VIBRATION ANALYSIS OF CRACKED  
FRAME STRUCTURES 

 
ÖZ 

 
Bu Çalışmada, çatlak derinliğinin ve yerinin, çerçeve yapıların düzlem içi serbest 

titreşimine, burkulma yüküne ve dinamik kararlılığına olan etkileri Sonlu Elemanlar 

Metodu kullanılarak incelenmiştir. Kırılma mekaniği prensipleri kullanılarak 

dikdörtgen kesitli bir kiriş için çatlak elemanı geliştirilmiştir. Çatlak derinliğinin ve 

yerinin, çok bölümlü ve çok katlı çerçevelerin ilk dört doğal frekansına, burkulma 

yüküne, birinci dinamik kararsızlık bölgesine etkisi üç boyutlu grafikler halinde 

verilmiştir. ANSYS ve SolidWorks programlarının analiz sonuçları ile çalışmadan 

elde edilen sonuçların karşılaştırılmasından oldukça yakın değerler elde edildiği 

görülmüştür.     

 

Anahtar Kelimeler: çatlaklı çerçeve, serbest titreşim, burkulma, dinamik kararlılık 
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CHAPTER ONE 

INTRODUCTION 

1.1 Introduction  

In many applications, frame structures are widely used, for example in buildings, 

bridges and gas or steam turbine blade packets. A frame element is formulated to 

model a straight bar of an arbitrary cross-section, which can deform not only in the 

axial direction but also in the directions perpendicular to the axis of the bar. The bar 

is capable of carrying both axial and transverse forces, as well as moments. 

Therefore, a frame element is seen to possess the properties of both bar and beam 

elements. In fact, the frame structure can be found in most of our real environment, 

there are not many structures that deform and carry loadings purely in neither axial 

direction nor purely in transverse directions. The bar, beam and frame finite elements 

are illustrated and discussed in many books (G.R.Liu and S.S.Quek, 2003), (Rao, 

1995) .The natural frequencies of a single storey and multi-bay frames have been 

investigated by using the frame finite element. The frame F.E models have also been 

used for the vibration analysis of shrouded-blade packets. Moreover, the cracks can 

be seen in frame structures due to reasons like erosion, corrosion, fatigue or 

accidents. The presence of a crack could not only cause a local variation in the 

stiffness, but also affect the mechanical behavior of the entire structure to 

considerable extent. Therefore the effect of crack on the dynamic behaviors of 

structures has been studied in many papers by using the fracture mechanics methods 

analytically or numerically. Frames are subjected to concentrated static or dynamic 

loads which may cause static (buckling) and dynamic instability. Many 

investigations about the vibration and buckling (static stability), and dynamic 

stability characteristics of frames of various types have been carried out. 
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J. Thomas  &  H. T. Belek (1977), studied, the free-vibration characteristics of 

shrouded blade packets using the finite element method. The effects of various 

weight ratios, flexural rigidity ratios and length ratios between the blade and shrouds 

on the frequencies of vibration of the blade packed were investigated. 

 

M.Chati, R. Rand & S. Mukherjee   (1997),   studied the modal analysis of a 

cantilever beam with a transverse edge crack. The open and close cracks were 

considered. 

 

M.Krawczuk (1994),  developed a new finite element model for the static and 

dynamic analysis of cracked composite beams .A new beam finite element with a 

single non-propagating one-edge open crack located in its mid-length is formulated 

for the static and dynamic analysis of cracked composite beam-like structures. 

 

N.F.Rieger and H.McCallion (1964), studied the natural frequency of  portal 

frame , they used a single storey and multi-bay frames in their analysis. 

 

J.M.Chandra Kishen and Avinash Kumar (2004), studied fracture behavior of 

cracked beam-columns , by using the finite element method in addition they also 

used the beam-column element which was developed by Tharp (Int. J. Numer. 

Methods Eng. 24 1987. 

 

M.Krawczuk & W.M.Ostachwicz  (1995), carried out modeling and vibration 

analysis of a cantilever composite beam with a transverse open crack two different 

models of the beam were presented. In their first model the crack was represented by 

a massless substitute spring. The flexibility of the spring was calculated on the basis 

of fracture mechanics and the Castigliano theorem. The second model was based on 

the finite element method (FEM). The undamaged parts of the beam were modeled 

by a beam finite element with three nodes and three degrees of freedom at the nodes. 

The damaged part of the beam was represented by a cracked beam finite element 

model having the same degrees of freedom to those of the un-cracked one. 
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M.-H.H.Shen  &  C.Pierre   (1994), investigated free vibrations of beams with a 

single-edge crack. 

 

G.Bamnios & A.Trochides (1995), studied the dynamic behavior of a cracked 

cantilever beam. 

 

M.-H.H.Shen & J.E.Taylor (1991), investigated an identification problem for 

vibrating cracked beams. 

 

T. G. CHONDROS , A. D. DIMAROGONAS & J. YAO (1997), studied vibration 

analysis of a continuous cracked beam. 

 

P.N.Saavedra  &  I.A. Cuitino  (2001), presented a theoretical and experimental 

dynamic behavior of different multi-beams systems containing  transverse cracks .  

In their analysis they used free-free beam and U-frames.  

 

G.Gounaris & Dimarogonas   (1987), developed a finite element model for a 

cracked prismatic beam. Strain energy concentration arguments lead to the 

development of a compliance matrix for the behavior of the beam in the vicinity of 

the crack. This matrix was used to develop the stiffness matrix for the cracked beam 

element and the consistent mass matrix. The developed of this finite element can be 

used in any appropriate matrix analysis of structural element.  

 

D.Y.Zheng & N.J.Kessissoglou (2004), obtained  the natural frequencies and 

mode shapes of a cracked beam by using the finite element method . An ‘overall 

additional flexibility matrix’, instead of the ‘local additional flexibility matrix’, was 

added to the flexibility matrix of the corresponding intact beam element to obtain the 

total flexibility matrix. Consequently the stiffness matrix. 
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Celalettin Karaagac & Hasan Ozturk & Mustafa Sabuncu (2009), investigated the 

effects of crack ratios and positions on the fundamental frequencies and buckling 

loads of slender cantilever Euler beams with a single-edge crack both experimentally 

and numerically using the finite element method, based on energy approach. 

 

P.Gudmundson (1982),  discussed “the dynamic behavior of slender structures 

with cross-sectional cracks” . Two methods were discussed to find the static 

flexibility matrix from an integration of the stress intensity factor. 

 

G.-L.Qian , S.-N.Gu & J.-S. Jiang (1989), determined the eigen-frequencies for 

different crack length and location on cantilever beams by using the finite element 

method. 

 

T.G.Chondros & A.D.DIMAROGONAS (1989), discussed the change in natural 

frequencies and modes of vibration for the cracked structure when the crack 

geometry was known by using Rayleigh principle. 

 

H.P.Lee & T.Y.Ng (1995),  determined the natural frequencies and modes for the 

flexural vibration of a beam due to the presence of transverse cracks by using the 

Rayleigh-Ritz method. The beams with single-sided crack or a pair of double-sided 

cracks were modeled separately. 

 

M.-H.H.Shen & C.Pierre (1990), studied natural  modes  of  Euler-Bernoulli  

beams with  symmetric  cracks. 

 

S.Christides & A.D.S.Barr (1984), studied one-dimensional theory of cracked 

Euler-Bernoulli beams. 
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W.M.Ostachowicz & M.Krawczuk (1990) studied the forced vibration of beams 

and effects of the crack locations and sizes on the vibrational behavior of the 

structure. Basis identification was discussed.  

 

Thomas and Sabuncu    (1979),   presented a finite element model for the analysis 

of vibration characteristics of asymmetric cross section blade packets in a centrifugal 

field. 

 

Gurkan Sakar and Mustafa Sabuncu (2007), presented a finite element model for 

the static and dynamic stability of rotating aerofoil cross-section two-blade packets 

subjected to uniform radial periodic force. 

 

Boltin (1964), studied the dynamic stability problems of various kinds of 

structural components. 

 

Sakar and Sabuncu (2003 , 2004), used the finite element method to analyze the 

static and dynamic stability of straight and pre-twisted aerofoil cross section rotating 

blades subjected to axial periodic forces. 

 

J.Thomas and B.A.H.Abbas (1976), studied the dynamic stability of Timoshenko 

Beam subjected to periodic axial loads by the finite element method.  

 

Hasan Ozturk and Mustafa Sabuncu (2005), studied the static and dynamic 

stability of a laminated composite cantilever beam having a linear translation spring 

and a torsional spring as elastic supports subjected to periodic axial loading. The 

Euler beam theory was employed and the finite element method was used in the 

analysis.  
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1.2 Objective of the Work  

 

In this work, the first fourth natural frequency, buckling and dynamic stability for 

the multi-bay frame and multi-story frame structures are studied. As seen in figure 

1.1. Blade and shroud having rectangular cross-section are used. For the frame 

structure the dimension and material properties are given in Table 1.1  
 

Table 1.1 properties of the frame structure 
 

Properties Quantity Units 
E 2e11 N/m2 

Ro 7900 kg/m3 
Cross-
section 

h 0.5/100 m 
b 2/100 m 

Blade length 0.2 m 
Shroud length 0.1 m 

 

 

 
Figure 1.1 Frame structure dimensions 
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For the multi-bay and multi-story frames, the dimensions are used as shown in 

Figure 1.2 and Figure 1.3 respectively. 

 

Figure 1.2 multi-bay dimensions 
 

 

 
Figure 1.3 multi-story dimension 
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Chapter two deals with the theory of the finite element method. Bar, beam and 

Frame Elements are discussed. Mass, Stiffness and Geometric Stiffness matrices of a 

beam element are obtained. Local and global coordinates are also discussed. 

 

Chapter three presents the cracked beam model, three crack modes, which are 

opining, sliding and tearing, are considered. A cracked beam element model is 

developed for the frame structure. And the stiffness, mass and geometrical matrices 

are obtained for the cracked beam element. 

 

Chapter four deals with the theory of the dynamic stability of elastic systems.  

 

Chapter five deals with the results and charts obtained for different configurations 

of frame structures (Single, Multi-Bay Frame and Multi- Storey Frame). 
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2 CHAPTER TWO 

FINITE ELEMENT METHOD  

2.1 Finite element method 

 

The finite element method is a numerical method that can be used for the accurate 

solution of complex mechanical and structural vibration problems. In this method, 

the actual structure is replaced by several pieces or elements, each of which is 

assumed to behave as a continuous structural member called a finite element. 

 

The elements are assumed to be interconnected at certain points known as joints 

or nodes. Since it is very difficult to find the exact solution (such as the 

displacements) of the original structural under the specified loads, a convenient 

approximate solution is assumed in each finite element. The idea is that if the 

solutions of the various elements are selected properly, they can be made to converge 

to the exact solution of the total structure as the element size is reduced. During the 

solution process the equation of force at the joints and the compatibility of 

displacements between the elements are satisfied so the entire structure (assemblage 

of elements) is made to behave as a single entity. (Rao, 1995) 

 

 
Figure 2.1 Finite Element Nodes and Elements 

 



 

 

10

2.2 Bar 

 

A truss is one of the simplest and most widely used structural members. It is a 

straight bar that is designed to take only axial forces, therefore it deforms only in its 

axial direction. A typical example of its usage can be seen in Figure 2.2. The cross-

section of the bar can be arbitrary, but the dimensions of the cross-section should be 

much smaller than that in the axial direction. Finite element equations for such truss 

members will be developed in this chapter. The element developed is commonly 

known as the truss element or bar element. Such elements are applicable for analysis 

of the skeletal type of truss structural systems both in two-dimensional planes and in 

three-dimensional space. The basic concepts, procedures and formulations can also 

be found in many existing textbooks (see, e.g. Reddy, 1993; Rao, 1999; Zienkiewicz 

and Taylor, 2000; etc.).  

 

 
Figure 2.2 Properties of Bar Element 
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Consider the uniform bar element shown in figure (2-3). For this one-dimensional 

element, there are two end points called nodes. When the element is subjected to 

axial loads  ଵ݂ሺݐሻ  ܽ݊݀  ଶ݂ሺݐሻ , the axial displacement within the element is assumed 

to be linear in  as  

 

,ݔሺݑ ሻݐ ൌ ܽሺݐሻ ൅ ܾሺݐሻ(1-2)       ݔ 

 

When the joint displacements ݑଵሺݐሻ ܽ݊݀ ݑଶሺݐሻ are treated as unknowns, Eq. (2-1) 

should satisfy the conditions: 

 

,ሺ0ݑ ሻݐ ൌ ,  ሻݐଵሺݑ ,ሺ݈ݑ ሻݐ ൌ  ሻ      (2-2)ݐଶሺݑ

 

Equations (2-1) and (2-2) lead to  

 

 ܽሺݐሻ ൌ  ሻݐଵሺݑ

 

And  

 

ܽሺݐሻ ൅ ܾሺݐሻ݈ ൌ ሻݐሺܾ    ݎ݋   ሻݐଶሺݑ ൌ ௨మሺ௧ሻି௨భሺ௧ሻ
௟

     (2-3) 

 

Substitution for   aሺtሻ  and bሺtሻ from Eq. (2-3) into Eq. (2-1) gives 

 

,ݔሺݑ ሻݐ ൌ ቀ1 െ ௫
௟
ቁ ݑଵሺݐሻ ൅  ௫

௟
 ሻ      (2-4)ݐଶሺݑ 

Or 

 

,ݔሺݑ ሻݐ ൌ ଵܰሺݔሻݑଵሺݐሻ ൅ ଶܰሺݔሻݑଶሺݐሻ        (2-5) 
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                              Figure 2.3 Bar Element 

 
Where  

ଵܰሺݔሻ ൌ ቀ1 െ ௫
௟
ቁ  , ଶܰሺݔሻ ൌ ௫

௟
        (2-6) 

are the shape functions. 

The kinetic energy of the bar element can be expressed as  

 

ܶሺݐሻ ൌ ଵ
ଶ ׬ ቄడ ௨ሺ௫,௧ሻ ܣߩ

డ௧
ቅ

ଶ
௟ݔ݀ 

଴   

 ൌ ଵ
ଶ ׬ ቄቀ1 ܣߩ െ ௫

௟
ቁ ௗ௨భሺ௧ሻ

ௗ௧
൅ ቀ௫

௟
ቁ ௗ௨మሺ௧ሻ

ௗ௧
ቅ

ଶ
௟ݔ݀ 

଴   

 ൌ ଵ
ଶ

 ఘ஺௟
ଷ

 ሺݑሶ ଵଶ ൅ ሶݑ ଵݑሶ ଶ ൅ ሶݑ ଶଶሻ       (2-7) 

Where  

ሶݑ ଵ ൌ
ሻݐଵሺݑ݀

ݐ݀ ሶݑ    ,     ଶ ൌ
ሻݐଶሺݑ݀

ݐ݀  

 is density of the material 

A is the cross-section area of the element. 

By expressing Eq. (2-7) in matrix form, 

 
ܶሺݐሻ ൌ ଵ

ଶ
ሬԦሶݑ  ሺݐሻ்ሾ݉ሿ  ݑሬԦሶ ሺݐሻ        (2-8) 

Where  

ሬԦሶݑ ሺݐሻ ൌ ൜ݑሶ ଵሺݐሻ
ሶݑ ଶሺݐሻൠ 

And the superscript  indicates the transpose, the matrix [m] can be identified as  
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ሾ݉ሿ ൌ ఘ஺௟
଺

ቂ2 1
1 2ቃ         (2-9) 

The strain energy of the element can be written as  

Vሺtሻ ൌ ଵ
ଶ

׬  E A ቄப ୳ሺ୶,୲ሻ
ப୶

ቅ
ଶ

dx୪
଴   

 ൌ ଵ
ଶ

׬  E A ቄെ ଵ
୪
 uଵሺtሻ ൅  ଵ

୪
 uଶሺtሻቅ

ଶ
dx୪

଴   

 ൌ ଵ
ଶ

  E A
୪

 ሺuଵ
ଶ െ 2 uଵuଶ ൅ uଶ

ଶሻ     (2-10) 

 

Where ݑଵ ൌ ,ሻݐଵሺݑ ଶݑ  ൌ ,ሻݐଶሺݑ  .is Young’s modulus. By expressing Eq  ܧ  ݀݊ܽ

(2-10) in matrix form as 

 

ܸሺݐሻ ൌ ଵ
ଶ

 ሻ        (2-11)ݐሬԦሺݑ ሻ் ሾ݇ሿݐሬԦሺݑ 

Where  

ሻݐሬԦሺݑ ൌ ൜ݑଵሺݐሻ
ሻൠݐଶሺݑ ሻ்ݐሬԦሺݑ    ݀݊ܽ      ൌ ሼݑଵሺݐሻ  ݑଶሺݐሻሽ 

The stiffness matrix ሾkሿ can be identified as 

ሾ݇ሿ ൌ ா ஺
௟

 ቂ 1 െ1
െ1 1 ቃ        (2-12) 
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2.3 Beam  

A beam is another simple but commonly used structural component. It is also 

geometrically a straight bar of an arbitrary cross-section, but it deforms only in 

directions perpendicular to its axis. Note that the main difference between the beam 

and the truss is the type of load they carry. Beams are subjected to transverse 

loading, including transverse forces and moments that result in transverse 

deformation. Finite element equations for beams will be developed in this chapter, 

and the element developed is known as the beam element. The basic concepts, 

procedures and formulations can also be found in many existing textbooks (see, e.g. 

Petyt,1990; Reddy, 1993; Rao, 1999; Zienkiewicz and Taylor, 2000; etc.). 

 

 

Figure 2.4 Properties of Beam Element 
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Consider a beam element according to the Euler-Bernoulli theory. Figure (2-5) 

shows a uniform beam element subjected to the transverse force distribution fሺx, tሻ. 

 

 
 

Figure 2.5 Beam Element 
 
 

 
In this case , the joint undergoes both translational and rotational displacements, 

so the unknown joint displacements are labeled as ݓଵሺݐሻ , , ሻݐଶሺݓ   ሻ  andݐଷሺݓ 

 ሻ corresponding to theݐሻ  ܽ݊݀   ଷ݂ሺݐሻ  thus there will be linear joint forces ଵ݂ሺݐସሺݓ

linear joint displacements  ݓଵሺݐሻ ܽ݊݀  ݓଷሺݐሻ and rotational joint forces (bending 

moments) ଶ݂ሺݐሻ ܽ݊݀ ସ݂ሺݐሻ corresponding to the rotational joint displacements  

 .ሻ , respectivelyݐସሺݓ ݀݊ܽ ሻݐଶሺݓ
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 The transverse displacement within the element is assumed to be a cubic 

equation in    (as in the case of static deflection of a beam): 

 

,ݔሺݓ ሻݐ ൌ ܽሺݐሻ ൅ ܾሺݐሻ ݔ ൅ ܿሺݐሻ ݔଶ ൅ ݀ሺݐሻ ݔଷ      (2-13) 
 
The unknown joint displacements must satisfy the conditions 
 

,ሺ0ݓ ሻݐ ൌ ሻݐଵሺݓ , డ௪
డ௫

ሺ0, ሻݐ ൌ ሻݐଶሺݓ

,ሺ݈ݓ ሻݐ ൌ ሻݐଷሺݓ , డ௪
డ௫

ሺ݈, ሻݐ ൌ ሻݐଷሺݓ
ቑ            (2-14) 

 
Equations (2-13) and (2-14) yield  
 

ܽሺݐሻ ൌ   ሻݐଵሺݓ
 
ܾሺݐሻ ൌ   ሻݐଶሺݓ
 

ܿሺݐሻ ൌ ଵ
௟మ ሾെ3ݓଵሺݐሻ െ ሻ݈ݐଶሺݓ2 ൅ ሻݐଷሺݓ3 െ   ሻ݈ሿݐସሺݓ

 

݀ሺݐሻ ൌ ଵ
௟య ሾ2ݓଵሺݐሻ ൅ ሻ݈ݐଶሺݓ െ ሻݐଷሺݓ2 ൅  ሻ݈ሿ    (2-15)ݐସሺݓ

 
By substituting   Eqs. (2-15) into Eq. (2-13), we can express   ݓሺݔ,  ሻ   asݐ
 

,ݔሺݓ ሻݐ ൌ ቀ1 െ 3 ௫మ

௟మ ൅ 2 ௫య

௟య ቁ ݓଵሺݐሻ ൅  ቀ௫
௟

െ 2 ௫మ

௟మ ൅ ௫య

௟య ቁ ሻݐଶሺݓ݈  ൅ ቀ3 ௫మ

௟మ െ
 ሻ       (2-16)ݐ4ሺݓ݈ 3݈3ݔ2݈2൅ݔ− ൅ݐ3ݓ 3݈3ݔ2

 
This equation can be rewritten as  

 
,ݔሺݓ ሻݐ ൌ ∑ ௜ܰሺݔሻݓ௜ሺݐሻସ

௜ୀଵ            (2-17) 
 

Where   ௜ܰሺݔሻ are the shape functions given by 
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ଵܰሺݔሻ ൌ 1 െ 3 ቀ௫
௟
ቁ

ଶ
൅ 2 ቀ௫

௟
ቁ

ଷ
       (2-18) 

 

ଶܰሺݔሻ ൌ ݔ െ 2݈ ቀ௫
௟
ቁ

ଶ
൅ ݈ ቀ௫

௟
ቁ

ଷ
      (2-19) 

 

ଷܰሺݔሻ ൌ 3 ቀ௫
௟
ቁ

ଶ
െ 2 ቀ௫

௟
ቁ

ଷ
        (2-20) 

 

ସܰሺݔሻ ൌ െ݈ ቀ௫
௟
ቁ

ଶ
൅ ݈ ቀ௫

௟
ቁ

ଷ
        (2-21) 

 
The kinetic energy, bending strain energy, and virtual work of the element can be 

expressed as 

 

ܶሺݐሻ ൌ ଵ
ଶ ׬ ቄడ௪ሺ௫,௧ሻ ܣߩ

డ௧
ቅ

ଶ
ݔ݀  ൌ ଵ

ଶ
ሬሬԦሶݓ ሺݐሻ்ሾ݉ሿ ݓሬሬԦሶ ሺݐሻ௟

଴        (2-22) 

 

ܸሺݐሻ ൌ ଵ
ଶ ׬ ቄడమ௪ሺ௫,௧ሻ ܫ ܧ

డ௫మ ቅ
ଶ

ݔ݀  ൌ ଵ
ଶ

ሻ௟ݐሬሬԦሺݓ ሻ்ሾ݇ሿݐሬሬԦሺݓ
଴       (2-23) 

 

ሻݐሺܹߜ ൌ ׬ ݂ሺݔ, ,ݔሺݓߜ ሻݐ ሻ௟ݐ
଴ ݔ݀  ൌ  ሻ    (2-24)ݐሻ் Ԧ݂ሺݐሬሬԦሺݓߜ

 

Where  is the density of the beam,  is Young’s modulus,  is the moment of 

inertia of the cross section,  is the area of cross section, and  

 

ሻݐሺݓ ൌ

ە
۔

ۓ
ሻݐଵሺݓ
ሻݐଶሺݓ
ሻݐଷሺݓ
ሻۙݐସሺݓ

ۘ

ۗ
ሬሬԦሶݓ                ,  ሺݐሻ ൌ

ە
۔

ۓ
ଵݓ݀ ⁄ݐ݀
ଶݓ݀ ⁄ݐ݀
ଷݓ݀ ⁄ݐ݀
ସݓ݀ ⁄ݐ݀ ۙ

ۘ

ۗ
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ሻݐሺݓߜ ൌ

ە
۔

ۓ
ሻݐଵሺݓߜ
ሻݐଶሺݓߜ
ሻݐଷሺݓߜ
ሻۙݐସሺݓߜ

ۘ

ۗ
 ,                      ሬ݂ሬሬԦሺݐሻ ൌ

ە
۔

ۓ ଵ݂ሺݐሻ
ଶ݂ሺݐሻ
ଷ݂ሺݐሻ
ସ݂ሺݐሻۙ

ۘ

ۗ
 

 
By substituting Eq. (2-16) into Eqs. (2-22) to (2-24) and carrying out the 

necessary integrations, we obtain  

 

 

ሾ݉ሿ ൌ ఘ஺௟
ସଶ଴

൦

156 22݈ 54 െ13݈
22݈ 4݈ଶ 13݈ െ3݈ଶ

54 13݈ 156 െ22݈
െ13݈ െ3݈ଶ െ22݈ 4݈ଶ

൪     (2-25) 

 

ሾ݇ሿ ൌ ாூ
௟య ൦

12 6݈ െ12 6݈
6݈ 4݈ଶ െ6݈ 2݈ଶ

െ12 െ6݈ 12 െ6݈
6݈ 2݈ଶ െ6݈ 4݈ଶ

൪       (2-26) 
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2.4 Frame element  

 

A frame element is formulated to model a straight bar of an arbitrary cross-

section, which can deform not only in the axial direction but also in the directions 

perpendicular to the axis of the bar. The bar is capable of carrying both axial and 

transverse forces, as well as moments. Therefore, a frame element is seen to possess 

the properties of both truss and beam elements. In fact, the frame structure can be 

found in most of our real world structural problems see figure (2-6). There are not 

many structures that deform and carry loadings purely in axial directions nor purely 

in transverse directions. 

 

The frame element developed is also known in many commercial software 

packages as the general beam element, or even simply the beam element. 

Commercial software packages usually offer both pure beam and frame elements, 

but frame structures are more often used in actual engineering applications. A three-

dimensional spatial frame structure can practically take forces and moments of all 

directions. Hence, it can be considered to be the most general form of element with a 

one-dimensional geometry.  

 

 
Figure 2.6 Frame Structures 

 



 

 

20

The important note in combination of these two elements is the placement of the 

use for components in the matrix .i.e. the first three rows refer to the first node 

components and the second three for the components of second node. As shown in 

Figure (2-7) .Where the hidden line box refer to 1st node and solid line box refer to 

2nd components. 

 

 
Figure 2.7 Combine Bar and Beam Elements 
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Where 
E.M. = element matrix (mass or stiffness). 
A, B just symbols to denote the elements, A for a bar element, B for a beam 
element. 
The frame element matrices can be obtained from Eq.(2-9) , (2-12) ,(2-25) and (2-
26)  
 

Kୡ୭୫ୠ୧୬ୣ ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ

AE
୪

0 0 െ AE
୪

0 0

0 ଵଶEI
୪య

଺EI
୪మ 0 െ ଵଶEI

୪య
଺EI
୪మ

0 ଺EI
୪మ

ସEI
୪

0 െ ଺EI
୪మ

ଶEI
୪

െ AE
୪

0 0 AE
୪

0 0

0 െ ଵଶEI
୪య െ ଺EI

୪మ 0 ଵଶEI
୪య െ ଺EI

୪మ

0 ଺EI
୪మ

ଶEI
୪

0 െ ଺EI
୪మ

ସEI
୪ ے

ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

      (2-27) 

 

Mୡ୭୫ୠ୧୬ୣ ൌ ρA୪
ସଶ଴

ۏ
ێ
ێ
ێ
ێ
ۍ
140 0 0 70 0 0

0 156 22l 0 54 െ13l
0 22l 4lଶ 0 13l െ3lଶ

70 0 0 140 0 0
0 54 13l 0 156 െ22l
0 െ13l െ3lଶ 0 22l 4lଶ ے

ۑ
ۑ
ۑ
ۑ
ې

      (2-28) 
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2.5 Buckling  

In engineering, buckling is a failure mode characterized by a sudden failure of a 

structural member subjected to high compressive stresses, where the actual 

compressive stress at the point of failure is less than the ultimate compressive 

stresses that the material is capable of withstanding. This mode of failure is also 

described as failure due to elastic instability. Mathematical analysis of buckling 

makes use of an axial load eccentricity that introduces a moment, which does not 

form part of the primary forces to which the member is subjected. 

 

Study of beam-columns leads to an eigenvalue problem. For example the 

equation governing onset of buckling of a column subjected to an axial compressive 

force is ܰ. 

 

 
Figure 2.8 (a) pin-pin   (b) fix-pin 
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ௗమ

ௗ௫మ  ቀܫܧ ௗమ௪
ௗ௫మ ቁ ൅  ܰ ௗమ௪

ௗ௫మ ൌ 0        (2-30) 

 

Which describes an eigenvalue problem with the smaller value of ܰ is called the 

critical buckling load. 

 

The finite element model of the equation above is 

 

ሾ݇ሿሼ∆ሽ െ ܰሾܩሿሼ∆ሽ ൌ ሼܳሽ        (2-31) 

 

 Where ሼ∆ሽ ܽ݊݀ ሼܳሽ are the columns of generalized displacement and force degree 

of freedom at the two ends of the Euler-Bernoulli beam element: 

 

ሼ∆ሽ ൌ

ە
ۖ
۔

ۖ
ۓ ଵܹ

ቀെ ௗௐ
ௗ௫

ቁ
ଵ

ଶܹ

ቀെ ௗௐ
ௗ௫

ቁ
ଶۙ

ۖ
ۘ

ۖ
ۗ

           ,     ሼܳሽ ൌ

ە
ۖۖ

۔

ۖۖ

ۓ ቂ ௗ
ௗ௫

ቀܫܧ ௗమௐ
ௗ௫మ ቁ ൅ ܰ଴ ௗௐ

ௗ௫
ቃ

ଵ

ቀܫܧ ௗమௐ
ௗ௫మ ቁ

ଵ

ቂെ ௗ
ௗ௫

ቀܫܧ ௗమௐ
ௗ௫మ ቁ െ ܰ଴ ௗௐ

ௗ௫
ቃ

ଶ

ቀെܫܧ ௗమௐ
ௗ௫మ ቁ

ଶ ۙ
ۖۖ

ۘ

ۖۖ

ۗ

 

 

Where the subscripts 1 and 2 refer to element nodes 1 and 2 (at ݔ ൌ ݔ ݀݊ܽ  ݔ ൌ

, ݔ  The coefficients of stiffness matrix ሾ݇ሿ and the stability matrix .( ݕ݈݁ݒ݅ݐܿ݁݌ݏ݁ݎ

ሾܩሿ are: 
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݇ ൌ ׬ ௫௕ܫܧ
௫௔

ௗమథ 
ௗ௫మ  ௗమ థ

ௗ௫మ  (32-2)           ݔ݀ 

 

ܭܩ ൌ ׬ ௫௕ܫܧ
௫௔

ௗమథ 
ௗ௫

 ௗ థ
ௗ௫

 (33-2)           ݔ݀ 

 

Where ߶ are the Hermite cubic interpolations functions . the explicit form of ሾܭܩሿ is 

 

ሾܭܩሿ ൌ ൦

36 െ3݄ െ36 െ3݄
െ3݄ 4݄ଶ 3݄ െ݄ଶ

െ36 3݄ 36 3݄
െ3݄ െ݄ଶ 3݄ 4݄ଶ

൪       (2-34) 

 

ሾK୤୰ୟ୫ୣሿሼuሽ െ Pୡ୰ሾGK୤୰ୟ୫ୣሿሼuሽ ൌ ሼqሽ     (2-35) 

 

Here  K୤୰ୟ୫ୣ  is the stiffness matrix,  GK୤୰ୟ୫ୣ  is the geometric stiffness matrix, Pୡ୰ 

the critical buckling load and ሼuሽ  ሼqሽ  are the usual nodal displacement and force 

vectors. 
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2.6 Transformation from Local Coordinate To Global 

 

The matrices formulated above are for a particular frame element in a specific 

orientation. A full frame structure usually comprises numerous frame elements of 

different orientations joined together. As such, their local coordinate system would 

vary from one orientation to another. To assemble the element matrices together, all 

the matrices must first be expressed in a common coordinate system, which is called 

global coordinate system. Figure (2-9). 

 

 
       Figure 2.9 Transformations from Local to Global Coordinate 

 

 

ሾTሿ ൌ

ۏ
ێ
ێ
ێ
ێ
ۍ

cos θ sin θ 0 0 0 0
െ sin θ cos θ 0 0 0 0

0 0 1 0 0 0
0 0 0 cos θ sin θ 0
0 0 0 െ sin θ cos θ 0
0 0 0 0 0 ے1

ۑ
ۑ
ۑ
ۑ
ې

                  (2-36) 
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2.7 Equation of Motion of the Complete System of Finite Elements 

 

Since the complete structure is considered to be an assemblage of several finite 

element. We shall now extend the equations of motions obtained for single finite 

elements in the global system to the complete structure. We shall denote the joint 

displacements of the complete structure in the global coordinate system as 

ଵܷሺݐሻ, ܷଶሺݐሻ, … , ܷெሺݐሻ or, equivalently, as a column vector: 

 

ሬܷሬԦሺݐሻ ൌ

ە
ۖ
۔

ۖ
ۓ ଵܷሺݐሻ

ଶܷሺݐሻ
.
.

ܷெሺݐሻۙ
ۖ
ۘ

ۖ
ۗ

 

 

For convenience, we shall denote the quantities pertaining to an element    ݁    in 

the assemblage by the superscript    ݁   .since the joint displacements of any element     

݁    can be identified in the vector of joint displacements of the complete structure, 

the vectors     ሬܷሬԦሺ௘ሻሺݐሻ     and    ሬܷሬԦሺݐሻ   are related: 

 

ሬܷሬԦሺ௘ሻሺݐሻ ൌ ሺ௘ሻ൧ܣൣ ሬܷሬԦሺݐሻ                   (2-37) 

 

Where    ൣܣሺ௘ሻ൧    is a rectangular matrix composed of zeros and ones. For 

example, for element   1 in figure (2-10) ,  Eq(2-37) becomes 

 

ሬܷሬԦሺଵሻሺݐሻ ؠ

ە
۔

ۓ ଵܷሺݐሻ
ܷଶሺݐሻ
ܷଷሺݐሻ
ܷସሺݐሻۙ

ۘ

ۗ
ൌ ൦

1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0

൪

ە
ۖ
ۖ
۔

ۖ
ۖ
ۓ ଵܷሺݐሻ

ܷଶሺݐሻ
.
.
.
.
.

଼ܷሺݐሻۙ
ۖ
ۖ
ۘ

ۖ
ۖ
ۗ

             (2-38) 
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The kinetic energy of the complete structure can be obtained by adding the 

kinetic energies of individual elements: 

 

ܶ ൌ ∑ ଵ
ଶ
 ா

௘ୀଵ ሬܷሬԦሶ ሺ௘ሻ்ሾ ഥ݉ ሿ ሬܷሬԦሶ ሺ௘ሻ            (2-39) 

 

Where    ܧ    denotes the number of elements in the assemblage. By 

differentiating Eq(2-37), the relation between the velocity vector can be derived : 

 

ሬܷሬԦሶ ሺ௘ሻሺݐሻ ൌ ሺ௘ሻ൧ܣൣ ሬܷሬԦሶ ሺ௘ሻ         (2-40) 

 

Substitution of Eq(2-40) into (2-39) leads to  

 

ܶ ൌ ∑ ଵ
ଶ
 ா

௘ୀଵ ሬܷሬԦሶ ሺ௘ሻ൧ܣൣ்
்

ൣ ഥ݉ ሺ௘ሻ൧ൣܣሺ௘ሻ൧ ሬܷሬԦሶ ሺ௘ሻ      (2-41) 

 

The kinetic energy of the complete structure can also be expressed in terms of 

joint velocities of the complete structure ሬܷሬԦሶ : 

 

ܶ ൌ ଵ
ଶ

 ሬܷሬԦሶ ൧ ሬܷሬԦሶܯൣ ்            (2-42) 

 

Where  ൣܯ൧  is called the mass matrix of the complete structure. A comparison of 

Eqs(2-41) and (2.42) gives the relation  

 

൧ܯൣ ൌ ∑ ሺ௘ሻ൧ܣൣ
்

ൣ ഥ݉ ሺ௘ሻ൧ൣܣሺ௘ሻ൧ா
௘ୀଵ        (2-43) 

 

Similarly, by considering strain energy, the stiffness matrix of the complete 

structure, ሾ ܭ ሿ , can be expressed as  

 

൧ܭൣ ൌ ∑ ሺ௘ሻ൧ܣൣ
்

ൣത݇ሺ௘ሻ൧ൣܣሺ௘ሻ൧ா
௘ୀଵ        (2-44) 
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Finally the consideration of virtual work yields the vector of joint forces of the 

complete structure,   ܨԦ : 

Ԧܨ ൌ ∑ ሺ௘ሻ൧ܣൣ
்ா

௘ୀଵ
ሬ݂Ԧሺ௘ሻ

              (2-45) 

Once the mass and stiffness matrices and the force vector are known, Lagrange’s 

equations of motion for the complete structure can be expressed as  

 

൧ܯൣ ሬܷሬԦሷ ൅ ൧ܭൣ ሬܷሬԦ ൌ  Ԧ          (2-46)ܨ

Note that the joint force vector    ܨԦ    in Eq (2.46) was generated by considering 

only the distributing loads acting on the various elements. If there is any 

concentrated load acting along the joint displacement     ௜ܷሺݐሻ     , it must be added 

to the ݅th component of   ܨԦ     . 

 

 
Figure 2.10 a dynamical system (truss) idealized as an assemblage of four bar elements. 
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3 CHAPTER THREE 

CRACK  

3.1 Cracks  

Cracks can be caused as a result of the accidental mechanical damage .Other 

reasons for the appearance of cracks are erosion and corrosion phenomena and the 

fatigue strength of materials. Cracks on a structure member can change its local 

flexibility. The stiffness of a structure depends on the localization of the damage and 

its magnitude, as a result the natural frequency of the structure change. 

 

The crack effect depends on three parameters; 

1. Crack depth 

2. Crack direction with respect to load direction. 

3. Crack location (distance) on a beam from the fixed end.  
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3.2 Crack modes 

There are three ways of applying a force to enable a crack to propagate: 

1. Mode I crack – Opening mode (a tensile stress normal to the plane of the 

crack) 

2. Mode II crack – Sliding mode (a shear stress acting parallel to the plane of 

the crack and perpendicular to the crack front plane) 

3. Mode III crack – Tearing mode (a shear stress acting parallel to the plane 

of the crack and parallel to the crack front plane) 

 

 

Figure 3.1 (a) Opening mode, (b) Sliding mode, (c) Tearing mode 
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3.3 The Local Flexibility Due To the Crack 

The cracked beam problem has attracted the attention of many researchers in 

recent years. Various kinds of analytical, semi-analytical and numerical methods 

have been employed to solve the problem of cracked beams. A common method 

employed in the analysis is the finite element method (FEM). The key point in using 

the FEM is how to appropriately obtain the stiffness matrix for the cracked beam 

element. When the stiffness matrix is obtained, the inverse of this matrix will give 

the flexibility matrix of the element.  

The total flexibility matrix of the cracked beam element includes two parts. The 

first part is the flexibility matrix of uncracked beam. The second part is the additional 

flexibility matrix due to the existence of the crack, which leads to energy release and 

additional deformation of the structure. 

In this work, cross section of the beam is assumed to be rectangular. The 

additional strain energy due to the existence of a crack can be expressed as: 

 

Πୡ ൌ ׬ GAౙ
 dA,        (3-1) 

Where G is the strain energy release rate function and Aୡis the effective cracked 

area. The strain energy release rate function G can be expressed as  

 

G ൌ ଵ
Eᇱ

ሾሺKIଵ ൅ KIଶ ൅ KIଷሻଶ ൅ ሺKIIଶሻଶሿ,          (3-2) 

Where Eᇱ ൌ E for plane stress problem, Eᇱ ൌ E/ሺ1 െ µଶሻ for plane strain 

problem; KIଵ , KIଶ , KIଷ and KIIଶ are the stress intensity factor due to loads 

P1, P2 and P3; 
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K஁ଵ ൌ Pభ
ୠ୦

 ඥπξ F1 ቀஞ
୦
ቁ  ,     K஁ଶ ൌ ଺PమLC

ୠ୦య  ඥπξ F2 ቀஞ
୦

ቁ        (3-3, 3-4) 

 

K஁ଷ ൌ ଺Pయ
ୠ୦మ  ඥπξ F2 ቀஞ

୦
ቁ   ,   K஁஁ଶ ൌ Pమ

ୠ୦
 ඥπξ FΙΙ ቀஞ

୦
ቁ    (3-5, 3-6) 

 

 ,ூଶ  Ignored according to  (A.S. Sekhar, 1999) and (A.S. Sekhar, & B.S. Prabhuܭ

1992) 

 

F1ሺsሻ ൌ ට୲ୟ୬ሺ஠ୱ/ଶሻ
ሺ஠ୱ/ଶሻ

 ଴.଻ହଶାଶ.଴ଶୱା଴.ଷ଻ሺଵିୱ୧୬ሺ஠ୱ/ଶሻሻయ

ୡ୭ୱሺ஠ୱ/ଶሻ
    (3-7) 

F2ሺsሻ ൌ ට୲ୟ୬ሺ஠ୱ/ଶሻ
ሺ஠ୱ/ଶሻ

 ଴.ଽଶଷା଴.ଵଽଽሺଵିୱ୧୬ሺ஠ୱ/ଶሻሻర

ୡ୭ୱሺ஠ୱ/ଶሻ
     (3-8) 

FΙΙሺsሻ ൌ  ଵ.ଵଶଶି଴.ହ଺ଵୱା଴.଴଼ହୱమା଴.ଵ଼ୱయ

√ଵିୱ
      (3-9) 

In which  is the crack depth .F1, F2 and F3 are the correction factors for stress 

intensity factors. It is worth nothing that ࢇ is the final crack depth while  is the 

crack depth during the process of penetration from zero to the final depth. 

Using Paris equation, we have  

 

δ୧ ൌ ப ஈౙ
ப P౟

   ሺi ൌ 1,2,3ሻ.       (3-10) 

By definition, the elements of the overall additional flexibility matrix c୧୨  can be 

expressed as  
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c୧୨ ൌ பஔ౟
ப P౟

ൌ பమ ஈౙ
ப P౟ ப Pౠ

   ሺi, j ൌ 1,2,3ሻ.         (3-11) 

Substituting Eqs. (3-3)- (3-6) into Eq. (3-2), and then into Eqs. (3-1) and (3-11), 

considering that all K’s are independent of   η, we obtain. 

 

C୧୨ ൌ ୠ
Eᇱ

 பమ

பP౟  பPౠ
׬  ൜ቂPభ

ୠ୦
 ඥπξ Fଵ  ቀஞ

୦
ቁ ൅  ଺PమLౙ

ୠ୦మ  ඥπξ Fଶ  ቀஞ
୦

ቁ ൅ ଺Pయ
ୠ୦మ  ඥπξFଶ  ቀஞ

୦
ቁቃ

ଶ
൅ୟ

଴

 Pమ
మ

ୠమ୦మ  πξ FII
ଶ ቀஞ

୦
ቁቅ  dξ   ሺi, j ൌ 1,2,3ሻ.         

    (3-12) 

c୧୨ ൌ ൥
c11 c12 c13
c21 c22 c23
c31 c32 c33

൩           (3-13) 
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3.4 The crack finite element model 

A finite element model is developed to represent a cracked beam element of 

length d and the crack is located at a distance d1 from the left end of the element as 

shown in figure 3-2. 

 

 

Figure 3.2 Crack Locations in Crack Element 

 

The element is then considered to be split into two segments by the crack. The left 

and right segments are represented by non-cracked sub elements while the crack is 

represented by a massless rotational spring of length zero. The reason of the fact that 

the crack represents net ligament effect created by loadings, this effect can be related 

to the deformation of the net ligament through the compliance expressions by 

replacing the net ligament with a fictitious spring connecting both faces of the crack 

(Yokoyama T, Chen MC.1998). 

So, the spring effects are introduced to the system by using the local flexibility 

matrix given by Eq.(3-13) . The cracked element has 2 nodes with three degrees of 

freedom in each node. They are denoted as lateral bending displacements ( ଵࣰ, ଶࣰ), 

slopes (ࣰ̀ଵ, ࣰ̀ଶ), and longitudinal displacements ( ࣯ଵ, ࣯ଶ ).  

For   0 ൑ x ൑ dଵ , 
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ଵࣰሺxሻ ൌ aଵ ൅ aଶ x ൅ aଷ xଶ ൅ aସ xଷ         (3-14a) 

࣯ଵ ൌ cଵ ൅ cଶ x           

 

For  dଵ  ൑ x ൑ d  , 

 

ଶࣰሺxሻ ൌ bଵ ൅ bଶ x ൅ bଷ xଶ ൅ bସ xଷ        (3-14b) 

࣯ଶ ൌ dଵ ൅ dଶ x           

 

Lateral bending  

 

ଵࣰሺ0ሻ ൌ qଵ   , ࣰ̀ଵሺ0ሻ ൌ qଶ            (3-15a) 

ଶࣰሺdሻ ൌ qଷ      ࣰ̀ሺdሻ ൌ qସ  

 

Longitudinal displacement   

 

࣯ଵሺ0ሻ ൌ qହ    ,   ࣯ଶሺdሻ ൌ q଺         (3-15b) 

At the crack location  dଵ , the flexibility concept requires: 

For lateral bending: 

Continuity of the vertical displacement  
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ଵࣰሺdଵሻ ൌ ଶࣰሺdଵሻ        (3-16a) 

 

Discontinuity of the cross-sectional rotation (slope) 

 

ࣰ̀ଶሺdଵሻ ൌ ࣰ̀ଵሺdଵሻ ൅ cଷଷ Mଵ ሺdଵሻ      (3-16b) 

Where       Mଵሺdଵሻ ൌ E I ଵࣰ
"|୶ୀୢభ  

 

Continuity of bending moment  

 

Mଵሺdଵሻ ൌ Mଶሺdଵሻ           (3-16c) 

 

Continuity of shear force 

 

Sଵሺdଵሻ ൌ Sଶሺdଵሻ           (3-16d) 

For longitudinal displacement 

Discontinuity of longitudinal displacement  

࣯ଶሺdଵሻ ൌ ࣯ଵሺdଵሻ ൅ cଵଵ Tଵሺdଵሻ      (3-17a) 

Where     Tଵሺdଵሻ ൌ E I ࣯ଵ
ᇱ|୶ୀୢభ 

Continuity of force 
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Tଵሺdଵሻ ൌ Tଶሺdଵሻ        (3-17b) 

 

By considering Eq.3-10 describing the displacement for the left and right part if the 

element and rearranging Eqs.(3-15)-(3-17) , the nodal displacement can be expressed 

in matrix forms as 

 

ە
ۖ
ۖ
۔

ۖ
ۖ
ۓ

qଵ
qଶ
0
0
0
0

qଷ
qସۙ

ۖ
ۖ
ۘ

ۖ
ۖ
ۗ

ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 െ1 0
0 0 0 1 0 0 0 െ1

െ1 0 S1 S2 1 0 0 0
0 െ1 S3 S4 0 1 0 0
0 0 0 0 1 d dଶ dଷ

0 0 0 0 0 1 2d 3dଶے
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

ە
ۖ
ۖ
۔

ۖ
ۖ
ۓ

aଵ
aଶ
aଷ
aସ
bଵ
bଶ
bଷ
bସۙ

ۖ
ۖ
ۘ

ۖ
ۖ
ۗ

         (3-18) 

 

൞

qହ
0
0

q଺

ൢ ൌ ൦

1 0 0 0
0 1 0 െ1

െ1 S5 1 0
0 0 1 d

൪ ൞

cଵ
cଶ
dଵ
dଶ

ൢ        (3-19) 

 
Where  

 

S1 ൌ 2 cଵଵ E I dଵ  

S2 ൌ 6 cଵଵ E I dଵ
ଶ  

S3 ൌ െ2 cଵଵ E I   

S4 ൌ െ6 cଵଵ E I dଵ  

S5 ൌ െcଷଷ E I  
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4 CHAPTER FOUR 

THEORY OF STABILITY ANALYSIS  

4.1 Static stability    

The modern use of steel and high-strength alloys in engineering structures, 

especially in bridges, ships and aircraft, has made elastic instability a problem of 

great importance. Urgent practical requirements have given rise in recent years to 

extensive theoretical investigations of the conditions governing the stability of 

beams, plates and shells.  

The first problems of elastic instability, concerning lateral buckling of 

compressed members, were solved about 400 years ago by L. Euler. At that time the 

relatively low strength of materials necessitated stout structural members for which 

the question of elastic stability is not of primary importance. Thus Euler’s theoretical 

solution, developed for slender bars, remained for a long time without a practical 

application. Only with the beginning of extensive steel constructions did the question 

of buckling of compression members become of practical importance. The use of 

steel led naturally to types of structures embodying  slender compression members,  

thin plates and thin shells. 

Stability problems can be treated in a  general manner using the energy 

methods. As an introduction to such methods, the basic criteria for determining the 

stability of equilibrium is derived in this study for, conservative linearly elastic 

systems. 

To establish the stability criteria, a function Π , called the potential of the 

system must be formulated. This function is expressed as the sum of the internal 

potential energy U (strain energy) and the potential energy Λ  of the external forces 

that act on  a system, i.e., 

Λ+=Π U      (4.1) 
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Disregarding a possible additive constant, eW−=Λ ,  i.e., the loss of potential 

energy during the application of forces is equal to the work done on the system by 

external forces. Hence, equation (4.1) can be rewritten as 

eWU −=Π     (4.2) 

As is known from classical mechanics, for equilibrium the total potentialΠ  

must be stationary, therefore its variation Πδ  must equal zero, 

eU W 0δΠ = δ −δ =     (4.3) 

For conservative, elastic systems this relation agrees with  δWe = δWei  

equation (δWei : the external work on the internal elements of a body,  δWe : the total 

work), which states the virtual work principle. This condition can be used to 

determine the position of equilibrium. However, equation (4.3) cannot discern the 

type of equilibrium and there by establish the condition for the stability of 

equilibrium. Only by examining the higher order terms in the expression for 

increment in Π as given by Taylor’s expansion must be examined. Such an 

expression is 

....
!3

1
!2

1 32 +Πδ+Πδ+Πδ=ΔΠ     (4.4) 

Since for any type of equilibrium δΠ = 0, it is the first nonvanishing term of 

this expansion that determines the types of equilibrium. For linear elastic systems the 

second term suffices. Thus, from equation (4.4), the stability criteria are 

δ4Π > 0     for stable equilibrium 

δ4Π < 0     for unstable equilibrium 

δ4Π = 0     for neutral equilibrium associated with the critical load 

The meaning of these expressions may be clarified by examining the simple 

example shown in Figure 4.1, where the shaded surfaces represent three different 
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types of Π functions. It can be concluded at once that the ball on the concave 

spherical surface (a) is in stable equilibrium, while the ball on the convex spherical 

surface (b) is in unstable equilibrium. The ball on the horizontal plane (c) is said to 

be in different or neutral equilibrium. The type of equilibrium can be ascertained by 

considering the energy of the system. In the first case (Figure 4.1(a))  any 

displacement of the ball from its position of equilibrium will raise the center of 

gravity. A certain amount of work is required to produce such a displacement; thus 

the potential energy of the system increases for any small displacement from the 

position of equilibrium. In the second case (Figure 4.1 (b)), any displacement from 

the position of equilibrium will decrease the potential energy of the system. Thus in 

the case of stable equilibrium the energy of the system is a minimum and in the case 

of unstable equilibrium it is a maximum. If the equilibrium is indifferent (Figure 4.1 

(c)), there is no change in energy during a displacement. 

 

 

 

 

 
Figure 4.1 Three cases of equilibrium 

 

For each of the systems shown in figure 4.1 stability depends only on the shape 

of the supporting surface and does not depend on the weight of the ball. In the case 

of a compressed column or plate it is found that the column or plate may be stable or 

unstable, depending on the magnitude of the axial load. 

   

(a) (b) (c) 
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4.1.1 The formulation of static stability 

If the displacements are large, then the deformed geometry will obviously  

differ significantly  from the undeformed geometry. This results in a nonlinear strain-

displacement relationship. Large displacement problems of this type  are said to be 

“geometrically nonlinear” which is a feature of elastic instability problems. From the 

design  point of  view calculation of the critical loads of structures is of considerable 

importance. In general case the strain energy of  a system, 

{ } [ ]{ }T
e

1U q K q
2

=      (4.5) 

The additional strain energy  which is function of  applied external load 

{ } { }T
g g

1U q K q
2

⎡ ⎤= ⎣ ⎦                                (4.6) 

In which [ ]e gK and K⎡ ⎤⎣ ⎦  are elastic stiffness and geometric stiffness 

matrices.  

The total potential energy of a system in  equilibrium is constant when small 

displacements  are given to the system. So 

g(U U ) 0δ + =                          (4.7) 

g(U U )+  and  δ  define the total potential energy and the change of the virtual 

displacements. Applying the  above  formulation to equations (4.5) and (4.6) 

[ ] { }e gK P K q 0⎡ ⎤⎡ ⎤− =⎣ ⎦⎣ ⎦                     (4.8) 

The roots of the eigenvalue equation (4.8) gives the buckling loads and the 

eigenvectors of this equation  are the  buckling mode shapes. 
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4.2 Dynamic stability 

If the loading is nonconservative the loss of stability may not show up by the 

system going into another equilibrium state but by going into unbounded motion. To 

encompass this possibility we must consider the dynamic behavior of the system 

because stability is essentially a dynamic concept.   

Whenever static loading of a particular kind  causes  a loss of static stability, 

vibrational loading  of the same kind will cause  a loss of dynamic stability.  Such a 

loading  is characterized by  the fact that it is contained as a parameter  on the left 

hand side of the equations  of perturbed equilibrium (or motion). We will call such 

loading parametric; this term is more appropriate because it indicates the relation to 

the phenomenon of parametric resonance. 

In the mechanical systems, parametric excitation occurs due to the following 

reasons; 

a)  periodic change in rigidity  

b)  periodic change in inertia   

c)  periodic change in the loading of the system. 

In this section firstly the differential equation related with dynamic stability  is 

introduced  and then, the determination of boundaries  of the regions of  instability 

and the amplitudes of parametrically excited vibrations for multi-degrees of freedom 

systems is presented. 

An important special case of linear variational equations with variable 

coefficients occurs  when the coefficient functions are periodic. Owing to their great 

practical importance in the theory of vibrations, a special  theory has even been 

developed for the systems of differential equations with periodic coefficients are 

known as Mathieu-Hill  differential equation.  The Hill differential equation is in the 

following form, 
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[ ]
''
y a bf (t) y 0+ − =     (4.9) 

in which  a and b are constant parameters, and f(t) is a function having the period T. 

The prime denotes differentiation   with respect to time. If  f ( t ) 2 cos 2 t=  substituted 

into the Hill differential equation, the Mathieu differential equation which may be 

described a system that is subjected to parametric excitation is obtained in the  

standard form as   

[ ]
''
y a 2b cos 2t y 0+ − =    (4.10) 

The results of solving Mathieu’s equation (4.10) for two different combinations of 

a and b are shown in figure 4.2. Although the parameter b of the system is the same 

in both cases (b=0,1), the vibrations are greatly different because of the difference 

between the values of the parameter a (a=1;  a=1,2). In the first case, they increase, 

i.e., the system is dynamically unstable, while in the second case they remain 

bounded, i.e., the system is dynamically stable. 

 

 

 

 

 
Figure 4.2 Two solutions of Mathieu’s equation 
 

The greatest importance, for practical purpose, is attached to the boundaries 

between the regions of stable and unstable solutions. This problem has been well 

studied, and the final results have been presented in the form of a diagram plotted in 

the plane of the parameters a and b. It is called the Haines-Strett diagram. Figure 4.3 

shows part of a Haines-Strett diagram for small values of the parameter b. Any given 

system having the parameters a and b corresponds to the point with the co-ordinates 

a=1 

b=0,1 

a=1,2 

b=0,1 

Unstable 

Stable 

1 

2 
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a and b on the Haines-Strett diagram. If the representative point is in the shaded parts 

of the diagram, the system is dynamically unstable, while stable systems correspond 

to representative points in the unshaded parts. The shaded regions are called the 

regions of dynamic instability. 

 

Figure 4.3 Part of Haines-Strett diagram the points    1 and 2  correspond to  the 

solutions 1 and 2 in figure 4.2 

As an example, the diagram in figure 4.3 shows the points 1 and 2 corresponding 

to the parameter a1=1 and b1=0,1, and a2=1,2 and b2=0,1. The point 1 is in the region 

of dynamic instability and the vibration occurs with increasing amplitude as shown 

in figure 4.2. The point 2 is in the stable region and it corresponds to motion with a 

limited amplitude. 

b 

a 
1/4 

0 

1 

1/2 

1/2 

2

1 

21a b
2

= −  

21 b ba
4 2 8

= + −  

21 b ba
4 2 8

= − −
21a 1 b

12
= −

25a 1 b
12

= +
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4.2.1 The formulation of dynamic stability  

The matrix equation for the free vibration of an axially loaded system can be 

written as: 

[ ]{ } [ ]{ } { }e gM q K q K q 0⎡ ⎤+ − =⎣ ⎦&&                (4.11) 

where 

{ }q      is the generalized coordinates 

[ ]M     is the inertia matrix 

[ ]eK    is the elastic stiffness matrix 

gK⎡ ⎤⎣ ⎦  is the geometric stiffness matrix, which is a function of the compressive axial 

load P(t). 

For a system subjected to a periodic force 

o tP(t) P P f (t)= +    (4.12) 

The static and time dependent components of the load can be represented as a 

fraction of the fundamental static buckling load P*, in which oP P *= α ,   tP P*=β . 

By writing P P * P * f ( t )= α +β  then the matrix  equation  gK  becomes 

g gs gtK P* K P* K⎡ ⎤ ⎡ ⎤= α +β⎣ ⎦ ⎣ ⎦             (4.13) 

where the matrices gsK⎡ ⎤⎣ ⎦ and gtK⎡ ⎤⎣ ⎦  reflect the influence of Po and Pt respectively. 

Substituting  Equation (4.13) into Equation   (4.11), the following system of n second 

order differential equations with a periodic coefficient of the known  Mathieu-Hill 

type is obtained; 
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[ ]{ } [ ] { }e gs gtM q K P * K P *f (t) K q 0⎡ ⎤⎡ ⎤ ⎡ ⎤+ −α −β =⎣ ⎦ ⎣ ⎦⎣ ⎦&&  (4.14) 

f(t) is a periodic  function with period T. Therefore 

    f ( t T ) f ( t )+ =                                             (4.15) 

Equation (4.14) is a system of n second order differential equations which may be 

written as 

{ } [ ]{ }q(t) Z q(t) 0+ =&&                                       (4.16) 

where 

[ ] [ ] [ ]1
e gs gtZ M K P * K P * K− ⎡ ⎤⎡ ⎤ ⎡ ⎤= −α −β⎣ ⎦ ⎣ ⎦⎣ ⎦      (4.17) 

It is convenient to replace the n second order equations with 4n first order 

equations by introducing 

{ }
q

h
q
⎧ ⎫

= ⎨ ⎬
⎩ ⎭&

                                                (4.18) 

and 

[ ] [ ]
[ ]
0 I
Z 0

⎡ ⎤−
φ = ⎢ ⎥

⎣ ⎦
    (4.19) 

then, equation (4.16) becomes 

{ } [ ]{ } [ ]
[ ]
0 Iq q

h(t) (t) h(t) 0
Z 0q q

⎡ ⎤−⎧ ⎫ ⎧ ⎫
+ φ = + =⎨ ⎬ ⎨ ⎬⎢ ⎥

⎩ ⎭ ⎩ ⎭⎣ ⎦

&&
&& &

 (4.20) 
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Equation (4.19) needs not be solved completely in order to determine the stability 

of the system. It is merely necessary to determine whether the solution is bounded or 

unbounded. 

It is assumed that the 4n linearly independent solutions of equation (4.20) are 

known over the interval t = 0 to t = T. Then they may be represented in matrix form 

as 

( )

1,1 1,2n

2n,1 2n,2n

h . . . h
. . . . .
. . . . .H t
. . . . .

h . . . h

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=⎡ ⎤⎣ ⎦ ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

   (4.21) 

Since f(t), and therefore (t)⎡ ⎤φ⎣ ⎦  is periodic with period T, then the substitution       

t = t + T will not alter the form of the equations, and the matrix solutions, at time       

t + T, H(t T)⎡ ⎤+⎣ ⎦may be obtained from H(t)⎡ ⎤⎣ ⎦ by a linear transformation 

H(t T)⎡ ⎤+⎣ ⎦= R H(t)⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦     (4.22) 

where R⎡ ⎤⎣ ⎦  is the transformation matrix and is composed only of constant 

coefficients. 

It is desirable to find a set of solutions for which the matrix R⎡ ⎤⎣ ⎦ can be 

diagonalized. Hence the ith solution vector after period T, { }
i

h(t T)+  may be 

determined from { }
i

h(t)  using the simple expression 

{ } { }ii i
h(t T) h(t)+ =ρ     (4.23) 

The behavior of the solution is determined by ρi . 
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If ρi>1, then the amplitude of vibration will increase with time. If ρi<1, then the 

amplitude will decrease. For ρi=1, the amplitude will remain unchanged, and this 

represents the stable boundary. 

In order to diagonalize the matrix R⎡ ⎤⎣ ⎦ , the characteristic equation 

[ ] [ ]R I 0−ρ =     (4.24) 

must be solved for its 2n roots, where I⎡ ⎤⎣ ⎦ is the identity matrix. The roots of the 

equations, ρi , are eigenvalues, each having a corresponding eigenvector.  

The 2n resulting eigenvectors are chosen as the 2n solutions to equation (4.20). 

They can be placed in a matrix, H(t)⎡ ⎤⎣ ⎦ , which will then satisfy the expression 

H(t) R H(t T)⎡ ⎤ ⎡ ⎤ ⎡ ⎤= +⎣ ⎦ ⎣ ⎦ ⎣ ⎦    (4.25) 

where 

      

1

2

2n

0 . . 0
0 . . 0

R . . . . .
. . . . .
0 . . 0

ρ⎡ ⎤
⎢ ⎥ρ⎢ ⎥
⎢ ⎥⎡ ⎤ =⎣ ⎦ ⎢ ⎥
⎢ ⎥
⎢ ⎥ρ⎣ ⎦

   (4.26) 

R⎡ ⎤⎣ ⎦  is the diagonalized matrix of [ ]R  composed of the 4n eigenvalues of 

equation (4.24). 

The periodic vector, { }i
Z(t) , with period T is introduced so that  

{ } { }ii

(t /T)ln ih(t) Z(t) e
ρ

=     (4.27) 

For an even function of time  like [ ](t)φ , it is true that 
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[ ] [ ](t) ( t)φ = φ −     (4.28) 

Hence equation (4.27) can be written as 

{ } { }ii

(t /T)ln ih ( t) Z( t) e
− ρ

− = −    (4.29) 

then 

{ } { }ii

(t /T)ln(1/ )ih ( t) Z( t) e
ρ

− = −   (4.30) 

It is clear from (4.30) that 1/ρi is also an eigenvalue. This property is not restricted 

to even functions, but is also preserved in the case of arbitrary periodic functions as 

shown by  Bolotin, (1964). 

In general, the eigenvalues ρi are complex numbers of the form 

           i i ia jbρ = +     (4.31) 

and the natural logarithm of a complex number is given by 

i iln ln jρ = ρ + (argument ρ)    (4.32) 

or in this case 

2 2 1
i i i i iln ln a b jtan (b / a )−ρ = + +    (4.33) 

where  j 1= −  

From equation (4.27), it is clear that if the real part of ilog ρ  is positive for any of 

the solutions, then that solution will be unbounded with time. A negative real part 

means that the corresponding solution will damp out with time. It therefore follows 

that the boundary case for a given solution is that for which the characteristic 

exponent has a zero real part. This is identical to saying that absolute value of ρi is 

unity. For the system to remain stable, every one of the solutions must remain 
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bounded. If even one of the solutions has a characteristic exponent which is positive, 

then the corresponding solution is unbounded and therefore the system is unstable.It 

has been shown that if ρi is a solution, then 1/ρi is also a solution. These two 

solutions can be written as 

i i ia jbρ = +      (4.34) 

2 2
i n i i i i(a jb ) /(a b )+ρ = − +     (4.35) 

Another restriction on the solutions of the characteristic equation is that the 
complex eigenvalues must occur in complex conjugate pairs. Hence it follows that 
ρi+1 and ρi+n+1 are also solutions where 

i 1 i ia jb+ρ = −     (4.36) 

2 2
i n 1 i i i i(a jb ) /(a b )+ +ρ = + +     (4.37) 

These solutions are presented in figure 4.4 which shows a unit circle in the 

complex plane. The area inside the unit circle represents stable or bounded solutions, 

while the area outside the unit circle represents unstable or unbounded solutions. For 

each stable solution which lies inside the circle, there corresponds an unstable 

solution outside the circle due to the reciprocity constraint. Therefore the only 

possible stable solutions must lie on the unit circle. 

Points on this unit circle may be represented in polar co-ordinates by r = 1 and     

θ = tan-1b/a where -π ≤ θ ≤ π. For each root on the upper semicircle, there is a 

corresponding root on the lower semicircle due to the fact that the roots occur in 

complex conjugate pairs. The logarithm of ρi , when ρi lies on the unit circle will be 

iln jρ = θ     (4.38) 

and equation (4.27) becomes 

{ } { }
tj

T
ii

h(t) Z(t) e
θ⎛ ⎞

⎜ ⎟
⎝ ⎠=         (4.39) 
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                           Figure 4.4 Unit circle in the complex plane 

 

Since the eigenvalues occur in complex conjugate pairs, the limiting values of θ 

are zero and π. 

When θ = 0, equation (4.39) becomes 

{ } { }ii
h(t) Z(t)=     (4.40) 

and, therefore, the solution { }h(t) is periodic with period T when θ = π, equation 

(4.39) becomes 

{ } { }
tj

T
ii

h(t) Z(t) e
π⎛ ⎞

⎜ ⎟
⎝ ⎠=     (4.41) 

bi 

Real axis 

1

-1

1 -1 ai 

Imaginary axis 

i i ia jbρ = +

i 1 i ia jb+ρ = −  

2 2
i n 1 i i i ia jb / a b+ +ρ = + +

2 2
i n i i i ia jb / a b+ρ = − +  

1
i itan b / a−
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                { } { } { }
( t 2T)j

T
ii i

h(t 2T) Z(t 2T) e h(t)
π +⎛ ⎞

⎜ ⎟
⎝ ⎠+ = + =  (4.42) 

It is clear from equation (4.42) that the solution { }h(t)  is also periodic with a 

period 2T. 

It can be concluded that equation (4.11) has periodic solutions of period T and 2T. 

Also the boundaries between stable and unstable regions are formed by periodic 

solutions of period T and 2T. 

For a system subjected to the periodic force 

0 tP P P cos t= + ω      (4.43) 

Where ω is the disturbing frequency, equation (4.11) becomes 

[ ]{ } [ ] { }e gs gtM q K P * K P *cos t K q 0⎡ ⎤⎡ ⎤ ⎡ ⎤+ −α −β ω =⎣ ⎦ ⎣ ⎦⎣ ⎦&&  (4.44) 

Now we seek periodic solutions of period T and 2T of equation (4.44) where             

T = 2π/ω. 

When a solution of period 2T exists, it may be represented by the Fourier series 

{ } { } { }k k
k 1,3,5

k t k tq a sin b cos
2 2

∞

=

ω ω⎡ ⎤= +⎢ ⎥⎣ ⎦
∑   (4.45) 

Where { }k
a  and { }k

b  are time-independent vectors. Differentiating equation 

(4.45) twice with respect to time yields 

{ } { } { }
2

k k
k 1,3,5

k k t k tq a sin b cos
2 2 2

∞

=

ω ω ω⎛ ⎞ ⎡ ⎤= − +⎜ ⎟ ⎢ ⎥⎝ ⎠ ⎣ ⎦
∑&&   (4.46) 

Substituting equations (4.45) and (4.46) into equation (4.44) and using the 

trigonometric relations 
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A+B A-Bsin A+sin B = 2 sin  cos   
2 2

A+B A-Bsin A-sin B = 2 cos  sin   
2 2
A+B A-Bcos A+cos B = 2 cos  cos   

2 2
A+B A-Bcos A-cos B = 2 sin  sin  

2 2

   (4.47) 

and comparing the coefficients of sin k t
2
ω  and  cos k t

2
ω  lead to the following matrix 

equations relating the vectors { }k
a  and { }k

b . 

[ ] [ ]

[ ] [ ]

[ ] [ ]

{ }
{ }
{ }

2
* * *

e gs gt gt

12
* * *

gt e gs gt 3

2 5
* *

gt e gs

1 1K P K P K M P K 0 .
2 4 2 a

1 9 1 aP K K P K M P K . 02 4 2 a
1 250 P K K P K M . .2 4

. . . .

⎡ ⎤ω⎡ ⎤ ⎡ ⎤ ⎡ ⎤−α + β − − β⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦
⎧ ⎫⎢ ⎥

ω ⎪ ⎪⎢ ⎥⎡ ⎤ ⎡ ⎤ ⎡ ⎤− β −α − − β ⎪ ⎪⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ =⎨ ⎬⎢ ⎥ ⎪ ⎪ω⎢ ⎥ ⎪ ⎪⎡ ⎤ ⎡ ⎤− β −α − ⎩ ⎭⎣ ⎦ ⎣ ⎦⎢ ⎥
⎢ ⎥
⎣ ⎦
          (4.48) 

and 

[ ] [ ]

[ ] [ ]

[ ] [ ]

{ }
{ }
{ }

2
* * *

e gs gt gt

12
* * *

gt e gs gt 3

2 5
* *

gt e gs

1 1K P K P K M P K 0 .
2 4 2 b

1 9 1 bP K K P K M P K . 02 4 2 b
1 250 P K K P K M . .2 4

. . . .

⎡ ⎤ω⎡ ⎤ ⎡ ⎤ ⎡ ⎤−α − β − − β⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦
⎧ ⎫⎢ ⎥

ω ⎪ ⎪⎢ ⎥⎡ ⎤ ⎡ ⎤ ⎡ ⎤− β −α − − β ⎪ ⎪⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ =⎨ ⎬⎢ ⎥ ⎪ ⎪ω⎢ ⎥ ⎪ ⎪⎡ ⎤ ⎡ ⎤− β −α − ⎩ ⎭⎣ ⎦ ⎣ ⎦⎢ ⎥
⎢ ⎥
⎣ ⎦
 

     (4.49) 

The orders of matrices in equations (4.48) and (4.49) are infinite. If solutions of 

period 2T exist, then the determinants of these matrices must zero. Combining these 

two determinants, the condition may be written as  
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[ ] [ ]

[ ] [ ]

[ ] [ ]

2
* * *

e gs gt gt

2
* * *

gt e gs gt

2
* *

gt e gs

1 1K P K P K M P K 0 .
2 4 2

1 9 1P K K P K M P K . 02 4 2
1 250 P K K P K M .
2 4

. . . .

ω⎡ ⎤ ⎡ ⎤ ⎡ ⎤−α ± β − − β⎣ ⎦ ⎣ ⎦ ⎣ ⎦

ω⎡ ⎤ ⎡ ⎤ ⎡ ⎤− β −α − − β⎣ ⎦ ⎣ ⎦ ⎣ ⎦ =

ω⎡ ⎤ ⎡ ⎤− β −α −⎣ ⎦ ⎣ ⎦

 

              (4.50) 

If a solution to equation (4.44) exists with a period T=2π/ω then it may be 

expressed as  Fourier series 

{ } { } { }0 k k
k 2,4,6

1 k t k tq b a sin b sin
2 2 2

∞

=

ω ω⎡ ⎤= + +⎢ ⎥⎣ ⎦
∑      (4.51) 

Differentiating equation (4.51) twice with respect to time yields 

{ } { } { }
2

k k
k 2,4,6

k k t k tq a sin b cos
2 2 2

∞

=

ω ω ω⎛ ⎞ ⎡ ⎤= − +⎜ ⎟ ⎢ ⎥⎝ ⎠ ⎣ ⎦
∑&&         (4.52) 

Substituting equations (4.51) and  (4.52) into equation (4.44), the following 

condition for the existence of solution with period T is obtained; 

 

[ ] [ ]

[ ] [ ]

[ ] [ ]

{ }
{ }
{ }

* 2 *
e gs gt

2
* * 2 *

gt e gs gt 4

6* * 2
gt e gs

1K P K M P K 0 .
2 a

1 1 aP K K P K 4 M P K .
02 2

a10 P K K P K 9 M . .2
. . . .

⎡ ⎤⎡ ⎤ ⎡ ⎤−α −ω − β⎣ ⎦ ⎣ ⎦⎢ ⎥
⎧ ⎫⎢ ⎥
⎪ ⎪⎢ ⎥⎡ ⎤ ⎡ ⎤ ⎡ ⎤− β −α − ω − β ⎪ ⎪⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎢ ⎥ =⎨ ⎬

⎢ ⎥ ⎪ ⎪
⎢ ⎥⎡ ⎤ ⎡ ⎤− β −α − ω ⎪ ⎪⎣ ⎦ ⎣ ⎦ ⎩ ⎭⎢ ⎥
⎢ ⎥⎣ ⎦

           (4.53) 

and  
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[ ]{ }
[ ] [ ]

[ ] [ ]

[ ] [ ]

{ }
{ }
{ }
{ }

e gs gt
0

2
2gt e gs gt

4
2

gt e gs gt
6

2
gt e gs

1 1K P* K P* K 0 0 . b2 2
1 1 bP* K K P* K M P* K 0 .
2 2 b

1 10 P* K K P* K 4 M P* K . b2 2
1 .0 P* K K P* K 9 M .
2 .

0 . . . .

⎡ ⎤⎡ ⎤ ⎡ ⎤−α − β⎣ ⎦ ⎣ ⎦⎢ ⎥⎧
⎢ ⎥⎪
⎢ ⎥⎪⎡ ⎤ ⎡ ⎤ ⎡ ⎤− β −α −ω − β⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎢ ⎥
⎢ ⎥

⎨⎢ ⎥⎡ ⎤ ⎡ ⎤ ⎡ ⎤− β −α − ω − β⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎢ ⎥
⎢ ⎥

⎡ ⎤ ⎡ ⎤− β −α − ω⎢ ⎥⎣ ⎦ ⎣ ⎦
⎢ ⎥
⎢ ⎥⎣ ⎦

0

⎫
⎪
⎪

⎪ ⎪
⎪ ⎪=⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪⎩ ⎭

          (4.54) 

It has been shown by  Bolotin (1964), that solutions with period 2T are the ones of 
the greatest practical importance and that as a first approximation the boundaries of 
the principal regions of dynamic instability can be determined from the equation 

[ ] [ ] { }
2

e gs gt
1K P* K P* K M q 0
2 4

⎡ ⎤ω⎡ ⎤ ⎡ ⎤−α ± β − =⎢ ⎥⎣ ⎦ ⎣ ⎦
⎣ ⎦

  (4.55) 

The two matrices gsK⎡ ⎤⎣ ⎦  and gtK⎡ ⎤⎣ ⎦  will be identical if the static and time 

dependent components of the loads are applied in the same manner. If 

gs gt gK K K⎡ ⎤ ⎡ ⎤ ⎡ ⎤≡ ≡⎣ ⎦ ⎣ ⎦ ⎣ ⎦ , then equation (4.56) becomes 

     [ ] [ ] { }
2

e g
1K ( )P* K M q 0
2 4

⎡ ⎤ω⎡ ⎤− α± β − =⎢ ⎥⎣ ⎦
⎣ ⎦

  (4.56) 

Equation (4.56) represents solutions to three related problems  

(i) Free vibration with α = 0, β = 0  and  p = ω/2 the natural frequency 

 [ ] [ ] { }2
eK p M q 0⎡ ⎤− =⎣ ⎦                 (4.57) 

(ii) Static stability with α = 1, β = 0 and ω = 0 

[ ] { }e gK P * K q 0⎡ ⎤⎡ ⎤− =⎣ ⎦⎣ ⎦      (4.58) 

(iii) Dynamic stability when all terms are present 

      [ ] [ ] { }
2

e g
1K ( )P* K M q 0
2 4

⎡ ⎤ω⎡ ⎤− α± β − =⎢ ⎥⎣ ⎦
⎣ ⎦

     (4.59) 
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5 CHAPTER FIVE 

RESULTS AND DISCUSSION 

5.1 Program Steps  

 

The finite elemet models of frame and crack developed are discussed and the 

results obtained from the finite element method are illustrated in this chapter.  

 Process Steps can be seen in figure 5.1. 

 

1. Usage of geometrical and material properties as input. 

 

2. Formation local stiffness, local geometrical stiffness and local mass matrices 

for each beam element. 

 

3. Transforming the local coordinate into global coordinates. 

 

4. By assembling the element matrices, main global matrices are formed. 

 

5. Application of the boundary conditions. 

 

6. Eigenvalue solution is carried out to calculate the natural frequencies and the 

mode shapes, critical buckling load and dynamic stability of system. 

 



 

 

Figure 5.1 b
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5.2 Results comparison  

In this thesis, comparison made between the natural frequencies of cracked frames 

obtained using the present model with the results obtained from the ANSYS 

software. As seen from Table 5.1. Maximum error is 2.3804%. The comparison 

shows that very good agreement between the results is obtained.  

 

 Table 5.1 comparison between present work and ANSYS results. 
 

Crack (a/h) ANSYS (Hz) Present work 

 (Hz) 

ERROR% 

0 118.555 117.2552 1.108522 

0.1 118.356 117.2532 0.940545 

0.2 117.726 117.2223 0.429685 

0.3 116.648 117.0806 0.369526 

0.4 115.006 116.6234 1.386837 

0.5 112.594 115.3395 2.3804 

 

The modeling of Crack in ANSYS is built by using the method of concentrate 

meshing around the crack location. which is explained step by step in “ANSYS 

TUTORIAL -2D Fracture Analysis” by Dr. A.-V. Phan , from University of South 

Alabama. 

By using KSCON a concentration key-point is defined about which mesh area 

will be skewed. This is useful for modeling stress concentrations and crack tips. 

During meshing, elements are initially generated circumferentially about, and 

radially away, from the key-point. Lines attached to the key-point are given 

appropriate divisions and spacing ratios.  
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5.3 Natural frequency 

5.3.1 Single frame structure 

Figure 5.6 shows the effect of crack location and crack depth on the first natural 

frequency of a single frame structure and its mode shape. As the crack depth 

increases, the variations of the first natural frequency become significant. When the 

crack location changes, the variation in the first natural frequency is centered 

symmetrically around the 15th node of the FE as seen in Figure 5.6©. The maximum 

decrease in the first natural frequency occurs when the crack is at the fixed points 

(roots of the frame). The decrease in the frequency when it is at the corners is about 

49.06% of those of the fixed points. Moreover, the crack does not affect the first 

natural frequency of the single frame structure when it is located at the mid-points of 

the blades and the shroud lengths because the stresses in these points are so small. 

 

Figure 5.7 shows the effect of crack location and crack depth on the second 

natural frequency of the single frame structure and its mode shape. As seen in Figure 

5.7©, similar to the effect of the crack on the first natural frequency, the left and the 

right hand side of the results obtained from maximum crack depth condition around 

the 15th node is symmetric and the maximum decrease in the second natural 

frequency occurs when the crack is at the fixed points of the single frame.  There is 

no effect of the crack on the second frequency when the crack is located at 

approximately near the 3rd, 10th, 20th and 27th nodes, because the stress in these points 

are small. When the crack is located in the mid-points of the blades and shroud, the 

decrease in the second natural frequency is significant. The reason for this is that the 

stress is large at these areas. 

 

Figure 5.8 shows the effect of crack location and crack depth on the third natural 

frequency of the single frame structure and its mode shape. Similar to Figure 5.6© 

and 5.7©, Figure 5.8© shows the effect of location of maximum crack depth, and has 
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a symmetric appearance around the 15th node and the maximum decrease in the third 

natural frequency occurs when the crack is at the fixed points of the frame i.e. the 

roots. Also, there is a decrease in the third natural frequency when the crack is at the 

mid-point of the blades and the corners.  However, there is no effect of the crack on 

the third natural frequency, when the crack is located by 3rd, 7th, 15th, 23rd and 27th 

nodes considered in the finite element method. 

 

Figure 5.9 shows the effect of crack location and crack depth on the fourth natural 

frequency of the single frame structure and its mode shape. Figure 5.9© has 

similarities to Figures 5.6©, 5.7© and 5.8©. When the crack is located at the mid- 

point of shroud, contrarily to the results of the first three natural frequencies the 

maximum decrease occurs in the fourth natural frequency. In addition, the crack does 

not effect   when it is located at approximately near the 2nd, 6th, 10th, 20th, 25th and 

29th nodes.  

 

5.3.2 Two-bay frame structure 

Figure 5.10 shows the effect of crack location and crack depth on the first natural 

frequency of the two-bay frame structure and its mode shape. As the crack depth 

increases, the variation of the first natural frequency becomes significant.  When the 

crack location changes, the variation in the first natural frequency is centered 

symmetrically around the 25th  node of FE except for the region between 20th  and 

30th  nodes as seen in Figure 5.10©. The maximum decrease in the first natural 

frequency occurs when the crack is at 30th node (root of the middle blade). The 

decreases in the frequency when the crack is at the roots of the first and third blades 

(1st and 50th nodes), in the corner of the middle blade (20th node), at 10th and 40th 

nodes are approximately 81.34%, 66.17%, 38.33% respectively. The percentages of 

the decrease in the first natural frequency are calculated with respective to maximum 

decrease in the frequency when the crack is at 30th node. 
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Figure 5.11 shows the effect of crack location and crack depth on the second 

natural frequency of the two-bay frame structure and its mode shape. As seen in 

Figure 5.11© , similar to the effect of the crack on the first natural frequency , the 

left and the right hand side of the results obtained from the maximum crack depth 

condition around 20th  node are symmetric except for the area between 20th  and 30th  

nodes.  The maximum decrease in the second natural frequency occurs when the 

crack is at the root of the middle blade 30th node. Moreover, the decreases in the 

second natural frequency also exist when the crack is at the roots of the first and third 

blade (1st and 50th nodes) and approximately at the mid-point of the blades (5th, 25th 

and 45th nodes). 

 

Figure 5.12 shows the effect of crack location and crack depth on the third natural 

frequency of the two-bay frame structure and its mode shape. Similar to Figure 

5.10© and 5.11©, Figure 5.12© shows the effect of location of the maximum crack 

depth, and has a symmetric appearance around the 25th node. The maximum decrease 

in the third natural frequency occurs if the crack is at the roots of the first and the 

third blades (1st and 50th nodes). There is no effect of the crack if it is at the middle 

blade (from the 20th node to the 30th node), because the middle blade does not vibrate 

as seen from its mode shape. The decreases in the third natural frequency occur 

approximately if the crack is at the mid-point (5th and 45th nodes) and in the corners 

(10th and 40th nodes) of the first and third blades. 

 

Figure 5.13 shows the effect of crack location and crack depth on the fourth 

natural frequency of the two-bay frame structure and its mode shape. Figure 5.13© 

shows similarity with Figures 5.10© and 5.11©. When the crack is located at the root 

of the middle blade 30th node, the maximum decrease in the fourth natural frequency 

occurs.  In addition, the decreases in the natural frequency are observed if the crack 

is at around 1st,  5th,  10th, 20th, 25th, 40th, 45th and 50th nodes. 
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5.3.3 Three-bay frame structure 

Figure 5.14 shows the effect of crack location and crack depth on the first natural 

frequency of the three-bay frame structure and its mode shape. As the crack depth 

increases, the variation of the first natural frequency becomes significant.  When the 

crack location changes, the variation in the first natural frequency is centered 

symmetrically around the 35th node of FE as seen in figure 5.14©. The maximum 

decrease in the first natural frequency occurs if the crack is at the 30th and 50th nodes 

(roots of the internal blades). The decrease in the frequency if the crack is at the roots 

of the first and fourth blades (1st and 70th nodes), in the corner of the middle blades 

(20th and 40th nodes), at 10th and 60th nodes are approximately 85.28%, 63.59%, 

41.67% respectively. The percentages of the decrease in the first natural frequency 

are calculated with respective to maximum decrease in the frequency when the crack 

is at 30th and 50th nodes. 

 

Figure 5.15 shows the effect of crack location and crack depth on the second 

natural frequency of the three-bay frame structure and its mode shape. As seen in 

figure 5.15©, similar to the effect of the crack on the first natural frequency, the left 

and the right hand side of the results obtained from the maximum crack depth 

condition when the crack is around 35th node is symmetric. The maximum decrease 

in the second natural frequency occurs if the crack at the root of the external blades 

(1st and 70th nodes). Moreover, the decreases in the second natural frequency also 

exist if the crack is at the roots of the second and third blade (30th and 50th nodes) and 

approximately at the mid-point of the blades and corners (5th, 13th, 25th, 45th, 57th and 

65th   nodes). 

 

Figure 5.16 shows the effect of crack location and crack depth on the third natural 

frequency of the three-bay frame structure and its mode shape. Similar to Figure 

5.14© and 5.15©, Figure 5.16© shows the effect of location of the maximum crack 

depth, and has a symmetric appearance around the 35th node. The maximum decrease 
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in the third natural frequency occur when the crack is at the roots of the first and the 

fourth blades (1st and 70th nodes). The decreases in the third natural frequency occurs 

approximately when the crack is at the 5th, 13th, 20th, 25th 30th, 40th, 45th, 50th 60th and 

65th nodes. 

 

Figure 5.17 shows the effect of crack location and crack depth on the fourth 

natural frequency of the three-bay frame structure and its mode shape. Figure 5.17© 

shows similarity to Figures 5.14©, 5.15© and 5.16©. When the crack located at the 

root of the internal blades nodes 30th and 50th the maximum decrease in the fourth 

natural frequency occurs.  In addition, the decreases in the natural frequency are 

observed when the crack is at around 1st , 5th , 10th ,20th ,25th ,40th ,45th ,60th ,65th and 

70th nodes. 

 

5.3.4 Four-bay frame structure 

Figure 5.18 shows the effect of crack location and crack depth on the first natural 

frequency of four-bay frame structure and its mode shape. As the crack depth 

increases, variation of the first natural frequency becomes significant.  When the 

crack location changes, variation in the first natural frequency is centered 

symmetrically around the 45th  node of FE except for the area between 40th  and 50th  

nodes as seen in Figure 5.18©. The maximum decrease in the first natural frequency 

occurs when the crack is at the 30th and 70th nodes (root of the second and fourth 

blades). The decreases in frequency when it is at the root of the third blade 50th node, 

in the roots of the first and fifth blades, in the corners of the second and third blades 

20th and 60th nodes, in the corner of the middle blade 40th nodes, in the corners of the 

first and fifth blades 10th and 80th nodes are approximately 95.96%, 84.44%, 64.81%, 

58.27%, 41.02% respectively. The percentage decrease in the first natural frequency 

is calculated with respective to maximum decrease in the frequency at 30th and 70th 

nodes. 
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Figure 5.19 shows the effect of crack location and crack depth on the second 

natural frequency of four-bay frame structure and its mode shape. As seen in Figure 

5.19©, similar to the effect of  crack on the first natural frequency , the left and the 

right hand side of the results obtained from the maximum crack depth condition 

around 45th  node is symmetric except for the area between 40th  and 50th  nodes. The 

maximum decrease in the second natural frequency occurs when the crack is at the 

root of the first and fifth blades 1st and 90th nodes. Moreover, decreases in the second 

natural frequency also exist when it is at the mid-point of the first and fifth blades 

(5th and 85th nodes) and approximately at (13th, 25th, 30th, 50th 65th, 70th and 77th 

nodes). 

 

Figure 5.20 shows the effect of crack location and crack depth on the third natural 

frequency of the Four-bay frame structure and its mode shape. Similar to Figure 

5.18© and 5.19.c, Figure 5.20© shows the effect of location of the maximum crack 

depth, and has a symmetric appearance around 45th node. The maximum decrease in 

the third natural frequency occurs when the crack is at the roots of the first and the 

fifth blades (1st and 90th nodes). There is no effect of the crack when it is at the 

middle blade (from the 40th node to the 50th node), because the middle blade does not 

vibrate as seen from its mode shape. The decreases in the third natural frequency 

occur approximately when the crack is at 5th ,12th ,25th ,30th ,40th ,50th ,60th ,65th ,78th 

and 85th nodes . 

 

Figure 5.21 shows the effect of crack location and crack depth on the fourth 

natural frequency of the Four-bay frame structure and its mode shape. Figure 5.21© 

shows similarity to Figures 5.18©, 5.19© and 5.20©. When the crack located at the 

root of the middle blade 50th node, the maximum decrease in the fourth natural 

frequency occurs.   
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5.3.5 Five-bay frame structure 

Figure 5.22 shows the effect of crack location and crack depth on the first natural 

frequency of five-bay frame structure and its mode shape. As the crack depth 

increase, the variation of the first natural frequency becomes significant.  When the 

crack location changes, the variation in the first natural frequency is centered 

symmetrically around the 55th node of FE as seen in Figure 5.22©. The maximum 

decrease in the first natural frequency occurs if the crack is at the 30th or 90th node 

(roots of the second and fifth blades). The decrease in the frequency if crack is at the 

roots of the third and fourth blade 50th and 70th nodes, at the roots of the first and 

sixth blade 1st and 110th nodes, at the corner of the second and fifth blade 20th and 

80th nodes, in the corner of the third and fourth blade 40th and 60th nodes, in the 

corner of the first and sixth blade 10th and 100th nodes are approximately 96.77%, 

84.57%, 64.97%, 59.71% and 41.95% respectively. The percentages of the decrease 

in the first natural frequency are calculated with respective to maximum decrease in 

the frequency when the crack is at 30th and 90th nodes. 

 

Figure 5.23 shows the effect of crack location and crack depth on the second 

natural frequency of five-bay frame structure and its mode shape. As seen in figure 

5.23©, similar to the effect of the crack on the first natural frequency, the left and the 

right hand side of the results obtained from the maximum crack depth condition 

when the crack is around 55th node is symmetric and The maximum decrease in the 

second natural frequency occurs when the crack is at the root of the external blades 

(1st and 110th nodes). Moreover, the decreases in the second natural frequency also 

exist when the crack is at the mid-pint of the first and sixth blade 5th and 105th nodes, 

approximately at 11th, 25th, 30th, 50th, 70th, 85th, 90th and 100th nodes. 

 

Figure 5.24 shows the effect of crack location and crack depth on the third natural 

frequency of five-bay frame structure and its mode shape. Similar to Figure 5.22© 

and 5.23©, Figure 5.24© shows the effect of location of the maximum crack depth, 
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and has a symmetric appearance around the 55th node. The maximum decrease in the 

third natural frequency occurs when the crack is at the roots of the first and the sixth 

blades (1st and 110th nodes). The decrease in the third natural frequency occurs 

approximately when the crack is at the 30th and 90th nodes. 

 

Figure 5.25 shows the effect of crack location and crack depth on the fourth 

natural frequency of five-bay frame structure and its mode shape. Figure 5.25© 

shows similarity to Figures 5.22©, 5.23© and 5.24©. When the crack is located at 

the root of the internal blades (the third and fourth) 50th and 70th nodes the maximum 

decrease in the fourth natural frequency occurs.  In addition, the decreases in the 

natural frequency are observed when the crack is at around 1st , 6th , 11th ,20th ,30th 

,41th ,45th ,61th ,65th , 91st,100th ,105th  and 110th  nodes. 

 

5.3.6 Six-bay frame structure 

 

Figure 5.26 shows the effect of crack location and crack depth on the first natural 

frequency of six-bay frame structure and its mode shape. As the crack depth 

increases, the variation of the first natural frequency becomes significant.  When the 

crack location changes, the variation in the first natural frequency is centered 

symmetrically around the 65th  node of FE except for the area between 60th  and 70th  

nodes as seen in Figure 5.26©. The maximum decrease in the first natural frequency 

occurs when the crack is at the 30th and 110th nodes (root of the second and sixth 

blades). The decrease in the frequency when the crack is at the root of the fourth 

blade 70th node, at the roots of the third and fifth blades 50th and 90th nodes, at the 

roots of the first and seventh blade 1st and 130th nodes, in the corners of the second 

and sixth blades 20th and 100th nodes, in the corner of the middle blade 60th nodes, in 

the corner of the third and fifth blade 40th  and 80th nudes, in the corners of the first 

and seventh blade 10th and 120th nodes are approximately 97.42%, 96.60%, 84.52% , 
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65.21%, 60.99%, 59.67% and 42.10% respectively. The percentages of decrease in 

the first natural frequency are calculated with respective to maximum decrease in the 

frequency when the crack is at 30th and 110th nodes. 

 

Figure 5.27 shows the effect of crack location and crack depth on the second 

natural frequency of six-bay frame structure and its mode shape. As seen in Figure 

5.27©, similar to the effect of crack on the first natural frequency, the left and the 

right hand side of the results obtained from the maximum crack depth condition 

when the crack is around 65th  node is symmetric except for the area between 60th  

and 70th  nodes. The maximum decrease in the second natural frequency occurs when 

the crack is at the root of the first and seventh blades 1st and 130th nodes. Moreover, 

the decreases in the second natural frequency also exist if the crack is at the mid-

point of the first and seventh blades (6th and 124th nodes) and approximately at (11th, 

25th, 30th, 50th 70th, 90th, 100th 105th 110th and 120th nodes). 

 

Figure 5.28 shows the effect of crack location and crack depth on the third natural 

frequency of six-bay frame structure and its mode shape. Similar to Figure 5.26© 

and 5.27©, Figure 5.28© shows the effect of location of the maximum crack depth, 

and has a symmetric appearance around 65th node. The maximum decrease in the 

third natural frequency occurs when the crack is at the mid-point of the fourth blade 

(65th node). The decreases in the third natural frequency also occur approximately 

when the crack is at 1st ,6th ,18th ,21th ,25th,30th ,35th ,41st ,45th  ,50th ,57th ,61th ,70th 

,74th 85th ,90th ,101st ,105th ,110th ,113th ,125th and 130th nodes . 

 

Figure 5.29 shows the effect of crack location and crack depth on the fourth 

natural frequency of six-bay frame structure and its mode shape. Figure 5.29© shows 

similarity to Figures 5.26©, 5.27© and 5.28©. When the crack is located at the root 
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of the middle blade 70th node, the maximum decrease in the fourth natural frequency 

occurs.   

5.3.7 Two-story frame structure 

 

Figure 5.30 shows the effect of crack location and crack depth on the first natural 

frequency of two-story frame structure and its mode shape. As the crack depth 

increases, variation of the first natural frequency becomes significant.  When the 

crack location changes, variation in the first natural frequency between 1st  and 30th 

node is centered symmetrically around the 15th  node, on the other hand, the changes 

of frequency when the crack is between 30th and 60th node is centered symmetrically 

around the 45th  node of the FE as seen in Figure 5.30©. The maximum decrease in 

the first natural frequency occurs when the crack is at 10th and 20th nodes (the joint 

point between the lower and the upper frame when the stresses due to the moment 

become maximum). The decreases in the frequency occur when the crack is at the 1st 

and 30th nodes (the roots of the frame). 

 

Figure 5.31 shows the effect of crack location and crack depth on the second 

natural frequency of two-story frame structure and its mode shape. As seen in Figure 

5.31©, similar to the effect of crack on the first natural frequency , the left and the 

right hand side of the results obtained from the maximum crack depth is symmetric 

when the crack is between 1st  and 30th nodes. There is also similar symmetry 

between 30th and 60th nodes. The maximum decrease in the second natural frequency 

occurs when the crack is at the joint point between the lower and the upper frame 

30th and 60th nodes. Moreover, the decreases in the second natural frequency also 

exist when the crack is at 1st, 10th, 40th and 50th nodes. 

 

Figure 5.32 shows the effect of crack location and crack depth on the third natural 

frequency of two-story frame structure and its mode shape. Similar to Figure 5.30© 
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and 5.31©, Figure 5.32© shows the effect of location of the maximum crack depth, 

and has a symmetric appearance around the 15th node for the range between 1st and 

30th nodes, there is similar symmetry around 45th node between 30th and 60th nodes. 

The maximum decrease in the third natural frequency also occurs when the crack is 

at the 35th and 55th nodes.  

 

Figure 5.33 shows the effect of crack location and crack depth on the fourth 

natural frequency of two-story frame structure and its mode shape. Figure 5.33© 

shows similarity to Figures 5.30© and 5.31©. The maximum decrease in the fourth 

natural frequency occurs when the crack is in the 10th and 20th nodes.  In addition, the 

decreases in the natural frequency are observed when the crack is at around 1st,  5th,  

25th, 30th, 35th, 40th, 50th, 55th and 60th nodes. 

 

5.3.8 Three-story frame structure 

 

Figure 5.34 shows the effect of crack location and crack depth on the first natural 

frequency of three-story frame structure and its mode shape. As the crack depth 

increases, variation of the first natural frequency becomes significant.  When the 

crack location changes, the variation in the first natural frequency when the crack is 

between 1st  and 30th node is centered symmetrically around the 15th  node, there is 

the similar symmetric in the area between 30th and 60th nodes, and the area between 

60th and 90th  nodes of the FE as seen in Figure 5.34©. The maximum decrease in the 

first natural frequency occurs when the crack is at the 10th and 20th nodes (the joint 

point between the lower and the middle frame where the stresses due to the moment 

become maximum). The decreases in the frequency also occur when crack is at the 

1st and 30th nodes (the roots of the frame) and when the crack is at 40th, 50th, 60th, 

70th, 80th and 90th nodes. 
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Figure 5.35 shows the effect of crack location and crack depth on the second 

natural frequency of three-story frame structure and its mode shape. As seen in 

Figure 5.35©, similar to the effect of the crack on the first natural frequency, the 

variation in the second natural frequency when the crack is between 1st and 30th 

nodes is centered symmetrically around the 15th node, there is a similar symmetry 

centered around 45th and 75th crack nodes for the area between 30th and 60th, 60th and 

90th nodes of the FE respectively. The maximum decrease in the second natural 

frequency occurs when the crack is at the joint point between the middle and upper 

frame at the 40th and 50th nodes. Moreover, the decreases in the second natural 

frequency also exist when the crack is at 1st, 10th, 20th, 30th, 60th, 70th, 80th and 90th 

nodes. 

 

Figure 5.36 shows the effect of crack location and crack depth on the third natural 

frequency of three-story frame structure and its mode shape. Similar to Figure 5.34© 

and 5.35©, Figure 5.36© shows the effect of location of the maximum crack depth, 

and has a symmetric appearance when the crack is between 1st and 30th nodes is 

centered symmetrically around the 15th node, there are similar symmetric centers 

around crack locations of 45th and 75th nodes for the area between 30th and 60th, 60th 

and 90th nodes of the FE respectively. The maximum decrease in the third natural 

frequency occurs when the crack is at the 60th and 90th nodes.  

 

Figure 5.37 shows the effect of crack location and crack depth on the fourth 

natural frequency of the three-story frame structure and its mode shape. Figure 5.37© 

shows similarity to Figures 5.34© and 5.35©. The maximum decrease in the fourth 

natural frequency occurs when the crack is at 65th and 85th nodes. 
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5.3.9 Vibration analysis for the multi-bay frame structure 

When the results obtained from the free vibration analysis of multi-bay frames, 

shown in Figures 5.5(c), 5.10(c), 5.14(c), 5.18(c), 5.22(c) and 5.26(c), are examined, 

generally the first natural frequencies decrease when the crack located either at the 

roots or at the corner of the frames for all multi-bay frames.  

Crack location, first natural frequencies of cracked structure, percentage of 

decreases and the first natural frequencies without crack are given in Tables 5.3-5.8. 

Percentage decrease in the natural frequencies is calculated with respect to the 

maximum decrease. 

Table 5.3 decreases in first natural frequency of the single frame structure with respect to crack location 
when the crack ratio is 0.5. 

 
Crack location  (nodes) 10th , 20th 1st , 30th Without crack 
Natural frequency  116.30 115.33 117.23 
Percentage of decreases in 
the frequency  

49.06% Max. decrease   

 
Table 5.4 decreases in first natural frequency of the two-bay frame structure with respect to crack 
location when the crack ratio is 0.5. 

 
Crack location (nodes) 10th , 40th 20th 1st , 50th 30th Without crack 
Natural frequency  110.09 109.72 109.51 109.26 110.61 
Percentage of decreases 
in the frequency  

38.33% 66.17% 81.34% Max. decrease   

 
 
Table 5.5 decreases in first natural frequency of the three-bay frame structure with respect to crack 
location when the crack ratio is 0.5. 

 
Crack location  (nodes) 10th , 60th 20th , 40th 1st , 70th 50th , 30th Without crack 
Natural frequency  107.93 107.73 107.53 107.39 108.32 
Percentage of decreases 
in the frequency  

41.67% 63.59% 85.28% Max. decrease   

 
Table 5.6 decreases in first natural frequency of the four-bay frame structure with respect to crack 
location when the crack ratio is 0.5. 

 
Crack location  (nodes) 10th , 80th 40th 20th , 60th 1st , 90th 50th 30th , 70th Without 

crack 
Natural frequency  106.66 106.53 106.49 106.34 106.26 106.23 106.96 
Percentage of decreases 
in the frequency  

41.02% 58.27% 64.81% 84.44% 95.96% Max. 
decrease  

 

 



 

 

75

Table 5.7 decreases in first natural frequency of the five-bay frame structure with respect to crack 
location when the crack ratio is 0.5. 

 
Crack location  (nodes) 10th , 

100th 
40th , 60th 20th , 80th 1st , 110th 50th , 70th 30th , 90th Without 

crack 
Natural frequency  105.86 105.72 105.72 105.61 105.53 105.51 106.11 
Percentage of decreases 
in the frequency  

41.95% 59.71% 64.97% 84.57% 96.77% Max. 
decrease 

 

 

Table 5.8 decreases in first natural frequency of the six-bay frame structure with respect to crack 
location when the crack ratio is0.5. 

 
Crack location  
(nodes) 

10th , 
120th 

40th , 
80th 

60th 20th , 
100th 

1st , 
130th 

50th , 
90th 

70th 30th , 
110th 

Without 
crack 

Natural 
frequency  

105.31 105.22 105.21 105.19 105.09 105.03 105.03 105.02 105.52 

Percentage of 
decreases in the 
frequency  

42.1% 59.67% 60.99% 65.21% 84.52% 96.60% 97.42% Max. 
decrease  

 

 
 

As seen in Tables 5.3-5.8, the maximum decreases in the first natural frequency of 

the multi-bay framed occur, if the crack is located at the roots of the 2nd blade or n-1 

number of blade (n: number of blades). The similar result can be obtained when 

crack is at the corners. 

 

The results are given schematically in figure 5.46. 
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5.4 Buckling  

5.4.1 Single frame structure  

 

Figure 5.38 shows the effect of crack location and crack depth on the first 

buckling critical load of single frame structure and its mode shape. As the crack 

depth increases, the variation of first buckling critical load becomes significant.  

When the crack location changes variation in the buckling critical load is centered 

symmetrically around the 15th node of FE as seen in Figure 5.38©. The maximum 

decrease in the buckling load occurs when the crack is either at the 1st and 30th nodes 

(root of the blades) .The decrease in the critical load also occurs when the crack is 

either at 10th and 20th nodes. 

 

5.4.2 Two-bay frame structure 

 
Figure 5.39 shows the effect of crack location and crack depth on the first 

buckling critical load of two-bay frame structure and its mode shape. As seen in 

Figure 5.39©, similar to the effect of the crack shown in Figure 5.38©, the left and 

the right hand side of the results obtained from the maximum crack depth condition 

when the crack location is around 25th node is symmetric except the area between 

20th  and 30th crack location nodes. The maximum decrease in the first buckling 

critical load occurs when the crack is at the root of the second blade 30th node. The 

decreases in the critical buckling load also located when the crack is either at the 

roots of the first and third blades 1st and 50th nodes, or in the corner of the blades 

10th, 20th and 40th nodes. 

 

5.4.3 Three-bay frame structure 

 

Figure 5.40 shows the effect of crack location and crack depth on the first 

buckling critical load of three-bay frame structure and its mode shape. Similar to 
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Figure 5.38© and 5.39©, Figure 5.40© shows the effect of location of the maximum 

crack depth, and has a symmetric appearance around 35th node. The maximum 

decrease in the first buckling critical load is seen to be when the crack is either at the 

roots of the second and third blades 30th and 50th nodes. The decrease in the buckling 

load also occurs when the crack is at 1st, 10th, 20th, 40th, 60th or 70th nodes. 

 

5.4.4 Four-bay frame structure 

 

Figure 5.41 shows the effect of crack location and crack depth on the first 

buckling critical load of four-bay frame structure and its mode shape. As the crack 

depth increases, the variation of the first buckling critical load becomes significant.  

When the crack location changes the variation in the buckling load is centered 

symmetrically around the 45th node of FE except the area between nodes 40th  and 

50th  as seen in figure 5.41©. The maximum decrease in the first buckling critical 

load occurs when the crack is at the 30th and 70th nodes (roots of the second and 

fourth blade) .The decrease in the load also occurs when the crack is at 1st , 10th , 20th 

, 40th , 50th , 60th , 80th and 90th nodes. 

 

5.4.5 Five-bay frame structure 

 

Figure 5.42 shows the effect of crack location and crack depth on the first 

buckling critical load of five-bay frame structures and its mode shape. As seen in 

Figure 5.42©, similar to the effect of crack seen in Figures 5.38©, 5.39© and 5.40©, 

the left and the right hand side of the results obtained from the maximum crack depth 

condition around 55th node crack position is symmetric and the maximum decrease in 

the buckling load occurs when the crack is at the root of the second and fifth blades 

30th and 90th nodes. The decreases in the buckling load are also seen to be when the 

crack is at the root of blades and at the corners, approximately at 1st, 10th, 20th, 40th, 

50th, 60th, 70th, 80th, 100th and 110th nodes. 
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5.4.6 Six-bay frame structure  

 

Figure 5.43 shows the effect of crack location and crack depth on the first 

buckling critical load of six-bay frame structure and its mode shape. As seen in 

Figure 5.43©, the left and the right hand side of the results obtained from the 

maximum crack depth condition around 65th node is symmetric except the area 

between 60th and 70th nodes. The maximum decrease in the buckling load occurs 

when the crack is either at the root of the second and sixth blade 30th and 110th nodes. 

The decreases in the critical buckling load are also seen to be when the crack is at the 

roots and corners of the blades at 1st , 10th , 20th ,40th ,50th , 60th ,70th , 80th ,,90th, 

100th 120th and 130th nodes. 

 

5.4.7 Two-story frame structure 

 

Figure 5.44 shows the effect of crack location and crack depth on the first 

buckling critical load of two-story frame structures and its mode shape. As the crack 

depth increases, the variation of first buckling critical load becomes significant. The 

variation in the first buckling critical load when the crack is between 1st and 30th 

nodes, is centered symmetrically around the 15th node, and between 30th and 60th 

nodes is centered symmetrically around the 45th node of the FE as seen in Figure 

5.44©. The maximum decrease in the buckling load occurs when the crack is either 

at 10th and 20th nodes (the joint point between the lower and the upper frame) .The 

decrease in the critical load also occurs when the crack is at 40th and 50th nodes. 

 

5.4.8 Three-story frame structure 

 

Figure 5.45 shows the effect of crack location and crack depth on the first 

buckling critical load of three-story frame structures and its mode shape. As seen in 

Figure 5.45©, similar to the effect of the crack shown in Figure 5.44©, variation in 

the first buckling critical load when the crack is between 1st and 30th nodes is 
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centered symmetrically around the 15th node. Moreover the similar symmetric 

canters are seen around 45th and 75th nodes for the crack in the areas between 30th 

and 60th, 60th and 90th nodes of the FE respectively. The maximum decrease in the 

first buckling critical load occurs when the crack is either at the connection points 

between the middle and the upper frame at the 40th and 50th nodes. 
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5.5 Dynamic stability 

The regions of dynamic instability are distinguished as the first, second, third, etc. 

In this work the first region of instability (near Ω = 2ω) or it is called the principle 

region of dynamic stability is studied the most dangerous and has the greatest 

practical importance. Here Ω and ߱ are the forcing (disturbing) frequency and the 

natural frequency respectively. So, the first region of instability is studied by taking 

the static load parameter α = 0, 0.2 and relative crack depth a/b=0.5. The effect of 

both crack depth and crack location on the forcing (disturbing) frequencies (Ω), 

which construct the boundaries of unstable regions, are shown as 3D plots in figures 

5.47 to 5.62. From these frequencies it can easily be noticed that the unstable region 

widens as dynamic load parameter β increase and an increase in static load parameter 

α decreases the frequencies and unstable region occurs at lower frequencies. As seen 

from the 3D plots, when static load parameter α has the extreme values of 0 and 0.2, 

the forcing frequencies constructing the lower border of unstable region reach zero 

values at which dynamic load parameter β corresponds to the values of 2 and 1.6, 

respectively, no matter where the crack locates.  

Figures 5.63 to 5.70, shows the unstable regions having different static load 

parameters and relative crack ratios. The unstable regions of the frame structure with 

the static load (α≠0) is wider than that without static load (α=0).  

Figure 5.71, shows the unstable region for the multi-bay frame. When the number 

of blades decreases the unstable region becomes wider. 

Figure 5.72, shows the unstable region for the multi-story frame. When the 

number of stories decreases the unstable region becomes narrower and shifts to the 

origin. 

Figure 5.73, shows the effect of crack depths. Increase in the relative crack depth 

reduces the values of frequencies but the differences between the borders of the 

unstable regions with different crack depths are very small, even for the crack ratio 

of 0.5. 
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Figure 5.46 Location of Maximum Decreases in the First Natural Frequency in Multi-Bay      Frames. 
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Figure 5.47 Dynamic Stability of Single Frame structure (α=0) 

 
Figure 5.48 Dynamic Stability of two-bay Frame structure (α=0) 
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Figure 5.49 Dynamic Stability of three-bay Frame structure (α=0) 

 
Figure 5.50 Dynamic Stability of four-bay Frame structure (α=0) 
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Figure 5.51 Dynamic Stability of five-bay Frame structure (α=0) 

 
Figure 5.52 Dynamic Stability of six-bay Frame structure (α=0) 
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Figure 5.53 Dynamic Stability of two-story Frame structure (α=0) 

 
Figure 5.54 Dynamic Stability of three-story Frame structure (α=0) 
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Figure 5.55 Dynamic Stability of single Frame structure (α=0.2) 

 
Figure 5.56 Dynamic Stability of two-bay Frame structure (α=0.2) 
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Figure 5.57 Dynamic Stability of three-bay Frame structure (α=0.2) 

 
Figure 5.58 Dynamic Stability of four-bay Frame structure (α=0.2) 

0 0.3 0.6 0.9 1.2

20

40

60

0

50

100

150

200

250

crack location

β

Fo
rc

in
g 

fre
q.

 (H
z)

0 0.3 0.6 0.9 1.2
20

40
60

80

0

50

100

150

200

250

crack location

β

Fo
rc

in
g 

fre
q.

 (H
z)



 

 

128

 
Figure 5.59 Dynamic Stability of five-bay Frame structure (α=0.2) 

 
Figure 5.60 Dynamic Stability of six-bay Frame structure (α=0.2) 
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Figure 6.61 Dynamic Stability of two-story Frame structure (α=0.2) 

 
Figure 5.62 Dynamic Stability of three-story Frame structure (α=0.2) 
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Figure 5.63 Dynamic Stability of Single Frame Structure (α= 0, 0.2) 
 
 
 

 

 
Figure 5.64 Dynamic Stability of Two-Bay Frame Structure (α= 0, 0.2) 
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Figure 5.65 Dynamic Stability of Three-Bay Frame Structure (α= 0, 0.2) 
 
 
 

 

 
Figure 5.66 Dynamic Stability of Four-Bay Frame Structure (α= 0, 0.2) 
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Figure 5.67 Dynamic Stability of Five-Bay Frame Structure (α= 0, 0.2) 
 
 
 

 
Figure 5.68 Dynamic Stability of Six-Bay Frame Structure (α= 0, 0.2) 
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Figure 5.69 Dynamic Stability of two-story Frame Structure (α= 0, 0.2) 

 
 
 

 
Figure 5.70 Dynamic Stability of three-story Frame Structure (α= 0, 0.2) 
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Figure 5.71 Dynamic Stability of Multi-Bay Frame Structure 

 
 
 

 
Figure 5.72 Dynamic Stability of Multi-Story Frame Structure 
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Figure 5.73 Dynamic Stability of single Frame Structure with Different Ratio of Crack 
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6 CHAPTER SIX 

 CONCLUSIONS 

In this study, the effect of crack depth and crack location on the in-plane free 

vibration, buckling and dynamic stability of cracked frame structures have been 

investigated numerically by using The Finite Element Method. The following 

conclusions are drown.   

 

1. The reduction of both buckling load and natural frequency depends on the 

crack depth, crack location and crack direction with respect to load 

direction which changes crack mode (Opening, Sliding and Tearing 

mode). 

 

2. The higher drops in the buckling load and in-plane natural frequency are 

observed when the crack is located near the roots or corners of the frames. 

 

3. There is no effect of the crack on the in-plane natural frequency when the 

crack is located at the nodal points of the mode shape and located at the 

maximal amplitudes of the mode shape. 

 

4. When the number of blades increases in the multi-bay frame structures, the 

effect of the crack decreases. 

 

5. Maximum first natural frequency drop occurs when the crack is located at 

the roots for multi-bay frames and at the corners for the multi-story 

frames.  

 

6. There is no effect of a crack, if the crack is located at the member which 

does not vibrate, this phenomena depends on its mode shape. 

 

7. The dynamic unstable region moves towards the origin when the static 

load (α) increases. 
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8. When the numbers of blades increase for multi-bay, the unstable region 

becomes narrower and shifts to the origin. The similar thing can be 

obtained when the number of story increase in the multi-story frame 

structure 
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