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ANALYSIS OF MACHINERY FAULTS BY CURVE LENGTH AND 

WAVELET TRANSFORMS 

 
 

ABSTRACT 
 
 

     Rotation is a basic motion which is widely used in machinery and equipments of 

industry and energy production sites. The continuity of the motion is very important 

necessity. An unpredictable fault causing a stop or decrease of the performance in the 

system cause serious financial losses. For that reason, the necessity of predicting the 

fault arises. Considering the rotating machinery it can be concluded that  the system 

basically consists of a shaft, housings and rolling element bearings. The basic faults 

are basically run-out, unbalanced masses and rolling element faults in such a kind of 

rotating machinery. The prediction of these faults and taking the corresponding 

precautions before the failure causes big financial savings. The most important 

method for this purpose is condition monitoring. Vibration measurements are mainly 

and widely used tool for condition monitoring.  

 

With the help of this point of view, the corresponding studies are worked on an 

experimental setup which can simulate the situation in the real life applications. The 

common faults such as  run-out, unbalance and inner race defect cases were 

configured on the system and the condition was monitored by using vibration data. 

Run-out fault was performed with the help of movable housings, unbalance fault was 

created with the help of a circular plate, which has holes in the radial direction for 

mass fixing and roller bearing fault (especially inner race fault) was created with the 

help of electrical discharge machine (creating defects on the outer surface of  inner 

race of bearing). Vibration measurements were performed with a portable vibration 

analyzer at a wide range of shaft speeds. Velocity and acceleration data were 

recorded. Vibration signals which were taken from healthy and faulty system were 

investigated in time domain by using statistical parameters such as rms, kurtosis and 

peak to peak. In the further step, curve length transform, which is a nonlinear time 

domain transform, was applied to vibration signals and again healthy and faulty 

system, were investigated in time domain by using statistical parameters such as rms, 



 v 

kurtosis and peak to peak. In addition to this process, effect of scale factor on curve 

length transform was examined. In the next step, fast Fourier transform (FFT) and 

short time Fourier transform (STFT) were applied on the vibration signals and 

frequency spectrum was investigated with aiming to get the characteristic fault 

frequencies. In the final step, continuous wavelet transform was applied to vibration 

signals and corresponding spectrums were created for giving more information about 

the fault frequency, fault time and fault amplitude.   

 

Keywords: Condition monitoring, vibration signal analysis, curve length transform, 

wavelet transforms. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 



 vi

 
MAKĐNA HATALARININ EĞRĐ UZUNLUĞU VE WAVELET 

DÖNÜŞÜMLERĐ ĐLE ANALĐZĐ 

 
 

ÖZ 
 

     Dönme hareketi endüstride ve enerji üretiminde kullanılan makina ve 

ekipmanlardaki  en temel hareket biçimidir. Bu hareketin sürekliliği oldukça önemli 

bir gereksinimdir. Zira beklenmeyen hatalardan dolayı sistemin durması veya  

performansının düşmesi gibi durumlar ciddi maliyet kayıplarına yol açmaktadır. Bu 

sebeple, hatanın tahmin edilmesi ihtiyacı doğmuştur. Bir döner sistem 

düşünüldüğünde,  sistemin temel olarak bir mil, milin dönme hareketini 

destekleyecek yataklar ve rulmanlardan oluştuğu gözlenecektir. Böyle bir modelde 

oluşabilecek temel hatalar incelenecek olursa, mildeki eksen kaçıklığı, mil üzerindeki 

dengelenmemiş kütle ve dönme hareketini destekleyen yataklarda kullanılan 

rulmanlardaki hatalar ilk planda öne çıkmaktadır. Bu hataların kritik hata seviyesine 

gelmeden önce belirlenip gerekli önlemlerin alınması ciddi kazanımlar 

sağlamaktadır. Bu amaçla kullanılan metotlardan en önemlisi  durum izleme 

yöntemidir. Durum izleme yönteminde temel olarak titreşim sinyallerinin izlenmesi 

yaygın olarak karşımıza çıkmaktadır. 

 

Bu gerçeklikten yola çıkılarak ilgili çalışma, pratikteki durumu temel anlamda 

simule edecek bir deney düzeneğinin üzerinde gerçekleştirilmiştir. Eksen kaçıklığı, 

dengelenmemiş kütle ve rulman hatası gibi pratikte oldukça karşılaşılan hata 

biçimleri sistem üzerinde oluşturulmuş ve titreşim ölçümü ile sistemin durumu 

izlenmeye çalışılmıştır. Eksen kaçıklığı deney düzeneğinin yataklarının hareket 

edebilir ve istenen pozisyonda sabitlenebilirliğiyle, dengelenmemiş kütle oluşumu 

deney düzeneği üzerindeki dairesel plakaya radyal yönde ek kütlelerin 

sabitlenmesiyle ve rulman hataları masuralı rulmanın iç bileziğine dalma erezyon 

tezgahında oluşturulan çukur ile oluşturulmuştur. Titreşim ölçümleri taşınabilir bir 

titreşim analizörü ile hız ve ivme cinsinden geniş bir mil hızı aralığında 

gerçekleştirilmiştir. Hatasız ve hatalı sistemlerden elde edilen titreşim sinyalleri, 

öncelikle rms, kurtosis, tepe tepe gibi bazı istatiksel göstergeler ile  zaman ortamında 
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incelenmiştir. Daha sonra eğri uzunluğu dönüşümü olarak adlandırılan lineer 

olmayan bir zaman ortamı dönüşmü yine titreşim sinyallerine uygulanmış ve bu 

dönüşümün etkinliği istaiksel parametreler yardımıyla gözlemlenmiştir. Buna ek 

olarak ilgili dönüşümdeki skala faktörünün eğri uzunluğuna etkisi incelenmiştir. Bir 

sonraki aşamada titreşim sinyallerine FFT ve STFT dönüşümleri uygulanarak frekans  

ortamında karakteristik hata frekanslarının yakalanması amaçlanmıştır. Son bölümde 

ise çalışmanın ana merkezini oluşturan yeni bir sinyal işleme yöntemi kullanılmıştır. 

Sürekli wavelet dönüşümü ismindeki bu sinyal işleme yöntemi ile hatanın hangi 

zaman içerisinde, hangi frekansta ve hangi şiddette oluştuğu gibi detaylı bilgilere de 

ulaşılmıştır.  

 

Anahtar Kelimeler: Durum izleme, titreşim sinyal analizi, eğri uzunluğu dönüşümü, 

wavelet dönüşümleri  
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CHAPTER ONE 

INTRODUCTION 

 

     Importance of the condition monitoring techniques used in rotating machinery is 

increasing. This is because of the fact that implementation of these techniques brings 

considerable financial savings by reducing scheduled maintenance costs, and 

improving the productivity and safety. Moreover, early detection of incipient fault 

prevents major component failures. The malfunctions, which are mainly shaft 

misalignment, unbalance and rolling element bearing faults may cause serious 

failures in the rotating machinery process. To detect and diagnose the defect in 

rotating machinery, various condition monitoring techniques have been developed. 

The most powerful and commonly used   method is the vibration analysis. There are 

many examples on the application of the vibration analysis for condition monitoring 

in the literature.  

 

    Hariharan & Srinivasan (2009) presented vibration analysis of the misaligned 

shaft-ball bearing system. In their study, experiments were performed on a rotor 

dynamic test apparatus to predict the vibration spectrum for shaft misalignment. The 

accelerations of the system were measured with a dual channel vibration analyzer 

under the misalignment condition. Moreover, numerical frequency spectra were 

obtained with the help of software, ANSYS. The results from the experiment and 

software were compared and it was seen that the results were in agreement. Both 

results showed that misalignment can be characterized primarily two times shaft 

running speed. However, if the misalignment characteristic frequency is not close 

enough to one of the system natural frequencies, the corresponding fault cannot 

excite the system appreciably. Therefore, there are cases where the misalignment 

response is hidden.  

 

     Tandon & Choudhury (1999) presented a review of vibration and acoustic 

measurement methods for the detection of defects in rolling element bearings. In 

their study, vibration measurements in both time and frequency domains along with 

signal processing techniques such as the high-frequency resonance technique were 
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covered. Acoustic measurement techniques such as sound pressure, sound intensity, 

and acoustic emission were reviewed. Detection of both localized and distributed 

categories of defect were explained. They observed vibration in the time domain that 

can be measured through the parameters such as RMS level, crest factor, probability 

density, and kurtosis. Kurtosis was mentioned as the most effective method. 

Vibration measurement in the frequency domain has the advantage that it can detect 

the location of the defect. However, the direct vibration spectrum from a defective 

bearing may not indicate the location of the defect especially at the initial stage. This 

problem has been overcome by some signal processing techniques. The high-

frequency resonance technique is the most popular among the other techniques. The 

sound intensity, which is one of the acoustic techniques, was reported to be better 

than sound pressure measurements for bearing diagnostics. They observed in the 

related studies that, acoustic emission measurements are better than vibration 

measurements for detecting defects in rolling element bearings. In addition, acoustic 

emission signals can detect a defect even before it appears on the surface.  

 

     Kıral & Karagulle (2006) modeled the loading mechanism in a bearing structure, 

which houses a deep groove ball bearing having different localized defects and 

carrying an unbalanced force rotating with the shaft. The finite element vibration 

analysis was employed to simulate the bearing vibration signals. They proposed the 

use of the finite element vibration analysis with the proper loading model, which 

produces simulated vibration signals including the structural information in order to 

find the most efficient analysis method. The effects of different parameters such as 

the rotational speed, sensor location, angular position, and number of the outer ring 

defects, defect type (inner ring defect and rolling element defect) on the vibration 

monitoring methods were examined by using the time and frequency domain 

parameters. They reported that the envelope method can be used efficiently in order 

to detect the outer and inner ring defects, but rolling element defects were not easy to 

detect via envelope and band energy ratio procedures. 

 

     Orhan, Aktürk, & Çelik (2006) investigated diagnosis techniques of the ball and 

cylindrical roller element bearing defects by vibration monitoring and spectral 
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analysis. The vibration of a huge centrifugal pump with nine vanes was monitored. 

The experimental study had included three different cases. In case 1, the ball bearing 

has looseness on the housing. The vibration amplitudes were in low level at the 

initial stage. The vibration monitoring was continued and after a few weeks, they 

reported the increase in vibration levels indicating development in the looseness. In 

case 2, inner bearing vibration of a fan motor, which is supported by cylindrical 

rolling element bearing, was monitored. Existence of multipliers of outer race defect 

frequency in the spectrum was attributed to an outer race defect. In case 3, outer 

bearing vibration of the fan motor, which is supported by ball bearing, was 

monitored. Vibration frequencies in the frequency spectrum are matched to the ball 

bearing outer race defect frequency and its harmonics. In the study, ball bearing 

looseness, a ball bearing outer race defect, and a cylindrical bearing outer race defect 

were successfully diagnosed. They observed that ball and cylindrical rolling bearing 

defects were progressed in identical manner without depending on the type of rolling 

element.  

 

     Tao, Zhu, Ding & Xiong (2006) improved an alternative time-domain index for 

condition monitoring of rolling element bearings. In the time domain analysis, the 

kurtosis and Honarvar third moment are the major parameters. In this study, a new 

statistical moment was derived from the viewpoint of Renyi entropy. The 

comparisons were made by using both experimental data and simulations. As a 

result, it was seen that new moment called Sα  has less sensitivity to the changing 

shaft speed than kurtosis and close to Honavar third moment. Furthermore, new 

statistical parameter is less susceptible to spurious vibrations than the others are. 

 

     Takeyasu & Higuchi (2006) derived 6th normalized moment as an alternative 

time parameter to the 4th normalized moment of probability density function which 

is also called kurtosis. In their survey, they proved that 6th normalized moment is 

much more sensitive than the kurtosis by using numerical examples.  

 

     Zong, Moody & Jiang (2006) studied on curve length transform such that used 

corresponding transform for the analysis of the heart beat signals and feature 
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extraction from body surface electrocardiograms (ECGs). The curve length transform 

is applied to the rolling element bearing diagnostics in this thesis.  

 

     Oztürk, Yeşilyurt and Sabuncu (2010) presented the use of vibration analysis in 

the early detection and monitoring of distributed pitting faults in gear trains. In this 

experimental study, the pits were seeded on all of the gear tooth surfaces in different 

degrees of severity. The gears were tested with each fault severity and resulting 

vibration data were recorded. Different kind of vibration analysis methods such as 

time, frequency, and wavelet transform (scalogram and its mean frequency variation) 

to each set of experimental data were presented. In the results it was seen that, 

presence of the pitting cannot be seen clearly unless fault severity is significant large. 

However, in the wavelet analysis the scalogram and especially its mean frequency 

variation provided early indication of presence of the pitting faults.   

   

     Khalid, Asok, K.P., D.K., & Steven (2007) investigated an alternative approach 

for detecting localized faults in the outer and inner races of a rolling element bearing 

using the envelope power spectrum of the Laplace Wavelet. The vibration model for 

a rolling element bearing with outer and inner race faults was given. The 

implementation of a proposed approach for the detection of localized ball bearing 

defects for both simulated and actual bearing vibration signals was presented. The 

wavelet shape parameters (damping factor and the center frequency) were optimized 

by maximizing the kurtosis value for the wavelet transform coefficients vibration 

signal. The application of this technique for both of the simulated and real bearing 

vibration signals showed the effectiveness of the wavelet power spectrum in 

extraction of the bearing characteristic frequencies and its harmonics for outer and 

inner race defective bearings from noisy vibration signals. 

 

     Mazanoğlu (2004) presented a study on the detection of a localized defect in a 

roller bearing using vibration analysis. The real roller bearing that was in both of 

healthy and faulty conditions was tested under different loads. The acquired vibration 

signals from experimental set was processed in time, frequency, and combined time 

and time- frequency domains. In conclusion, the presence of a fault was observed to 
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reveal clearly by time and frequency analyses when severity of fault was large. 

Frequency peaks that were the results of application of envelope analysis were 

observed at characteristic frequency of fault component. When the application of 

combined time-frequency analysis, indications of fault were observed in the 

combined time-frequency maps as local increases in the energy levels of vibration 

only where components of bearing came into contact with defect. 

 

     Chebil, Noel, Mesbah & Deriche (2009) presented a wavelet-based analysis 

technique for the diagnosis of faults in rotating machinery in terms of mechanical 

vibration. The choice between the discrete wavelet transform and the discrete 

wavelet packet transform was discussed with the choice of the mother wavelet and 

some of the common extracted features. In this work, it was seen that the peak 

locations in the spectrum of the vibration signal could also be used in the detection of 

a fault in ball bearings. For the identification of fault location and its size, the rms 

extracted from the terminal nodes of a wavelet tree can be reliably used as 

discriminating feature. It was found that the choice of the mother wavelet sym6 

combined with the use of the rms feature produces excellent classification results. 

 

     Liu, Ling, and Gribonval (2002) proposed matching pursuit that is a new 

approach for detection of localized defects of rolling element bearings. Matching 

pursuit is an adaptive approach of time-frequency analysis unlike Short Time Fourier 

Transform and Wavelet Transform. They used vibration signals, which were 

collected from a test rig for different test configuration such as normal bearing, the 

bearing with an outer race defect, the bearing with an inner race defect. They 

processed vibration signals via matching pursuit approach. At the same time, they 

applied a typical traditional method, envelope detection to detect defects. They 

observed that matching pursuit approach was more sensitive than envelope detection. 

 

     The aim of this study is to detect the behavior of the rotating system having 

cylindrical roller bearing under different fault conditions such as run out, unbalance 

and inner race defect by using vibration signals. For this aim, an experimental test 

apparatus was designed and manufactured. The corresponding apparatus includes 
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two types of roller bearing (cylindrical roller bearing and spherical roller bearing). 

The housings in which the roller bearings are fixed are movable in the perpendicular 

direction to the rotation axis. Moreover, circular plate on the shaft is designed to 

create different unbalance forces on the system. Cylindrical roller bearing faults were 

generated artificially by using electrical discharge machine. Tests were performed for 

different fault conditions both separately and their combinations with each other for 

varying shaft speeds. Vibration signals were measured by a piezoelectric 

accelerometer located on the cylindrical bearing housing. This thesis is organized as 

follows. In Section 2, condition-monitoring systems on detecting rolling element 

faults and rolling bearing elements are described. In Section 3, experimental setup 

and vibration measurements are introduced. In Section 4, the statistical indices used 

in this study are described. In Section 5, the results of the time domain indices for the 

corresponding fault cases are given. In section 6, effect of curve length transform on 

the time domain analysis are described. Results of the frequency domain analyses are 

given in Section 7. The formulation of the wavelet transform and the results are 

given in Section 8. The concluding remarks are given in Section 9.  
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CHAPTER TWO 

CONDITION MONITORING AND ROLLING ELEMENT BEARINGS 

 

2.1 Condition Monitoring 

 

     Condition monitoring is the process of monitoring a parameter of condition in 

machinery, such that a significant change is indicative of a developing failure. It is a 

major component of predictive maintenance. The use of conditional monitoring 

allows maintenance to be scheduled, or other actions to be taken to avoid the 

consequences of failure, before the failure occurs. Nevertheless, a deviation from a 

reference value (e.g. temperature or vibration behavior) must occur to identify 

impeding damages. Predictive maintenance does not predict failure. Machines with 

defects are more at risk of failure than defect free machines. Once a defect has been 

identified, the failure process has already commenced and condition monitoring 

systems can only measure the deterioration of the condition. Intervention in the early 

stages of deterioration is usually much more cost effective than allowing the 

machinery to fail. Serviceable machinery includes rotating equipment and stationary 

plant such as boilers and heat exchangers. 

 

2.2 Condition Monitoring of Rotating Machinery 

 

     Rotating machinery’s condition monitoring is the process of monitoring the 

condition of a machine with the intent to predict mechanical wear and failure. 

Vibration, noise, and temperature measurements are often used as key indicators of 

the state of the machine. Trends in the data provide health information about the 

machine and help detect machine faults early, which prevent unexpected failure and 

costly repair. 

 

     The most commonly used method for rotating machines is called vibration 

analysis. Measurements can be taken on machine bearing casings with seismic or 

piezo-electric transducers to measure the casing vibrations, and on the vast majority 

of critical machines, with eddy-current transducers that directly observe the rotating 
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shafts to measure the radial (and axial) vibration of the shaft. The level of vibration 

can be compared with historical baseline values such as former starts and shutdowns, 

and in some cases established standards such as load changes, to assess the severity. 

 

 

         Figure 2.1 Machine condition vs time diagram 

 

     As shown in the Figure 2.1, vibrations are the first warning sign that a machine is 

prone to failure. This warning signs can provide 3 months of lead time before the 

actual failure date.  Monitoring this data with vibration analysis allows predicting 

this failure early and scheduling proper maintenance.  

 

     Interpreting the obtained vibration signal is a complex process that requires 

specialized training and experience. There are many techniques for interpretation of 

vibration signals. The main techniques are the time domain analysis, the frequency 

domain analysis, and the time-frequency domain analysis. The easiest and fastest 
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method is time domain analysis of vibration signal. In the time-domain analysis, 

rotating system’s faults are detected by monitoring the variation of some statistical 

indices such as the crest factor, skewness, root mean square, and kurtosis. A bearing 

is believed to be damaged when a monitoring index exceeds threshold values; 

however, it is usually difficult to determine the healthy condition values so the ratio 

between the healthy and faulty condition can be compared. 

 

      Frequency domain analysis is the most commonly used approach in the condition 

monitoring of the rotating machinery. In this method, defect detection is based on the 

analysis of the spectral information. The main advantage of this analysis is that it is 

relatively easier to identify and isolate certain frequency compent of interest (Tandon 

& Chouldhury, 1999). Frequency-based techniques, however, are not suitable for the 

analysis of non-stationary signals that are generally related to machinery defects 

(Jardine, Lin & Banjevic, 2005). 

 

     Non-stationary or transient signals can be analyzed by applying joint time-

frequency domain techniques such as the short-time Fourier transform and wavelet 

transform (Liu, Wang, Golnaraghi, Liu, 2007). The short time Fourier transform 

(STFT) can be employed to detect the localized transient. Unfortunately, the fixed 

windowing used in the STFT implies fixed time-frequency resolution in the time 

frequency plane (Wadhwani, Gupta, Kumar, 2005). The difficulty is that the 

accuracy of extracting frequency information is limited by window relative to the 

duration of the interesting signal. To overcome the fixed time-frequency resolution 

problem, the recently developed wavelet based analysis becomes an efficient 

alternative in dealing with non-stationary type of machinery transient signal (Yen & 

Lin, 2000). The wavelet transform approach allows the detection of short-lived time 

component in the signals. This method is logical since high frequency components 

such as short bursts need high time resolution as compared with low-frequency 

components, which requires low frequency resolution (Wadhwani, Gupta, Kumar, 

2005). Shortly, in fault detection, wavelet transform is the most popular time-

frequency domain technique because of its more flexible multi-resolution 

(Luo,Osypiw, Irle, 2000).  
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2.3 Application Areas of the Condition Monitoring for Rotating Machinery 

 

     The condition monitoring technique is applied many types of rotary machines 

including machines that are vital to the plant or process and without which the plant 

or process cannot function such as the steam or gas turbines in a power plant, crude 

oil export pumps on an oil rig, the cracker in an oil refinery, and applied to 

machinery that is a key part of the process. However, if it fails the process can still 

operates such as boiler feed pumps in a power plant, wind turbines, air compressors 

and export pumps on an oil refinery.  

 

 

 

                            Figure 2.2 Offshore wind turbines (Siemens, 2010). 

 

 

     Wind turbines as in the Figure 2.2 may be a good example for the application area 

of the condition monitoring process. Their vibration monitoring is one of the most 

important aspects because it helps determine the condition of rotating equipment. In 

a wind turbine, this equipment consists of the main bearing, gearbox, and generator. 
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Figure 2.3 shows where you can place vibration sensors to read data in the axial and 

radial directions. Depending on the applicable frequency range, you can use either 

position sensors (low range), velocity sensors (mid range), or accelerometers (high 

range) for this measurement. These vibration sensors are rigid mounted to the 

component of interest and return an analog signal proportional to the instantaneous 

local motion. An acquisition device that has a high sampling rate, high dynamic 

range, and anti-aliasing is ideal for this type of measurement. 

 

 

 

            Figure 2.3 Vibration sensor positions for wind turbine model (National Instrument, 2010). 

 

 

     The principle of the condition monitoring system is based on the recording of 

structure-borne vibrations caused, for example, by bearings and gear tooth. The 

signals are received by means of special acceleration sensors attached to defined 

measuring points on the individual drive train components.  

 

     In a three-month start-up phase an individual vibration picture is drawn, the so-

called "fingerprint" for the turbine and its components. The values measured are 

stored as parameters in a "black box.” When the turbine is in operation, the actual 
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values measured are automatically compared online by means of measuring routines 

and measuring methods, such as frequency, envelope, and order analysis, with the 

reference values stored in the system. If there are discrepancies or limits are 

exceeded, the system automatically sends a warning or alarm message to the central 

remote monitoring center. There it is possible to draw accurate conclusions on the 

degree of change or wear based on experience gained over years and to initiate 

service activities in good time (Nordex Service, 2010). 

 

2.4 Condition Monitoring of Roller Bearings  

 

     Roller bearing, by design, has extremely small clearances which do not allow a 

significant amount of shaft motion; forces from the shaft are transferred through the 

rolling elements to the bearings outer race and then ultimately to the bearing housing. 

Because of this transmission, a casing (bearing housing) measurement is normally 

acceptable for monitoring machines with rolling element bearings. Since the most of 

the machinery in a predictive maintenance program contains rolling element 

bearings, it is important to understand firstly to rolling element theory  deeply. 

 

2.5 Rolling Element Bearings 

 

2.5.1 Brief History 

 

     Ancient man was forced to push or pull heavy objects to long distances just to 

make basic improvements to his life. This effort to move objects was reduced 

considerably when he discovered simple forms of lubrication such as mud or water. 

 

     With the invention of the wheel, it became obvious that rolling motion requires 

less effort and is less damaging to surfaces than sliding motion. It is not surprising 

therefore, that bearings, using only rolling motion, were eventually developed for use 

in machines, where metal sliding on metal causes considerable wear. 

 



 

     

13  

     In fact, the first machine designs used journal (plain) bearings, which consisted of 

steel shafts running in wooden blocks, impregnated with lubricant. Eventually as 

steel improved and manufacturing techniques improved, two steel rings with rolling 

elements between, replaced them. First precision steel rolling element was designed 

by Friedrick Fisher in 1883. This resulted in a bearing with greatly reduced friction 

and extended service life.   

 

2.5.2 Bearing Theory 

 

     Bearings can be categorized as two types, sliding bearings and rolling bearings. 

Sliding bearings includes linear bearings and journal bearings. Linear bearings are 

generally used for precise applications by precision engineering industries. Journal 

bearings can tolerate axial displacement of the shaft within certain limits. 

 

     All bearings that transfer loads via rolling elements are denoted rolling bearings. 

Depending on the type of rolling elements that are used rolling element bearings are 

divided into ball bearings and roller bearings. The balls in a ball bearing transfer the 

load over a very small surface point contact (Figure 2.4a) with the raceway. The load 

carrying capacity is therefore lower than for a roller bearing, where rollers transfer 

the load via line contact (Figure 2.4b) with the raceways. 

 

 

 

 

 

 

 

     

 

 

Figure 2.4 Type of contacts a) point contact b) line contact (SKF, 1996). 

a) b) 
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     One of the factors which make the rolling element bearings so popular for most 

types of machinery is their very low friction. In a rolling element bearing the, inner 

ring rolls via the rolling elements in the outer ring. Under the same load conditions, 

the friction in a plain bearing is greater than that of a rolling bearing. Furthermore, 

the friction in a plain bearing varies with the rotational speed but is practically 

constant for a rolling bearing as shown in Figure 2.5. 

 

     There are two basic families, that is, ball and roller bearings, which are 

categorized according to the shape of the rolling elements. Each family includes a 

variety of bearing designs, depending on requirements such as available space for 

bearing, magnitude of load, direction of load, misalignment, speed, precision, quiet 

running, stiffness and axial displacement. Ball bearings are usually used in light to 

moderately loaded applications and are suited for high-speed operations. Roller 

bearings are able to support heavier loads than ball bearings. Rolling element 

bearings can also be classified into radial bearings and thrust bearings based on the 

direction of applied load. These types of direction-wise bearings are designed to 

transfer pure radial loads, pure thrust loads, or a combination of the radial and thrust 

loads. 

 

 

 

 

 

 

 

 

 

     

     A radial bearing is designed primarily for carrying a radial load.  A thrust bearing 

is mainly intended to carry a thrust load (also called axial load) that is pushing force 

Figure 2.5 Frictional behaviour of plain and 

rolling bearings (SKF,1996). 
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against the bearing parallel to the shaft axis. Since most rolling bearings, both radial 

and thrust bearing, can also carry some radial and axial load, there is no clear 

distinction between them. However, bearings with a contact angle α<= 45° (shown 

in Figure 2.6) are considered radial bearings and their ratings are given by radial 

load. Bearings with a contact angle α >45° are considered thrust bearing and are 

rated by axial load.  

 

 

 

 

 

 

 

 

 

 

 

2.5.3 Bearing Components 

 

     All rolling bearings are composed of four basic parts: inner ring, outer ring, 

rolling elements, and cage or separator as seen in Figure 2.7. 

 

 

 

 

 

 

 

 

Figure 2.7 Components of the 

rolling bearing (SKF, 1996).  

D :         Outer diameter 

dm  :  Pitch diameter 

d : Bore diameter 

db : Ball diameter 

w : Raceway width 

αααα : Contact angle 

Z : Number of ball 

Figure 2.6 Bearing geometry. 
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     2.5.3.1 Inner Ring 

 

     The inner ring is mounted on the shaft of the machine and is mostly the rotating 

part. The bore can be cylindirical or tapered. The raceways against which the rolling 

elements run have different forms such as spherical, cylindirical or tapered, 

depending on the type of rolling elements. 

 

     2.5.3.2 Outer Ring 

 

     The outer ring is mounted in the housing of the machine and in most cases it does 

not rotate. The raceways against which the rolling elements run have different forms 

depending on the type of rolling elements. The forms of the raceways may be 

spherical, sylindirical or tapered.  

 

     2.5.3.3 Rolling Elements 

 

     The rolling elements may have different forms as shown in Figure 2.8. The forms 

of the rolling elements may be balls, cylindirical rollers, spherical rollers, tapered 

rollers or needle “rollers. They rotate against the inner and outer ring raceways and 

transmit the load acting on the bearing via small surface contacts separated by a thin 

lubricating film. The rolling elements are made of carbon chromium steel, also called 

bearing steel.   

 

 

 

 

 

 

 

 

 

 Figure 2.8 Types of rolling elements 

(SKF, 1996). 
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     2.5.3.4 Cage 

 

     The cage separates the rolling elements to prevent metal-to-metal contact between 

them during operation that would cause poor lubrication conditions. With many 

bearing types the cage holds the bearing together during handling. Cages are made 

from cold rolled steel strip. 

 

     2.5.3.5 Seals 

 

     Seals are essential for a long and reliable life of the bearing. They protect the 

bearing from contamination and keep the lubricant inside the bearings.  

 

     2.5.3.6 Guide Ring 

 

     Guide rings are used in some spherical roller bearings that demand extremely high 

quality. The main function of the guide rings is to guide the rollers in the bearings so 

that they can rotate parallel to the shaft and distribute the load evenly to the 

raceways.  

 

2.5.4 Types of the Bearing Failures and the Causes  

 

     Rolling element bearings are among the most important and popular components 

in the vast majority of machines. Additionally, the component most likely to cause 

machine downtime is the bearing, because all machine forces are transmitted through 

the bearings. Therefore, rolling element bearings have been the subject of extensive 

research over the years to improve their reliability. However, since a large number of 

bearings are associated with any critical process, system failure due to any individual 

bearing failing can occur in a short period. There are many reasons for early failure, 

such as heavy loading, inadequate lubrication, careless handling, ineffective sealing, 

or insufficient internal bearing clearance due to tight fits. Each of these factors 

results in its own particular type of damage and leaves its own special imprint on the 

bearing. 
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     Rolling bearing damage may result in a complete failure of the rolling bearing at 

least, however, in a reduction in operating efficiency of the bearing arrangement. 

Only if operating and environmental conditions as well as the details of the bearing 

arrangement (bearing surrounding parts, lubrication, sealing) are completely in tune, 

can the bearing arrangement operate efficiently. Bearing damage does not always 

originate from the bearing alone. Damage due to bearing defects in material or 

workmanship is exceptional.     

 

     The types of mechanical bearing failure and their frequencies are categorized in 

Table 2.1. The most frequent bearing failure category is corrosion, which is 

lubrication related. Chemical reaction occurs between the oil and the surface of the 

bearing, generally from water or other corrosive materials present in the oil. 

Dimensional discrepancies of rolling element bearings are a consequence of damage 

prior to or during service. The causes of dimensional discrepancies could be 

manufacturing flaws, improper handling or installation, and severe overloading 

during service. Foreign objects, carried by contaminated lubricant, are trapped inside 

the bearing between the rolling element and the raceway, and are overloaded. 

Understanding the underlying reason for the defects and their consequences in terms 

of failures gives the diagnostic clues to detect early failures.  

 

Table 2.1 The distribution of the bearing failure (Lee, 2000). 

Reason Failure percent 

Corrosion 35 % 

Dimensional Discrepancies 29 % 

Foreign Objects 24 % 

Other 10 % 

Fatigue 2 % 
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     Bearing failures that are not responsible for material fatigue are generally 

classified as premature. Typical reasons for rolling bearing damage (FAG, 1985): 

 

Inexpert mounting: 

� incorrect mounting method, wrong tools 

� contamination 

� too tight fit 

� too loose fit 

� misalignment 

 

Abnormal conditions during operation: 

� overload, absence of load 

� vibrations 

� excessive speeds 

 

Unfavorable environmental influences: 

� external heat 

� dust, dirt 

� passage of electric current 

� humidity 

� aggressive media 

 

Inadequate lubrication: 

� unsuitable lubricant 

� lack of lubricant 

� over lubrication 

   

   Each of the different causes of bearing failure generates its own characteristic 

damage. Such damage is also known as primary damage, which, in turn, creates 

secondary, failure-inducing damages, such as spalling and cracks. Most failed 

bearings frequently display a combination of primary and secondary damage. The 

types of damage are summarized in Table 2.2 (Afshari, 1998).  
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Table 2.2 Types of bearing damages (Afshari, 1998). 

  DAMAGE TYPE  

 Primary Damages Secondary Damages Other Damages 

D
A
M

A
G
E
 C

A
S
E
S
 

Indentations 

Corrosion 

Wear 

Electric current damage 

Surface distress 

Spalling 

Cracks 

Cage damage 

Score marks 

Roll out 
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CHAPTER THREE 

EXPERIMENTAL SETUP 

 

3.1 Test Apparatus 

 

     Test apparatus used in this study is a simplified model of rotating machinery. The 

test set up includes basically a shaft, two housings with roller bearings (one is ball 

bearing and the other one is cylindrical roller bearing) and a circular disc. The 

corresponding apparatus as seen from Figure 3.1 is designed to allow monitoring 

three different types of faults in the system such as unbalance, shaft misalignment 

(run-out), and bearing faults.  

 

 

Figure 3.1 Top view of the experimental setup.  
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     For creating unbalance forces on the rotating system, a circular disc, which have 

equally spaced holes in the radial direction, is designed. Circular disc is assembled to 

the shaft with the help of retaining rings. The unbalance condition is provided by 

adding masses on the circular discs through the holes. 

 

     The test apparatus is designed in such a way that its housings have ability of 

moving in the direction perpendicular to the shaft rotation axis. These movable 

housings give the opportunity of controlling the run-out distance in the system. 

Moreover after setting the housing position for creating the desired run-out, housing 

are fixed in that position with the help of bolts and nuts. In the corresponding 

experiments, 3 mm run out is created on the system.  

 

     The housings in the test apparatus have roller bearings inside. In this study, two 

different type of test bearings are chosen, one as deep groove ball bearing and the 

other one is FAG Cylindrical roller bearings NU306-E-TVP2 type. The 

corresponding roller bearings are assembled inside the housings without causing any 

damage. The deep groove ball bearing is in healthy condition. However, the 

cylindrical roller bearing has two versions (healthy one and faulty one). The fault in 

the cylindrical roller bearing is inner race fault. The predefined cavity is artificially 

generated on the outer surface of the inner race with the help of an electrical 

discharge machine. Corresponding fault can be seen in the Figure 3.2. 

 

     Experimental setup is configured each time for the desired fault type. After the 

configuration, the system is started to run and the vibration data are collected for 

each shaft speed. The experiments are performed between 750 rpm – 1750 rpm shaft 

speed. The velocity and acceleration of the vibrations are collected from the test set 

up with the help of a piezoelectric type of accelerometer. The measurements are 

taken from the rear side housing (one with cylindrical roller bearing) and outer 

surface of the cylindrical roller bearing. 

 

     The front side of the shaft where the healthy bearing is mounted is extended in 

order to attach a pulley for driving the shaft by an electrical motor with a V-shaped 
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belt. The motor provided by AC power supply is monophase. Power of the motor is 

0.55 kW. The speed of the motor is controlled by a speed controller. All of the 

components are put on a heavy plate. Rubber foots were mounted under the plate in 

order to reduce the vibration transmission from ground to test bearing. Schematic 

view of the experimental set-up is given in Figure 3.3. 

 

 

                     Figure 3.2 Inner race fault in the cylindrical roller bearing.  

 

3.2 Instrumentation 

 

 In this thesis, vibration measurements are performed by a portable vibration 

meter, Sendig 911 as shown in Figure 3.1. The portable device has a piezoelectric 

accelerometer of the type L14A. The accelerometer sensitivity is 4.86 [pC/ms-2] at 20 
0C. The device can measure vibration signals in terms of acceleration, velocity, and 

displacement and can save these signals into its memory. These signals can be 

fetched from the device memory to the computer by RS-232 connection. Sendig 911 

has its own data acquisition software, which is called as MCME2.0H. A sample 

screen shot of the software is given in Figure 3.4. The vibration signals gathered via 

the vibration meter can be processed in both time and frequency domains. The 
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sampling frequency of the vibration measurement is 2560 Hz and the total duration 

of measurement is 0.39 seconds. 

 

 

 

 

 

 

 

 

 

 

 

3.3 Measurement Conditions 

 

     The vibration signals are measured firstly for the healthy condition, which means 

healthy roller bearings with balanced system and aligned shaft. The rotating system 

is started at 750 rpm and the corresponding velocity and acceleration data are 

recorded. The speed of the shaft is changed from 750 rpm to 1750 rpm by 250-rpm 

increment after each measurement. The vibration signals with velocity and 

acceleration parameters are recorded. In the second step, one of the movable housing 

is shifted 3 mm in the perpendicular direction to the shaft axis and fixed its position 

with the help of a nut and bolt for creating a misalignment condition and same 

measurement procedure is repeated. In the third step, system is returned to the 

aligned condition configuration and an unbalance mass (14 gr x 10 mm) is added to 

the circular plate and same measurement procedure is repeated.  

    In the forth step, unbalanced mass is removed and faulty roller bearing is changed 

with the healthy bearing and same measurement procedure is repeated. The defect of 

Sendig 911 

Portable  

Vibration Meter 

MCME2.0H 
 Visual BASIC  

MATLAB 

Electric Motor with 

Speed control 
Belt 

Rubber foot 

Housing 

x 

y 

Accelerometer 

Figure 3.3 Schematic view of the experimental set-up. 
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the bearing is inner race fault, which is generated artificially by using electrical 

discharge machine as seen in Figure 3.2. In other steps, additional faults (unbalance 

& run-out) to the inner race fault are generated and measurements are recorded. In all 

of the experiment, the vibration signals are taken from the outer surface of 

cylindrical roller bearing. The velocity and acceleration parameters are recorded. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4 Screen shot of the software. 
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CHAPTER FOUR 

TIME DOMAIN PARAMETERS 

  

     In this study, different statistical indices derived from the experimental vibration 

signals are used to identify the condition of the rotating system by taking 

measurement from outer ring of the cylindrical rolling element bearing. Different 

moments of the vibration signals for different faulty conditions such as run out, 

unbalance and rolling element fault (inner race fault) are calculated and then 

compared with the reference values obtained for balanced, aligned, and healthy 

bearing system. The statistical indices used in the time domain analysis are described 

in this section.     

 

4.1 Mean  

 

 The mean value is the arithmetic mean of the vibration signal. The mean value of 

a discrete time signal x having N samples is calculated (Neter, Wasserman, & 

Whitmore,1988)  as  

 

∑=
N

i
ix

N

1
x                      (4.1) 

 

 Generally, the mean value does not give useful knowledge about a widely 

distributed signal. 

 

4.2 Standard Deviation (σσσσ) 

 

 Standart deviation gives useful knowledge about a widely distributed signal. If the 

values of signal are close to the mean, standart deviation is low, otherwise standart 

deviation is high. It is equal to square root of variance (Heperkan, Kesgin, 2002). 

The standart deviation of a signal x is calculated as, 
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4.3 Peak to Peak (p2p) 

 

 Peak to peak is another statistical index. Peak to peak is denoted as the difference 

between the maximum value and the minimum value of the signal. It is given as  

 

minmax xxp2p −=                    (4.3) 

 

4.4 Root Mean Square ( rms ) 

 

 The root mean square (rms) value of a vibration signal shows the energy content 

of the signal (Miettinen, Leinonen, 1999). For a vibration signal the rms values is 

calculated as 

 

∑
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4.5 Skewness 

 

 The 3rd standardized moment of the vibration signal is called as the skewness. Its 

value indicates the asymmetry of a distribution around its mean. Positive skewness 

denotes a distribution with an asymmetric tail extending toward values that are more 

positive. In consideration of negative skewness, a distribution with an asymmetric 

tail extending toward values that are more negative is observed. A symmetrical 

distribution is observed when skewness value is zero (Miettinen, Leinonen, 1999). 

The skewness value of a vibration signal is calculated as 

 

∑
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4.6 Kurtosis 1 (kurt1) 

 

 The 4th standardized moment is named as kurtosis. Kurtosis indicates peakeness or 

flatness of a distribution compared with the normal distribution. Positive kurtosis 

denotes a relatively peaked distribution. Negative kurtosis denotes a relatively flat 

distribution. The kurtosis value of a vibration signal is calculated (Neter, 

Wasserman,& Whitmore, 1988) as 

 

∑
=

−=
N

i

i xx
N

kurtosis
1

4

4
)(

1

σ
                                       (4.6)

           

4.7 Crest factor (cf) 

 

 The peak amplitude of a vibration waveform divided by the rms value determines 

the crest factor. Crest factor value is expected to be between 2 and 6 in healthy 

situation. This value increases when a fault appears (Lebold, McClintic, Campell, 

Byington, & Maynard, 2000). Crest factor value is given by the following equation 
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minmax
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4.8 GM
3
av (Sαααα) 

 

     New statistical moment is derived from the viewpoint of Renyi entropy. 

According to comprehensive comparisons of kurtosis, Honarvar third moment (Sr) 

and this moment, a new moment has a better overall performance than kurtosis and 

Sr. On the one hand, this moment behaves much like kurtosis but is less susceptible 

to spurious vibrations, which is considered to be one of the main shortcoming of 

higher statistical moments including kurtosis. On the other hand, from the viewpoint 

of sensitivity to incipient faults, which is the major drawback of lower statistical 

moments including Sr, the new moment is superior to Sr. Moreover, the sensitivity of 
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this new moment to changes of bearing speed and load is also less than kurtosis and 

is close to that of Sr. (Tao, Zhu, Ding, &  Xiong, 2006)  
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4.9 Kurtosis 2 (kurt2) 

 

     In the literature, another approach to kurtosis is also available. (Tao, Zhu, Ding & 

Xiong, 2006). The corresponding kurtosis is symbolized as  svGM 2
  and formulated 

as below: 

∑
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4.10 6
th  

Normalized
 
Moment of Probability Density Function 

 

     6th  normalized moment of probability density function which is given below is 

shown as more sensitive parameter than kurtosis (Takeyasu, Higuchi, 2006)  
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CHAPTER FIVE 

TIME DOMAIN ANALYSIS 

  

     In this section rms, kurtosis, peak to peak (p2p), skewness, crest factor, standard 

deviation, Sα and 6th normalized moment  values of raw velocity and acceleration 

signals are examined under different faulty conditions such as shaft misalignment, 

unbalance, rolling element fault (inner race defect) and their combinations at various 

shaft speeds ranging from 750 rpm to 1750 rpm.  In the first step, vibration 

measurements are performed for the healthy system and corresponding statistical 

indices are calculated at each shaft speed. In the second step, system is configured 

for the corresponding faulty condition, vibration measurements are performed and 

statistical indices for faulty condition are calculated at each shaft speed. In the final 

step, the ratios of faulty/healthy are calculated for each statistical parameter and 

ratios versus shaft speed figures are obtained.   

 

5.1 Single Fault Experiments  

 

5.1.1 Shaft Misalignment Experiment 

 

     In the shaft misalignment experiments, the test set up is configured in such a way 

that, cylindrical roller bearing (healthy) housing position is fixed at the center and the 

spherical bearing housing is shifted 3 mm to the left side and fixed there. The 

vibration measurements are taken from the outer race of the cylindrical roller bearing 

for each shaft speeds. The ratio of the vibration amplitudes of faulty (shaft 

misalignment) to healthy condition is calculated for each statistical parameter with 

the changing rotation speed. The corresponding curves are obtained as from Figure 

5.1 to Figure 5.4. 

 

     Sample vibration velocity signal (for run out experiment at 1250 rpm shaft speed) 

can be seen in Figure 5.1. 
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                    Figure 5.1 Vibration velocity signal of raw data for run out experiment at 1250 rpm. 

 

 

     The statistical parameters are calculated for run out fault. In the raw data of 

vibration velocity signals (Figure 5.2), two statistical indices, standard deviation, and 

peak to peak values are above the healthy condition ratio. They show similar 

behavior to changing shaft speed. Their ratio increase up to 1250 rpm and gets 1.2 as 

a peak value at that shaft speed and then stay constant come with the increasing shaft 

speed.  
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        Figure 5.2 Statistical indices of raw velocity data for 3 mm run out error. 

     

     Same analysis is performed for the vibration acceleration data. The sample 

acceleration signal for the run out experiment at 1250 rpm can be seen in Figure 5.3.  
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                     Figure 5.3 Acceleration signal of raw data for run out experiment at 1250 rpm. 

 

     In the raw data of vibration acceleration signals (Figure 5.4), all the statistical 

indices have constant values up to 1250 rpm. Up to this shaft speed, they take nearly 

healthy condition ratio values. Starting from 1250 rpm, all the statistical indices have 

increasing trend up to 1500 rpm. All of them make a peak at that shaft speed and 

decrease for further increasing shaft speeds. The kurtosis (kurt 2) and alfa  indices 

take the highest values at the 1500-rpm shaft speed. 
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      Figure 5.4  Statistical indices of raw acceleration data for 3 mm run out error. 
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5.1.2 Unbalance Experiment 

 

     In the unbalance experiments, spherical roller bearing and cylindrical roller 

bearing housing positions are fixed in concentric position. The unbalanced mass is 

added on symmetrically drilled circular plate in the system. The vibration 

measurements are taken from the outer race of the cylindrical bearing. The ratio of 

the vibration amplitudes of faulty (unbalance) to healthy condition is calculated for 

each statistical parameter with the changing rotation speed. The corresponding 

curves are obtained as in the Figure 5.5 and Figure 5.8.  

      

     Sample vibration velocity signal (for unbalance experiment at 1500 rpm shaft 

speed) can be seen in Figure 5.5 

 

 

                  Figure 5.5 Velocity signal of raw data for unbalance experiment at 1500 rpm. 

      

     In the raw velocity data two statistical indices (Figure 5.6), standard deviation, 

and peak to peak values are above the healthy condition. The statistical indices 

(standard deviation and peak to peak values) show a nearly sinusoidal behavior with 

the changing shaft speed. However in every cycle, faulty/healthy ratio increases. 
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   Figure 5.6 Statistical indices of raw velocity data for unbalance.  

 

     Same analysis is performed for the vibration acceleration data. The sample 

acceleration signal for the unbalance experiment at 1500 rpm can be seen in Figure 

5.7.  

 

 

                      Figure 5.7 Acceleration signal of raw data for unbalance at 1500 rpm. 

     

     In the raw acceleration data, two statistical indices (Figure 5.8), standard 

deviation, and peak to peak values are above the healthy condition. Standard 

deviation has a constant value up to 1000 rpm shaft speed. With the further increase 
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in shaft speed, standard deviation values increases. Moreover, peak to peak index 

also shows faulty condition after 1250 rpm shaft speed and its ratio values increases 

with the increasing shaft speed. 
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      Figure 5.8 Statistical indices of raw acceleration data for unbalance. 

 

5.1.3 Inner Race Fault Experiment 

 

     In the inner race fault experiment, the healthy cylindrical roller bearing is changed 

with the faulty one. Fault on the outer surface of the inner race was created by 

electrical discharge machine. The vibration measurements are taken from the outer 

race of the cylindrical bearing. The ratio of the vibration amplitudes of faulty (inner 

race defect) to healthy condition is calculated for each statistical parameter with the 

changing rotation speed. The corresponding curves are obtained from Figure 5.9 to 

Figure 5.12. 

 

     Sample vibration velocity signal (for inner race fault experiment at 1250 rpm 

shaft speed) can be seen in Figure 5.9. 
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                Figure 5.9 Velocity signal of raw data for inner race fault condition at 1250 rpm. 

 

     In the raw velocity data, two statistical indices (Figure 5.10), standard deviation 

and peak to peak values are above the healthy condition up to 1500 rpm. As the shaft 

speed increases from 1500 rpm, standard deviation and peak to peak values decrease. 

Moreover, all the other statistical indices start to increase at 1500 rpm. 
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             Figure 5.10 Statistical indices of raw velocity data for inner race defect. 

 

     In the next step, same analysis is performed for the acceleration data. The 

acceleration signal for the run out fault at 1250 rpm can be seen in Figure 5.11.  

 



 

     

37  

 

              Figure 5.11 Acceleration signal of raw data for inner race fault condition at 1250 rpm. 

 

     In the raw acceleration data, four statistical indices (kurt1,kurt2,alfa and p2p) 

show the faulty condition. Their faulty/healthy ratio amplitudes show sinusoidal 

behavior with the changing shaft speed which can be seen from Figure 5.12.  The 

indices take their higher values at 1500 rpm shaft speed. 
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   Figure 5.12 Statistical indices of raw acceleration data for inner race defect 
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5.2 Combined Fault Experiments 

 

     In the combined fault experiments, the effect of two-faulthy condition on the 

vibration signals is investigated. Two types of combinations are tried in the 

experiment: Inner race fault and shaft misalignment and inner race fault and 

unbalance conditions are analyzed. 

 

5.2.1 Shaft Misalignment & Inner Race Fault Experiment 

 

     In the raw velocity data, two statistical indices (Figure 5.13), standard deviation, 

and peak to peak values are above the healthy condition and have increasing trend as 

the shaft speed increases up to 1250 rpm. Further, increase in shaft speed cause these 

two indices to decrease. Moreover, crest factor starts to increase with the shaft speed 

of 1250 rpm and make its peak value at 1750 rpm. Crest factor takes unhealthy 

condition ratio after the 1500 rpm shaft speed.   
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    Figure 5.13 Statistical indices of raw velocity data for  inner race defect + 3mm run out. 

 

     In the raw acceleration data, most of the statistical indices (Figure 5.14) have a 

sinusoidal behavior with the changing shaft speed. Among them standard deviation 
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has an opposite sinusoidal behavior to the other indices such that between 750 rpm – 

1000 rpm shaft speed, all of the indices’ values increase except standard deviation 

which has a decreasing trend. Between 1000 rpm – 1250 rpm shaft speed, all of the 

indices decrease except standard deviation, which has a increasing trend. Moreover, 

most of the indices take their highest ratio value in the 1500 rpm shaft speed and 

among them kurtosis (kurt1 and kurt2) has the maximum value at that speed. 
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     Figure 5.14 Statistical indices of raw acceleration data for inner race defect + 3mm run out. 

 

5.2.2 Unbalance & Inner Race Fault Experiment 

 

     In the raw velocity data, two statistical indices (standard deviation and peak to 

peak values) are above the healthy condition as can be seen from Figure 5.15. These 

two statistical indices’ values increase as the shaft speed increases. 
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    Figure 5.15 Statistical indices of raw velocity data for inner race defect + unbalance. 

 

     In the raw acceleration data, all the statistical indices (Figure 5.16) have different 

behavior to shaft speed changes. Four statistical indices (alfa, kurt2, p2p & std) show 

the faulty condition. The alfa and kurtosis start to increase from 1000 rpm shaft 

speed to 1500 rpm. At 1500 rpm both of the indices take the peak value. Peak to peak 

and standard deviation indices have sinusoidal behavior with changing shaft speed.  
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           Figure 5.16 Statistical indices of raw acceleration data for inner race defect + unbalance. 
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CHAPTER SIX 

THE CURVE LENGTH TRANSFORM 

 

6.1 Definition of the Curve Length Transform 

 

     In this study, the vibration responses collected from the test setup for healthy and 

faulty cases are processed by a time-based transform named as the Curve Length 

Transform (CLT).    

 

The curve length transform is a nonlinear time based transform in which the 

discrete values of a time signal are used. The total curve length, which is the sum of 

the lengths of the straight lines defined between the adjacent measurement points, is 

calculated for a specified window length w as shown in Figure 6.1. The curve length 

transform is generally used for QRS complex detection and feature extraction in 

ECG analysis (Zong, Moody & Jiang, 2006). 
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Figure 6.1 Definition of the curve length transform. 
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The curve length transform is used in this study for diagnostic purpose of rolling 

element bearings. The curve length transform of a vibration signal having N samples 

is calculated for the window length w as 

 

∑
=

+ −+=
w

1i

2
i1i

2
k )xx(dtCL   (k=1, N-w)               (6.1) 

 

where dt is the sampling period of the vibration signal x. Due to the nature of the 

faulty vibration signal, it is expected that the curve length at the ball-defect impact 

corresponding to the examined defect is generally longer than the other parts of the 

signal. The curve length transform is also defined using a scaling factor C as 

 

∑
=

+ −+=
w

1i

2
i1ik )xx(CCL                    (6.2) 

  

      In the following pages, the curve length transform is applied to the raw velocity 

and acceleration vibration signals and effects are observed.  

 

6.2 Curve Length Transform Applications 

 

     Curve length transforms are applied to the raw vibration signal data in the below 

analysis. In the transforms the scale factor C is taken as 1. In the further study, the 

effect of scale factor on the transform will also be investigated. 

 

6.2.1 CLT on Shaft Misalignment Vibration Data 

 

     In the Figure 6.2, a sample raw velocity signal and the transformed (curve length 

transform) signal’s graphs can be seen. In the transform scale factor “C” is taken as 

1. 
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            Figure 6.2 Curve length transform of velocity data for 3 mm run out error at 1250 rpm. 

 

As it is seen from Figure 6.2 to Figure 6.7, after the curve length transform to the 

vibration velocity signal of shaft misalignment, kurtosis (kurt2) takes higher values 

and fault condition becomes more visible. Moreover, curve length transform to the 

vibration velocity signal has a negative effect on standard deviation and peak to peak 

values. Their values decrease after the transform. 
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     Figure 6.3 Statistical indices of CLT with dt2 velocity data for 3 mm run out error. 
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   Figure 6.4 Statistical indices of CLT with C=1 velocity data for 3 mm run out error 

 

     In the Figure 6.5, a sample raw acceleration signal and the transformed (curve 

length transform) signal’s graphs for shaft misalignment can be seen. In the 

transform scale factor “C” is taken as 1. 
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            Figure 6.5 Curve length transform of acceleration data for 3 mm run out error at 1250 rpm. 

 

     Furthermore, as it is seen from Figure 6.6 and Figure 6.7, curve length transform 

to the acceleration signal causes a decrease in the faulty/healthy ratios when 

compared with the raw acceleration data. After the curve length transform with dt2, 

kurtosis and alfa are main statistical indices showing the faulty condition best. 

Moreover, after the curve length transform with C, kurtosis becomes a good fault 

indicator when compared with others.  
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    Figure 6.6 Statistical indices of CLT with dt2 acceleration data for 3 mm run out error. 
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    Figure 6.7 Statistical indices of CLT with C=1 acceleration data for 3 mm run out error. 
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6.2.2 CLT on Unbalance Vibration Data 

 

     In the Figure 6.8, a sample raw velocity signal and the transformed (curve length 

transform) signal’s graphs for the unbalance condition (at 1500 rpm shaft speed) can 

be seen. In the transform, scale factor “C” is taken as 1. 

     

 

            Figure 6.8 Curve length transform of velocity data for unbalance fault condition at 1500 rpm. 

 

     As it is seen from Figure 6.9 and Figure 6.10, after the curve length transform to 

the vibration velocity signal, the amplitudes of the indices decrease. Moreover, again 

after transform, standard deviation and peak to peak indices can be used to detect the 

faulty condition. Moreover, after the transform, rms and crest factor amplitudes 

increase and they also show the faulty condition. Their amplitudes increase as the 

shaft speed increases. 
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   Figure 6.9 Statistical indices of CLT with dt2 velocity data for for unbalance. 
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    Figure 6.10 Statistical indices of CLT with C=1 velocity data for unbalance. 
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     From the Figure 6.11, a sample raw acceleration signal and the transformed 

(curve length transform) signal’s graphs for the unbalance condition (at 1500 rpm 

shaft speed) can be seen. In the transform scale factor “C” is taken as 1. 

 

 

       Figure 6.11 Curve length transform of acceleration data for unbalance fault condition at 1500 rpm 

 

       After the curve length transform to the vibration acceleration signal, the 

amplitudes of the indices increase as it is seen from Figure 6.12 and Figure 6.13. 

However, indices, which show faulty condition in the raw signal, change their 

behavior after the transform. Alfa and kurtosis (kurt1) indices take higher values 

after the transform.   
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         Figure 6.12 Statistical indices of CLT with dt2 acceleration data for unbalance.  
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      Figure 6.13 Statistical indices of CLT with C=1 acceleration data for unbalance. 

 

 

 

 



 

     

51  

6.2.3 CLT on Inner Race Fault Vibration Data 

 

     In the Figure 6.14, a sample raw velocity signal and the transformed (curve length 

transform) signal’s graphs for the inner race fault (at 1250 rpm shaft speed) can be 

seen. In the transform scale factor “C” is taken as 1. 

 

 

              Figure 6.14 Curve length transform of velocity data for inner race fault condition at 1250 rpm 

 

     As it is seen from Figure 6.15 and Figure 6.16, after the curve length transform to 

the vibration velocity signal of inner race fault, the amplitudes of the indices 

increase. Root mean square and crest factor become good faulty condition indicators 

after the curve length transform. The indices’ ratio values are increasing until the 

1250 rpm shaft speed. After the corresponding shaft speed, indices are decreasing 

with the increasing shaft speed. 
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       Figure 6.15 Statistical indices of CLT with dt2 velocity data for inner race defect. 
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      Figure 6.16  Statistical indices of CLT with C velocity data for inner race defect. 
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     In the Figure 6.17, a sample raw acceleration signal and the transformed (curve 

length transform) signal’s graphs for the inner race fault (at 1250 rpm shaft speed) 

can be seen. In the transform scale factor “C” is taken 1. 

 

 

        Figure 6.17 Curve length transform of acceleration data for inner race fault condition at 1250 rpm 

 

     After the curve length transform to the vibration acceleration signal, the 

amplitudes of the indices decrease as it is seen from Figure 6.18 and Figure 6.19. 

Alfa has the highest value in the transformed data with dt2 . For the transform with 

C=1, the peak to peak and kurtosis (kurt 1) become good fault indicators. Moreover, 

all of the indices show a sinusoidal behavior to the shaft speed increase with 

decreasing amplitude. 
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      Figure 6.18 Statistical indices of CLT with dt2 acceleration data for inner race defect. 
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      Figure 6.19  Statistical indices of CLT with C=1 acceleration data for inner race defect. 
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6.3 Effect of Scale Factor on Curve Length Transform 

 

     In this study, how the scale factor value affects the curve length transform is 

investigated. The curve length transform is applied to a raw vibration data to make 

the faults more visible in the system. In the above transforms scale factor C is taken 

as a constant value, 1. However, it is important to see whether the faulty / healthy 

condition’s ratio changes with changing scale factor for a corresponding statistical 

parameter. For this reason in the below analysis, scale factor value is changed from 1 

to 10 and its effects are investigated. Velocity of the vibration data is used in all of 

the analysis. 

 

6.3.1 Misalignment Fault  

 

     In this study, the statistical indices are chosen according to their ability of 

showing the faulty condition. Two statistical indices (kurt2 & p2p) are investigated 

for the corresponding fault. 

 

Figure 6.22 Scale factor effect on curve length transform (kurtosis). 
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              Figure 6.23 Scale factor effect on curve length transform (peak to peak). 

 

     As it is seen from Figure 6.22 & Figure 6.23, scale factor values does not affect 

the kurtosis and peak to peak values.  

 

6.3.2 Unbalance Fault  

 

     Two statistical indices (standard deviation and peak to peak) are investigated for 

the corresponding fault. 

 

     As it is seen from Figure 6.24 and Figure 6.25, changing scale factor values does 

not affect the kurtosis and standard deviation values up to shaft speed of 1250 rpm. 

Further increase in the shaft speed changes the effect of scale factor. It can be 

concluded that increase in the scale factor value causes an increase in the ratio values 

at the speed that are higher than 1250 rpm. 
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Figure 6.24 Scale factor effect on curve length transform (standard deviation). 

 

 

                   Figure 6.25 Scale factor effect on curve length transform (peak to peak). 
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6.3.3 Inner Race Fault  

 

     For the inner race fault velocity data, two statistical parameters (standard 

deviation and peak to peak) are investigated. The corresponding contours are 

obtained as shown in Figure 6.26 and Figure 6.27. 

 

 

                   Figure 6.26 Scale factor effect on curve length transform (peak to peak). 

 

 

     From Figure 6.26, it can be observed that scale factor has different effects at 

different shaft speeds for the peak to peak values. At 1250 rpm until the scale value 

of 3, faulty/healthy ratio is constant. Further increase in the scale value causes the 

ratio to increase. At other shaft speeds as the scale factor increases faulty/healthy 

ratio stays constant. 

 

     From Figure 6.27, it can be observed that scale factor has same effect with peak to 

peak value of inner race fault. At 1250 rpm until the scale value of 7, faulty/healthy 

ratio is constant. Further increase in the scale value cases the ratio to increase. As the 

scale factor increases at other shaft speeds, faulty/healthy ratio stays constant. 
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                   Figure 6.27 Scale factor effect on curve length transform (standard deviation). 

 

 

6.4 Comparisons of 6
th
 Moment & Kurtosis on Vibration Signal 

 

     In this study, 6th moment of the probability density function, which is more 

sensitive to the changes, is investigated on the run out vibration signals. 
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   Figure 6.28 Statistical indices of raw velocity data for 3 mm run out error. 
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       Figure 6.29 Statistical indices of CLT with dt2 vel. data for 3 mm run out error. 
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          Figure 6.30 Statistical indices of CLT with C velocity data for 3 mm run out error. 

 

     From Figures 6.28-6.30, the behavior of the 6th normalized moment for the shaft 

misalignment is investigated. In theory, Takeyasu and Higuchi derived 6th 

normalized moment as an alternative time parameter to Kurtosis and in their survey 

and they proved that 6th normalized moment is much more sensitive than the 

Kurtosis by using numerical examples. In the above two figures which are related 



 

     

61  

with curve length transform, 6th normalized moment has a more sensitive behavior to 

a fault when compared with Kurtosis. 
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CHAPTER SEVEN 

FREQUENCY DOMAIN ANALYSIS  

  

     In the experiments, three different types of faulty conditions (shaft misalignment, 

unbalance, inner race fault) are investigated. Each of the malfunctions has 

characteristic rotational frequency. These characteristics frequencies are used to 

identify the bearing defect (inner race), shaft misalignment and unbalance condition 

in the frequency spectrum of a time signal.    

 

7.1 Bearing Characteristic Frequencies 

  

 Bearing characteristic frequencies are known as the defect frequencies. These 

frequencies indicate the location of faults, if there is as defect on any components of 

rolling element bearing. In the faulty situation, these frequencies are observed in the 

frequency spectrum. These frequencies depend on rolling element bearing geometry, 

number of rolling element and shaft rotational speed. Bearing characteristic 

frequencies were calculated by the formula given in equations 7.1. (Tandon, & 

Choudhury, 1999). The properties of the rolling element bearing used in this study 

are given in Figure 7.1. and Table 7.1. 

                      

 

Figure 7.1 Geometry of rolling element bearing (FAG NU306-E-TVP2). 
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Table 7.1 Geometrical parameters of FAG NU306-E-TVP2. 

d (inner diameter) 30  mm  

D (outer diameter) 72  mm  

B (width) 19  mm  

D1 59,2  mm  

E 62,5  mm  

F 40,5  mm  

Z(#of rolling element) 12   

Contact Angle(αααα) 0 degree 
 

     In this study inner race fault was investigated. Corresponding characteristic inner 

race fault frequency which is denoted by fi is given below.  

 









α+= cos

d

d
1

2

Zf
f

m

bs
i                 ( 7.1 )

           

The unkonwn symbols used in above equations are   

fs : shaft speed 

fi : characteristic frequency of inner race  

dm : pitch diameter 

db : ball diameter 

 

 According to above equation, inner race fault frequency of FAG Cylindrical roller 

bearing NU306-E-TVP2 is calculated for each shaft speed. The bearing characteristic 

frequencies for different shaft speeds are given Table 7.2. 
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Table 7.2 Inner race defect frequencies of FAG NU306-E-TVP2. 

Shaft speed(rpm) fi [Hz] 

750 91,02 

1000 121,36 

1250 151,70 

1500 182,04 

1750 212,38 

 

 

7.2 The Fast Fourier Transform 

The frequency contents of the vibration signals are calculated by the Fast Fourier 

Transform (FFT). The FFT’s of the experimental vibration signals are calculated by 

MATLAB software. For a continuous time signal, the Fourier transform is calculated 

by the equation given below. 

 

∫
∞

∞−

ω−=ω dte)t(f)i(F ti                                                                                                (7.2)

                                                                              

If vibration signal is a discrete signal having n samples, the Fast Fourier 

Transform is calculated as  

 

∑
=

−−π
−

=
n

1i

n

)1i)*(1k(2
i

e)i(x)k(X     1<k<n                 (7.3) 

where n is the number of sample  

 

7.3 The Fast Fourier Transform Application For Inner Race Defect Case 

 

     In the first step, the vibration velocity signals are examined. The fast Fourier 

transform is performed on the corresponding data and the frequency spectrum is 
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obtained. In the frequency spectrum, it is observed that characteristic inner race fault 

frequency cannot be seen for velocity data. For example, at 750 rpm shaft speed, 

inner race fault frequency is 91 Hz. However, there is no frequency component at 

that frequency as it can be seen from Figure 7.2.  In the further step, vibration 

acceleration signals are examined and the fast Fourier transform is performed on 

data. It is observed that characteristic inner race fault frequency can be seen in the 

FFT of the acceleration data.   

        Figure 7.2 FFT of the velocity signal (shaft speed: 750 rpm). 

      

      As it is mentioned before, the characteristic fault frequencies can be seen in the 

vibration acceleration signals. Therefore, further analysis is focused on acceleration 

signals for the corresponding inner race fault for each shaft speed. Furthermore, FFT 

of the healthy condition vibration signals also are presented for comparison purposes 

below from the Figures 7.3 to Figure 7.12 repeatedly.  
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Figure 7.3 FFT of the healthy condition - acceleration signal (shaft speed: 750 rpm). 

 

 

                  Figure 7.4 FFT of the inner race fault - acceleration signal (shaft speed: 750 rpm). 

.  

fi 
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                  Figure 7.5 FFT of the healthy condition - acceleration signal (shaft speed: 1000 rpm). 

 

                  Figure 7.6 FFT of the inner race fault - acceleration signal (shaft speed: 1000 rpm). 

fi 
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                 Figure 7.7  FFT of the healthy condition - acceleration signal (shaft speed: 1250 rpm) 

 

 

                  Figure 7.8 FFT of the inner race fault - acceleration signal (shaft speed: 1250 rpm). 

 

 

fi 
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Figure 7.9 FFT of the healthy condition - acceleration signal (shaft speed: 1500 rpm) 

 

                  Figure 7.10 FFT of the inner race fault - acceleration signal (shaft speed: 1500 rpm). 

 

 

fi 
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                  Figure 7.11 FFT of the healthy condition - acceleration signal (shaft speed: 1750 rpm). 

 

 

                  Figure 7.12 FFT of the inner race fault - acceleration signal (shaft speed: 1750 rpm). 

 

fi 



 

     

71  

 

From the Figures (from Figure 7.3 to Figure 7.12), time vs amplitude and 

frequency spectrums are given for both healthy cases and the inner race fault cases. 

From the corresponding figures, characteristic inner race frequency can be seen 

clearly. For example, for the shaft speed 1750 rpm the corresponding inner race fault 

frequency is 212 Hz. From the Figure 7.12, it is seen that there is a peak at that 

frequency.  

 

 7.4 The Short Time Fourier Transform (STFT)  

                   

The Short Time Fourier Transform of a time signal x(t) is described by Eq.(7.4) 

and further information about the STFT can be obtained from the study of Misiti M., 

Misiti Y., Oppenheim and Poggi (1997). 

 

dtettxX tjωτωωτ −
∞

∞−
−= ∫ )()(),(                                                             (7.4)                                        

           

where ω is the window used in the transformation. The STFT is a joint time-

frequency transformation and gives the frequency contents of a time signal with their 

occurrence times. 

 

The Short Time Fourier Transforms (STFT) of experimental vibration signals are 

calculated by MATLAB’s spectrogram command in order to show the time 

dependence of the frequency components. 

   

7.5  STFT Application For Inner Race Defect Case 

 

     The short time Fourier transform is applied on the vibration data for inner race 

fault. Both the velocity and the acceleration signals are investigated. 
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7.5.1 STFT of Velocity Signal For Inner Race Defect Case 

 

     The short time Fourier transform of velocity responses for the inner race defect 

case are given from Figure 7.13 to Figure 7.16. In the transform, window length is 

chosen to get the optimum time and frequency resolution. 

 

     At 750 rpm shaft speed, characteristic inner race fault frequency is 91 Hz. From 

Figure 7.13., it is not clear to see corresponding characteristic frequency component. 

There is no dark red area which shows the highest amplitude at that frequency in the 

spectrum.  In the FFT of the same data (Figure 7.2), there is a high amplitude 

frequency component near 50 Hz. This situation is also observed from Figure 7.13.    

 

 

                 Figure 7.13 STFT of the velocity signal (shaft speed: 750 rpm). 

 

     At 1000 rpm shaft speed, characteristic inner race fault frequency is 121 Hz. From 

Figure 7.14, it is not clear to see corresponding characteristic frequency component. 

There is no dark red area at that frequency in the spectrum. 
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                      Figure 7.14 STFT of the velocity signal (shaft speed: 1000 rpm). 

 

     At 1250 rpm shaft speed, characteristic inner race fault frequency is 151 Hz. From 

Figure 7.15, it is not clear to see corresponding characteristic frequency component. 

There is no dark red area at that frequency in the spectrum. 

     . 

 

                      Figure 7.15 STFT of the velocity signal (shaft speed:1250 rpm). 
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     At 1500 rpm shaft speed, characteristic inner race fault frequency is 182 Hz. From 

Figure 7.16, it is hard to see the characteristic fault frequency from the spectrum. 

 

 

                         Figure 7.16  STFT of the velocity signal  (shaft speed:1500 rpm). 

 

     At 1750 rpm shaft speed, characteristic inner race fault frequency is 212 Hz. From 

Figure 7.17, it is seen that there is a faulty condition between 0.15 s – 0.25 s time 

interval. However, around 30 Hz there is a frequency component (rotation speed), 

which has the highest amplitude in the spectrogram. 
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                    Figure 7.17 STFT of the velocity signal (shaft speed: 1750 rpm).      

 

 

7.5.2 STFT of Acceleration Signal For Inner Race Defect Case 

 

     The short time Fourier transform of acceleration responses for the inner race 

defect cases are given from Figure 7.18 to Figure 7.22. In the transform, window 

length is chosen to get the optimum time and frequency resolution.   

 

     Analysis starts at 750 rpm shaft speed. In that shaft speed, characteristic inner 

race fault frequency is 91 Hz. From Figure 7.18, it is clearly seen that the darkest 

area is at that frequency.  
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                     Figure 7.18 STFT of the acceleration signal (shaft speed: 750 rpm). 

 

     At 1000 rpm shaft speed, characteristic inner race fault frequency is 121 Hz and it 

is difficult to see the characteristic fault frequency from the spectrum. 

 

 

                     Figure 7.19 STFT of the acceleration signal (shaft speed: 1000 rpm). 
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     At 1250 rpm shaft speed, characteristic inner race fault frequency is 151 Hz. From 

Figure 7.20, corresponding frequency components can be seen between 0-0.05 

seconds time interval. 

 

 

                 Figure 7.20 STFT of the acceleration signal (shaft speed: 1250 rpm). 

 

     At 1500-rpm shaft speed, characteristic inner race fault frequency is 182 Hz. 

From Figure 7.21, there are two frequency components which have the highest 

amplitudes. Moreover, it is again clearly seen that the one of the darkest area (182 

Hz) is related with the corresponding frequency between 0-0.1 seconds time interval. 

 

 

 



 

     

78  

 

                         Figure 7.21  STFT of the acceleration signal  (shaft speed : 1500 rpm ). 

 

     At 1750 rpm shaft speed, characteristic inner race fault frequency is 212 Hz. 

Corresponding frequency component can be seen from Figure 7.22. 

 

 

                         Figure 7.22  STFT of the acceleration signal  (shaft speed : 1750 rpm). 
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CHAPTER EIGHT 

WAVELET ANALYSIS 

 

8.1 The Definition of Wavelet Transform 

 

     Wavelet is a mathematical function used to divide a given function or continuous-

time signal into different scale components. Usually one can assign a frequency 

range to each scale component. Each scale component can then be studied with a 

resolution that matches its scale. A wavelet transform is the representation of a 

function by wavelets. The wavelets are scaled and translated copies (known as 

"daughter wavelets") of a finite-length or fast-decaying oscillating waveform (known 

as the "mother wavelet"). Wavelet transforms have advantages over traditional 

Fourier transforms for representing functions that have discontinuities and sharp 

peaks, and for accurately deconstructing and reconstructing finite, non-periodic 

and/or non-stationary signals. Moreover, wavelet transform provides time-frequency 

representation. 

 

     In this study, the continuous wavelet transform is used to overcome the resolution 

problem of short time Fourier transform. The wavelet analysis is done in a similar 

way to the short time Fourier transform analysis, in the sense that the signal is 

multiplied with the wavelet funcion, similar to the window function in the STFT, and 

the transform is computed separately for different segments of the time-domain 

signal. However, there are differences between the STFT and the CWT in such a 

manner that the Fourier transforms of the windowed signals are not taken, and 

therefore single peak will be seen corresponding to a sinusoid, i.e., negative 

frequencies are not computed and the width of the window is changed as the 

transform is computed for every single spectral component. 

 

     The continuous wavelet transform is defined as follows, 

dtthtxbaCWT abx )()(),( ,
*

∫
∞

∞−
=                                                             (8.1)
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     Where a (a>0) and b denote dilation and translation parameters respectively and * 

represents complex conjugation. The family ha,b(t) is constructed by dilation and 

translation of a function h(t) (mother wavelet) (Öztürk, Yeşilyurt and Sabuncu, 

2010). 

 

 

                                        Figure 8.1 Morlet wavelet. 

 

     In this study, wavelet transform is performed by morlet wavelet as a mother 

wavelet (Figure 8.1.). Morlet wavelet in general defined as the equation below:  

 

)2/()2( 2

)( ttfj
eeth c −⋅= π

                                                                                   (8.3) 

 

where fc is wavelet centre frequency. 
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8.2 Scale Frequency Relationship 

     In the wavelet transform, it is more convenient to use scale and time parameters. 

The parameter scale in the wavelet analysis is similar to the scale used in maps. As in 

the case of maps, high scales correspond to a non-detailed global view (of the 

signal), and low scales correspond to a detailed view. Similarly, in terms of 

frequency, low frequencies (high scales) correspond to a global information of a 

signal (that usually spans the entire signal), whereas high frequencies (low scales) 

correspond to a detailed information of a hidden pattern in the signal (that usually 

lasts a relatively short time). However, the question arise here how one can convert 

scale to frequency. The answer can only be given in a broad sense and it's better to 

speak about the pseudo-frequency corresponding to a scale. 

 

The center frequency, fc, of the wavelet can be calculated as below, 

∆⋅
=
a

f
f c
a                                                                                                           (8.4)                   

where, 

 a is a scale  

∆  is the sampling period 

 af  is the pseudo-frequency corresponding to the scale a, in Hz 

cf  is the center frequency of a wavelet in Hz 

 

     In the wavelet transform, the mother wavelet (morlet) center frequency is taken as 

0.796 Hz. Therefore, frequency-scale conversion calculations are made by using 

corresponding center frequency. 
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Table 8.1 Scale frequency conversion (shaft speed) 

Shaft Speed (rpm) 
Shaft Speed 
(Hz) Scale Value(a) 

750 12,50 163,02 

1000 16,67 122,27 

1250 20,83 97,81 

1500 25,00 81,51 

1750 29,17 69,87 

 

 

Table 8.2 Scale frequency conversion (inner race fault characteristic frequency) 

Shaft Speed (rpm) Inner Race Fault Frequency (Hz) Scale Value(a) 

750 91,02 22,39 

1000 121,36 16,79 

1250 151,7 13,43 

1500 182,04 11,19 

1750 212,38 9,59 

 

     The tables (Table 1 & Table 2) are useful tool in interpretation of the wavelet 

scalograms. Because in the scalograms, scale and time parameters are configured and 

corresponding conversion will help to find fault frequencies.  

 

8.3 CWT Application for Healthy Case 

 

     The Continuous Wavelet Transform is applied on the healthy condition 

acceleration data. The corresponding 2D and 3D scalograms are obtained by using 

MATLAB’s  cwt command. They can be used as a comparison tool in interpretation 

of the faulty condition scalograms. 

 

     From Figure 8.2 to Figure 8.6 it can be seen that healthy system has also some 

frequency components showing faults. However, their amplitudes are relatively small 

compared with the faulty case. For example, from Figure 8.2 it can be seen that 

coefficients peak value is nearly half of the faulty case. 
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             Figure 8.2  Scalogram of acceleration data for the healthy case at 750 rpm.  
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               Figure 8.3 Scalogram of acceleration data for the healthy case at 1000 rpm. 
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                Figure 8.4 Scalogram of acceleration data for the healthy case at 1250 rpm.  
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                  Figure 8.5 Scalogram of acceleration data for the healthy case at 1500 rpm.  
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                Figure 8.6 Scalogram of acceleration data for the healthy case at 1750 rpm.  
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8.4 CWT Application for Inner Race Fault Case 

 

The Continuous Wavelet Transform is applied to inner race fault case’s 

acceleration data. The corresponding 2D and 3D scalograms are obtained by using 

MATLAB’s cwt command (from Figure 8.7 to Figure 8.11).  

 

 

 

                Figure 8.7 Scalogram of acceleration data for the inner race fault at 750 rpm. 
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     At 750-rpm shaft speed, characteristic inner race fault frequency is 91 Hz. By 

using Table 8.2, it can be seen that this frequency corresponds to the scale value of 

22. Corresponding fault frequency can be seen from Figure 8.7.  

 

 

 

                Figure 8.8 Scalogram of acceleration data for the inner race fault at 1000 rpm. 
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     At 1000 rpm shaft speed, characteristic inner race fault frequency is 121 Hz. By 

using Table 8.2, it can be seen that this frequency corresponds to the scale value of 

16. Corresponding fault frequency can be seen from Figure 8.8. 

 

 

 

                Figure 8.9 Scalogram of acceleration data for the inner race fault at 1250 rpm. 
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     At 1250 rpm shaft speed, characteristic inner race fault frequency is 151 Hz. By 

using Table 8.2, it can be seen that this frequency corresponds to the scale value of 

13. Corresponding fault frequency can be seen from Figure 8.9.  

 

 

 

                 Figure 8.10 Scalogram of acceleration data for the inner race fault at 1500 rpm. 
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     At 1500 rpm shaft speed, characteristic inner race fault frequency is 182 Hz. By 

using Table 8.2., it can be seen that this frequency corresponds to the scale value of 

11. Corresponding fault frequency can be seen from Figure 8.10.  

 

 

 

                Figure 8.11 Scalogram of acceleration data for the inner race fault at 1750 rpm. 
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     At 1750 rpm speed, inner race fault frequency is 212 Hz. and this frequency 

corresponds to the scale value of “9”. Corresponding fault frequency can be seen 

from Figure 8.11 

 

     In addition to acceleration data, velocity data’s scalograms are examined for the 

corresponding inner race fault detection. However, the velocity data are not 

successful for inner race fault as acceleration data. The characteristic frequency of 

the inner race fault cannot be seen from the Figure 8.12. 

 

 

         Figure 8.12 Scalogram of velocity data for the inner race fault at 750 rpm. 
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8.5 CWT Application for Inner Race Fault with Unbalance Case 

 

The Continuous Wavelet Transform is applied on the inner race fault with 

unbalance case’s velocity and acceleration data. The corresponding 2D and 3D 

scalograms are obtained by using MATLAB’s cwt command (from Figure 8.13 to 

Figure 8.16).  

 

 

 

        Figure 8.13 Scalogram of acceleration data for inner race fault with unbalance case at 750 rpm. 
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     At 750 rpm shaft speed, characteristic inner race fault frequency is 91 Hz. and the 

corresponding scale value is 22. Moreover, by using Table 8.1 unbalance fault 

frequency (shaft rotating speed) is 12.5 Hz and corresponding scale value is 163. It is 

seen from Figure 8.14 (CWT of velocity data), inner race fault frequency cannot be 

seen; however, unbalance fault frequency can be seen clearly. 

 

 

 

     Figure 8.14 Scalogram of velocity data for the inner race fault with unbalance case at 750 rpm. 

 



 

     

96  

     At 1500 rpm shaft speed, unbalance fault frequency is 25 Hz and inner race fault 

frequency is 182 Hz. From Table 8.1 and Table 8.2 their scale values are 82 and 11 

respectively. After applying cwt to the acceleration data at 1500 rpm shaft speed, 

Figure 8.11 is obtained. The unbalance fault frequency and inner race characteristic 

frequency can be seen clearly in the corresponding scalogram.  

 

 

 

                 Figure 8.15 Scalogram of acc. data for inner race fault with unbalance case at 1500 rpm. 
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     After applying cwt to the velocity data at 1500 rpm shaft speed, Figure 8.12 is 

obtained. The unbalance fault frequency can be seen clearly however, inner race 

characteristic frequency is not visible in the corresponding scalogram. 

 

 

 

               Figure 8.16 Scalogram of vel. data for inner race fault with unbalance case at 1500 rpm. 
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CHAPTER NINE 

CONCLUSIONS 

 

The condition of the rotating system having three main defects (shaft 

misalignment, unbalance, and inner race defect on cylindrical rolling bearings) is 

monitored experimentally by vibration analysis. Vibration measurements are 

performed at different rotational speeds and different fault conditions. The 

effectiveness of the time domain parameters on the fault diagnosis is investigated. 

Time domain parameters are applied to velocity and acceleration responses of the 

test apparatus for healthy and faulty cases and their ratios (faulty/healthy) are 

investigated. In the scope of this study, the curve length transform, which is a non-

linear time based transform, is applied to the vibration signals. The effectiveness of 

the curve length transform on different kind of fault conditions is sought and scale 

factor effect on the curve length transform is determined. Furthermore, frequency 

analysis is performed on the vibration signals. Characteristic defect frequencies are 

sought on the frequency domain of the vibration signal. Furthermore, time-frequency 

representations of vibration signals are investigated by using STFT and Wavelet 

Transforms. 

From the experimental results presented in this study, the following points of 

discussion are summarized: 

• The velocity and acceleration responses of a structure including rolling 

element bearing can be used for defect detection with proper time domain 

parameters. The usage of acceleration response gives better results for 

shaft misalignment, inner race fault and their conjunctive conditions. 

However, velocity response gives better results for unbalance and 

unbalance & inner race combined fault conditions. 

• Generally, the ability of showing faulty condition for time domain 

parameters changes with rotational speed.  

• Standard deviation and peak to peak values give better results for detecting 

the three types of fault in raw vibration velocity data.  
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• Kurtosis and alfa give better results in run out and inner race fault cases 

for the raw vibration acceleration data. However, standard deviation and 

peak to peak gives better results for unbalance case in raw vibration 

acceleration data. 

•  In unbalance fault, velocity data give better results for detecting the fault. 

• For run out and inner race fault, acceleration data give better results for 

detecting the fault. 

• Generally, the curve length transform gives better results for detecting the 

defects.   

• Kurtosis (kurt2) values give better results for detecting the faults for run 

out case after the curve length transform. 

• 6th normalized moment is much more sensitive than kurtosis in fault 

detection. 

• The scale factor does not affect the faulty/healty ratio for run out and inner 

race fault case. 

•  Increase in the scale factor value causes the faulty/healthy ratio to 

increase at higher shaft speed for unbalance case. 

• The characteristic fault frequency for inner race fault cannot be seen in 

FFT of velocity data, however can be clearly seen in FFT of acceleration 

data. 

• The characteristic fault frequency for inner race fault cannot be seen in 

STFT of velocity data, however can be clearly seen in STFT of 

acceleration data. 

• The short time Fourier transform gives an idea about the existence of a 

defect in the bearing, however the resolution problems in both time and 

frequency domains exist. 
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• The continuous wavelet transform gives better results about time instance 

and frequency of the fault. 

• The characteristic inner race fault frequencies cannot be seen in CWT of 

velocity data; however it can be clearly seen in CWT of acceleration data. 

• The coefficients obtained by CWT increase as the shaft speed increases 

both in inner race fault and unbalance condition.  

• In the combined fault experiment (inner race with unbalance), at the low 

shaft speeds, acceleration signal shows only inner race fault and velocity 

signal shows only unbalance fault. At the high speeds, unbalance fault can 

be seen both in velocity and acceleration data. 
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