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VIBRATION ANALYSIS OF CRACKED
FRAME STRUCTURES

ABSTRACT

In this work, the effects of crack depth and crack location on the in-plane free
vibration, buckling and dynamic stability of cracked frame structures have been
investigated numerically by using The Finite Element Method. For the rectangular
cross-section beam a crack element is developed by using the principles of fracture
mechanics. The effects of crack depth and location on the first four natural
frequency, first critical buckling load and the first dynamic unstable region of multi-
bay and multi-store frame structures are presented in 3D graphs. The comparison
between the present work and the results obtained from ANSYS and SolidWorks

shows a very good agreement.

Keywords: cracked frame, free vibration, multi-bay, multi-story, finite element

method, buckling, dynamic stability.
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VIBRATION ANALYSIS OF CRACKED
FRAME STRUCTURES

0z

Bu Calismada, catlak derinliginin ve yerinin, ¢erceve yapilarin diizlem igi serbest
titresimine, burkulma yiikiine ve dinamik kararliligina olan etkileri Sonlu Elemanlar
Metodu kullanilarak incelenmistir. Kirllma mekanigi prensipleri kullanilarak
dikdortgen kesitli bir kiris igin ¢atlak eleman gelistirilmistir. Catlak derinliginin ve
yerinin, ¢ok boliimlii ve ¢ok katli ¢ergevelerin ilk dort dogal frekansina, burkulma
yiikiine, birinci dinamik kararsizlik bolgesine etkisi ii¢ boyutlu grafikler halinde
verilmistir. ANSYS ve SolidWorks programlarinin analiz sonuglari ile ¢alismadan
elde edilen sonuglarin karsilastirilmasindan oldukga yakin degerler elde edildigi

gOriilmiistiir.

Anahtar Kelimeler: ¢atlakli ¢ergeve, serbest titresim, burkulma, dinamik kararlilik
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CHAPTER ONE
INTRODUCTION

1.1 Introduction

In many applications, frame structures are widely used, for example in buildings,
bridges and gas or steam turbine blade packets. A frame element is formulated to
model a straight bar of an arbitrary cross-section, which can deform not only in the
axial direction but also in the directions perpendicular to the axis of the bar. The bar
is capable of carrying both axial and transverse forces, as well as moments.
Therefore, a frame element is seen to possess the properties of both bar and beam
elements. In fact, the frame structure can be found in most of our real environment,
there are not many structures that deform and carry loadings purely in neither axial
direction nor purely in transverse directions. The bar, beam and frame finite elements
are illustrated and discussed in many books (G.R.Liu and S.S.Quek, 2003), (Rao,
1995) .The natural frequencies of a single storey and multi-bay frames have been
investigated by using the frame finite element. The frame F.E models have also been
used for the vibration analysis of shrouded-blade packets. Moreover, the cracks can
be seen in frame structures due to reasons like erosion, corrosion, fatigue or
accidents. The presence of a crack could not only cause a local variation in the
stiffness, but also affect the mechanical behavior of the entire structure to
considerable extent. Therefore the effect of crack on the dynamic behaviors of
structures has been studied in many papers by using the fracture mechanics methods
analytically or numerically. Frames are subjected to concentrated static or dynamic
loads which may cause static (buckling) and dynamic instability. Many
investigations about the vibration and buckling (static stability), and dynamic

stability characteristics of frames of various types have been carried out.



J. Thomas & H. T. Belek (1977), studied, the free-vibration characteristics of
shrouded blade packets using the finite element method. The effects of various
weight ratios, flexural rigidity ratios and length ratios between the blade and shrouds

on the frequencies of vibration of the blade packed were investigated.

M.Chati, R. Rand & S. Mukherjee (1997), studied the modal analysis of a
cantilever beam with a transverse edge crack. The open and close cracks were

considered.

M.Krawczuk (1994), developed a new finite element model for the static and
dynamic analysis of cracked composite beams .A new beam finite element with a
single non-propagating one-edge open crack located in its mid-length is formulated

for the static and dynamic analysis of cracked composite beam-like structures.

N.F.Rieger and H.McCallion (1964), studied the natural frequency of portal

frame , they used a single storey and multi-bay frames in their analysis.

J.M.Chandra Kishen and Avinash Kumar (2004), studied fracture behavior of
cracked beam-columns , by using the finite element method in addition they also
used the beam-column element which was developed by Tharp (Int. J. Numer.

Methods Eng. 24 1987.

M. Krawczuk & W.M.Ostachwicz (1995), carried out modeling and vibration
analysis of a cantilever composite beam with a transverse open crack two different
models of the beam were presented. In their first model the crack was represented by
a massless substitute spring. The flexibility of the spring was calculated on the basis
of fracture mechanics and the Castigliano theorem. The second model was based on
the finite element method (FEM). The undamaged parts of the beam were modeled
by a beam finite element with three nodes and three degrees of freedom at the nodes.
The damaged part of the beam was represented by a cracked beam finite element

model having the same degrees of freedom to those of the un-cracked one.



M.-H.H.Shen & C.Pierre (1994), investigated free vibrations of beams with a

single-edge crack.

G.Bamnios & A.Trochides (1995), studied the dynamic behavior of a cracked

cantilever beam.

M.-H.H.Shen & J.E.Taylor (1991), investigated an identification problem for

vibrating cracked beams.

T. G. CHONDROS , A. D. DIMAROGONAS & J. YAO (1997), studied vibration

analysis of a continuous cracked beam.

P.N.Saavedra & I.A. Cuitino (2001), presented a theoretical and experimental
dynamic behavior of different multi-beams systems containing transverse cracks .

In their analysis they used free-free beam and U-frames.

G.Gounaris & Dimarogonas (1987), developed a finite element model for a
cracked prismatic beam. Strain energy concentration arguments lead to the
development of a compliance matrix for the behavior of the beam in the vicinity of
the crack. This matrix was used to develop the stiffness matrix for the cracked beam
element and the consistent mass matrix. The developed of this finite element can be

used in any appropriate matrix analysis of structural element.

D.Y.Zheng & N.J.Kessissoglou (2004), obtained the natural frequencies and
mode shapes of a cracked beam by using the finite element method . An ‘overall
additional flexibility matrix’, instead of the ‘local additional flexibility matrix’, was
added to the flexibility matrix of the corresponding intact beam element to obtain the

total flexibility matrix. Consequently the stiffness matrix.



Celalettin Karaagac & Hasan Ozturk & Mustafa Sabuncu (2009), investigated the
effects of crack ratios and positions on the fundamental frequencies and buckling
loads of slender cantilever Euler beams with a single-edge crack both experimentally

and numerically using the finite element method, based on energy approach.

P.Gudmundson (1982), discussed “the dynamic behavior of slender structures
with cross-sectional cracks” . Two methods were discussed to find the static

flexibility matrix from an integration of the stress intensity factor.

G.-L.Qian , S.-N.Gu & J.-S. Jiang (1989), determined the eigen-frequencies for
different crack length and location on cantilever beams by using the finite element

method.

T.G.Chondros & A.D.DIMAROGONAS (1989), discussed the change in natural
frequencies and modes of vibration for the cracked structure when the crack

geometry was known by using Rayleigh principle.

H.P.Lee & T.Y.Ng (1995), determined the natural frequencies and modes for the
flexural vibration of a beam due to the presence of transverse cracks by using the
Rayleigh-Ritz method. The beams with single-sided crack or a pair of double-sided

cracks were modeled separately.

M.-H.H.Shen & C.Pierre (1990), studied natural modes of Euler-Bernoulli

beams with symmetric cracks.

S.Christides & A.D.S.Barr (1984), studied one-dimensional theory of cracked

Euler-Bernoulli beams.



W.M.Ostachowicz & M.Krawczuk (1990) studied the forced vibration of beams
and effects of the crack locations and sizes on the vibrational behavior of the

structure. Basis identification was discussed.

Thomas and Sabuncu (1979), presented a finite element model for the analysis
of vibration characteristics of asymmetric cross section blade packets in a centrifugal

field.

Gurkan Sakar and Mustafa Sabuncu (2007), presented a finite element model for
the static and dynamic stability of rotating aerofoil cross-section two-blade packets

subjected to uniform radial periodic force.

Boltin (1964), studied the dynamic stability problems of various kinds of

structural components.

Sakar and Sabuncu (2003 , 2004), used the finite element method to analyze the
static and dynamic stability of straight and pre-twisted aerofoil cross section rotating

blades subjected to axial periodic forces.

J.Thomas and B.A.H.Abbas (1976), studied the dynamic stability of Timoshenko

Beam subjected to periodic axial loads by the finite element method.

Hasan Ozturk and Mustafa Sabuncu (2005), studied the static and dynamic
stability of a laminated composite cantilever beam having a linear translation spring
and a torsional spring as elastic supports subjected to periodic axial loading. The
Euler beam theory was employed and the finite element method was used in the

analysis.



1.2 Objective of the Work

In this work, the first fourth natural frequency, buckling and dynamic stability for
the multi-bay frame and multi-story frame structures are studied. As seen in figure
1.1. Blade and shroud having rectangular cross-section are used. For the frame

structure the dimension and material properties are given in Table 1.1

Table 1.1 properties of the frame structure

Properties Quantity Units
E 2ell N/m’
Ro 7900 kg/m’
Cross- h 0.5/100 m
section b 2/100 m
Blade length 0.2 m
Shroud length 0.1 m

Figure 1.1 Frame structure dimensions



For the multi-bay and multi-story frames, the dimensions are used as shown in

Figure 1.2 and Figure 1.3 respectively.

Figure 1.2 multi-bay dimensions

Figure 1.3 multi-story dimension



Chapter two deals with the theory of the finite element method. Bar, beam and
Frame Elements are discussed. Mass, Stiffness and Geometric Stiffness matrices of a

beam element are obtained. Local and global coordinates are also discussed.

Chapter three presents the cracked beam model, three crack modes, which are
opining, sliding and tearing, are considered. A cracked beam element model is
developed for the frame structure. And the stiffness, mass and geometrical matrices

are obtained for the cracked beam element.
Chapter four deals with the theory of the dynamic stability of elastic systems.

Chapter five deals with the results and charts obtained for different configurations

of frame structures (Single, Multi-Bay Frame and Multi- Storey Frame).



CHAPTER TWO
FINITE ELEMENT METHOD

2.1 Finite element method

The finite element method is a numerical method that can be used for the accurate
solution of complex mechanical and structural vibration problems. In this method,
the actual structure is replaced by several pieces or elements, each of which is

assumed to behave as a continuous structural member called a finite element.

The elements are assumed to be interconnected at certain points known as joints
or nodes. Since it is very difficult to find the exact solution (such as the
displacements) of the original structural under the specified loads, a convenient
approximate solution is assumed in each finite element. The idea is that if the
solutions of the various elements are selected properly, they can be made to converge
to the exact solution of the total structure as the element size is reduced. During the
solution process the equation of force at the joints and the compatibility of
displacements between the elements are satisfied so the entire structure (assemblage

of elements) is made to behave as a single entity. (Rao, 1995)

Figure 2.1 Finite Element Nodes and Elements
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2.2 Bar

A truss is one of the simplest and most widely used structural members. It is a
straight bar that is designed to take only axial forces, therefore it deforms only in its
axial direction. A typical example of its usage can be seen in Figure 2.2. The cross-
section of the bar can be arbitrary, but the dimensions of the cross-section should be
much smaller than that in the axial direction. Finite element equations for such truss
members will be developed in this chapter. The element developed is commonly
known as the truss element or bar element. Such elements are applicable for analysis
of the skeletal type of truss structural systems both in two-dimensional planes and in
three-dimensional space. The basic concepts, procedures and formulations can also
be found in many existing textbooks (see, e.g. Reddy, 1993; Rao, 1999; Zienkiewicz
and Taylor, 2000; etc.).

The bar is geometrically stra ight.J

Formulation of the finite element
characteristics of elastic bar
elementis based on the following
assumptions:

ThemateriaiobeysHooke’siaw.J F = -—LX_

Forces are applied only at the
ends of the bar.

The bar supports axial loading ,

only; bending, torsion, and shear
are not transmitted to the
elementviathe nature of its
| connections to other elements.
J

Figure 2.2 Properties of Bar Element
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Consider the uniform bar element shown in figure (2-3). For this one-dimensional
element, there are two end points called nodes. When the element is subjected to
axial loads f;(t) and f,(t) , the axial displacement within the element is assumed

to be linear in x as

u(x,t) = a(t) + b(t)x (2-1)

When the joint displacements u, (t) and u,(t) are treated as unknowns, Eq. (2-1)

should satisfy the conditions:

u(0,t) = uy (6) , ul,t) = uy(t) (2-2)

Equations (2-1) and (2-2) lead to

a(t) = u,(t)
And
a(t) + bl = u,(t) or b(t) =20 (2-3)

l

Substitution for a(t) and b(t) from Eq. (2-3) into Eq. (2-1) gives

uCet) = (1=5) wy(®) + X up() (2-4)
Or

u(x, t) = Ny(x)uy () + No()u,(0) (2-5)
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pu(t)  —poulxt) —puy(t)
Joint 1 T Joint 2
_________________ ,&(tJ._._._.l|.p.f.(x,ﬂ_._._._._._._._._._ P I G —
x I
x |
< l >
Figure 2.3 Bar Element
Where
NG = (1-7) NG =7 (2-6)

are the shape functions.

The kinetic energy of the bar element can be expressed as

2
T(t) — %folp/l {a u(X,t)} dx

at
=il {(1-) 50+ ()5 ax
=2 2+ ity +1,7) (2-7)
Where
du, (1) du (t)
M T Ty

p is density of the material

A is the cross-section area of the element.

By expressing Eq. (2-7) in matrix form,

T(£) = )" [m] (t) (2-8)
Where

) = {u1(t)}

1, (t)

And the superscript T indicates the transpose, the matrix [m] can be identified as
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A2 1
ml =271 (2-9)

The strain energy of the element can be written as

1 : 2
V(® =3 [JEA {a‘la()’(‘t)} dx

1l 2
= J,EA {—% u, () + % uz(t)} dx
- % ETA (u12 - 2 u1u2 + uZZ) (2'10)

Where u; = uy(t), u, = u,(t),and E is Young’s modulus. By expressing Eq.

(2-10) in matrix form as

V() =3 A0 K1) (2-11)
Where
() = {Z;E’g} and T = (s (8) ()}

The stiffness matrix [k] can be identified as

=221 7 (-12)



2.3 Beam

A beam is another simple but commonly used structural component. It is also
geometrically a straight bar of an arbitrary cross-section, but it deforms only in
directions perpendicular to its axis. Note that the main difference between the beam
and the truss is the type of load they carry. Beams are subjected to transverse
loading, including transverse forces and moments that result in transverse
deformation. Finite element equations for beams will be developed in this chapter,
and the element developed is known as the beam element. The basic concepts,

procedures and formulations can also be found in many existing textbooks (see, e.g.

Petyt,1990; Reddy, 1993; Rao, 1999; Zienkiewicz and Taylor, 2000; etc.).

Formulation of the finite
element characteristics of
elastic beam element is
based on the following
assumptions;

The beam is loaded only in
they direction.

Deflections of the beam are
smallin comparison to the
characteristic dimensions of
thebeam.

The material of the beam is
linearly elastic, isotropic,
and homogeneous.

The beam is prismaticand
the cross section has an axis
of symmetry in the plane of

bending.
J

Figure 2.4 Properties of Beam Element
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Consider a beam element according to the Euler-Bernoulli theory. Figure (2-5)

shows a uniform beam element subjected to the transverse force distribution f(x, t).

f1(®) f3(t)

Opmimems A O—»x

Joint1 Joint 2

Figure 2.5 Beam Element

In this case , the joint undergoes both translational and rotational displacements,
so the unknown joint displacements are labeled as w,(t), w,(t), ws(t) and
w,(t) thus there will be linear joint forces f;(t) and f5(t) corresponding to the
linear joint displacements w;(t) and w;(t) and rotational joint forces (bending
moments) f,(t) and f,(t) corresponding to the rotational joint displacements

w, (t) and w,(t) , respectively.
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The transverse displacement within the element is assumed to be a cubic

equation in X (as in the case of static deflection of a beam):

w(x, t) = a(t) + b(t) x + c(t) x? + d(t) x3

The unknown joint displacements must satisfy the conditions

w(0,6) =wy(t) , 22(0,£) = wy(t)

w(l,t) =ws (), 221 t) = ws(t)
Equations (2-13) and (2-14) yield

a(t) = w, ()

b(t) = w, ()

c(8) = 5 [=3wy () = 2w (D)L + 3ws(0) — wa ()]

d(t) = 5 [2w1(£) + W, (O] — 2w3 () + wa(B)1]

By substituting Egs. (2-15) into Eq. (2-13), we can express w(x,t) as

2 3 2 3 2
wiet) = (1-35+ 20 ) w0 + (F-25+%) w0 + (3% -

2x3[3 w3t+ —x2[2+x3/3 Iw4(t)

This equation can be rewritten as

w(x, t) = X, N;(x)w; (t)

Where N;(x) are the shape functions given by

(2-13)

(2-14)

(2-15)

(2-16)

(2-17)
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M =1-3() 2 @
Ny(x) = x — 21 (%)2 +1 G)3 (2-19)
w3 -2 e
MG =-1(3) 1) @2

The kinetic energy, bending strain energy, and virtual work of the element can be

expressed as

T(t) =, pA {"’W;f'”}z dx = ZW ()" [m] W(t) (2-22)
V() =2[,El {"Za‘”f;'”}z dx = Sw(t)" [k] W(t) (2-23)
SW(t) = [, f(x,8) Sw(x,t) dx = WD) f(t) (2-24)

Where p is the density of the beam, E is Young’s modulus, I is the moment of

inertia of the cross section, & is the area of cross section, and

wy (£) dw, /dt
_ Jw2(0) o\ Jdwy/dt
wt) =370 WO =4 g

w,(t) dw,/dt
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dw, (1) f1(t)

_ ) éw,(t) .. _ ) f®)
WO =3 suy(6) FO=1%0
5W4(t) f4(t)

By substituting Eq. (2-16) into Eqgs. (2-22) to (2-24) and carrying out the

necessary integrations, we obtain

156 221 54 —13l
] = M| 220 47 131 3P

T 42| 54 131 156 —22I (2-25)
—131 =312 =221 42
12 6l —-12 6l
2 _ 2
k] = & 6l 41 6l 21 (2-26)

CB|-12 -6l 12 -6l
6l 212 -6l 4l?
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2.4 Frame element

A frame element is formulated to model a straight bar of an arbitrary cross-
section, which can deform not only in the axial direction but also in the directions
perpendicular to the axis of the bar. The bar is capable of carrying both axial and
transverse forces, as well as moments. Therefore, a frame element is seen to possess
the properties of both truss and beam elements. In fact, the frame structure can be
found in most of our real world structural problems see figure (2-6). There are not
many structures that deform and carry loadings purely in axial directions nor purely

in transverse directions.

The frame element developed is also known in many commercial software
packages as the general beam element, or even simply the beam element.
Commercial software packages usually offer both pure beam and frame elements,
but frame structures are more often used in actual engineering applications. A three-
dimensional spatial frame structure can practically take forces and moments of all
directions. Hence, it can be considered to be the most general form of element with a

one-dimensional geometry.

(a) (b)

Figure 2.6 Frame Structures
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The important note in combination of these two elements is the placement of the
use for components in the matrix .i.e. the first three rows refer to the first node
components and the second three for the components of second node. As shown in
Figure (2-7) .Where the hidden line box refer to 1* node and solid line box refer to

2" components.

Bar element

T ; [B11 B12 B13 B14]ul
(AR N [.ﬂi’é.l...ﬂ.?.?...51.1.31...3.3:*1551
MEKSAES] e T En B32 B33 334j 2

41 B42 B43 B4 |2

AL 00 A2 0 07wl
0 B1l B2 0
0. B B1 0 B33 Bl il
AT 0 0 42 0 0w
0 B31 B2
0 B4l B42

B43 B44! |u2

Figure 2.7 Combine Bar and Beam Elements
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Where
E.M. = element matrix (mass or stiffness).

A, B just symbols to denote the elements, A for a bar element, B for a beam
element.

The frame element matrices can be obtained from Eq.(2-9) , (2-12) ,(2-25) and (2-
26)

T 0 0 - 0 0
12EI 6EI 12EI 6EI
0 13 2 0 =% =
GEL 4Bl Bl 2EI
_ 12 1 12 1
Kcombine - AE AE (2-27)
-— 0 0 T 0 0
12EI 6EI 0 12EI 6EI
B Tz 13 Tz
6EI 2EI 0 6EI 4EI
12 1 12 1

140 0 0 70 0 0

[ 0 156 221 0 54 —131}

M. _pAll O 221 42 0 131 =3P
combine ™ 4501 70 0 0 140 O 0
0 54 131 0 156 -221

0 -—131 -31* 0 221 4I?

(2-28)
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2.5 Buckling

In engineering, buckling is a failure mode characterized by a sudden failure of a
structural member subjected to high compressive stresses, where the actual
compressive stress at the point of failure is less than the ultimate compressive
stresses that the material is capable of withstanding. This mode of failure is also
described as failure due to elastic instability. Mathematical analysis of buckling
makes use of an axial load eccentricity that introduces a moment, which does not

form part of the primary forces to which the member is subjected.

Study of beam-columns leads to an eigenvalue problem. For example the
equation governing onset of buckling of a column subjected to an axial compressive

force is N.

Figure 2.8 (a) pin-pin (b) fix-pin
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d? d? d?
= (EI dx”:) + N =9 (2-30)

Which describes an eigenvalue problem with the smaller value of N is called the

critical buckling load.
The finite element model of the equation above is
[k]1{A} — N[G]{A} = {Q} (2-31)

Where {A} and {Q} are the columns of generalized displacement and force degree

of freedom at the two ends of the Euler-Bernoulli beam element:

[ (ere) ewos]

w; dx x2 dx 14
2
(2} = (_VE_V; ) @)= (Pre),

[ (Ere) -],

\ (_El :sz;/)z

Where the subscripts 1 and 2 refer to element nodes 1 and 2 (at x = x and x =
x ,respectively ). The coefficients of stiffness matrix [k] and the stability matrix

[G] are:
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b . d?>¢ d?
k=7 EIZ% 22 dx (2-32)
2
GK = [P EILL 22 gy (2-33)
xa dx dx

Where ¢ are the Hermite cubic interpolations functions . the explicit form of [GK] is

36 —-3h -36 -3h
—3h 4h? 3h —h?

GK1=1_36 3n 36 3n 2-39
—3h —h®* 3h 4h?
[Kframe]{u} — Py [GKframe]{u} = {q} (2-35)

Here Kgame 18 the stiffness matrix, GKgqme 1S the geometric stiffness matrix, P,
the critical buckling load and {u} {q} are the usual nodal displacement and force

vectors.



25

2.6 Transformation from Local Coordinate To Global

The matrices formulated above are for a particular frame element in a specific
orientation. A full frame structure usually comprises numerous frame elements of
different orientations joined together. As such, their local coordinate system would
vary from one orientation to another. To assemble the element matrices together, all
the matrices must first be expressed in a common coordinate system, which is called

global coordinate system. Figure (2-9).

w2sing
uZcosd

w2 cos @
—u2sing

ul
ul

wlcosf

wil —ulsing mo

ulcos@

Figure 2.9 Transformations from Local to Global Coordinate

[T] =

cosO sinb 0 0 0
—sin® cosb 0 0 0
0 0 0 0 0

0

0

0

1

0 cosO sin6 (2-36)
0 —sin® cos6 OJ

0 0 0 1

o O O

0
0
0

|
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2.7 Equation of Motion of the Complete System of Finite Elements

Since the complete structure is considered to be an assemblage of several finite
element. We shall now extend the equations of motions obtained for single finite
elements in the global system to the complete structure. We shall denote the joint
displacements of the complete structure in the global coordinate system as

U, (t), Uy(t), ..., Uy (t) or, equivalently, as a column vector:

Uy (t)
U, (t)
U(t) = .

Un(t)
For convenience, we shall denote the quantities pertaining to an element e in

the assemblage by the superscript e .since the joint displacements of any element

e can be identified in the vector of joint displacements of the complete structure,
the vectors U @) and E (t) are related:

U@ () = [A@]U(t) (2-37)

Where [A(e)] is a rectangular matrix composed of zeros and ones. For

example, for element 1 in figure (2-10) , Eq(2-37) becomes

(U1 (0
U, (t)
Uy (t) 10 00 0 0 0 .
= U,(t) 0100000 .
W = Y2 i
URO=3u (1o 01 0 0 0 of) . (2-38)
U,(t) 000 1 00O
\Ug(t)
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The kinetic energy of the complete structure can be obtained by adding the

kinetic energies of individual elements:
T =YE - UOT[m]U® (2-39)

Where E denotes the number of elements in the assemblage. By

differentiating Eq(2-37), the relation between the velocity vector can be derived :
ﬁ(e)(t) = [A(e)]ﬁ(e) (2-40)
Substitution of Eq(2-40) into (2-39) leads to

1 = Tr_ =
T = ZE:Q QT[A(e)] [m(e)][A(e)]Q(e) (2-41)

The kinetic energy of the complete structure can also be expressed in terms of

joint velocities of the complete structure Q :
r =257 (Ml 42

Where [M ] is called the mass matrix of the complete structure. A comparison of

Eqs(2-41) and (2.42) gives the relation
[M] = £, [4@] [m©][a] (2-43)

Similarly, by considering strain energy, the stiffness matrix of the complete

structure, [ K |, can be expressed as

K] = 55, [A@] [k©@][4€)] (2-44)
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Finally the consideration of virtual work yields the vector of joint forces of the

-

complete structure, F :

. r=(e)
F=Y5,[49] f (2-45)
Once the mass and stiffness matrices and the force vector are known, Lagrange’s

equations of motion for the complete structure can be expressed as

(MU + [K]U = F (2-46)
Note that the joint force vector E in Eq (2.46) was generated by considering

only the distributing loads acting on the various elements. If there is any

concentrated load acting along the joint displacement ~ U;(t) , it must be added

to the ith component of E

Figure 2.10 a dynamical system (truss) idealized as an assemblage of four bar elements.



CHAPTER THREE
CRACK

3.1 Cracks

Cracks can be caused as a result of the accidental mechanical damage .Other
reasons for the appearance of cracks are erosion and corrosion phenomena and the
fatigue strength of materials. Cracks on a structure member can change its local
flexibility. The stiffness of a structure depends on the localization of the damage and

its magnitude, as a result the natural frequency of the structure change.

The crack effect depends on three parameters;

1. Crack depth
2. Crack direction with respect to load direction.

3. Crack location (distance) on a beam from the fixed end.

29
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3.2 Crack modes
There are three ways of applying a force to enable a crack to propagate:

1. Mode I crack — Opening mode (a tensile stress normal to the plane of the
crack)

2. Mode II crack — Sliding mode (a shear stress acting parallel to the plane of
the crack and perpendicular to the crack front plane)

3. Mode III crack — Tearing mode (a shear stress acting parallel to the plane

of the crack and parallel to the crack front plane)

Py

7 7

‘4 %

(a) (b) (d

Figure 3.1 (a) Opening mode, (b) Sliding mode, (¢) Tearing mode
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3.3 The Local Flexibility Due To the Crack

The cracked beam problem has attracted the attention of many researchers in
recent years. Various kinds of analytical, semi-analytical and numerical methods
have been employed to solve the problem of cracked beams. A common method
employed in the analysis is the finite element method (FEM). The key point in using
the FEM is how to appropriately obtain the stiffness matrix for the cracked beam
element. When the stiffness matrix is obtained, the inverse of this matrix will give

the flexibility matrix of the element.

The total flexibility matrix of the cracked beam element includes two parts. The
first part is the flexibility matrix of uncracked beam. The second part is the additional
flexibility matrix due to the existence of the crack, which leads to energy release and

additional deformation of the structure.

In this work, cross section of the beam is assumed to be rectangular. The

additional strain energy due to the existence of a crack can be expressed as:

Me = [, G da, (3-1)

Where G is the strain energy release rate function and A.is the effective cracked

area. The strain energy release rate function G can be expressed as

G= %[(Ku + Kz + Kiz)? + (Ki)?l, (3-2)

Where E' =E for plane stress problem, E’' = E/(1 —p?) for plane strain
problem; Ki;,K|,,K;zand Ky, are the stress intensity factor due to loads

P1,P2 and P3;
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=B ) Ko =S () aa
o =22 (D) 1= 2 VTR D) @530

K;, Ignored according to (A.S. Sekhar, 1999) and (A.S. Sekhar, & B.S. Prabhu,
1992)

_ /tan(ns/z) 0.752+2.025+0.37(1-sin(ms/2))3
Fl(S) - (ms/2) cos(ms/2) (3-7)

_ ’tan(ns/Z) 0.92340.199(1-sin(ms/2))*
FZ(S) - (ms/2) cos(ms/2) (3-8)

1.122-0.5615+0.0855%+0.18s3
1—s

FII(s) =

(3-9)

In which £ is the crack depth .F1, F2 and F3 are the correction factors for stress
intensity factors. It is worth nothing that a is the final crack depth while £ is the

crack depth during the process of penetration from zero to the final depth.

Using Paris equation, we have

__ 0TI,

S =
! 0 P

(=1223). (3-10)

By definition, the elements of the overall additional flexibility matrix c;; can be

expressed as
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L
75 =apop (b =123). (3-11)

Cij =

Substituting Egs. (3-3)- (3-6) into Eq. (3-2), and then into Egs. (3-1) and (3-11),

considering that all K’s are independent of 1, we obtain.

Gy = ::)r aPp; ap; 0 {[ Ty (_) 6::}21]: VT, (_) ZE; VTEFs (_)] +
P,?

oz 6 Frr” (ﬁ)} dg (i,j = 1,2,3).
(3-12)

=|c21 c22 «c23

c31 32 c33

cll cl12 «c13
j (3-13)



34

3.4 The crack finite element model

A finite element model is developed to represent a cracked beam element of
length d and the crack is located at a distance d1 from the left end of the element as

shown in figure 3-2.

»
k4

dl

-
L

Figure 3.2 Crack Locations in Crack Element

The element is then considered to be split into two segments by the crack. The left
and right segments are represented by non-cracked sub elements while the crack is
represented by a massless rotational spring of length zero. The reason of the fact that
the crack represents net ligament effect created by loadings, this effect can be related
to the deformation of the net ligament through the compliance expressions by
replacing the net ligament with a fictitious spring connecting both faces of the crack

(Yokoyama T, Chen MC.1998).

So, the spring effects are introduced to the system by using the local flexibility
matrix given by Eq.(3-13) . The cracked element has 2 nodes with three degrees of
freedom in each node. They are denoted as lateral bending displacements (V;, V),

slopes (V;, V), and longitudinal displacements ( Uy, U ).

For 0 <x <d,



V,(x) =a; +a;x+azx*>+a, x>

u1=C1+C2X

For d; <x <d,

V,(x) =b; + by x+bg x2 +b, x3

'U2=d1+d2X

Lateral bending

V1(0) =q; , 1‘71(0) =qQ:

V,(d) = q3 V(d) = (4

Longitudinal displacement

U(0) =q5 , Uy(d) =qp
At the crack location d, , the flexibility concept requires:
For lateral bending:

Continuity of the vertical displacement

35

(3-14a)

(3-14b)

(3-15a)

(3-15b)
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V1(dy) =V,(dy) (3-16a)

Discontinuity of the cross-sectional rotation (slope)

V,(dy) =V, (dy) + ¢33 My (dy) (3-16b)

Where Ml (dl) = E I V1H|X=d1

Continuity of bending moment

M, (d;) = M,(dy) (3-16¢)

Continuity of shear force

S;(dy) = S;(dy) (3-16d)
For longitudinal displacement

Discontinuity of longitudinal displacement

U,(dy) = Uy(dy) + ¢35 Ta(dy) (3-17a)
Where  Ty(d;) = E1U; [x=q,

Continuity of force
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Ti(dy) = T2 (dy) (3-17b)

By considering Eq.3-10 describing the displacement for the left and right part if the
element and rearranging Eqs.(3-15)-(3-17) , the nodal displacement can be expressed

in matrix forms as

Mdy 1 0 0 0 0 0 0 07
qdz 0 1 0 0 0 0 0 0|2

0 0 0 1 0 0 0 —1 0]]as

0L |lo o 0 1 0 0 0 -1]]a

Y0( |1 0 st s2 10 0 o0])\bsf (3-18)
0 0 -1 S3 S4 0 1 0 0 |[b2

s 0 0 0 0 1 d d*2 d3|]|bs

a2/ Lo 0 0 0 0 1 2d 3d%\b,

(ds 1 0 0 07(%

O( o 1 0 -1])¢c

Yo(=]=1 s5 1 o[)d (3-19)
%) Lo o0 1 dl\d;

Where

S1=2c; Eld;
S2=6c,, EId,?
S3=-2¢;; EI
S4=—-6¢, Eld,
S5 =—c33EI



CHAPTER FOUR
THEORY OF STABILITY ANALYSIS

4.1 Static stability

The modern use of steel and high-strength alloys in engineering structures,
especially in bridges, ships and aircraft, has made elastic instability a problem of
great importance. Urgent practical requirements have given rise in recent years to
extensive theoretical investigations of the conditions governing the stability of

beams, plates and shells.

The first problems of elastic instability, concerning lateral buckling of
compressed members, were solved about 400 years ago by L. Euler. At that time the
relatively low strength of materials necessitated stout structural members for which
the question of elastic stability is not of primary importance. Thus Euler’s theoretical
solution, developed for slender bars, remained for a long time without a practical
application. Only with the beginning of extensive steel constructions did the question
of buckling of compression members become of practical importance. The use of
steel led naturally to types of structures embodying slender compression members,

thin plates and thin shells.

Stability problems can be treated in a general manner using the energy
methods. As an introduction to such methods, the basic criteria for determining the
stability of equilibrium is derived in this study for, conservative linearly elastic

systems.

To establish the stability criteria, a function II, called the potential of the
system must be formulated. This function is expressed as the sum of the internal
potential energy U (strain energy) and the potential energy A of the external forces

that act on a system, i.e.,

M=U+A (4.1)

38
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Disregarding a possible additive constant, A =-W,, 1.e., the loss of potential

energy during the application of forces is equal to the work done on the system by

external forces. Hence, equation (4.1) can be rewritten as

Mm=U-w (4.2)

€

As is known from classical mechanics, for equilibrium the total potential IT

must be stationary, therefore its variation 8IT must equal zero,
I =08U-6W, =0 (4.3)

For conservative, elastic systems this relation agrees with oW, = OW;
equation (0W; : the external work on the internal elements of a body, dW. : the total
work), which states the virtual work principle. This condition can be used to
determine the position of equilibrium. However, equation (4.3) cannot discern the
type of equilibrium and there by establish the condition for the stability of
equilibrium. Only by examining the higher order terms in the expression for
increment in IT as given by Taylor’s expansion must be examined. Such an

expression is
Lo T
AH=8H+56 H+§8 Im+... (4.4)

Since for any type of equilibrium 8IT = 0, it is the first nonvanishing term of
this expansion that determines the types of equilibrium. For linear elastic systems the

second term suffices. Thus, from equation (4.4), the stability criteria are
8'TI>0 for stable equilibrium
8'TT<0 for unstable equilibrium
8'TI=0 for neutral equilibrium associated with the critical load

The meaning of these expressions may be clarified by examining the simple

example shown in Figure 4.1, where the shaded surfaces represent three different
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types of IT functions. It can be concluded at once that the ball on the concave
spherical surface (a) is in stable equilibrium, while the ball on the convex spherical
surface (b) is in unstable equilibrium. The ball on the horizontal plane (c) is said to
be in different or neutral equilibrium. The type of equilibrium can be ascertained by
considering the energy of the system. In the first case (Figure 4.1(a)) any
displacement of the ball from its position of equilibrium will raise the center of
gravity. A certain amount of work is required to produce such a displacement; thus
the potential energy of the system increases for any small displacement from the
position of equilibrium. In the second case (Figure 4.1 (b)), any displacement from
the position of equilibrium will decrease the potential energy of the system. Thus in
the case of stable equilibrium the energy of the system is a minimum and in the case
of unstable equilibrium it is a maximum. If the equilibrium is indifferent (Figure 4.1

(¢)), there is no change in energy during a displacement.

() (b) (©)

Figure 4.1 Three cases of equilibrium

For each of the systems shown in figure 4.1 stability depends only on the shape
of the supporting surface and does not depend on the weight of the ball. In the case
of a compressed column or plate it is found that the column or plate may be stable or

unstable, depending on the magnitude of the axial load.
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4.1.1 The formulation of static stability

If the displacements are large, then the deformed geometry will obviously
differ significantly from the undeformed geometry. This results in a nonlinear strain-
displacement relationship. Large displacement problems of this type are said to be
“geometrically nonlinear” which is a feature of elastic instability problems. From the
design point of view calculation of the critical loads of structures is of considerable

importance. In general case the strain energy of a system,

U= al"[KJfa} 43)
The additional strain energy which is function of applied external load
U, =%{q}T (K, |{a} (4.6)
In which [K.]and [K,| are elastic stiffness and geometric stiffness

matrices.

The total potential energy of a system in equilibrium is constant when small

displacements are given to the system. So

8(U+U,)=0 (4.7)

(U+U,) and § define the total potential energy and the change of the virtual

displacements. Applying the above formulation to equations (4.5) and (4.6)

[[K.]-P[K,]]{a}=0 4.8)

The roots of the eigenvalue equation (4.8) gives the buckling loads and the

eigenvectors of this equation are the buckling mode shapes.
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4.2 Dynamic stability

If the loading is nonconservative the loss of stability may not show up by the
system going into another equilibrium state but by going into unbounded motion. To
encompass this possibility we must consider the dynamic behavior of the system

because stability is essentially a dynamic concept.

Whenever static loading of a particular kind causes a loss of static stability,
vibrational loading of the same kind will cause a loss of dynamic stability. Such a
loading is characterized by the fact that it is contained as a parameter on the left
hand side of the equations of perturbed equilibrium (or motion). We will call such
loading parametric; this term is more appropriate because it indicates the relation to

the phenomenon of parametric resonance.

In the mechanical systems, parametric excitation occurs due to the following

réasons,;

a) periodic change in rigidity

b) periodic change in inertia

¢) periodic change in the loading of the system.

In this section firstly the differential equation related with dynamic stability is
introduced and then, the determination of boundaries of the regions of instability
and the amplitudes of parametrically excited vibrations for multi-degrees of freedom

systems is presented.

An important special case of linear variational equations with variable
coefficients occurs when the coefficient functions are periodic. Owing to their great
practical importance in the theory of vibrations, a special theory has even been
developed for the systems of differential equations with periodic coefficients are
known as Mathieu-Hill differential equation. The Hill differential equation is in the

following form,
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;/+[a—bf(t)]y:0 (4.9)

in which a and b are constant parameters, and f(t) is a function having the period T.
The prime denotes differentiation with respect to time. If f(t) = 2cos2t substituted
into the Hill differential equation, the Mathieu differential equation which may be
described a system that is subjected to parametric excitation is obtained in the
standard form as

y+[a—2bcos2t]y=0 (4.10)

The results of solving Mathieu’s equation (4.10) for two different combinations of
a and b are shown in figure 4.2. Although the parameter b of the system is the same
in both cases (b=0,1), the vibrations are greatly different because of the difference
between the values of the parameter a (a=1; a=1,2). In the first case, they increase,
i.e., the system is dynamically unstable, while in the second case they remain

bounded, i.e., the system is dynamically stable.

Unstable
a=1 @

b=0,1

a=1,2

Figure 4.2 Two solutions of Mathieu’s equation

The greatest importance, for practical purpose, is attached to the boundaries
between the regions of stable and unstable solutions. This problem has been well
studied, and the final results have been presented in the form of a diagram plotted in
the plane of the parameters a and b. It is called the Haines-Strett diagram. Figure 4.3
shows part of a Haines-Strett diagram for small values of the parameter b. Any given

system having the parameters a and b corresponds to the point with the co-ordinates
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a and b on the Haines-Strett diagram. If the representative point is in the shaded parts
of the diagram, the system is dynamically unstable, while stable systems correspond
to representative points in the unshaded parts. The shaded regions are called the

regions of dynamic instability.

7
i

Figure 4.3 Part of Haines-Strett diagram the points @ and@ correspond to the

solutions 1 and 2 in figure 4.2

As an example, the diagram in figure 4.3 shows the points 1 and 2 corresponding
to the parameter a;=1 and b;=0,1, and a,=1,2 and b,=0,1. The point 1 is in the region
of dynamic instability and the vibration occurs with increasing amplitude as shown
in figure 4.2. The point 2 is in the stable region and it corresponds to motion with a

limited amplitude.
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4.2.1 The formulation of dynamic stability

The matrix equation for the free vibration of an axially loaded system can be

written as:

[M]{a}+[K.J{a}-[K, {a}=0 (4.11)

where

{q} is the generalized coordinates
[M] is the inertia matrix
[Ke] is the elastic stiffness matrix

[K g] is the geometric stiffness matrix, which is a function of the compressive axial

load P(t).
For a system subjected to a periodic force
P(t)=P, +P f(t) (4.12)

The static and time dependent components of the load can be represented as a

fraction of the fundamental static buckling load P*, in which P, =aP*, P, =pP*.

By writing p = o P *+P * f(t) then the matrix equation K, becomes

K, =aP*[K, |+BP*[K, ]| (4.13)

where the matrices [KgJ and [th] reflect the influence of P, and P; respectively.
Substituting Equation (4.13) into Equation (4.11), the following system of n second
order differential equations with a periodic coefficient of the known Mathieu-Hill

type is obtained;
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[MI{d}+[[K.]-aP*[K, ]-BP*f(O[K,]]{a}=0  (4.14)
f(t) is a periodic function with period T. Therefore
f(t+T)=f(t) (4.15)

Equation (4.14) is a system of n second order differential equations which may be

written as
{dof+{Z{a®}=0 (4.16)

where
[2]=[M]"[[K.]-aP*[K, |-BP*[K,]] (4.17)

It is convenient to replace the n second order equations with 4n first order

equations by introducing

{h}:{?} (4.18)

and

[¢]=[[g] _([)I]} (4.19)

then, equation (4.16) becomes

{h(t)}"“[‘l’(t)]{h(t)}={2}+{[g] _gl]Hg}zo (4.20)
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Equation (4.19) needs not be solved completely in order to determine the stability
of the system. It is merely necessary to determine whether the solution is bounded or

unbounded.

It is assumed that the 4n linearly independent solutions of equation (4.20) are
known over the interval t = 0 to t = T. Then they may be represented in matrix form

as

1,2n

[H(t)]= (4.21)

h,, .. . h

| " 2n.l 2n,2n |

Since f(t), and therefore [d)(t)] is periodic with period T, then the substitution

t =t + T will not alter the form of the equations, and the matrix solutions, at time

t+ T, [H(t + T)J may be obtained from [H(t)] by a linear transformation

[H(t+T)|=[R][H(1)] (4.22)

where [R] is the transformation matrix and is composed only of constant

coefficients.

It is desirable to find a set of solutions for which the matrix [R]can be

diagonalized. Hence the i™ solution vector after period T, {H(t+T)} may be

i

determined from {H(t)} using the simple expression

i

{h(t+ T)}i =p, {h(1)} (4.23)

i

The behavior of the solution is determined by p;.
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If pi>1, then the amplitude of vibration will increase with time. If pi<l1, then the
amplitude will decrease. For pi=1, the amplitude will remain unchanged, and this

represents the stable boundary.

In order to diagonalize the matrix [R] , the characteristic equation
[[R]-p[1]|=0 (4.24)

must be solved for its 2n roots, where [I] is the identity matrix. The roots of the

equations, p;, are eigenvalues, each having a corresponding eigenvector.

The 2n resulting eigenvectors are chosen as the 2n solutions to equation (4.20).

They can be placed in a matrix, [I_{(t)] , which will then satisfy the expression

[H() |=[R][H(t+T)] (4.25)
where
P, 0 . . 0]
0O p, . . O
[R]< . . . . . (4.26)
0 . . 0 p, ]

[I_{] is the diagonalized matrix of [R] composed of the 4n eigenvalues of

equation (4.24).

The periodic vector, {Z(t)} , with period T is introduced so that

i

(t/T)lnpi

{H(t)}i ={Z(t)}. (4.27)

For an even function of time like [(I)(t)] , it is true that
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[6(D]=[d(-D)] (4.28)

Hence equation (4.27) can be written as

—('[/T)lnpi

{E(—t)}i ={Z(-t)} e (4.29)

then

(t/T)ln(l/pi)

{E(—t)}i ={Z(-t)} e (4.30)

It is clear from (4.30) that 1/p; is also an eigenvalue. This property is not restricted
to even functions, but is also preserved in the case of arbitrary periodic functions as

shown by Bolotin, (1964).
In general, the eigenvalues p; are complex numbers of the form

p,=a;+]b; (4.31)

and the natural logarithm of a complex number is given by

Inp, :ln| p; |+ J (argument p) (4.32)
or in this case
Inp, =In+fa’+b> + jtan'(b, /a,) (4.33)

where j=+/-1

From equation (4.27), it is clear that if the real part of log p, is positive for any of
the solutions, then that solution will be unbounded with time. A negative real part
means that the corresponding solution will damp out with time. It therefore follows
that the boundary case for a given solution is that for which the characteristic
exponent has a zero real part. This is identical to saying that absolute value of p; is

unity. For the system to remain stable, every one of the solutions must remain
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bounded. If even one of the solutions has a characteristic exponent which is positive,
then the corresponding solution is unbounded and therefore the system is unstable.lt
has been shown that if p; is a solution, then 1/p; is also a solution. These two

solutions can be written as
p=a;+]b, (4.34)
Pisn :(ai_jbi)/(aiz+biz) (4.35)

Another restriction on the solutions of the characteristic equation is that the
complex eigenvalues must occur in complex conjugate pairs. Hence it follows that
pi+1 and pin+1 are also solutions where

Py =a;—Jb; (4.36)
Pinn =(a; +jbi)/(ai2 +b12) (4.37)

These solutions are presented in figure 4.4 which shows a unit circle in the
complex plane. The area inside the unit circle represents stable or bounded solutions,
while the area outside the unit circle represents unstable or unbounded solutions. For
each stable solution which lies inside the circle, there corresponds an unstable
solution outside the circle due to the reciprocity constraint. Therefore the only

possible stable solutions must lie on the unit circle.

Points on this unit circle may be represented in polar co-ordinates by r = 1 and
0 = tan"'b/a where -t < 0 < m. For each root on the upper semicircle, there is a
corresponding root on the lower semicircle due to the fact that the roots occur in

complex conjugate pairs. The logarithm of p;, when p; lies on the unit circle will be

and equation (4.27) becomes

(R0} ={z(v)}, o) (4.39)
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b;
A Imaginary axis
1 . 22
Pina =+ jb;/aj +b;
p; =a; +jb,
5 tan"' b, /a, Real axis
-1 1 aj
Pi =a; — jb;
R Drun = 8, ib, /2l +b?

Figure 4.4 Unit circle in the complex plane

Since the eigenvalues occur in complex conjugate pairs, the limiting values of 6

are zero and .

When 0 = 0, equation (4.39) becomes
{H(t)}i ={Z(1)}, (4.40)

and, therefore, the solution {E(t)} is periodic with period T when 6 = m, equation

(4.39) becomes

{h(v} ={zv)}, eJH (4.41)

i
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n(t+2T)

{h(t+2T)} = {Z(t+2T)}, ej[ T j={H(t)} (4.42)

It is clear from equation (4.42) that the solution {H(t)} is also periodic with a

period 2T.

It can be concluded that equation (4.11) has periodic solutions of period T and 2T.
Also the boundaries between stable and unstable regions are formed by periodic

solutions of period T and 2T.
For a system subjected to the periodic force
P =P, + P, cos ot (4.43)
Where o is the disturbing frequency, equation (4.11) becomes

[M]{q}+[[Ke]—OLP*[KgsJ—BP*cosmt[thﬂ{q}:O (4.44)

Now we seek periodic solutions of period T and 2T of equation (4.44) where

T=2mw.
When a solution of period 2T exists, it may be represented by the Fourier series

{q} :kz% 5[{a}k sin%+{b}k cos%} (4.45)

Where {a}k and {b}k are time-independent vectors. Differentiating equation

(4.45) twice with respect to time yields

k=1,3,

Substituting equations (4.45) and (4.46) into equation (4.44) and using the

trigonometric relations



sin A+sin B =2 sin A+B cos %
sin A-sin B =2 cos sinﬁ
05 Atcos B=2 cos 2B o %
cos A-cos B =2 sin ATB sinﬂ

(4.47)

53

kot kot
and comparing the coefficients of sin% and cos% lead to the following matrix

equations relating the vectors {a}k and {b}

1.
_EBP [thJ

0

and

1, .
_EBP [K@]

[KJ-aP [k, J+ 39K, -]

[K.]-oP’ [Kgs]—% BP' [KgJ—%Z[M]

K

_%BP*[Kgl] 0 {a}
[Ke]—aP*[Kﬁ]—gfi)z[M] —*BP[ K, ] {al,
25 {al;

—*BP[ o KI-eP[R =SS

' (4.48)
—%BP*[th] 0 "
KoM ]|l
b

_%ﬁp*[th] [K.]-oP [K ]—%—m[M { .}5
(4.49)

The orders of matrices in equations (4.48) and (4.49) are infinite. If solutions of

period 2T exist, then the determinants of these matrices must zero. Combining these

two determinants, the condition may be written as
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[K.]-aP [Kgs]i%BP* [KJ—‘”{[M] —%BP* (K, ] 0
_%BP* [thJ [Ke]_aP*[KgS]_g%[M] _%BP* [th} 1=0
0 —%BP* (K, ] [K.]-oP’ [KgJ—ZSTw[M]
(4.50)

If a solution to equation (4.44) exists with a period T=27/® then it may be

expressed as Fourier series

fal=to,+ 3 [fasn2hefo) skt s

Differentiating equation (4.51) twice with respect to time yields

{d}= i —(%(”jz [{a}k sin%ﬂb}k cos%} (4.52)

k=246

Substituting equations (4.51) and (4.52) into equation (4.44), the following

condition for the existence of solution with period T is obtained;

_[Ke]—aP* (K, |-o’[M] —%BP* (K, ] 0 )
_%BP* (K, ] [K,]-aP'[K, ]-40*[M] —%BP*[KQJ . {a}j 0
{al,
0 P[] [K-ar K, ]-90 M)
_ (4.53)

and
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g{[Ke]—aP*[Kgs]} —%BP*[KEJ 0 0 ffbl,
—%BP*[KJ [K.]-aP*[K, ]-o*[M] —%BP*[KQJ 0 : ibiz
b4 —
0 —%BP*[Kg] [K,]-oP*[K,, -4’ [M] —%BP*[Kg] i), =0
0 %ﬁp*[Kg‘] [K.]-oP* K, |-9’[M] .||
L 0 °
(4.54)

It has been shown by Bolotin (1964), that solutions with period 2T are the ones of
the greatest practical importance and that as a first approximation the boundaries of
the principal regions of dynamic instability can be determined from the equation

{[KG]—ocP*[Kgg]t%BP*[Kg]—%z[M]}{q} 0 (4.55)

The two matrices [Kgs] and [th] will be identical if the static and time

dependent components of the loads are applied in the same manner. If
[KgJE[Kg]E[KgJ , then equation (4.56) becomes

{[Ke]—(ai%B)P*[Kg]—%Z[M]}{q}:O (4.56)

Equation (4.56) represents solutions to three related problems

(i) Free vibration with o =0, 3 =0 and p = ®/2 the natural frequency
[[K.]-p’[M]]{q} =0 (4.57)

(i1) Static stability withao=1,=0and ® =0

[[K]-P[K, ][{a}=0 (4.58)

(ii1) Dynamic stability when all terms are present

{[Ke]—(a%g)p*[Kg]—%z[M]}{q}=0 (4.59)



CHAPTER FIVE
RESULTS AND DISCUSSION

5.1 Program Steps

The finite elemet models of frame and crack developed are discussed and the
results obtained from the finite element method are illustrated in this chapter.
Process Steps can be seen in figure 5.1.

1. Usage of geometrical and material properties as input.

2. Formation local stiffness, local geometrical stiffness and local mass matrices

for each beam element.

3. Transforming the local coordinate into global coordinates.

4. By assembling the element matrices, main global matrices are formed.

5. Application of the boundary conditions.

6. Eigenvalue solution is carried out to calculate the natural frequencies and the

mode shapes, critical buckling load and dynamic stability of system.
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geometrical and meteral
properties are used as input.

formilation of Local matrices for
each beam element

transformation elemental
matrices from Local coordinates
into global coordinates

Assembling the global matrix for
the structure

Application of the boundary
conditions

solving eigenvalue problem

Figure 5.1 block diagram of the process
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5.2 Results comparison

In this thesis, comparison made between the natural frequencies of cracked frames
obtained using the present model with the results obtained from the ANSYS
software. As seen from Table 5.1. Maximum error is 2.3804%. The comparison

shows that very good agreement between the results is obtained.

Table 5.1 comparison between present work and ANSY'S results.

Crack (a/h) ANSYS (Hz) | Present work ERROR%
(Hz)

0 118.555 117.2552 1.108522
0.1 118.356 117.2532 0.940545
0.2 117.726 117.2223 0.429685
0.3 116.648 117.0806 0.369526
0.4 115.006 116.6234 1.386837
0.5 112.594 115.3395 2.3804

The modeling of Crack in ANSYS is built by using the method of concentrate
meshing around the crack location. which is explained step by step in “ANSYS
TUTORIAL -2D Fracture Analysis” by Dr. A.-V. Phan , from University of South
Alabama.

By using KSCON a concentration key-point is defined about which mesh area
will be skewed. This is useful for modeling stress concentrations and crack tips.
During meshing, elements are initially generated circumferentially about, and
radially away, from the key-point. Lines attached to the key-point are given

appropriate divisions and spacing ratios.
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If the normal meshing procedure is applied, the results become very different.

Figure 5.2 and Figure 5.3 show the normal and special crack meshing (KSCON

command in ANSYS) respectively.

EEEEEE

Figure 5.2 Normal meshing of crack
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Figure 5.3 Special meshing of crack (KSCON)
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The comparison of the results in Table 5.1 shows that when the crack ratio is
equal to zero that means there is no crack in the frame structure , the error percentage
equal to 1.108 % the difference between the two result shows the effect of meshing

methods in ANSYS solid meshing and in present work beam meshing are used.

When the crack is created the beam meshing for intact section and the special
element developed for the cracked section are used. When the crack is considered in
ANSYS solid meshing for entire body and the concentration meshing on crack tip

point are used.

As seen from Table 5.1 the maximum percentage of error is equal to (2.3804) at
the crack ratio (0.5), which is the maximum of crack ratio considered. In addition,
numerical comparison for the frequency of a single frame without crack is carried out
between the results of SolidWorks software using the beam mesh as shown in Figure

5.4 and solid mesh in Figure 5.5.

Model name: Part1

Study name: Study 1

Plot type: Frequency Deformation!
Mode Shape: 1 Value=  117.2Hz
Deformation scale: 0.0057066

Figure 5.4 beam meshing SolidWorks
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Model name: Part2

Stuey name: Study 1

Plot type: Frequency Deformation1
Mode Shape : 1 Value = 11921 Hz
Deformation scale: 0.00872072

e
—
— Tkl

I—.ld‘l-v{ I o
Ii it

Figure 5.5 solid meshing SolidWorks

In Table 5.2, the numeric results obtained by using three different models for the
first natural frequency are shown. It can be noticed that there is a very close

agreement between the results of present model and that of beam meshing model.

Table 5.2 Beam & Solid mesh result modeling in SolidWorks

Present SolidWorks (beam SolidWorks (solid

work meshing) meshing)
freq. (Hz) 117.255 117.201 119.208

error % 0.0462 1.638
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5.3 Natural frequency
5.3.1 Single frame structure

Figure 5.6 shows the effect of crack location and crack depth on the first natural
frequency of a single frame structure and its mode shape. As the crack depth
increases, the variations of the first natural frequency become significant. When the
crack location changes, the variation in the first natural frequency is centered
symmetrically around the 15™ node of the FE as seen in Figure 5.6©. The maximum
decrease in the first natural frequency occurs when the crack is at the fixed points
(roots of the frame). The decrease in the frequency when it is at the corners is about
49.06% of those of the fixed points. Moreover, the crack does not affect the first
natural frequency of the single frame structure when it is located at the mid-points of

the blades and the shroud lengths because the stresses in these points are so small.

Figure 5.7 shows the effect of crack location and crack depth on the second
natural frequency of the single frame structure and its mode shape. As seen in Figure
5.7©, similar to the effect of the crack on the first natural frequency, the left and the
right hand side of the results obtained from maximum crack depth condition around
the 15™ node is symmetric and the maximum decrease in the second natural
frequency occurs when the crack is at the fixed points of the single frame. There is
no effect of the crack on the second frequency when the crack is located at
approximately near the 3, 10™, 20™ and 27" nodes, because the stress in these points
are small. When the crack is located in the mid-points of the blades and shroud, the
decrease in the second natural frequency is significant. The reason for this is that the

stress is large at these areas.

Figure 5.8 shows the effect of crack location and crack depth on the third natural
frequency of the single frame structure and its mode shape. Similar to Figure 5.6©

and 5.70, Figure 5.8© shows the effect of location of maximum crack depth, and has
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a symmetric appearance around the 15" node and the maximum decrease in the third
natural frequency occurs when the crack is at the fixed points of the frame i.e. the
roots. Also, there is a decrease in the third natural frequency when the crack is at the
mid-point of the blades and the corners. However, there is no effect of the crack on
the third natural frequency, when the crack is located by 3rd, 7th, 15th, 23" and 27™

nodes considered in the finite element method.

Figure 5.9 shows the effect of crack location and crack depth on the fourth natural
frequency of the single frame structure and its mode shape. Figure 5.9© has
similarities to Figures 5.60, 5.70 and 5.8©. When the crack is located at the mid-
point of shroud, contrarily to the results of the first three natural frequencies the
maximum decrease occurs in the fourth natural frequency. In addition, the crack does
not effect when it is located at approximately near the 2“d, 6th, 10th, 20th, 25" and

29™ hodes.

5.3.2 Two-bay frame structure

Figure 5.10 shows the effect of crack location and crack depth on the first natural
frequency of the two-bay frame structure and its mode shape. As the crack depth
increases, the variation of the first natural frequency becomes significant. When the
crack location changes, the variation in the first natural frequency is centered
symmetrically around the 25™ node of FE except for the region between 20" and
30™ nodes as seen in Figure 5.10©. The maximum decrease in the first natural
frequency occurs when the crack is at 30™ node (root of the middle blade). The
decreases in the frequency when the crack is at the roots of the first and third blades
(1** and 50" nodes), in the corner of the middle blade (20th node), at 10™ and 40™
nodes are approximately 81.34%, 66.17%, 38.33% respectively. The percentages of
the decrease in the first natural frequency are calculated with respective to maximum

decrease in the frequency when the crack is at 30™ node.
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Figure 5.11 shows the effect of crack location and crack depth on the second
natural frequency of the two-bay frame structure and its mode shape. As seen in
Figure 5.11© , similar to the effect of the crack on the first natural frequency , the
left and the right hand side of the results obtained from the maximum crack depth
condition around 20™ node are symmetric except for the area between 20™ and 30™
nodes. The maximum decrease in the second natural frequency occurs when the
crack is at the root of the middle blade 30™ node. Moreover, the decreases in the
second natural frequency also exist when the crack is at the roots of the first and third
blade (1* and 50™ nodes) and approximately at the mid-point of the blades (5", 25™
and 45™ nodes).

Figure 5.12 shows the effect of crack location and crack depth on the third natural
frequency of the two-bay frame structure and its mode shape. Similar to Figure
5.10© and 5.110, Figure 5.12© shows the effect of location of the maximum crack
depth, and has a symmetric appearance around the 25™ node. The maximum decrease
in the third natural frequency occurs if the crack is at the roots of the first and the
third blades (1% and 50™ nodes). There is no effect of the crack if it is at the middle
blade (from the 20™ node to the 30™ node), because the middle blade does not vibrate
as seen from its mode shape. The decreases in the third natural frequency occur
approximately if the crack is at the mid-point (5™ and 45™ nodes) and in the corners

(10™ and 40™ nodes) of the first and third blades.

Figure 5.13 shows the effect of crack location and crack depth on the fourth
natural frequency of the two-bay frame structure and its mode shape. Figure 5.13©
shows similarity with Figures 5.100 and 5.11©. When the crack is located at the root
of the middle blade 30™ node, the maximum decrease in the fourth natural frequency
occurs. In addition, the decreases in the natural frequency are observed if the crack

is at around 1%, 5™ 10" 20™ 25™ 40" 45" and 50™ nodes.



65

5.3.3 Three-bay frame structure

Figure 5.14 shows the effect of crack location and crack depth on the first natural
frequency of the three-bay frame structure and its mode shape. As the crack depth
increases, the variation of the first natural frequency becomes significant. When the
crack location changes, the variation in the first natural frequency is centered
symmetrically around the 35" node of FE as seen in figure 5.14©. The maximum
decrease in the first natural frequency occurs if the crack is at the 30™ and 50™ nodes
(roots of the internal blades). The decrease in the frequency if the crack is at the roots
of the first and fourth blades (1** and 70™ nodes), in the corner of the middle blades
(20™ and 40™ nodes), at 10™ and 60™ nodes are approximately 85.28%, 63.59%,
41.67% respectively. The percentages of the decrease in the first natural frequency
are calculated with respective to maximum decrease in the frequency when the crack

is at 30™ and 50" nodes.

Figure 5.15 shows the effect of crack location and crack depth on the second
natural frequency of the three-bay frame structure and its mode shape. As seen in
figure 5.150, similar to the effect of the crack on the first natural frequency, the left
and the right hand side of the results obtained from the maximum crack depth
condition when the crack is around 35™ node is symmetric. The maximum decrease
in the second natural frequency occurs if the crack at the root of the external blades
(1** and 70™ nodes). Moreover, the decreases in the second natural frequency also
exist if the crack is at the roots of the second and third blade (30th and 50" nodes) and
approximately at the mid-point of the blades and corners (Sth, 13™ 25" 45" 57" and
65" nodes).

Figure 5.16 shows the effect of crack location and crack depth on the third natural
frequency of the three-bay frame structure and its mode shape. Similar to Figure
5.14© and 5.150, Figure 5.16© shows the effect of location of the maximum crack

depth, and has a symmetric appearance around the 35" node. The maximum decrease
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in the third natural frequency occur when the crack is at the roots of the first and the
fourth blades (1% and 70™ nodes). The decreases in the third natural frequency occurs
approximately when the crack is at the 5t 13th, 20th, 25t 30th, 40th, 45th, 50" 60™ and

65" nodes.

Figure 5.17 shows the effect of crack location and crack depth on the fourth
natural frequency of the three-bay frame structure and its mode shape. Figure 5.17©
shows similarity to Figures 5.140, 5.15© and 5.16©. When the crack located at the
root of the internal blades nodes 30™ and 50™ the maximum decrease in the fourth
natural frequency occurs. In addition, the decreases in the natural frequency are
observed when the crack is at around 1%, 5™, 10™ 20" 25" 40" 45" 60" 65" and

70" nodes.

5.3.4 Four-bay frame structure

Figure 5.18 shows the effect of crack location and crack depth on the first natural
frequency of four-bay frame structure and its mode shape. As the crack depth
increases, variation of the first natural frequency becomes significant. When the
crack location changes, variation in the first natural frequency is centered
symmetrically around the 45™ node of FE except for the area between 40™ and 50"
nodes as seen in Figure 5.18©. The maximum decrease in the first natural frequency
occurs when the crack is at the 30™ and 70™ nodes (root of the second and fourth
blades). The decreases in frequency when it is at the root of the third blade 50™ node,
in the roots of the first and fifth blades, in the corners of the second and third blades
20" and 60™ nodes, in the corner of the middle blade 40" nodes, in the corners of the
first and fifth blades 10™ and 80™ nodes are approximately 95.96%, 84.44%, 64.81%,
58.27%, 41.02% respectively. The percentage decrease in the first natural frequency
is calculated with respective to maximum decrease in the frequency at 30" and 70™

nodes.
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Figure 5.19 shows the effect of crack location and crack depth on the second
natural frequency of four-bay frame structure and its mode shape. As seen in Figure
5.19©, similar to the effect of crack on the first natural frequency , the left and the
right hand side of the results obtained from the maximum crack depth condition
around 45" node is symmetric except for the area between 40™ and 50™ nodes. The
maximum decrease in the second natural frequency occurs when the crack is at the
root of the first and fifth blades 1** and 90™ nodes. Moreover, decreases in the second
natural frequency also exist when it is at the mid-point of the first and fifth blades
(5™ and 85™ nodes) and approximately at (13", 25", 30", 50" 65" 70" and 77"

nodes).

Figure 5.20 shows the effect of crack location and crack depth on the third natural
frequency of the Four-bay frame structure and its mode shape. Similar to Figure
5.18© and 5.19.c, Figure 5.200 shows the effect of location of the maximum crack
depth, and has a symmetric appearance around 45™ node. The maximum decrease in
the third natural frequency occurs when the crack is at the roots of the first and the
fifth blades (1*" and 90™ nodes). There is no effect of the crack when it is at the
middle blade (from the 40™ node to the 50" node), because the middle blade does not
vibrate as seen from its mode shape. The decreases in the third natural frequency
occur approximately when the crack is at 5t ,12th ,25th ,30th ,40th ,50th ,60th ,65th ,78th

and 85" nodes .

Figure 5.21 shows the effect of crack location and crack depth on the fourth
natural frequency of the Four-bay frame structure and its mode shape. Figure 5.210©
shows similarity to Figures 5.180©, 5.19© and 5.20©. When the crack located at the
root of the middle blade 50™ node, the maximum decrease in the fourth natural

frequency occurs.
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5.3.5 Five-bay frame structure

Figure 5.22 shows the effect of crack location and crack depth on the first natural
frequency of five-bay frame structure and its mode shape. As the crack depth
increase, the variation of the first natural frequency becomes significant. When the
crack location changes, the variation in the first natural frequency is centered
symmetrically around the 55™ node of FE as seen in Figure 5.22©. The maximum
decrease in the first natural frequency occurs if the crack is at the 30™ or 90™ node
(roots of the second and fifth blades). The decrease in the frequency if crack is at the
roots of the third and fourth blade 50™ and 70™ nodes, at the roots of the first and
sixth blade 1% and 110™ nodes, at the corner of the second and fifth blade 20" and
80™ nodes, in the corner of the third and fourth blade 40™ and 60™ nodes, in the
corner of the first and sixth blade 10™ and 100" nodes are approximately 96.77%,
84.57%, 64.97%, 59.71% and 41.95% respectively. The percentages of the decrease
in the first natural frequency are calculated with respective to maximum decrease in

the frequency when the crack is at 30" and 90" nodes.

Figure 5.23 shows the effect of crack location and crack depth on the second
natural frequency of five-bay frame structure and its mode shape. As seen in figure
5.230©, similar to the effect of the crack on the first natural frequency, the left and the
right hand side of the results obtained from the maximum crack depth condition
when the crack is around 55" node is symmetric and The maximum decrease in the
second natural frequency occurs when the crack is at the root of the external blades
(1* and 110™ nodes). Moreover, the decreases in the second natural frequency also
exist when the crack is at the mid-pint of the first and sixth blade 5™ and 105™ nodes,

approximately at 1M 25th, 30th, SOth, 70th, 85th, 90™ and 100™ nodes.

Figure 5.24 shows the effect of crack location and crack depth on the third natural
frequency of five-bay frame structure and its mode shape. Similar to Figure 5.22©

and 5.230O, Figure 5.24© shows the effect of location of the maximum crack depth,
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and has a symmetric appearance around the 55" node. The maximum decrease in the
third natural frequency occurs when the crack is at the roots of the first and the sixth
blades (1 and 110™ nodes). The decrease in the third natural frequency occurs

approximately when the crack is at the 30™ and 90" nodes.

Figure 5.25 shows the effect of crack location and crack depth on the fourth
natural frequency of five-bay frame structure and its mode shape. Figure 5.250©
shows similarity to Figures 5.22©, 5.23© and 5.24©. When the crack is located at
the root of the internal blades (the third and fourth) 50™ and 70" nodes the maximum
decrease in the fourth natural frequency occurs. In addition, the decreases in the
natural frequency are observed when the crack is at around 1%, 6" , 110 ,20th ,30th

A1M 45M 61™ 650 915 100™ ,105™ and 110" nodes.

5.3.6 Six-bay frame structure

Figure 5.26 shows the effect of crack location and crack depth on the first natural
frequency of six-bay frame structure and its mode shape. As the crack depth
increases, the variation of the first natural frequency becomes significant. When the
crack location changes, the variation in the first natural frequency is centered
symmetrically around the 65™ node of FE except for the area between 60" and 70"
nodes as seen in Figure 5.26©. The maximum decrease in the first natural frequency
occurs when the crack is at the 30™ and 110™ nodes (root of the second and sixth
blades). The decrease in the frequency when the crack is at the root of the fourth
blade 70" node, at the roots of the third and fifth blades 50" and 90™ nodes, at the
roots of the first and seventh blade 1% and 130™ nodes, in the corners of the second
and sixth blades 20™ and 100™ nodes, in the corner of the middle blade 60™ nodes, in
the corner of the third and fifth blade 40™ and 80™ nudes, in the corners of the first
and seventh blade 10™ and 120™ nodes are approximately 97.42%, 96.60%, 84.52% ,
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65.21%, 60.99%, 59.67% and 42.10% respectively. The percentages of decrease in
the first natural frequency are calculated with respective to maximum decrease in the

frequency when the crack is at 30™ and 110" nodes.

Figure 5.27 shows the effect of crack location and crack depth on the second
natural frequency of six-bay frame structure and its mode shape. As seen in Figure
5.27©, similar to the effect of crack on the first natural frequency, the left and the
right hand side of the results obtained from the maximum crack depth condition
when the crack is around 65" node is symmetric except for the area between 60™
and 70™ nodes. The maximum decrease in the second natural frequency occurs when
the crack is at the root of the first and seventh blades 1* and 130™ nodes. Moreover,
the decreases in the second natural frequency also exist if the crack is at the mid-
point of the first and seventh blades (6™ and 124™ nodes) and approximately at (1 1"
25™ 30™ 50" 70™, 90™, 100™ 105™ 110" and 120™ nodes).

Figure 5.28 shows the effect of crack location and crack depth on the third natural
frequency of six-bay frame structure and its mode shape. Similar to Figure 5.260©
and 5.270O, Figure 5.280© shows the effect of location of the maximum crack depth,
and has a symmetric appearance around 65" node. The maximum decrease in the
third natural frequency occurs when the crack is at the mid-point of the fourth blade
(65™ node). The decreases in the third natural frequency also occur approximately
when the crack is at 1% ,6™ ;18" 21th ,25",30™ ;35" 41% 45" 50" 57" 61" 70"
;74" 85" 90™ ,101%,105™ ,110™ ,113"™ ,125" and 130™ nodes .

Figure 5.29 shows the effect of crack location and crack depth on the fourth
natural frequency of six-bay frame structure and its mode shape. Figure 5.29© shows

similarity to Figures 5.26©, 5.27© and 5.28©. When the crack is located at the root
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of the middle blade 70™ node, the maximum decrease in the fourth natural frequency

occurs.

5.3.7 Two-story frame structure

Figure 5.30 shows the effect of crack location and crack depth on the first natural
frequency of two-story frame structure and its mode shape. As the crack depth
increases, variation of the first natural frequency becomes significant. When the
crack location changes, variation in the first natural frequency between 1% and 30"
node is centered symmetrically around the 15™ node, on the other hand, the changes
of frequency when the crack is between 30™ and 60™ node is centered symmetrically
around the 45™ node of the FE as seen in Figure 5.30©. The maximum decrease in
the first natural frequency occurs when the crack is at 10" and 20™ nodes (the joint
point between the lower and the upper frame when the stresses due to the moment
become maximum). The decreases in the frequency occur when the crack is at the 1%

and 30™ nodes (the roots of the frame).

Figure 5.31 shows the effect of crack location and crack depth on the second
natural frequency of two-story frame structure and its mode shape. As seen in Figure
5.310©, similar to the effect of crack on the first natural frequency , the left and the
right hand side of the results obtained from the maximum crack depth is symmetric
when the crack is between 1% and 30™ nodes. There is also similar symmetry
between 30™ and 60™ nodes. The maximum decrease in the second natural frequency
occurs when the crack is at the joint point between the lower and the upper frame
30™ and 60™ nodes. Moreover, the decreases in the second natural frequency also

exist when the crack is at 1%, 10™, 40™ and 50" nodes.

Figure 5.32 shows the effect of crack location and crack depth on the third natural

frequency of two-story frame structure and its mode shape. Similar to Figure 5.30©
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and 5.31O, Figure 5.32© shows the effect of location of the maximum crack depth,
and has a symmetric appearance around the 15" node for the range between 1% and
30™ nodes, there is similar symmetry around 45™ node between 30™ and 60™ nodes.
The maximum decrease in the third natural frequency also occurs when the crack is

at the 35" and 55" nodes.

Figure 5.33 shows the effect of crack location and crack depth on the fourth
natural frequency of two-story frame structure and its mode shape. Figure 5.330©
shows similarity to Figures 5.30© and 5.31©. The maximum decrease in the fourth
natural frequency occurs when the crack is in the 10™ and 20" nodes. In addition, the
decreases in the natural frequency are observed when the crack is at around 1%, 5™

25M 30™ 35M 40™ 500 55M and 60™ nodes.

5.3.8 Three-story frame structure

Figure 5.34 shows the effect of crack location and crack depth on the first natural
frequency of three-story frame structure and its mode shape. As the crack depth
increases, variation of the first natural frequency becomes significant. When the
crack location changes, the variation in the first natural frequency when the crack is
between 1% and 30™ node is centered symmetrically around the 15" node, there is
the similar symmetric in the area between 30™ and 60™ nodes, and the area between
60™ and 90™ nodes of the FE as seen in Figure 5.34©. The maximum decrease in the
first natural frequency occurs when the crack is at the 10™ and 20™ nodes (the joint
point between the lower and the middle frame where the stresses due to the moment
become maximum). The decreases in the frequency also occur when crack is at the
1°t and 30™ nodes (the roots of the frame) and when the crack is at 40" 50" 60",
70", 80" and 90™ nodes.
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Figure 5.35 shows the effect of crack location and crack depth on the second
natural frequency of three-story frame structure and its mode shape. As seen in
Figure 5.350, similar to the effect of the crack on the first natural frequency, the
variation in the second natural frequency when the crack is between 1% and 30"
nodes is centered symmetrically around the 15™ node, there is a similar symmetry
centered around 45" and 75" crack nodes for the area between 30™ and 60th, 60" and
90™ nodes of the FE respectively. The maximum decrease in the second natural
frequency occurs when the crack is at the joint point between the middle and upper
frame at the 40™ and 50™ nodes. Moreover, the decreases in the second natural
frequency also exist when the crack is at 1%, 10th, 20th, 30th, 60th, 70th, 80™ and 90™

nodes.

Figure 5.36 shows the effect of crack location and crack depth on the third natural
frequency of three-story frame structure and its mode shape. Similar to Figure 5.34©
and 5.350, Figure 5.36© shows the effect of location of the maximum crack depth,
and has a symmetric appearance when the crack is between 1% and 30™ nodes is
centered symmetrically around the 15™ node, there are similar symmetric centers
around crack locations of 45 and 75" nodes for the area between 30™ and 60™, 60"
and 90™ nodes of the FE respectively. The maximum decrease in the third natural

frequency occurs when the crack is at the 60™ and 90" nodes.

Figure 5.37 shows the effect of crack location and crack depth on the fourth
natural frequency of the three-story frame structure and its mode shape. Figure 5.37©
shows similarity to Figures 5.34© and 5.35©. The maximum decrease in the fourth

natural frequency occurs when the crack is at 65™ and 85" nodes.
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5.3.9 Vibration analysis for the multi-bay frame structure

When the results obtained from the free vibration analysis of multi-bay frames,
shown in Figures 5.5(¢c), 5.10(c), 5.14(c), 5.18(c), 5.22(c) and 5.26(c), are examined,
generally the first natural frequencies decrease when the crack located either at the

roots or at the corner of the frames for all multi-bay frames.

Crack location, first natural frequencies of cracked structure, percentage of

decreases and the first natural frequencies without crack are given in Tables 5.3-5.8.

Percentage decrease in the natural frequencies is calculated with respect to the

maximum decrease.

Table 5.3 decreases in first natural frequency of the single frame structure with respect to crack location
when the crack ratio is 0.5.

Crack location (nodes) 10", 20" 1%, 30™ Without crack
Natural frequency 116.30 11533 117.23
Percentage of decreases in 49.06% Max. decrease

the frequency

Table 5.4 decreases in first natural frequency of the

location when the crack ratio is 0.5.

two-bay frame structure with respect to crack

Crack location (nodes) 10th , 40th 20th Ist, 50th 30th Without crack
Natural frequency 110.09 109.72 109.51 109.26 110.61
Percentage of decreases 38.33% 66.17% 81.34% Max. decrease

in the frequency

Table 5.5 decreases in first natural frequency of the three-bay frame structure with respect to crack
location when the crack ratio is 0.5.

Crack location (nodes) 10", 60" 20™, 40" 1, 70" 50™, 30" Without crack
Natural frequency 107.93 107.73 107.53 107.39 108.32
Percentage of decreases 41.67% 63.59% 85.28% Max. decrease

in the frequency

Table 5.6 decreases in first natural frequency of the four-bay frame structure with respect to crack
location when the crack ratio is 0.5.

Crack location (nodes) 10™, 80™ 40™ 20™, 60" [ 1%, 90™ 50™ 30™,70™ | Without
crack

Natural frequency 106.66 106.53 106.49 106.34 106.26 106.23 106.96

Percentage of decreases 41.02% 58.27% 64.81% 84.44% 95.96% Max.

in the frequency decrease
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Table 5.7 decreases in first natural frequency of the five-bay frame structure with respect to crack
location when the crack ratio is 0.5.

Crack location (nodes) 10", | 40™,60™ | 20™,80™ [ 1%, 110™ | 50™, 70™ | 30™,90™ | Without
100" crack

Natural frequency 105.86 105.72 105.72 105.61 105.53 105.51 106.11

Percentage of decreases 41.95% 59.71% 64.97% 84.57% 96.77% Max.

in the frequency decrease

Table 5.8 decreases in first natural frequency of the six-bay frame structure with respect to crack
location when the crack ratio is0.5.

Crack location 10", | 40™, 60™ 20™, 1%, 50, 70™ 30™, | Without
(nodes) 120" 80" 100" 130" 90 110" crack
Natural 10531 | 105.22 | 10521 | 105.19 | 105.09 | 105.03 | 105.03 | 105.02 | 105.52
frequency

Percentage of 42.1% | 59.67% | 60.99% | 65.21% | 84.52% | 96.60% | 97.42% | Max.

decreases in the decrease

frequency

As seen in Tables 5.3-5.8, the maximum decreases in the first natural frequency of
the multi-bay framed occur, if the crack is located at the roots of the 2™ blade or n-1
number of blade (n: number of blades). The similar result can be obtained when

crack is at the corners.

The results are given schematically in figure 5.46.
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5.4 Buckling

5.4.1 Single frame structure

Figure 5.38 shows the effect of crack location and crack depth on the first
buckling critical load of single frame structure and its mode shape. As the crack
depth increases, the variation of first buckling critical load becomes significant.
When the crack location changes variation in the buckling critical load is centered
symmetrically around the 15™ node of FE as seen in Figure 5.38©. The maximum
decrease in the buckling load occurs when the crack is either at the 1 and 30™ nodes
(root of the blades) .The decrease in the critical load also occurs when the crack is

either at 10" and 20™ nodes.

5.4.2 Two-bay frame structure

Figure 5.39 shows the effect of crack location and crack depth on the first
buckling critical load of two-bay frame structure and its mode shape. As seen in
Figure 5.390, similar to the effect of the crack shown in Figure 5.380©, the left and
the right hand side of the results obtained from the maximum crack depth condition
when the crack location is around 25™ node is symmetric except the area between
20" and 30™ crack location nodes. The maximum decrease in the first buckling
critical load occurs when the crack is at the root of the second blade 30™ node. The
decreases in the critical buckling load also located when the crack is either at the
roots of the first and third blades 1*' and 50" nodes, or in the corner of the blades

10™, 20™ and 40™ nodes.

5.4.3 Three-bay frame structure

Figure 5.40 shows the effect of crack location and crack depth on the first

buckling critical load of three-bay frame structure and its mode shape. Similar to
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Figure 5.38© and 5.390©, Figure 5.40© shows the effect of location of the maximum
crack depth, and has a symmetric appearance around 35" node. The maximum
decrease in the first buckling critical load is seen to be when the crack is either at the
roots of the second and third blades 30™ and 50" nodes. The decrease in the buckling

load also occurs when the crack is at 1%, 10th, 20th, 40th, 60" or 70™ nodes.

5.4.4 Four-bay frame structure

Figure 5.41 shows the effect of crack location and crack depth on the first
buckling critical load of four-bay frame structure and its mode shape. As the crack
depth increases, the variation of the first buckling critical load becomes significant.
When the crack location changes the variation in the buckling load is centered
symmetrically around the 45™ node of FE except the area between nodes 40" and
50™ as seen in figure 5.41©. The maximum decrease in the first buckling critical
load occurs when the crack is at the 30™ and 70™ nodes (roots of the second and
fourth blade) .The decrease in the load also occurs when the crack is at 1%, 101 , 201

,40™ . 50" 60", 80™ and 90™ nodes.

5.4.5 Five-bay frame structure

Figure 5.42 shows the effect of crack location and crack depth on the first
buckling critical load of five-bay frame structures and its mode shape. As seen in
Figure 5.42©, similar to the effect of crack seen in Figures 5.380, 5.39© and 5.400,
the left and the right hand side of the results obtained from the maximum crack depth
condition around 55™ node crack position is symmetric and the maximum decrease in
the buckling load occurs when the crack is at the root of the second and fifth blades
30™ and 90" nodes. The decreases in the buckling load are also seen to be when the
crack is at the root of blades and at the corners, approximately at 1%, 10" 20" 40™,

50" 60", 70™ 80™, 100™ and 110™ nodes.
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5.4.6 Six-bay frame structure

Figure 5.43 shows the effect of crack location and crack depth on the first
buckling critical load of six-bay frame structure and its mode shape. As seen in
Figure 5.430, the left and the right hand side of the results obtained from the
maximum crack depth condition around 65" node is symmetric except the area
between 60™ and 70™ nodes. The maximum decrease in the buckling load occurs
when the crack is either at the root of the second and sixth blade 30" and 110™ nodes.
The decreases in the critical buckling load are also seen to be when the crack is at the
roots and corners of the blades at 1%, 101 , 200 ,40th ,50th , 60" ,70th , go™ ,,90th,
100™ 120™ and 130" nodes.

5.4.7 Two-story frame structure

Figure 5.44 shows the effect of crack location and crack depth on the first
buckling critical load of two-story frame structures and its mode shape. As the crack
depth increases, the variation of first buckling critical load becomes significant. The
variation in the first buckling critical load when the crack is between 1% and 30™
nodes, is centered symmetrically around the 15" node, and between 30™ and 60™
nodes is centered symmetrically around the 45™ node of the FE as seen in Figure
5.44©. The maximum decrease in the buckling load occurs when the crack is either
at 10™ and 20™ nodes (the joint point between the lower and the upper frame) .The

decrease in the critical load also occurs when the crack is at 40™ and 50™ nodes.

5.4.8 Three-story frame structure

Figure 5.45 shows the effect of crack location and crack depth on the first
buckling critical load of three-story frame structures and its mode shape. As seen in
Figure 5.450, similar to the effect of the crack shown in Figure 5.44©, variation in

the first buckling critical load when the crack is between 1% and 30™ nodes is
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centered symmetrically around the 15™ node. Moreover the similar symmetric
canters are seen around 45™ and 75" nodes for the crack in the areas between 30"
and 60", 60™ and 90™ nodes of the FE respectively. The maximum decrease in the
first buckling critical load occurs when the crack is either at the connection points

between the middle and the upper frame at the 40™ and 50" nodes.
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5.5 Dynamic stability

The regions of dynamic instability are distinguished as the first, second, third, etc.
In this work the first region of instability (near Q = 2m) or it is called the principle
region of dynamic stability is studied the most dangerous and has the greatest
practical importance. Here Q and w are the forcing (disturbing) frequency and the
natural frequency respectively. So, the first region of instability is studied by taking
the static load parameter a = 0, 0.2 and relative crack depth a/b=0.5. The effect of
both crack depth and crack location on the forcing (disturbing) frequencies (€2),
which construct the boundaries of unstable regions, are shown as 3D plots in figures
5.47 to 5.62. From these frequencies it can easily be noticed that the unstable region
widens as dynamic load parameter 3 increase and an increase in static load parameter
a decreases the frequencies and unstable region occurs at lower frequencies. As seen
from the 3D plots, when static load parameter o has the extreme values of 0 and 0.2,
the forcing frequencies constructing the lower border of unstable region reach zero
values at which dynamic load parameter B corresponds to the values of 2 and 1.6,

respectively, no matter where the crack locates.

Figures 5.63 to 5.70, shows the unstable regions having different static load
parameters and relative crack ratios. The unstable regions of the frame structure with

the static load (0£0) is wider than that without static load (a=0).

Figure 5.71, shows the unstable region for the multi-bay frame. When the number

of blades decreases the unstable region becomes wider.

Figure 5.72, shows the unstable region for the multi-story frame. When the
number of stories decreases the unstable region becomes narrower and shifts to the

origin.

Figure 5.73, shows the effect of crack depths. Increase in the relative crack depth
reduces the values of frequencies but the differences between the borders of the
unstable regions with different crack depths are very small, even for the crack ratio

of 0.5.
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Figure 5.43 Crack effect on the first critical buckling load of a six-bay frame structure.
a) Effect of crack ratio and crack location
b) First mode shape
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CHAPTER SIX
CONCLUSIONS

In this study, the effect of crack depth and crack location on the in-plane free

vibration, buckling and dynamic stability of cracked frame structures have been

investigated numerically by using The Finite Element Method. The following

conclusions are drown.

1.

The reduction of both buckling load and natural frequency depends on the
crack depth, crack location and crack direction with respect to load
direction which changes crack mode (Opening, Sliding and Tearing

mode).

The higher drops in the buckling load and in-plane natural frequency are

observed when the crack is located near the roots or corners of the frames.

There is no effect of the crack on the in-plane natural frequency when the
crack is located at the nodal points of the mode shape and located at the

maximal amplitudes of the mode shape.

When the number of blades increases in the multi-bay frame structures, the

effect of the crack decreases.
Maximum first natural frequency drop occurs when the crack is located at
the roots for multi-bay frames and at the corners for the multi-story

frames.

There is no effect of a crack, if the crack is located at the member which

does not vibrate, this phenomena depends on its mode shape.

The dynamic unstable region moves towards the origin when the static

load () increases.

136
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8. When the numbers of blades increase for multi-bay, the unstable region
becomes narrower and shifts to the origin. The similar thing can be
obtained when the number of story increase in the multi-story frame

structure
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