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ANALYSIS OF MACHINERY FAULTS BY CURVE LENGTH AND
WAVELET TRANSFORMS

ABSTRACT

Rotation is a basic motion which is widely used in machinery and equipments of
industry and energy production sites. The continuity of the motion is very important
necessity. An unpredictable fault causing a stop or decrease of the performance in the
system cause serious financial losses. For that reason, the necessity of predicting the
fault arises. Considering the rotating machinery it can be concluded that the system
basically consists of a shaft, housings and rolling element bearings. The basic faults
are basically run-out, unbalanced masses and rolling element faults in such a kind of
rotating machinery. The prediction of these faults and taking the corresponding
precautions before the failure causes big financial savings. The most important
method for this purpose is condition monitoring. Vibration measurements are mainly

and widely used tool for condition monitoring.

With the help of this point of view, the corresponding studies are worked on an
experimental setup which can simulate the situation in the real life applications. The
common faults such as run-out, unbalance and inner race defect cases were
configured on the system and the condition was monitored by using vibration data.
Run-out fault was performed with the help of movable housings, unbalance fault was
created with the help of a circular plate, which has holes in the radial direction for
mass fixing and roller bearing fault (especially inner race fault) was created with the
help of electrical discharge machine (creating defects on the outer surface of inner
race of bearing). Vibration measurements were performed with a portable vibration
analyzer at a wide range of shaft speeds. Velocity and acceleration data were
recorded. Vibration signals which were taken from healthy and faulty system were
investigated in time domain by using statistical parameters such as rms, kurtosis and
peak to peak. In the further step, curve length transform, which is a nonlinear time
domain transform, was applied to vibration signals and again healthy and faulty

system, were investigated in time domain by using statistical parameters such as rms,

v



kurtosis and peak to peak. In addition to this process, effect of scale factor on curve
length transform was examined. In the next step, fast Fourier transform (FFT) and
short time Fourier transform (STFT) were applied on the vibration signals and
frequency spectrum was investigated with aiming to get the characteristic fault
frequencies. In the final step, continuous wavelet transform was applied to vibration
signals and corresponding spectrums were created for giving more information about

the fault frequency, fault time and fault amplitude.

Keywords: Condition monitoring, vibration signal analysis, curve length transform,

wavelet transforms.



MAKINA HATALARININ EGRi UZUNLUGU VE WAVELET
DONUSUMLERI ILE ANALIZi

(074

Donme hareketi endiistride ve enerji lretiminde kullanilan makina ve
ekipmanlardaki en temel hareket bigimidir. Bu hareketin siirekliligi olduk¢a dnemli
bir gereksinimdir. Zira beklenmeyen hatalardan dolay1 sistemin durmasi veya
performansinin diismesi gibi durumlar ciddi maliyet kayiplarina yol agmaktadir. Bu
sebeple, hatanin tahmin edilmesi ihtiyact dogmustur. Bir doner sistem
diisiiniildiginde,  sistemin temel olarak bir mil, milin doénme hareketini
destekleyecek yataklar ve rulmanlardan olustugu gozlenecektir. Boyle bir modelde
olusabilecek temel hatalar incelenecek olursa, mildeki eksen kagikligi, mil {izerindeki
dengelenmemis kiitle ve donme hareketini destekleyen yataklarda kullanilan
rulmanlardaki hatalar ilk planda 6ne ¢ikmaktadir. Bu hatalarin kritik hata seviyesine
gelmeden oOnce belirlenip gerekli Onlemlerin alinmasi1 ciddi kazanimlar
saglamaktadir. Bu amagla kullanilan metotlardan en oOnemlisi  durum izleme
yontemidir. Durum izleme yonteminde temel olarak titresim sinyallerinin izlenmesi

yaygin olarak karsimiza ¢ikmaktadir.

Bu gerceklikten yola c¢ikilarak ilgili calisma, pratikteki durumu temel anlamda
simule edecek bir deney diizeneginin iizerinde gergeklestirilmistir. Eksen kacikligi,
dengelenmemis kiitle ve rulman hatasi1 gibi pratikte oldukca karsilasilan hata
bicimleri sistem {izerinde olusturulmus ve titresim Ol¢limii ile sistemin durumu
izlenmeye c¢alisilmistir. Eksen kacikli§i deney diizeneginin yataklarinin hareket
edebilir ve istenen pozisyonda sabitlenebilirligiyle, dengelenmemis kiitle olusumu
deney diizenegi iizerindeki dairesel plakaya radyal yonde ek Kkiitlelerin
sabitlenmesiyle ve rulman hatalar1 masurali rulmanm i¢ bilezigine dalma erezyon
tezgahinda olusturulan ¢ukur ile olusturulmustur. Titresim Glgiimleri tasinabilir bir
titresim analizorii ile hiz ve ivme cinsinden genis bir mil hiz1 araliginda
gerceklestirilmistir. Hatasiz ve hatali sistemlerden elde edilen titresim sinyalleri,

oncelikle rms, kurtosis, tepe tepe gibi bazi istatiksel gostergeler ile zaman ortaminda
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incelenmistir. Daha sonra egri uzunlugu doniisiimii olarak adlandirilan lineer
olmayan bir zaman ortami dOoniismil yine titresim sinyallerine uygulanmis ve bu
dontlistimiin etkinligi istaiksel parametreler yardimiyla goézlemlenmistir. Buna ek
olarak ilgili dontistimdeki skala faktoriiniin egri uzunluguna etkisi incelenmistir. Bir
sonraki agamada titresim sinyallerine FFT ve STFT doniisiimleri uygulanarak frekans
ortaminda karakteristik hata frekanslarinin yakalanmasi amaglanmistir. Son boliimde
ise caligmanin ana merkezini olusturan yeni bir sinyal igsleme yontemi kullanilmistir.
Stirekli wavelet doniisiimii ismindeki bu sinyal isleme yontemi ile hatanin hangi
zaman igerisinde, hangi frekansta ve hangi siddette olustugu gibi detayl bilgilere de

ulastlmistir.

Anahtar Kelimeler: Durum izleme, titresim sinyal analizi, egri uzunlugu doniisiimii,

wavelet doniistimleri
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CHAPTER ONE
INTRODUCTION

Importance of the condition monitoring techniques used in rotating machinery is
increasing. This is because of the fact that implementation of these techniques brings
considerable financial savings by reducing scheduled maintenance costs, and
improving the productivity and safety. Moreover, early detection of incipient fault
prevents major component failures. The malfunctions, which are mainly shaft
misalignment, unbalance and rolling element bearing faults may cause serious
failures in the rotating machinery process. To detect and diagnose the defect in
rotating machinery, various condition monitoring techniques have been developed.
The most powerful and commonly used method is the vibration analysis. There are
many examples on the application of the vibration analysis for condition monitoring

in the literature.

Hariharan & Srinivasan (2009) presented vibration analysis of the misaligned
shaft-ball bearing system. In their study, experiments were performed on a rotor
dynamic test apparatus to predict the vibration spectrum for shaft misalignment. The
accelerations of the system were measured with a dual channel vibration analyzer
under the misalignment condition. Moreover, numerical frequency spectra were
obtained with the help of software, ANSYS. The results from the experiment and
software were compared and it was seen that the results were in agreement. Both
results showed that misalignment can be characterized primarily two times shaft
running speed. However, if the misalignment characteristic frequency is not close
enough to one of the system natural frequencies, the corresponding fault cannot
excite the system appreciably. Therefore, there are cases where the misalignment

response is hidden.

Tandon & Choudhury (1999) presented a review of vibration and acoustic
measurement methods for the detection of defects in rolling element bearings. In
their study, vibration measurements in both time and frequency domains along with

signal processing techniques such as the high-frequency resonance technique were



covered. Acoustic measurement techniques such as sound pressure, sound intensity,
and acoustic emission were reviewed. Detection of both localized and distributed
categories of defect were explained. They observed vibration in the time domain that
can be measured through the parameters such as RMS level, crest factor, probability
density, and kurtosis. Kurtosis was mentioned as the most effective method.
Vibration measurement in the frequency domain has the advantage that it can detect
the location of the defect. However, the direct vibration spectrum from a defective
bearing may not indicate the location of the defect especially at the initial stage. This
problem has been overcome by some signal processing techniques. The high-
frequency resonance technique is the most popular among the other techniques. The
sound intensity, which is one of the acoustic techniques, was reported to be better
than sound pressure measurements for bearing diagnostics. They observed in the
related studies that, acoustic emission measurements are better than vibration
measurements for detecting defects in rolling element bearings. In addition, acoustic

emission signals can detect a defect even before it appears on the surface.

Kiral & Karagulle (2006) modeled the loading mechanism in a bearing structure,
which houses a deep groove ball bearing having different localized defects and
carrying an unbalanced force rotating with the shaft. The finite element vibration
analysis was employed to simulate the bearing vibration signals. They proposed the
use of the finite element vibration analysis with the proper loading model, which
produces simulated vibration signals including the structural information in order to
find the most efficient analysis method. The effects of different parameters such as
the rotational speed, sensor location, angular position, and number of the outer ring
defects, defect type (inner ring defect and rolling element defect) on the vibration
monitoring methods were examined by using the time and frequency domain
parameters. They reported that the envelope method can be used efficiently in order
to detect the outer and inner ring defects, but rolling element defects were not easy to

detect via envelope and band energy ratio procedures.

Orhan, Aktiirk, & Celik (2006) investigated diagnosis techniques of the ball and

cylindrical roller element bearing defects by vibration monitoring and spectral



analysis. The vibration of a huge centrifugal pump with nine vanes was monitored.
The experimental study had included three different cases. In case 1, the ball bearing
has looseness on the housing. The vibration amplitudes were in low level at the
initial stage. The vibration monitoring was continued and after a few weeks, they
reported the increase in vibration levels indicating development in the looseness. In
case 2, inner bearing vibration of a fan motor, which is supported by cylindrical
rolling element bearing, was monitored. Existence of multipliers of outer race defect
frequency in the spectrum was attributed to an outer race defect. In case 3, outer
bearing vibration of the fan motor, which is supported by ball bearing, was
monitored. Vibration frequencies in the frequency spectrum are matched to the ball
bearing outer race defect frequency and its harmonics. In the study, ball bearing
looseness, a ball bearing outer race defect, and a cylindrical bearing outer race defect
were successfully diagnosed. They observed that ball and cylindrical rolling bearing
defects were progressed in identical manner without depending on the type of rolling

element.

Tao, Zhu, Ding & Xiong (2006) improved an alternative time-domain index for
condition monitoring of rolling element bearings. In the time domain analysis, the
kurtosis and Honarvar third moment are the major parameters. In this study, a new
statistical moment was derived from the viewpoint of Renyi entropy. The
comparisons were made by using both experimental data and simulations. As a
result, it was seen that new moment called S, has less sensitivity to the changing
shaft speed than kurtosis and close to Honavar third moment. Furthermore, new

statistical parameter is less susceptible to spurious vibrations than the others are.

Takeyasu & Higuchi (2006) derived 6th normalized moment as an alternative
time parameter to the 4th normalized moment of probability density function which
is also called kurtosis. In their survey, they proved that 6th normalized moment is

much more sensitive than the kurtosis by using numerical examples.

Zong, Moody & Jiang (2006) studied on curve length transform such that used

corresponding transform for the analysis of the heart beat signals and feature



extraction from body surface electrocardiograms (ECGs). The curve length transform

is applied to the rolling element bearing diagnostics in this thesis.

Oztiirk, Yesilyurt and Sabuncu (2010) presented the use of vibration analysis in
the early detection and monitoring of distributed pitting faults in gear trains. In this
experimental study, the pits were seeded on all of the gear tooth surfaces in different
degrees of severity. The gears were tested with each fault severity and resulting
vibration data were recorded. Different kind of vibration analysis methods such as
time, frequency, and wavelet transform (scalogram and its mean frequency variation)
to each set of experimental data were presented. In the results it was seen that,
presence of the pitting cannot be seen clearly unless fault severity is significant large.
However, in the wavelet analysis the scalogram and especially its mean frequency

variation provided early indication of presence of the pitting faults.

Khalid, Asok, K.P., D.K., & Steven (2007) investigated an alternative approach
for detecting localized faults in the outer and inner races of a rolling element bearing
using the envelope power spectrum of the Laplace Wavelet. The vibration model for
a rolling element bearing with outer and inner race faults was given. The
implementation of a proposed approach for the detection of localized ball bearing
defects for both simulated and actual bearing vibration signals was presented. The
wavelet shape parameters (damping factor and the center frequency) were optimized
by maximizing the kurtosis value for the wavelet transform coefficients vibration
signal. The application of this technique for both of the simulated and real bearing
vibration signals showed the effectiveness of the wavelet power spectrum in
extraction of the bearing characteristic frequencies and its harmonics for outer and

inner race defective bearings from noisy vibration signals.

Mazanoglu (2004) presented a study on the detection of a localized defect in a
roller bearing using vibration analysis. The real roller bearing that was in both of
healthy and faulty conditions was tested under different loads. The acquired vibration
signals from experimental set was processed in time, frequency, and combined time

and time- frequency domains. In conclusion, the presence of a fault was observed to



reveal clearly by time and frequency analyses when severity of fault was large.
Frequency peaks that were the results of application of envelope analysis were
observed at characteristic frequency of fault component. When the application of
combined time-frequency analysis, indications of fault were observed in the
combined time-frequency maps as local increases in the energy levels of vibration

only where components of bearing came into contact with defect.

Chebil, Noel, Mesbah & Deriche (2009) presented a wavelet-based analysis
technique for the diagnosis of faults in rotating machinery in terms of mechanical
vibration. The choice between the discrete wavelet transform and the discrete
wavelet packet transform was discussed with the choice of the mother wavelet and
some of the common extracted features. In this work, it was seen that the peak
locations in the spectrum of the vibration signal could also be used in the detection of
a fault in ball bearings. For the identification of fault location and its size, the rms
extracted from the terminal nodes of a wavelet tree can be reliably used as
discriminating feature. It was found that the choice of the mother wavelet sym6

combined with the use of the rms feature produces excellent classification results.

Liu, Ling, and Gribonval (2002) proposed matching pursuit that is a new
approach for detection of localized defects of rolling element bearings. Matching
pursuit is an adaptive approach of time-frequency analysis unlike Short Time Fourier
Transform and Wavelet Transform. They used vibration signals, which were
collected from a test rig for different test configuration such as normal bearing, the
bearing with an outer race defect, the bearing with an inner race defect. They
processed vibration signals via matching pursuit approach. At the same time, they
applied a typical traditional method, envelope detection to detect defects. They

observed that matching pursuit approach was more sensitive than envelope detection.

The aim of this study is to detect the behavior of the rotating system having
cylindrical roller bearing under different fault conditions such as run out, unbalance
and inner race defect by using vibration signals. For this aim, an experimental test

apparatus was designed and manufactured. The corresponding apparatus includes



two types of roller bearing (cylindrical roller bearing and spherical roller bearing).
The housings in which the roller bearings are fixed are movable in the perpendicular
direction to the rotation axis. Moreover, circular plate on the shaft is designed to
create different unbalance forces on the system. Cylindrical roller bearing faults were
generated artificially by using electrical discharge machine. Tests were performed for
different fault conditions both separately and their combinations with each other for
varying shaft speeds. Vibration signals were measured by a piezoelectric
accelerometer located on the cylindrical bearing housing. This thesis is organized as
follows. In Section 2, condition-monitoring systems on detecting rolling element
faults and rolling bearing elements are described. In Section 3, experimental setup
and vibration measurements are introduced. In Section 4, the statistical indices used
in this study are described. In Section 5, the results of the time domain indices for the
corresponding fault cases are given. In section 6, effect of curve length transform on
the time domain analysis are described. Results of the frequency domain analyses are
given in Section 7. The formulation of the wavelet transform and the results are

given in Section 8. The concluding remarks are given in Section 9.



CHAPTER TWO
CONDITION MONITORING AND ROLLING ELEMENT BEARINGS

2.1 Condition Monitoring

Condition monitoring is the process of monitoring a parameter of condition in
machinery, such that a significant change is indicative of a developing failure. It is a
major component of predictive maintenance. The use of conditional monitoring
allows maintenance to be scheduled, or other actions to be taken to avoid the
consequences of failure, before the failure occurs. Nevertheless, a deviation from a
reference value (e.g. temperature or vibration behavior) must occur to identify
impeding damages. Predictive maintenance does not predict failure. Machines with
defects are more at risk of failure than defect free machines. Once a defect has been
identified, the failure process has already commenced and condition monitoring
systems can only measure the deterioration of the condition. Intervention in the early
stages of deterioration is usually much more cost effective than allowing the
machinery to fail. Serviceable machinery includes rotating equipment and stationary

plant such as boilers and heat exchangers.

2.2 Condition Monitoring of Rotating Machinery

Rotating machinery’s condition monitoring is the process of monitoring the
condition of a machine with the intent to predict mechanical wear and failure.
Vibration, noise, and temperature measurements are often used as key indicators of
the state of the machine. Trends in the data provide health information about the
machine and help detect machine faults early, which prevent unexpected failure and

costly repair.

The most commonly used method for rotating machines is called vibration
analysis. Measurements can be taken on machine bearing casings with seismic or
piezo-electric transducers to measure the casing vibrations, and on the vast majority

of critical machines, with eddy-current transducers that directly observe the rotating



shafts to measure the radial (and axial) vibration of the shaft. The level of vibration
can be compared with historical baseline values such as former starts and shutdowns,

and in some cases established standards such as load changes, to assess the severity.
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Figure 2.1 Machine condition vs time diagram

As shown in the Figure 2.1, vibrations are the first warning sign that a machine is
prone to failure. This warning signs can provide 3 months of lead time before the
actual failure date. Monitoring this data with vibration analysis allows predicting

this failure early and scheduling proper maintenance.

Interpreting the obtained vibration signal is a complex process that requires
specialized training and experience. There are many techniques for interpretation of
vibration signals. The main techniques are the time domain analysis, the frequency

domain analysis, and the time-frequency domain analysis. The easiest and fastest

Time



method is time domain analysis of vibration signal. In the time-domain analysis,
rotating system’s faults are detected by monitoring the variation of some statistical
indices such as the crest factor, skewness, root mean square, and kurtosis. A bearing
is believed to be damaged when a monitoring index exceeds threshold values;
however, it is usually difficult to determine the healthy condition values so the ratio

between the healthy and faulty condition can be compared.

Frequency domain analysis is the most commonly used approach in the condition
monitoring of the rotating machinery. In this method, defect detection is based on the
analysis of the spectral information. The main advantage of this analysis is that it is
relatively easier to identify and isolate certain frequency compent of interest (Tandon
& Chouldhury, 1999). Frequency-based techniques, however, are not suitable for the
analysis of non-stationary signals that are generally related to machinery defects

(Jardine, Lin & Banjevic, 2005).

Non-stationary or transient signals can be analyzed by applying joint time-
frequency domain techniques such as the short-time Fourier transform and wavelet
transform (Liu, Wang, Golnaraghi, Liu, 2007). The short time Fourier transform
(STFT) can be employed to detect the localized transient. Unfortunately, the fixed
windowing used in the STFT implies fixed time-frequency resolution in the time
frequency plane (Wadhwani, Gupta, Kumar, 2005). The difficulty is that the
accuracy of extracting frequency information is limited by window relative to the
duration of the interesting signal. To overcome the fixed time-frequency resolution
problem, the recently developed wavelet based analysis becomes an efficient
alternative in dealing with non-stationary type of machinery transient signal (Yen &
Lin, 2000). The wavelet transform approach allows the detection of short-lived time
component in the signals. This method is logical since high frequency components
such as short bursts need high time resolution as compared with low-frequency
components, which requires low frequency resolution (Wadhwani, Gupta, Kumar,
2005). Shortly, in fault detection, wavelet transform is the most popular time-
frequency domain technique because of its more flexible multi-resolution

(Luo,Osypiw, Irle, 2000).
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2.3 Application Areas of the Condition Monitoring for Rotating Machinery

The condition monitoring technique is applied many types of rotary machines
including machines that are vital to the plant or process and without which the plant
or process cannot function such as the steam or gas turbines in a power plant, crude
oil export pumps on an oil rig, the cracker in an oil refinery, and applied to
machinery that is a key part of the process. However, if it fails the process can still
operates such as boiler feed pumps in a power plant, wind turbines, air compressors

and export pumps on an oil refinery.

Figure 2.2 Offshore wind turbines (Siemens, 2010).

Wind turbines as in the Figure 2.2 may be a good example for the application area
of the condition monitoring process. Their vibration monitoring is one of the most
important aspects because it helps determine the condition of rotating equipment. In

a wind turbine, this equipment consists of the main bearing, gearbox, and generator.
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Figure 2.3 shows where you can place vibration sensors to read data in the axial and
radial directions. Depending on the applicable frequency range, you can use either
position sensors (low range), velocity sensors (mid range), or accelerometers (high
range) for this measurement. These vibration sensors are rigid mounted to the
component of interest and return an analog signal proportional to the instantaneous
local motion. An acquisition device that has a high sampling rate, high dynamic

range, and anti-aliasing is ideal for this type of measurement.

8- Axial Sensor
#- Radial Sensor

Rotor

Gearbox

Generator

Main Bearing

Figure 2.3 Vibration sensor positions for wind turbine model (National Instrument, 2010).

The principle of the condition monitoring system is based on the recording of
structure-borne vibrations caused, for example, by bearings and gear tooth. The
signals are received by means of special acceleration sensors attached to defined

measuring points on the individual drive train components.

In a three-month start-up phase an individual vibration picture is drawn, the so-
called "fingerprint" for the turbine and its components. The values measured are

stored as parameters in a "black box.” When the turbine is in operation, the actual
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values measured are automatically compared online by means of measuring routines
and measuring methods, such as frequency, envelope, and order analysis, with the
reference values stored in the system. If there are discrepancies or limits are
exceeded, the system automatically sends a warning or alarm message to the central
remote monitoring center. There it is possible to draw accurate conclusions on the
degree of change or wear based on experience gained over years and to initiate

service activities in good time (Nordex Service, 2010).

2.4 Condition Monitoring of Roller Bearings

Roller bearing, by design, has extremely small clearances which do not allow a
significant amount of shaft motion; forces from the shaft are transferred through the
rolling elements to the bearings outer race and then ultimately to the bearing housing.
Because of this transmission, a casing (bearing housing) measurement is normally
acceptable for monitoring machines with rolling element bearings. Since the most of
the machinery in a predictive maintenance program contains rolling element

bearings, it is important to understand firstly to rolling element theory deeply.

2.5 Rolling Element Bearings

2.5.1 Brief History

Ancient man was forced to push or pull heavy objects to long distances just to
make basic improvements to his life. This effort to move objects was reduced

considerably when he discovered simple forms of lubrication such as mud or water.

With the invention of the wheel, it became obvious that rolling motion requires
less effort and is less damaging to surfaces than sliding motion. It is not surprising
therefore, that bearings, using only rolling motion, were eventually developed for use

in machines, where metal sliding on metal causes considerable wear.
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In fact, the first machine designs used journal (plain) bearings, which consisted of
steel shafts running in wooden blocks, impregnated with lubricant. Eventually as
steel improved and manufacturing techniques improved, two steel rings with rolling
elements between, replaced them. First precision steel rolling element was designed
by Friedrick Fisher in 1883. This resulted in a bearing with greatly reduced friction

and extended service life.

2.5.2 Bearing Theory

Bearings can be categorized as two types, sliding bearings and rolling bearings.
Sliding bearings includes linear bearings and journal bearings. Linear bearings are
generally used for precise applications by precision engineering industries. Journal

bearings can tolerate axial displacement of the shaft within certain limits.

All bearings that transfer loads via rolling elements are denoted rolling bearings.
Depending on the type of rolling elements that are used rolling element bearings are
divided into ball bearings and roller bearings. The balls in a ball bearing transfer the
load over a very small surface point contact (Figure 2.4a) with the raceway. The load
carrying capacity is therefore lower than for a roller bearing, where rollers transfer

the load via line contact (Figure 2.4b) with the raceways.

b)

Figure 2.4 Type of contacts a) point contact b) line contact (SKF, 1996).
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One of the factors which make the rolling element bearings so popular for most
types of machinery is their very low friction. In a rolling element bearing the, inner
ring rolls via the rolling elements in the outer ring. Under the same load conditions,
the friction in a plain bearing is greater than that of a rolling bearing. Furthermore,
the friction in a plain bearing varies with the rotational speed but is practically

constant for a rolling bearing as shown in Figure 2.5.

There are two basic families, that is, ball and roller bearings, which are
categorized according to the shape of the rolling elements. Each family includes a
variety of bearing designs, depending on requirements such as available space for
bearing, magnitude of load, direction of load, misalignment, speed, precision, quiet
running, stiffness and axial displacement. Ball bearings are usually used in light to
moderately loaded applications and are suited for high-speed operations. Roller
bearings are able to support heavier loads than ball bearings. Rolling element
bearings can also be classified into radial bearings and thrust bearings based on the
direction of applied load. These types of direction-wise bearings are designed to
transfer pure radial loads, pure thrust loads, or a combination of the radial and thrust

loads.

Plain hearing Rolling hearing

Plain bearings

Rolling bearings

Frictional Coefficient

Rotational speed

Figure 2.5 Frictional behaviour of plain and
rolling bearings (SKF,1996).

A radial bearing is designed primarily for carrying a radial load. A thrust bearing

is mainly intended to carry a thrust load (also called axial load) that is pushing force
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against the bearing parallel to the shaft axis. Since most rolling bearings, both radial
and thrust bearing, can also carry some radial and axial load, there is no clear
distinction between them. However, bearings with a contact angle a<= 45° (shown
in Figure 2.6) are considered radial bearings and their ratings are given by radial
load. Bearings with a contact angle o >45° are considered thrust bearing and are

rated by axial load.

D: Outer diameter
dp : Pitch diameter
d: Bore diameter
dy: Ball diameter
W Raceway width
a: Contact angle
Z: Number of ball

Figure 2.6 Bearing geometry.

2.5.3 Bearing Components

All rolling bearings are composed of four basic parts: inner ring, outer ring,

rolling elements, and cage or separator as seen in Figure 2.7.

Seals Outer ring

Inner ring

Rolling elements |

Figure 2.7 Components of the
rolling bearing (SKF, 1996).
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2.5.3.1 Inner Ring

The inner ring is mounted on the shaft of the machine and is mostly the rotating
part. The bore can be cylindirical or tapered. The raceways against which the rolling
elements run have different forms such as spherical, cylindirical or tapered,

depending on the type of rolling elements.
2.5.3.2 Outer Ring

The outer ring is mounted in the housing of the machine and in most cases it does
not rotate. The raceways against which the rolling elements run have different forms
depending on the type of rolling elements. The forms of the raceways may be

spherical, sylindirical or tapered.
2.5.3.3 Rolling Elements

The rolling elements may have different forms as shown in Figure 2.8. The forms
of the rolling elements may be balls, cylindirical rollers, spherical rollers, tapered
rollers or needle “rollers. They rotate against the inner and outer ring raceways and
transmit the load acting on the bearing via small surface contacts separated by a thin

lubricating film. The rolling elements are made of carbon chromium steel, also called

Ball Tapered roller
:
Cylindirical roller Meedle roller

— e

Symmetrical Asymmetrical
spherical roller spherical roller

bearing steel.

Figure 2.8 Types of rolling elements
(SKF, 1996).
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2.5.3.4 Cage

The cage separates the rolling elements to prevent metal-to-metal contact between
them during operation that would cause poor lubrication conditions. With many
bearing types the cage holds the bearing together during handling. Cages are made

from cold rolled steel strip.

2.5.3.5 Seals

Seals are essential for a long and reliable life of the bearing. They protect the

bearing from contamination and keep the lubricant inside the bearings.

2.5.3.6 Guide Ring

Guide rings are used in some spherical roller bearings that demand extremely high
quality. The main function of the guide rings is to guide the rollers in the bearings so
that they can rotate parallel to the shaft and distribute the load evenly to the

raceways.

2.5.4 Types of the Bearing Failures and the Causes

Rolling element bearings are among the most important and popular components
in the vast majority of machines. Additionally, the component most likely to cause
machine downtime is the bearing, because all machine forces are transmitted through
the bearings. Therefore, rolling element bearings have been the subject of extensive
research over the years to improve their reliability. However, since a large number of
bearings are associated with any critical process, system failure due to any individual
bearing failing can occur in a short period. There are many reasons for early failure,
such as heavy loading, inadequate lubrication, careless handling, ineffective sealing,
or insufficient internal bearing clearance due to tight fits. Each of these factors
results in its own particular type of damage and leaves its own special imprint on the

bearing.
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Rolling bearing damage may result in a complete failure of the rolling bearing at
least, however, in a reduction in operating efficiency of the bearing arrangement.
Only if operating and environmental conditions as well as the details of the bearing
arrangement (bearing surrounding parts, lubrication, sealing) are completely in tune,
can the bearing arrangement operate efficiently. Bearing damage does not always
originate from the bearing alone. Damage due to bearing defects in material or

workmanship is exceptional.

The types of mechanical bearing failure and their frequencies are categorized in
Table 2.1. The most frequent bearing failure category is corrosion, which is
lubrication related. Chemical reaction occurs between the oil and the surface of the
bearing, generally from water or other corrosive materials present in the oil.
Dimensional discrepancies of rolling element bearings are a consequence of damage
prior to or during service. The causes of dimensional discrepancies could be
manufacturing flaws, improper handling or installation, and severe overloading
during service. Foreign objects, carried by contaminated lubricant, are trapped inside
the bearing between the rolling element and the raceway, and are overloaded.
Understanding the underlying reason for the defects and their consequences in terms

of failures gives the diagnostic clues to detect early failures.

Table 2.1 The distribution of the bearing failure (Lee, 2000).

Reason Failure percent
Corrosion 35 %
Dimensional Discrepancies 29 %
Foreign Objects 24 %
Other 10 %
Fatigue 2%
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Bearing failures that are not responsible for material fatigue are generally

classified as premature. Typical reasons for rolling bearing damage (FAG, 1985):

Inexpert mounting:

» incorrect mounting method, wrong tools
contamination
too tight fit

too loose fit

YV V V V

misalignment

Abnormal conditions during operation:
» overload, absence of load
» vibrations

» excessive speeds

Unfavorable environmental influences:
» external heat

» dust, dirt

» passage of electric current

» humidity

>

aggressive media

Inadequate lubrication:
> unsuitable lubricant
» lack of lubricant

> over lubrication

Each of the different causes of bearing failure generates its own characteristic
damage. Such damage is also known as primary damage, which, in turn, creates
secondary, failure-inducing damages, such as spalling and cracks. Most failed
bearings frequently display a combination of primary and secondary damage. The

types of damage are summarized in Table 2.2 (Afshari, 1998).
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Table 2.2 Types of bearing damages (Afshari, 1998).

Roll out

Indentations Spalling

Corrosion Cracks
Wear Cage damage
Electric current damage Score marks

Surface distress




CHAPTER THREE
EXPERIMENTAL SETUP

3.1 Test Apparatus

Test apparatus used in this study is a simplified model of rotating machinery. The
test set up includes basically a shaft, two housings with roller bearings (one is ball
bearing and the other one is cylindrical roller bearing) and a circular disc. The
corresponding apparatus as seen from Figure 3.1 is designed to allow monitoring
three different types of faults in the system such as unbalance, shaft misalignment

(run-out), and bearing faults.

Figure 3.1 Top view of the experimental setup.

21
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For creating unbalance forces on the rotating system, a circular disc, which have
equally spaced holes in the radial direction, is designed. Circular disc is assembled to
the shaft with the help of retaining rings. The unbalance condition is provided by

adding masses on the circular discs through the holes.

The test apparatus is designed in such a way that its housings have ability of
moving in the direction perpendicular to the shaft rotation axis. These movable
housings give the opportunity of controlling the run-out distance in the system.
Moreover after setting the housing position for creating the desired run-out, housing
are fixed in that position with the help of bolts and nuts. In the corresponding

experiments, 3 mm run out is created on the system.

The housings in the test apparatus have roller bearings inside. In this study, two
different type of test bearings are chosen, one as deep groove ball bearing and the
other one is FAG Cylindrical roller bearings NU306-E-TVP2 type. The
corresponding roller bearings are assembled inside the housings without causing any
damage. The deep groove ball bearing is in healthy condition. However, the
cylindrical roller bearing has two versions (healthy one and faulty one). The fault in
the cylindrical roller bearing is inner race fault. The predefined cavity is artificially
generated on the outer surface of the inner race with the help of an electrical

discharge machine. Corresponding fault can be seen in the Figure 3.2.

Experimental setup is configured each time for the desired fault type. After the
configuration, the system is started to run and the vibration data are collected for
each shaft speed. The experiments are performed between 750 rpm — 1750 rpm shaft
speed. The velocity and acceleration of the vibrations are collected from the test set
up with the help of a piezoelectric type of accelerometer. The measurements are
taken from the rear side housing (one with cylindrical roller bearing) and outer

surface of the cylindrical roller bearing.

The front side of the shaft where the healthy bearing is mounted is extended in

order to attach a pulley for driving the shaft by an electrical motor with a V-shaped
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belt. The motor provided by AC power supply is monophase. Power of the motor is
0.55 kW. The speed of the motor is controlled by a speed controller. All of the
components are put on a heavy plate. Rubber foots were mounted under the plate in
order to reduce the vibration transmission from ground to test bearing. Schematic

view of the experimental set-up is given in Figure 3.3.

Figure 3.2 Inner race fault in the cylindrical roller bearing.

3.2 Instrumentation

In this thesis, vibration measurements are performed by a portable vibration
meter, Sendig 911 as shown in Figure 3.1. The portable device has a piezoelectric
accelerometer of the type L14A. The accelerometer sensitivity is 4.86 [pC/ms™] at 20
OC. The device can measure vibration signals in terms of acceleration, velocity, and
displacement and can save these signals into its memory. These signals can be
fetched from the device memory to the computer by RS-232 connection. Sendig 911
has its own data acquisition software, which is called as MCME2.0H. A sample
screen shot of the software is given in Figure 3.4. The vibration signals gathered via

the vibration meter can be processed in both time and frequency domains. The
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sampling frequency of the vibration measurement is 2560 Hz and the total duration

of measurement is 0.39 seconds.

Sendig 911 MCME2.0H
Portabl A .
Vibra(t)iroalll I\f[eter Visual BASIC
MATLAB
Housing Accelerometer Electric Motor with F‘U Aot

\ 7 Speed control

Belt P

Jm—— —

Y
T_): | Rubber foot —
[\

[\ [ : :

I I R R R I I R R i I i I R I I P i i i in i inir e

Figure 3.3 Schematic view of the experimental set-up.

3.3 Measurement Conditions

The vibration signals are measured firstly for the healthy condition, which means
healthy roller bearings with balanced system and aligned shaft. The rotating system
is started at 750 rpm and the corresponding velocity and acceleration data are
recorded. The speed of the shaft is changed from 750 rpm to 1750 rpm by 250-rpm
increment after each measurement. The vibration signals with velocity and
acceleration parameters are recorded. In the second step, one of the movable housing
is shifted 3 mm in the perpendicular direction to the shaft axis and fixed its position
with the help of a nut and bolt for creating a misalignment condition and same
measurement procedure is repeated. In the third step, system is returned to the
aligned condition configuration and an unbalance mass (14 gr x 10 mm) is added to
the circular plate and same measurement procedure is repeated.

In the forth step, unbalanced mass is removed and faulty roller bearing is changed

with the healthy bearing and same measurement procedure is repeated. The defect of
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the bearing is inner race fault, which is generated artificially by using electrical
discharge machine as seen in Figure 3.2. In other steps, additional faults (unbalance
& run-out) to the inner race fault are generated and measurements are recorded. In all

of the experiment, the vibration signals are taken from the outer surface of

cylindrical roller bearing. The velocity and acceleration parameters are recorded.
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Figure 3.4 Screen shot of the software.



CHAPTER FOUR
TIME DOMAIN PARAMETERS

In this study, different statistical indices derived from the experimental vibration
signals are used to identify the condition of the rotating system by taking
measurement from outer ring of the cylindrical rolling element bearing. Different
moments of the vibration signals for different faulty conditions such as run out,
unbalance and rolling element fault (inner race fault) are calculated and then
compared with the reference values obtained for balanced, aligned, and healthy
bearing system. The statistical indices used in the time domain analysis are described

in this section.
4.1 Mean

The mean value is the arithmetic mean of the vibration signal. The mean value of
a discrete time signal x having N samples is calculated (Neter, Wasserman, &

Whitmore, 1988) as
1 N
X=—) X, 4.1)

Generally, the mean value does not give useful knowledge about a widely

distributed signal.
4.2 Standard Deviation (o)

Standart deviation gives useful knowledge about a widely distributed signal. If the
values of signal are close to the mean, standart deviation is low, otherwise standart
deviation is high. It is equal to square root of variance (Heperkan, Kesgin, 2002).

The standart deviation of a signal x is calculated as,

az\/ﬁi(f—xi)z 4.2)

i
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4.3 Peak to Peak (p2p)

Peak to peak is another statistical index. Peak to peak is denoted as the difference

between the maximum value and the minimum value of the signal. It is given as
p2p = Xmax - Xrnin (43)
4.4 Root Mean Square ( rms )

The root mean square (rms) value of a vibration signal shows the energy content
of the signal (Miettinen, Leinonen, 1999). For a vibration signal the rms values is

calculated as

1 2
rms=_|— ) X, 4.4
N z i ( )

4.5 Skewness

The 3" standardized moment of the vibration signal is called as the skewness. Its
value indicates the asymmetry of a distribution around its mean. Positive skewness
denotes a distribution with an asymmetric tail extending toward values that are more
positive. In consideration of negative skewness, a distribution with an asymmetric
tail extending toward values that are more negative is observed. A symmetrical
distribution is observed when skewness value is zero (Miettinen, Leinonen, 1999).

The skewness value of a vibration signal is calculated as

1 & —3
skewness = X. —X 4.5
No® Zl:( i —X) 4.5)
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4.6 Kurtosis 1 (kurtl)

The 4™ standardized moment is named as kurtosis. Kurtosis indicates peakeness or
flatness of a distribution compared with the normal distribution. Positive kurtosis
denotes a relatively peaked distribution. Negative kurtosis denotes a relatively flat
distribution. The kurtosis value of a vibration signal is calculated (Neter,

Wasserman,& Whitmore, 1988) as

1 N
kurtosis = x, —x)* 4.6
Vot Z:,( ;= X) (4.6)
4.7 Crest factor (cf)

The peak amplitude of a vibration waveform divided by the rms value determines
the crest factor. Crest factor value is expected to be between 2 and 6 in healthy
situation. This value increases when a fault appears (Lebold, McClintic, Campell,

Byington, & Maynard, 2000). Crest factor value is given by the following equation

X —X_.
f — max min (4.7)
rms(x)
4.8 GM>,, (So)

New statistical moment is derived from the viewpoint of Renyi entropy.
According to comprehensive comparisons of kurtosis, Honarvar third moment (S
and this moment, a new moment has a better overall performance than kurtosis and
S;. On the one hand, this moment behaves much like kurtosis but is less susceptible
to spurious vibrations, which is considered to be one of the main shortcoming of
higher statistical moments including kurtosis. On the other hand, from the viewpoint
of sensitivity to incipient faults, which is the major drawback of lower statistical

moments including S;, the new moment is superior to S;. Moreover, the sensitivity of
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this new moment to changes of bearing speed and load is also less than kurtosis and

is close to that of S;. (Tao, Zhu, Ding, & Xiong, 2006)

UNY ()’
s = =l (4.8)

a 3

N
1/NY
i=1

Xi

4.9 Kurtosis 2 (kurt2)

In the literature, another approach to kurtosis is also available. (Tao, Zhu, Ding &
Xiong, 2006). The corresponding kurtosis is symbolized as GM* , and formulated

v

as below:

GMZ SV =

N; > )’ 4.9)

4.10 6™ Normalized Moment of Probability Density Function

6" normalized moment of probability density function which is given below is

shown as more sensitive parameter than kurtosis (Takeyasu, Higuchi, 2006)

0~ (4.10)



CHAPTER FIVE
TIME DOMAIN ANALYSIS

In this section rms, kurtosis, peak to peak (p2p), skewness, crest factor, standard
deviation, S, and 6™ normalized moment values of raw velocity and acceleration
signals are examined under different faulty conditions such as shaft misalignment,
unbalance, rolling element fault (inner race defect) and their combinations at various
shaft speeds ranging from 750 rpm to 1750 rpm. In the first step, vibration
measurements are performed for the healthy system and corresponding statistical
indices are calculated at each shaft speed. In the second step, system is configured
for the corresponding faulty condition, vibration measurements are performed and
statistical indices for faulty condition are calculated at each shaft speed. In the final
step, the ratios of faulty/healthy are calculated for each statistical parameter and

ratios versus shaft speed figures are obtained.
5.1 Single Fault Experiments
5.1.1 Shaft Misalignment Experiment

In the shaft misalignment experiments, the test set up is configured in such a way
that, cylindrical roller bearing (healthy) housing position is fixed at the center and the
spherical bearing housing is shifted 3 mm to the left side and fixed there. The
vibration measurements are taken from the outer race of the cylindrical roller bearing
for each shaft speeds. The ratio of the vibration amplitudes of faulty (shaft
misalignment) to healthy condition is calculated for each statistical parameter with
the changing rotation speed. The corresponding curves are obtained as from Figure

5.1 to Figure 5.4.

Sample vibration velocity signal (for run out experiment at 1250 rpm shaft speed)

can be seen in Figure 5.1.

30
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Arnplitude
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Figure 5.1 Vibration velocity signal of raw data for run out experiment at 1250 rpm.

The statistical parameters are calculated for run out fault. In the raw data of
vibration velocity signals (Figure 5.2), two statistical indices, standard deviation, and
peak to peak values are above the healthy condition ratio. They show similar
behavior to changing shaft speed. Their ratio increase up to 1250 rpm and gets 1.2 as

a peak value at that shaft speed and then stay constant come with the increasing shaft

speed.
Veloci
1.60 bl
1.40 1 s
—— _/
£ 1201 ] —=—std
©
Q
< 100 i P2p
3 G cf
c 0.80 4
i —x— alfa
= i
% 060 —e— skew
©
w0401 —+— kurt1
0.20 4 kurt2
0.00 . . .
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Figure 5.2 Statistical indices of raw velocity data for 3 mm run out error.

Same analysis is performed for the vibration acceleration data. The sample

acceleration signal for the run out experiment at 1250 rpm can be seen in Figure 5.3.
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Figure 5.3 Acceleration signal of raw data for run out experiment at 1250 rpm.

In the raw data of vibration acceleration signals (Figure 5.4), all the statistical
indices have constant values up to 1250 rpm. Up to this shaft speed, they take nearly
healthy condition ratio values. Starting from 1250 rpm, all the statistical indices have
increasing trend up to 1500 rpm. All of them make a peak at that shaft speed and
decrease for further increasing shaft speeds. The kurtosis (kurt 2) and alfa indices

take the highest values at the 1500-rpm shaft speed.
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Figure 5.4 Statistical indices of raw acceleration data for 3 mm run out error.
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5.1.2 Unbalance Experiment

In the unbalance experiments, spherical roller bearing and cylindrical roller
bearing housing positions are fixed in concentric position. The unbalanced mass is
added on symmetrically drilled circular plate in the system. The vibration
measurements are taken from the outer race of the cylindrical bearing. The ratio of
the vibration amplitudes of faulty (unbalance) to healthy condition is calculated for
each statistical parameter with the changing rotation speed. The corresponding

curves are obtained as in the Figure 5.5 and Figure 5.8.

Sample vibration velocity signal (for unbalance experiment at 1500 rpm shaft

speed) can be seen in Figure 5.5

40 T T T T T T T
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Figure 5.5 Velocity signal of raw data for unbalance experiment at 1500 rpm.

In the raw velocity data two statistical indices (Figure 5.6), standard deviation,
and peak to peak values are above the healthy condition. The statistical indices
(standard deviation and peak to peak values) show a nearly sinusoidal behavior with

the changing shaft speed. However in every cycle, faulty/healthy ratio increases.
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Figure 5.6 Statistical indices of raw velocity data for unbalance.
Same analysis is performed for the vibration acceleration data. The sample

acceleration signal for the unbalance experiment at 1500 rpm can be seen in Figure

5.7.
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Figure 5.7 Acceleration signal of raw data for unbalance at 1500 rpm.

In the raw acceleration data, two statistical indices (Figure 5.8), standard
deviation, and peak to peak values are above the healthy condition. Standard

deviation has a constant value up to 1000 rpm shaft speed. With the further increase
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in shaft speed, standard deviation values increases. Moreover, peak to peak index
also shows faulty condition after 1250 rpm shaft speed and its ratio values increases

with the increasing shaft speed.
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Figure 5.8 Statistical indices of raw acceleration data for unbalance.

5.1.3 Inner Race Fault Experiment

In the inner race fault experiment, the healthy cylindrical roller bearing is changed
with the faulty one. Fault on the outer surface of the inner race was created by
electrical discharge machine. The vibration measurements are taken from the outer
race of the cylindrical bearing. The ratio of the vibration amplitudes of faulty (inner
race defect) to healthy condition is calculated for each statistical parameter with the
changing rotation speed. The corresponding curves are obtained from Figure 5.9 to

Figure 5.12.

Sample vibration velocity signal (for inner race fault experiment at 1250 rpm

shaft speed) can be seen in Figure 5.9.
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Figure 5.9 Velocity signal of raw data for inner race fault condition at 1250 rpm.

In the raw velocity data, two statistical indices (Figure 5.10), standard deviation
and peak to peak values are above the healthy condition up to 1500 rpm. As the shaft
speed increases from 1500 rpm, standard deviation and peak to peak values decrease.

Moreover, all the other statistical indices start to increase at 1500 rpm.
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Figure 5.10 Statistical indices of raw velocity data for inner race defect.

In the next step, same analysis is performed for the acceleration data. The

acceleration signal for the run out fault at 1250 rpm can be seen in Figure 5.11.
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Figure 5.11 Acceleration signal of raw data for inner race fault condition at 1250 rpm.

In the raw acceleration data, four statistical indices (kurtl,kurt2,alfa and p2p)
show the faulty condition. Their faulty/healthy ratio amplitudes show sinusoidal
behavior with the changing shaft speed which can be seen from Figure 5.12. The
indices take their higher values at 1500 rpm shaft speed.
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Figure 5.12 Statistical indices of raw acceleration data for inner race defect
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5.2 Combined Fault Experiments

In the combined fault experiments, the effect of two-faulthy condition on the
vibration signals is investigated. Two types of combinations are tried in the
experiment: Inner race fault and shaft misalignment and inner race fault and

unbalance conditions are analyzed.

5.2.1 Shaft Misalignment & Inner Race Fault Experiment

In the raw velocity data, two statistical indices (Figure 5.13), standard deviation,
and peak to peak values are above the healthy condition and have increasing trend as
the shaft speed increases up to 1250 rpm. Further, increase in shaft speed cause these
two indices to decrease. Moreover, crest factor starts to increase with the shaft speed
of 1250 rpm and make its peak value at 1750 rpm. Crest factor takes unhealthy
condition ratio after the 1500 rpm shaft speed.
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Figure 5.13 Statistical indices of raw velocity data for inner race defect + 3mm run out.

In the raw acceleration data, most of the statistical indices (Figure 5.14) have a

sinusoidal behavior with the changing shaft speed. Among them standard deviation
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has an opposite sinusoidal behavior to the other indices such that between 750 rpm —
1000 rpm shaft speed, all of the indices’ values increase except standard deviation
which has a decreasing trend. Between 1000 rpm — 1250 rpm shaft speed, all of the
indices decrease except standard deviation, which has a increasing trend. Moreover,
most of the indices take their highest ratio value in the 1500 rpm shaft speed and

among them kurtosis (kurtl and kurt2) has the maximum value at that speed.
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Figure 5.14 Statistical indices of raw acceleration data for inner race defect + 3mm run out.

5.2.2 Unbalance & Inner Race Fault Experiment

In the raw velocity data, two statistical indices (standard deviation and peak to
peak values) are above the healthy condition as can be seen from Figure 5.15. These

two statistical indices’ values increase as the shaft speed increases.
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Figure 5.15 Statistical indices of raw velocity data for inner race defect + unbalance.

In the raw acceleration data, all the statistical indices (Figure 5.16) have different
behavior to shaft speed changes. Four statistical indices (alfa, kurt2, p2p & std) show
the faulty condition. The alfa and kurtosis start to increase from 1000 rpm shaft
speed to 1500 rpm. At 1500 rpm both of the indices take the peak value. Peak to peak

and standard deviation indices have sinusoidal behavior with changing shaft speed.
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Figure 5.16 Statistical indices of raw acceleration data for inner race defect + unbalance.



CHAPTER SIX
THE CURVE LENGTH TRANSFORM

6.1 Definition of the Curve Length Transform

In this study, the vibration responses collected from the test setup for healthy and

faulty cases are processed by a time-based transform named as the Curve Length

Transform (CLT).

The curve length transform is a nonlinear time based transform in which the
discrete values of a time signal are used. The total curve length, which is the sum of
the lengths of the straight lines defined between the adjacent measurement points, is
calculated for a specified window length w as shown in Figure 6.1. The curve length
transform is generally used for QRS complex detection and feature extraction in

ECG analysis (Zong, Moody & Jiang, 2006).

Amplitude

0O 02 04 06 08 1 12 14 16 18 2
Time (s)

Figure 6.1 Definition of the curve length transform.
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The curve length transform is used in this study for diagnostic purpose of rolling
element bearings. The curve length transform of a vibration signal having N samples

is calculated for the window length w as

CLy = Y Wdt? +(xi - x1)° (k=1, N-w) 6.1)
i=1

where dt is the sampling period of the vibration signal x. Due to the nature of the
faulty vibration signal, it is expected that the curve length at the ball-defect impact
corresponding to the examined defect is generally longer than the other parts of the

signal. The curve length transform is also defined using a scaling factor C as

CLy = i\/CJF(Xm -x;)° (6.2)
i1

In the following pages, the curve length transform is applied to the raw velocity

and acceleration vibration signals and effects are observed.
6.2 Curve Length Transform Applications
Curve length transforms are applied to the raw vibration signal data in the below

analysis. In the transforms the scale factor C is taken as 1. In the further study, the

effect of scale factor on the transform will also be investigated.
6.2.1 CLT on Shaft Misalignment Vibration Data
In the Figure 6.2, a sample raw velocity signal and the transformed (curve length

transform) signal’s graphs can be seen. In the transform scale factor “C” is taken as

1.
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Figure 6.2 Curve length transform of velocity data for 3 mm run out error at 1250 rpm.

As it is seen from Figure 6.2 to Figure 6.7, after the curve length transform to the
vibration velocity signal of shaft misalignment, kurtosis (kurt2) takes higher values
and fault condition becomes more visible. Moreover, curve length transform to the

vibration velocity signal has a negative effect on standard deviation and peak to peak

values. Their values decrease after the transform.
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Figure 6.3 Statistical indices of CLT with dt* velocity data for 3 mm run out error.
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Figure 6.4 Statistical indices of CLT with C=1 velocity data for 3 mm run out error

In the Figure 6.5, a sample raw acceleration signal and the transformed (curve
length transform) signal’s graphs for shaft misalignment can be seen. In the

transform scale factor “C” is taken as 1.
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Figure 6.5 Curve length transform of acceleration data for 3 mm run out error at 1250 rpm.

Furthermore, as it is seen from Figure 6.6 and Figure 6.7, curve length transform
to the acceleration signal causes a decrease in the faulty/healthy ratios when
compared with the raw acceleration data. After the curve length transform with dt?,
kurtosis and alfa are main statistical indices showing the faulty condition best.

Moreover, after the curve length transform with C, kurtosis becomes a good fault

indicator when compared with others.
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Figure 6.6 Statistical indices of CLT with dt* acceleration data for 3 mm run out error.
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Figure 6.7 Statistical indices of CLT with C=1 acceleration data for 3 mm run out error.
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6.2.2 CLT on Unbalance Vibration Data

In the Figure 6.8, a sample raw velocity signal and the transformed (curve length
transform) signal’s graphs for the unbalance condition (at 1500 rpm shaft speed) can

be seen. In the transform, scale factor “C” is taken as 1.
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Figure 6.8 Curve length transform of velocity data for unbalance fault condition at 1500 rpm.

As it is seen from Figure 6.9 and Figure 6.10, after the curve length transform to
the vibration velocity signal, the amplitudes of the indices decrease. Moreover, again
after transform, standard deviation and peak to peak indices can be used to detect the
faulty condition. Moreover, after the transform, rms and crest factor amplitudes

increase and they also show the faulty condition. Their amplitudes increase as the

shaft speed increases.
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Figure 6.9 Statistical indices of CLT with dt* velocity data for for unbalance.
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Figure 6.10 Statistical indices of CLT with C=1 velocity data for unbalance.
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From the Figure 6.11, a sample raw acceleration signal and the transformed

(curve length transform) signal’s graphs for the unbalance condition (at 1500 rpm

shaft speed) can be seen. In the transform scale factor “C” is taken as 1.
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Figure 6.11 Curve length transform of acceleration data for unbalance fault condition at 1500 rpm

After the curve length transform to the vibration acceleration signal, the

amplitudes of the indices increase as it is seen from Figure 6.12 and Figure 6.13.

However, indices, which show faulty condition in the raw signal, change their

behavior after the transform. Alfa and kurtosis (kurtl) indices take higher values

after the transform.
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Figure 6.12 Statistical indices of CLT with dt* acceleration data for unbalance.
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Figure 6.13 Statistical indices of CLT with C=1 acceleration data for unbalance.
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6.2.3 CLT on Inner Race Fault Vibration Data

In the Figure 6.14, a sample raw velocity signal and the transformed (curve length
transform) signal’s graphs for the inner race fault (at 1250 rpm shaft speed) can be

seen. In the transform scale factor “C” is taken as 1.
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Figure 6.14 Curve length transform of velocity data for inner race fault condition at 1250 rpm

As it is seen from Figure 6.15 and Figure 6.16, after the curve length transform to
the vibration velocity signal of inner race fault, the amplitudes of the indices
increase. Root mean square and crest factor become good faulty condition indicators
after the curve length transform. The indices’ ratio values are increasing until the

1250 rpm shaft speed. After the corresponding shaft speed, indices are decreasing

with the increasing shaft speed.



Velocity CLT with dt

52

2,50
2,00 /\ ——rms
£ —=—std
S <
$ 150 /'— T 02p
E‘ i cf
= = —¥— alfa
= 1,00 4
3 L —&— skew
- 1 —+—kurt1
0,50 - kurt2
0,00 ‘ ‘ ‘
750 1000 1250 1500 1750
Speed(rpm)
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Figure 6.16 Statistical indices of CLT with C velocity data for inner race defect.
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In the Figure 6.17, a sample raw acceleration signal and the transformed (curve

length transform) signal’s graphs for the inner race fault (at 1250 rpm shaft speed)

can be seen. In the transform scale factor “C” is taken 1.
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Figure 6.17 Curve length transform of acceleration data for inner race fault condition at 1250 rpm

After the curve length transform to the vibration acceleration signal, the
amplitudes of the indices decrease as it is seen from Figure 6.18 and Figure 6.19.
Alfa has the highest value in the transformed data with dt* . For the transform with
C=1, the peak to peak and kurtosis (kurt 1) become good fault indicators. Moreover,

all of the indices show a sinusoidal behavior to the shaft speed increase with

decreasing amplitude.
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Figure 6.18 Statistical indices of CLT with dt” acceleration data for inner race defect.

Acceleration CLT with C

1750

14,00

——rms
—=— std
p2p
cf
—¥— alfa
—e&— skew
—+— kurt1
kurt2

Figure 6.19

1000 1250 1500
Speed(rpm)

Statistical indices of CLT with C=1 acceleration data for inner race defect.

1750




55

6.3 Effect of Scale Factor on Curve Length Transform

In this study, how the scale factor value affects the curve length transform is
investigated. The curve length transform is applied to a raw vibration data to make
the faults more visible in the system. In the above transforms scale factor C is taken
as a constant value, 1. However, it is important to see whether the faulty / healthy
condition’s ratio changes with changing scale factor for a corresponding statistical
parameter. For this reason in the below analysis, scale factor value is changed from 1
to 10 and its effects are investigated. Velocity of the vibration data is used in all of

the analysis.

6.3.1 Misalignment Fault

In this study, the statistical indices are chosen according to their ability of
showing the faulty condition. Two statistical indices (kurt2 & p2p) are investigated

for the corresponding fault.
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Figure 6.22 Scale factor effect on curve length transform (kurtosis).
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Figure 6.23 Scale factor effect on curve length transform (peak to peak).

As it is seen from Figure 6.22 & Figure 6.23, scale factor values does not affect

the kurtosis and peak to peak values.

6.3.2 Unbalance Fault

Two statistical indices (standard deviation and peak to peak) are investigated for

the corresponding fault.

As it is seen from Figure 6.24 and Figure 6.25, changing scale factor values does
not affect the kurtosis and standard deviation values up to shaft speed of 1250 rpm.
Further increase in the shaft speed changes the effect of scale factor. It can be

concluded that increase in the scale factor value causes an increase in the ratio values

at the speed that are higher than 1250 rpm.
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Figure 6.24 Scale factor effect on curve length transform (standard deviation).
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Figure 6.25 Scale factor effect on curve length transform (peak to peak).
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6.3.3 Inner Race Fault

For the inner race fault velocity data, two statistical parameters (standard
deviation and peak to peak) are investigated. The corresponding contours are

obtained as shown in Figure 6.26 and Figure 6.27.
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Figure 6.26 Scale factor effect on curve length transform (peak to peak).

From Figure 6.26, it can be observed that scale factor has different effects at
different shaft speeds for the peak to peak values. At 1250 rpm until the scale value
of 3, faulty/healthy ratio is constant. Further increase in the scale value causes the
ratio to increase. At other shaft speeds as the scale factor increases faulty/healthy

ratio stays constant.

From Figure 6.27, it can be observed that scale factor has same effect with peak to
peak value of inner race fault. At 1250 rpm until the scale value of 7, faulty/healthy
ratio is constant. Further increase in the scale value cases the ratio to increase. As the

scale factor increases at other shaft speeds, faulty/healthy ratio stays constant.
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Figure 6.27 Scale factor effect on curve length transform (standard deviation).

6.4 Comparisons of 6™ Moment & Kurtosis on Vibration Signal

In this study, 6™ moment of the probability density function, which is more

sensitive to the changes, is investigated on the run out vibration signals.
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Figure 6.28 Statistical indices of raw velocity data for 3 mm run out error.
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Figure 6.30 Statistical indices of CLT with C velocity data for 3 mm run out error.

From Figures 6.28-6.30, the behavior of the 6™ normalized moment for the shaft
misalignment is investigated. In theory, Takeyasu and Higuchi derived 6"
normalized moment as an alternative time parameter to Kurtosis and in their survey
and they proved that 6" normalized moment is much more sensitive than the

Kurtosis by using numerical examples. In the above two figures which are related



61

with curve length transform, 6" normalized moment has a more sensitive behavior to

a fault when compared with Kurtosis.



CHAPTER SEVEN
FREQUENCY DOMAIN ANALYSIS

In the experiments, three different types of faulty conditions (shaft misalignment,
unbalance, inner race fault) are investigated. Each of the malfunctions has
characteristic rotational frequency. These characteristics frequencies are used to
identify the bearing defect (inner race), shaft misalignment and unbalance condition

in the frequency spectrum of a time signal.

7.1 Bearing Characteristic Frequencies

Bearing characteristic frequencies are known as the defect frequencies. These
frequencies indicate the location of faults, if there is as defect on any components of
rolling element bearing. In the faulty situation, these frequencies are observed in the
frequency spectrum. These frequencies depend on rolling element bearing geometry,
number of rolling element and shaft rotational speed. Bearing characteristic
frequencies were calculated by the formula given in equations 7.1. (Tandon, &
Choudhury, 1999). The properties of the rolling element bearing used in this study
are given in Figure 7.1. and Table 7.1.

A %

Lh |

Oy F | d {1 T E | D

Figure 7.1 Geometry of rolling element bearing (FAG NU306-E-TVP2).
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Table 7.1 Geometrical parameters of FAG NU306-E-TVP2.

d (inner diameter) 30 mm
D (outer diameter) 72 mm
B (width) 19 mm
D, 59,2 mm
E 62,5 mm
F 40,5 mm
Z(#of rolling element) 12
Contact Angle(a) 0 degree

In this study inner race fault was investigated. Corresponding characteristic inner

race fault frequency which is denoted by f; is given below.

Zf d
f; == 1+—L2cosa (7.1)
2 d

m

The unkonwn symbols used in above equations are

f; : shaft speed
fi : characteristic frequency of inner race

dm : pitch diameter

dy, : ball diameter

According to above equation, inner race fault frequency of FAG Cylindrical roller
bearing NU306-E-TVP2 is calculated for each shaft speed. The bearing characteristic

frequencies for different shaft speeds are given Table 7.2.
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Table 7.2 Inner race defect frequencies of FAG NU306-E-TVP2.

Shaft speed(rpm) f; [Hz]
750 91,02
1000 121,36
1250 151,70
1500 182,04
1750 212,38

7.2 The Fast Fourier Transform

The frequency contents of the vibration signals are calculated by the Fast Fourier
Transform (FFT). The FFT’s of the experimental vibration signals are calculated by
MATLAB software. For a continuous time signal, the Fourier transform is calculated

by the equation given below.
F(io) = j f(t)e ' dt (7.2)

If vibration signal is a discrete signal having n samples, the Fast Fourier

Transform is calculated as

_2r(k-D)*(i-D)

X(K) = ix(i)e n 1<k<n (7.3)

where n is the number of sample

7.3 The Fast Fourier Transform Application For Inner Race Defect Case

In the first step, the vibration velocity signals are examined. The fast Fourier

transform is performed on the corresponding data and the frequency spectrum is
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obtained. In the frequency spectrum, it is observed that characteristic inner race fault
frequency cannot be seen for velocity data. For example, at 750 rpm shaft speed,
inner race fault frequency is 91 Hz. However, there is no frequency component at
that frequency as it can be seen from Figure 7.2. In the further step, vibration
acceleration signals are examined and the fast Fourier transform is performed on

data. It is observed that characteristic inner race fault frequency can be seen in the

FFT of the acceleration data.
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Figure 7.2 FFT of the velocity signal (shaft speed: 750 rpm).

As it is mentioned before, the characteristic fault frequencies can be seen in the
vibration acceleration signals. Therefore, further analysis is focused on acceleration
signals for the corresponding inner race fault for each shaft speed. Furthermore, FFT
of the healthy condition vibration signals also are presented for comparison purposes

below from the Figures 7.3 to Figure 7.12 repeatedly.
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Figure 7.3 FFT of the healthy condition - acceleration signal (shaft speed: 750 rpm).
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Figure 7.4 FFT of the inner race fault - acceleration signal (shaft speed: 750 rpm).
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Figure 7.6 FFT of the inner race fault - acceleration signal (shaft speed: 1000 rpm).
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Figure 7.8 FFT of the inner race fault - acceleration signal (shaft speed: 1250 rpm).
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Figure 7.9 FFT of the healthy condition - acceleration signal (shaft speed: 1500 rpm)
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Figure 7.10 FFT of the inner race fault - acceleration signal (shaft speed: 1500 rpm).



2D T T T T T T T
@ 10F .
=
E—
< [0
_1|:| 1 1 1 1 1 1 1
a 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
Time(s)
15 T T T T
2 1r
E 05+
I:I 1 1 1
o a0 100 160 200 280
Frequency [(Hz)
Figure 7.11 FFT of the healthy condition - acceleration signal (shaft speed: 1750 rpm).
'dD T T T T T T T
& 0r .
=
E—
< 0
_2':' 1 1 1 1 1 1 1
0.05 0.1 015 0.2 0.25 0.3 035 0.4
Timeis)
2 T T T T
15 | ﬁ —
5
= 1t -
< !
T
0.5
I:I 1 1 1 I
o a0 100 160 200 280

Fregquency [(Hz)

Figure 7.12 FFT of the inner race fault - acceleration signal (shaft speed: 1750 rpm).
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From the Figures (from Figure 7.3 to Figure 7.12), time vs amplitude and
frequency spectrums are given for both healthy cases and the inner race fault cases.
From the corresponding figures, characteristic inner race frequency can be seen
clearly. For example, for the shaft speed 1750 rpm the corresponding inner race fault
frequency is 212 Hz. From the Figure 7.12, it is seen that there is a peak at that

frequency.

7.4 The Short Time Fourier Transform (STFT)

The Short Time Fourier Transform of a time signal x(t) is described by Eq.(7.4)
and further information about the STFT can be obtained from the study of Misiti M.,
Misiti Y., Oppenheim and Poggi (1997).

X(z,0) = j"; x(Oa(t —7)e "™ dt (7.4)

where ® is the window used in the transformation. The STFT is a joint time-
frequency transformation and gives the frequency contents of a time signal with their

occurrence times.
The Short Time Fourier Transforms (STFT) of experimental vibration signals are

calculated by MATLAB’s spectrogram command in order to show the time

dependence of the frequency components.
7.5 STFT Application For Inner Race Defect Case

The short time Fourier transform is applied on the vibration data for inner race

fault. Both the velocity and the acceleration signals are investigated.
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7.5.1 STFT of Velocity Signal For Inner Race Defect Case

The short time Fourier transform of velocity responses for the inner race defect
case are given from Figure 7.13 to Figure 7.16. In the transform, window length is

chosen to get the optimum time and frequency resolution.

At 750 rpm shaft speed, characteristic inner race fault frequency is 91 Hz. From
Figure 7.13., it is not clear to see corresponding characteristic frequency component.
There is no dark red area which shows the highest amplitude at that frequency in the
spectrum. In the FFT of the same data (Figure 7.2), there is a high amplitude

frequency component near 50 Hz. This situation is also observed from Figure 7.13.

Vel.Data for 750 rpm (Defect on inner race )

Frequency (Hz)

a0

0.0s EI.W

015 02 0.2
Time (Seconds)

Figure 7.13 STFT of the velocity signal (shaft speed: 750 rpm).

At 1000 rpm shaft speed, characteristic inner race fault frequency is 121 Hz. From
Figure 7.14, it is not clear to see corresponding characteristic frequency component.

There is no dark red area at that frequency in the spectrum.



73
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Figure 7.14 STFT of the velocity signal (shaft speed: 1000 rpm).

At 1250 rpm shaft speed, characteristic inner race fault frequency is 151 Hz. From

Figure 7.15, it is not clear to see corresponding characteristic frequency component.

There is

Frequency(Hz)

no dark red area at that frequency in the spectrum.

Vel.Data for 1250 rpm (Defect on inner race )
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Figure 7.15 STFT of the velocity signal (shaft speed:1250 rpm).
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At 1500 rpm shaft speed, characteristic inner race fault frequency is 182 Hz. From

Figure 7.16, it is hard to see the characteristic fault frequency from the spectrum.

Vel.Data for 1500 rpm (Defect on inner race )
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Figure 7.16 STFT of the velocity signal (shaft speed:1500 rpm).

At 1750 rpm shaft speed, characteristic inner race fault frequency is 212 Hz. From
Figure 7.17, it is seen that there is a faulty condition between 0.15 s — 0.25 s time

interval. However, around 30 Hz there is a frequency component (rotation speed),
which has the highest amplitude in the spectrogram.
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Figure 7.17 STFT of the velocity signal (shaft speed: 1750 rpm).

7.5.2 STFT of Acceleration Signal For Inner Race Defect Case

The short time Fourier transform of acceleration responses for the inner race

defect cases are given from Figure 7.18 to Figure 7.22. In the transform, window

length is chosen to get the optimum time and frequency resolution.

Analysis starts at 750 rpm shaft speed. In that shaft speed, characteristic inner

race fault frequency is 91 Hz. From Figure 7.18, it is clearly seen that the darkest
area is at that frequency.
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Figure 7.18 STFT of the acceleration signal (shaft speed: 750 rpm).
At 1000 rpm shaft speed, characteristic inner race fault frequency is 121 Hz and it

is difficult to see the characteristic fault frequency from the spectrum.
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Figure 7.19 STFT of the acceleration signal (shaft speed: 1000 rpm).
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At 1250 rpm shaft speed, characteristic inner race fault frequency is 151 Hz. From

Figure 7.20, corresponding frequency components can be seen between 0-0.05
seconds time interval.

Acc.Data for 1250 rpm (Defect on inner race )
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Figure 7.20 STFT of the acceleration signal (shaft speed: 1250 rpm).

At 1500-rpm shaft speed, characteristic inner race fault frequency is 182 Hz.
From Figure 7.21, there are two frequency components which have the highest
amplitudes. Moreover, it is again clearly seen that the one of the darkest area (182

Hz) is related with the corresponding frequency between 0-0.1 seconds time interval.
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Acc.Data for 1500 rpm (Defect on inner race )
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Figure 7.21 STFT of the acceleration signal (shaft speed : 1500 rpm ).

At 1750 rpm shaft speed, characteristic inner race fault frequency is 212 Hz.

Corresponding frequency component can be seen from Figure 7.22.
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Figure 7.22 STFT of the acceleration signal (shaft speed : 1750 rpm).



CHAPTER EIGHT
WAVELET ANALYSIS

8.1 The Definition of Wavelet Transform

Wavelet is a mathematical function used to divide a given function or continuous-
time signal into different scale components. Usually one can assign a frequency
range to each scale component. Each scale component can then be studied with a
resolution that matches its scale. A wavelet transform is the representation of a
function by wavelets. The wavelets are scaled and translated copies (known as
"daughter wavelets") of a finite-length or fast-decaying oscillating waveform (known
as the "mother wavelet"). Wavelet transforms have advantages over traditional
Fourier transforms for representing functions that have discontinuities and sharp
peaks, and for accurately deconstructing and reconstructing finite, non-periodic
and/or non-stationary signals. Moreover, wavelet transform provides time-frequency

representation.

In this study, the continuous wavelet transform is used to overcome the resolution
problem of short time Fourier transform. The wavelet analysis is done in a similar
way to the short time Fourier transform analysis, in the sense that the signal is
multiplied with the wavelet funcion, similar to the window function in the STFT, and
the transform is computed separately for different segments of the time-domain
signal. However, there are differences between the STFT and the CWT in such a
manner that the Fourier transforms of the windowed signals are not taken, and
therefore single peak will be seen corresponding to a sinusoid, i.e., negative
frequencies are not computed and the width of the window is changed as the

transform is computed for every single spectral component.

The continuous wavelet transform is defined as follows,

CWT.(a,b) = f‘; X v (0)dt (8.1)
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hy (1) = % h(%j (8.2)

Where a (a>0) and b denote dilation and translation parameters respectively and *
represents complex conjugation. The family h,(t) is constructed by dilation and
translation of a function h(t) (mother wavelet) (Oztiirk, Yesilyurt and Sabuncu,
2010).

Figure 8.1 Morlet wavelet.

In this study, wavelet transform is performed by morlet wavelet as a mother

wavelet (Figure 8.1.). Morlet wavelet in general defined as the equation below:

h(t) = e/ Y (8.3)

where f, is wavelet centre frequency.
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8.2 Scale Frequency Relationship

In the wavelet transform, it is more convenient to use scale and time parameters.
The parameter scale in the wavelet analysis is similar to the scale used in maps. As in
the case of maps, high scales correspond to a non-detailed global view (of the
signal), and low scales correspond to a detailed view. Similarly, in terms of
frequency, low frequencies (high scales) correspond to a global information of a
signal (that usually spans the entire signal), whereas high frequencies (low scales)
correspond to a detailed information of a hidden pattern in the signal (that usually
lasts a relatively short time). However, the question arise here how one can convert
scale to frequency. The answer can only be given in a broad sense and it's better to

speak about the pseudo-frequency corresponding to a scale.

The center frequency, f., of the wavelet can be calculated as below,

0A (8.4)

where,
a is a scale
A is the sampling period

f., is the pseudo-frequency corresponding to the scale a, in Hz
f.. is the center frequency of a wavelet in Hz
In the wavelet transform, the mother wavelet (morlet) center frequency is taken as

0.796 Hz. Therefore, frequency-scale conversion calculations are made by using

corresponding center frequency.



Table 8.1 Scale frequency conversion (shaft speed)

Shaft Speed
Shaft Speed (rpm) (Hz) Scale Value(a)
750 12,50 163,02
1000 16,67 122,27
1250 20,83 97,81
1500 25,00 81,51
1750 29,17 69,87

Table 8.2 Scale frequency conversion (inner race fault characteristic frequency)

Shaft Speed (rpm)

Inner Race Fault Frequency (Hz)

Scale Value(a)

750 91,02 22,39
1000 121,36 16,79
1250 151,7 13,43
1500 182,04 11,19
1750 212,38 9,59
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The tables (Table 1 & Table 2) are useful tool in interpretation of the wavelet

scalograms. Because in the scalograms, scale and time parameters are configured and

corresponding conversion will help to find fault frequencies.

8.3 CWT Application for Healthy Case

The Continuous Wavelet Transform is applied on the healthy condition

acceleration data. The corresponding 2D and 3D scalograms are obtained by using

MATLAB’s cwt command. They can be used as a comparison tool in interpretation

of the faulty condition scalograms.

From Figure 8.2 to Figure 8.6 it can be seen that healthy system has also some

frequency components showing faults. However, their amplitudes are relatively small

compared with the faulty case. For example, from Figure 8.2 it can be seen that

coefficients peak value is nearly half of the faulty case.
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Figure 8.2 Scalogram of acceleration data for the healthy case at 750 rpm.
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CWT of Acc Data at 1000 rpm (Healthy Case)
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Figure 8.3 Scalogram of acceleration data for the healthy case at 1000 rpm.
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Figure 8.4 Scalogram of acceleration data for the healthy case at 1250 rpm.
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CWT of Acc. Data at 1500 rpm (Healthy Case)
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Figure 8.5 Scalogram of acceleration data for the healthy case at 1500 rpm.
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Figure 8.6 Scalogram of acceleration data for the healthy case at 1750 rpm.
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8.4 CWT Application for Inner Race Fault Case

The Continuous Wavelet Transform is applied to inner race fault case’s
acceleration data. The corresponding 2D and 3D scalograms are obtained by using

MATLAB’s ewt command (from Figure 8.7 to Figure 8.11).

CWT of Acc. Data at 750 rpm (Inner Race Fault)
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Figure 8.7 Scalogram of acceleration data for the inner race fault at 750 rpm.
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At 750-rpm shaft speed, characteristic inner race fault frequency is 91 Hz. By
using Table 8.2, it can be seen that this frequency corresponds to the scale value of

22. Corresponding fault frequency can be seen from Figure 8.7.

CWT of Acc. Data at 1000 rpm (Inner Race Fault)
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Figure 8.8 Scalogram of acceleration data for the inner race fault at 1000 rpm.
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At 1000 rpm shaft speed, characteristic inner race fault frequency is 121 Hz. By
using Table 8.2, it can be seen that this frequency corresponds to the scale value of

16. Corresponding fault frequency can be seen from Figure 8.8.

100 200 300 A00 500 GO0 700 500 900 1000
Time

Time

Figure 8.9 Scalogram of acceleration data for the inner race fault at 1250 rpm.
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At 1250 rpm shaft speed, characteristic inner race fault frequency is 151 Hz. By

using Table 8.2, it can be seen that this frequency corresponds to the scale value of

13. Corresponding fault frequency can be seen from Figure 8.9.
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Figure 8.10 Scalogram of acceleration data for the inner race fault at 1500 rpm.
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At 1500 rpm shaft speed, characteristic inner race fault frequency is 182 Hz. By

using Table 8.2., it can be seen that this frequency corresponds to the scale value of

11. Corresponding fault frequency can be seen from Figure 8.10.
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Figure 8.11 Scalogram of acceleration data for the inner race fault at 1750 rpm.
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At 1750 rpm speed, inner race fault frequency is 212 Hz. and this frequency

corresponds to the scale value of “9”. Corresponding fault frequency can be seen

from Figure 8.11

In addition to acceleration data, velocity data’s scalograms are examined for the

corresponding inner race fault detection. However, the velocity data are not

successful for inner race fault as acceleration data. The characteristic frequency of

the inner race fault cannot be seen from the Figure 8.12.
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Figure 8.12 Scalogram of velocity data for the inner race fault at 750 rpm.
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8.5 CWT Application for Inner Race Fault with Unbalance Case

The Continuous Wavelet Transform is applied on the inner race fault with
unbalance case’s velocity and acceleration data. The corresponding 2D and 3D
scalograms are obtained by using MATLAB’s cwt command (from Figure 8.13 to

Figure 8.16).
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Figure 8.13 Scalogram of acceleration data for inner race fault with unbalance case at 750 rpm.
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At 750 rpm shaft speed, characteristic inner race fault frequency is 91 Hz. and the
corresponding scale value is 22. Moreover, by using Table 8.1 unbalance fault
frequency (shaft rotating speed) is 12.5 Hz and corresponding scale value is 163. It is
seen from Figure 8.14 (CWT of velocity data), inner race fault frequency cannot be

seen; however, unbalance fault frequency can be seen clearly.

CWT of Vel. Data at 750 rpm (Inner Race Fault with Unbalance )
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Figure 8.14 Scalogram of velocity data for the inner race fault with unbalance case at 750 rpm.
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At 1500 rpm shaft speed, unbalance fault frequency is 25 Hz and inner race fault
frequency is 182 Hz. From Table 8.1 and Table 8.2 their scale values are 82 and 11
respectively. After applying cwt to the acceleration data at 1500 rpm shaft speed,
Figure 8.11 is obtained. The unbalance fault frequency and inner race characteristic

frequency can be seen clearly in the corresponding scalogram.

CWT of Acc. Data at 1500 rpm (Inner Race Fault with Unbalance)
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Figure 8.15 Scalogram of acc. data for inner race fault with unbalance case at 1500 rpm.
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After applying cwt to the velocity data at 1500 rpm shaft speed, Figure 8.12 is
obtained. The unbalance fault frequency can be seen clearly however, inner race

characteristic frequency is not visible in the corresponding scalogram.

CWT of Vel. Data at 1500 rpm (Inner Race Fault with Unbalance)
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Time

Figure 8.16 Scalogram of vel. data for inner race fault with unbalance case at 1500 rpm.



CHAPTER NINE
CONCLUSIONS

The condition of the rotating system having three main defects (shaft
misalignment, unbalance, and inner race defect on cylindrical rolling bearings) is
monitored experimentally by vibration analysis. Vibration measurements are
performed at different rotational speeds and different fault conditions. The
effectiveness of the time domain parameters on the fault diagnosis is investigated.
Time domain parameters are applied to velocity and acceleration responses of the
test apparatus for healthy and faulty cases and their ratios (faulty/healthy) are
investigated. In the scope of this study, the curve length transform, which is a non-
linear time based transform, is applied to the vibration signals. The effectiveness of
the curve length transform on different kind of fault conditions is sought and scale
factor effect on the curve length transform is determined. Furthermore, frequency
analysis is performed on the vibration signals. Characteristic defect frequencies are
sought on the frequency domain of the vibration signal. Furthermore, time-frequency
representations of vibration signals are investigated by using STFT and Wavelet

Transforms.

From the experimental results presented in this study, the following points of

discussion are summarized:

e The velocity and acceleration responses of a structure including rolling
element bearing can be used for defect detection with proper time domain
parameters. The usage of acceleration response gives better results for
shaft misalignment, inner race fault and their conjunctive conditions.
However, velocity response gives better results for unbalance and

unbalance & inner race combined fault conditions.

e Generally, the ability of showing faulty condition for time domain

parameters changes with rotational speed.

e Standard deviation and peak to peak values give better results for detecting

the three types of fault in raw vibration velocity data.
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Kurtosis and alfa give better results in run out and inner race fault cases
for the raw vibration acceleration data. However, standard deviation and
peak to peak gives better results for unbalance case in raw vibration

acceleration data.
In unbalance fault, velocity data give better results for detecting the fault.

For run out and inner race fault, acceleration data give better results for

detecting the fault.

Generally, the curve length transform gives better results for detecting the

defects.

Kurtosis (kurt2) values give better results for detecting the faults for run

out case after the curve length transform.

6" normalized moment is much more sensitive than kurtosis in fault

detection.

The scale factor does not affect the faulty/healty ratio for run out and inner

race fault case.

Increase in the scale factor value causes the faulty/healthy ratio to

increase at higher shaft speed for unbalance case.

The characteristic fault frequency for inner race fault cannot be seen in
FFT of velocity data, however can be clearly seen in FFT of acceleration

data.

The characteristic fault frequency for inner race fault cannot be seen in
STFT of velocity data, however can be clearly seen in STFT of

acceleration data.

The short time Fourier transform gives an idea about the existence of a
defect in the bearing, however the resolution problems in both time and

frequency domains exist.
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The continuous wavelet transform gives better results about time instance

and frequency of the fault.

The characteristic inner race fault frequencies cannot be seen in CWT of

velocity data; however it can be clearly seen in CWT of acceleration data.

The coefficients obtained by CWT increase as the shaft speed increases

both in inner race fault and unbalance condition.

In the combined fault experiment (inner race with unbalance), at the low
shaft speeds, acceleration signal shows only inner race fault and velocity
signal shows only unbalance fault. At the high speeds, unbalance fault can

be seen both in velocity and acceleration data.
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