BUSINESS PROCESS AUTOMATION WITH
MODEL DRIVEN DEVELOPMENT

A Thesis Submitted to the
Graduate School of Natural and Applied Sciences of Dokuz Eyliil University
In Partial Fulfillment of the Requirements for the Master of Science in

Computer Engineering

by
Emrecan SEZEN

September, 2010
IZMIR

M.Sc THESIS EXAMINATION RESULT FORM

We have read the thesis entitled “BUSINESS PROCESS AUTOMATION WITH
MODEL DRIVEN DEVELOPMENT” completed by EMRECAN SEZEN under
supervision of ASST. PROF. DR. DERYA BIRANT and we certify that in our opinion

it is fully adequate, in scope and in quality, as a thesis for the degree of Master of

Science.

Asst. Prof. Dr. Derya Birant

Supervisor

Prof. Dr. Alp Kut Asst. Prof. Dr. Reyat Yilmaz

(Jury Member) (Jury Member)

Prof.Dr. Mustatfa SABUNCU
Director
Graduate School of Natural and Applied Sciences

il

ACKNOWLEDGMENTS

I would like to thank to my supervisor, Asst. Prof. Dr. Derya Birant, for her support,
supervision and useful suggestions throughout this study. I am also highly thankful to

Dr. Kokten Ulas Birant for his valuable suggestions throughout study.

I owe my deepest gratitude to my family. This thesis would not have been possible

unless their unflagging love and support.

Special thanks are directed to TUBITAK for their financial support throughout two

years. Thanks to TUBITAK BIDEB, I could attain necessary hardware and software

equipments and I could allocate more time to my thesis.

Emrecan SEZEN

il

BUSINESS PROCESS AUTOMATION WITH MODEL DRIVEN
DEVELOPMENT

ABSTRACT

Model is an abstraction of a system or a part of it and provide us a way to control and
manage systems from higher abstraction levels. Model Driven Architecture (MDA) is a
framework defined by Object Management Group (OMG) to use visual models as a
single resource for software developers. Abstraction levels has reached the highest point
in software industry with the evolution of MDA framework. MDA defines some
abstraction levels in models where each level corresponds to a different concern.
Abstraction levels from the highest to the lower can be listed as follows: Computation
Independent Model (CIM), Platform Independent Model (PIM) and Platform Specific
Model (PSM).

Aside from modeling, there are still programming problems, which are named cross-
cutting concerns, that can not be solved clearly using traditional programming
techniques such as Object Oriented Programming (OOP). Aspect Oriented Programming
(AOP) approach provides some mechanisms to solve these cross-cutting concerns in a
more effective and modular way. Aspect-oriented constructs: join point, pointcut,
advice, aspect, aspect weaver make it possible to better program cross-cutting concerns.
Aspect] is the most popular general purpose AOP implemention which offers a great

deal of power and improved modularity.

Because the most attention is being made on the programming languages level
(Aspect], Hyper/J ... etc) in AOP environment, this has been an hindrance on the
evolution of Aspect Oriented Modeling (AOM) which aims to make modeling of aspects
in an easy and effective way. AOM is still in process and there are works for AOM

which focus on techniques for the identification, analyses, management and

v

representation of cross-cutting concerns in the modeling phase. Because solutions from
different tool vendors are different than each other, this hinders the full adoption of

Aspect Oriented Modeling to the software modeling area.

Keywords: Model Driven Architecture, Model Driven Development, Aspect Oriented

Software Development, Aspect Oriented Modeling, Software Engineering

IS SURECLERININ MODEL YONELIMLI YAZILIM GELiSTIRME
METODOLOJISIi iLE OTOMASYONU

0z

Model bir sistemin ya da sistem pargasinin soyut halidir ve modeller araciligi ile
sistemlerin daha yliksek soyutlama seviyelerinden kontrolleri ve yonetimleri saglanir.
Model Yonelimli Mimari (MDA) yazilim siireglerindeki tiim asamalar tek bir gorsel
model iizerinden yliriitmeyi amaglayan ve standartlar1 Object Management Group
(OMQG) tarafindan belirlenen bir mimaridir. MDA ile birlikte yazilimdaki soyutlama
seviyeleri tarithindeki en yiiksek noktaya gelmis bulunmaktadir. MDA yazilimdaki
soyutlama seviyelerini birden fazla seviyeye bdlerek, her bir seviyenin kendine has
problemler ile ilgilenmesi fikrini getirmistir. Bu soyutlama seviyeleri en soyuttan en az
soyuta olacak sekilde sOyle siralanabilir: bilgisayar bagimsiz model (CIM), platform
bagimsiz model (PIM), platform bagimli model (PSM).

Gorsel modellemedeki gelismeler bir yana, su asamada halen mevcut programlama
yaklasimlar1 ile modiiler bigimde c¢oziilemeyen problemler bulunmaktadir. Bu
problemlerin mevcut programlama yaklagimlar1 ile ¢dziimiinde, mevcut uygulama
tekrarlayan kod bloklarindan dolayr karisik ve anlasilmasi zor bir hal almaktadir. Bu
problemlere enine kesen (cross-cutting) problemler denmektedir. Ilgi Yonelimli
Programlama (AOP), bu tlirden problemlerin yazilim seviyesinde modiiler bicimde
¢oziimii icin etkili mekanizmalar igermektedir. Bu mekanizmalara birlesim noktalari,
birlesim nokta kiimeleri, tavsiyeler, ilgiler, ilgi dokuyucular1 6rnek olarak gdsterilebilir.
AOP yaklagimini gerceklestiren en yaygin ve hakim programlama dili Aspect] dilidir.
Bu dil araciligi ile, mevcut uygulamay:r enine kesen problemlerin ¢6ziimii kodda

karigiklik saglamayacak sekilde yapilabilmektedir.

vi

Ilgi yonelimli programlama ile ilgili ¢alismalarm sadece programlama dilleri
seviyesinde kalmasindan dolayi, programlama dillerine gore bir iist soyutlama
seviyesinde yer alacak olan, ilgilerin gorsel olarak modellenmesi konusuna yeterli ilgi
gosterilmemistir. Bu konu ile ilgili g¢esitli c¢alismalar bulunmakla birlikte,
standartlasmanin heniiz olmamasindan dolayi, bir iirlinde iiretilen bir modelin bagka bir
irinde kullanilmasinda zorluklar yasanmaktadir. Bu durum da, ilgilere yonelik

modellemenin ilerlemesine engel olusturmaktadir.

Anahtar sozciikler: Model Gilidiimli Mimari, Model Giidiimlii Gelistirme, Cepheye
Yonelik Yazilim Gelistirme, Cepheye Yonelik Modelleme, Yazilim Miihendisligi

vil

CONTENTS

Page

M.Sc THESIS EXAMINATION RESULT FORMccccooiiiiiiiniiiieeieeieeie e il
ACKNOWLEDGMENTS ..ottt sttt ettt il
ABSTRAC T ..ottt st sttt sttt et saeeae e v
OZ ettt vi
CHAPTER ONE — INTRODUCTION.....uucivvirsrnrsrnssnnsseisssissanssssssssssssssssssssssssssssssasssses 1
| O 413 (o7 L1 o110)3 OSSR 1
CHAPTER TWO — MDA ...ccouuiiiininsicsenssenssses 4
2 B Y/ 1D VAN B) 01V 12) 4 SRS 4
2.2 Advantages Of MDAoo oo e 8
2.3 Disadvantages 0f MDAccoooiiiieeee e s 10
2.4 MDA PIOCESS....ceeiuieeieiieeiieeeite et sttt e st te st e eteestte e st e esteesatteesaessaeeenaeenaseesnees 11
2.5 Key Standards for MDAcouioiiiiieciecie e s 16
2.5.1 Meta Object Facility (MOF)...cccvooiiiiiiieieeceeeeeeeee e 17
2.5.2 XML Metadata Interchange (XMI) ..c..oevuerviiiniieniiniiieeeeieee 19
253 Common Warehouse Metamodel (CWM)ooouvviiviiiiiniieeniiiiceiceee. 22
254 Unified Modeling Language (UML)cccocceiviiiiiiiinieieeeieeeee 24

2.6 MOF MEalEVElScccviiiiiieiiieie ettt e e e e saaae e 27
2.7 MOTE UML ..ottt et e e e st ee e ente e e esreaesennaaeeenns 30
CHAPTER THREE - ASPECT-ORIENTED PROGRAMMING (AOP).......ccucc.. 42
R BN @) o B <) 3313 o) 4 BSOS 42
3.2 AOP 1elated teImS.eeuvieeiieiieieeieeiteee ettt ettt e ae e enaeenne s 44
3.3 AOP Challenges.c.eeoveeiieiieieeiieite ettt ettt ae e aa e se e s ensaennees 48

3i4 ASPECT e et e et en 53

34.1 Join points and POINECULSeeviieiiiiieiie e 55
342 AGVICE .ottt 59
343 AASPECE ittt e e s e e sbe e e st e e e ntae e e traeeenraaeeanns 61
CHAPTER FOUR - AOP in MDAcoiiniinvinivensnnssnnsssisssisssnsssssssessssssssssssssssssssssssns 62
4.1 AOP in MDA APPIrOaChcccuviiiiiiiiiietie ettt e 62
4.2 Work 1: Weaving Security Aspects into UML 2.0 Design Models 65
4.3 Work 2:Designing and Weaving Aspect-Oriented Executable UML Models . 70
4.4 Our Aspect Modeler Tool (AspectModeler).........cceeceeeiieeniieriiienie e 76
4.4.1 INPUE MOEIS......viiiiiiciieee et e 81
4.4.2 Poincut MOdelingooeuiieiiiiiiieieee et e &3
443 POINECUL LIST .ottt 84
4.4.4 AdVICE MOAEIINGeiiiiieiiieiieeeee e e 85
4.4.5 AQVICE LAST ..ottt 86
4.4.6 Aspect Definitionccccoeveiiiiiiieiiece e 87
CHAPTER FIVE - CONCLUSION & FUTURE WORKcccceeeinnuecsnncsanssansssens 92
5.1 CONCIUSION .ttt sttt sttt e b e enbeenaeas 92
5.2 FUtUre WOTK..oooioiiiiie ettt e 93

REFERENCEScuiiiiniintiniiicnnecssnnnssiicsnsssssiesssisssassssss 95

CHAPTER ONE

INTRODUCTION

1.1 Introduction

“Model is an abstraction of a system or a part of it.” (Gally, 2007). Models provide us
a way to control and manage systems from higher abstraction levels. The history of

modeling is as long as the history of programming.

Today, abstraction levels in software projects are at the highest point in the history.
Programmers do not program anymore, instead they use visual models to design their

projects.

Model Driven Development (MDD) is an approach to software development to use
visual models as a single resource for software developers. All the task is done on the
visual model and other software related outputs (source code, documentation, test
code ... etc.) are automatically generated from the source model. This dramatically
increases software product quality and software developer’s productivity. Model Driven

Architecture (MDA) defines standarts for Model Driven Development.

Model Driven Architecture (MDA) process defines some abstraction levels in models
where each level corresponds to a different concern. Abstraction levels from the highest
to the lower can be listed as follows: Computation Independent Model (CIM), Platform
Independent Model (PIM) and Platform Specific Model (PSM).

Aside from modeling, there are still programming problems, which are named cross-
cutting concerns, that can not be solved clearly using traditional programming

techniques such as Object Oriented Programming (OOP). Aspect Oriented Programming

technique provides some mechanisms to solve cross-cutting concerns in a more effective
and modular way. Some of these mechanisms are such that: join point, pointcut, advice,
aspect, aspect weaver, inter-tpe declaration, context exposing ...etc. These mechanisms
make it possible to better program cross-cutting concerns by seperately specifying these

concerns and then weave or compose them together into a coherent implementation.

Aspect Oriented Programming is growing rapidly and it is used in many areas, such
as middle-ware, security, fault tolerance, quality of service, and operating systems ...etc.
AOP is not yet a fully mature discipline and needs to be used in more applications to be

improved.

Gregor Kiczales and colleagues at Xerox PARC developed Aspect] as the most
popular general purpose AOP implementation and made it available in 2001. Aspect
Oriented Programming in language Aspect] offers a great deal of power and improved

modularity.

For an experienced Java developer to become familiar with Aspect] language syntax
is so simple because the Aspect] language uses Java programming language as base.
When AspectJ language specific constructs are learned, writing the whole aspect code is

the composition of the Java code and Aspect] language constructs.

Because the most attention is being made on the programming languages level
(Aspect], Hyper/J ... etc) in AOP environment, this has been an hindrance on the
evolution of Aspect Oriented Modeling (AOM) which aims to make modeling of aspects
in an easy and effective way. There are works in AOM which focus on techniques for
the identification, analyses, management and representation of cross-cutting concerns in
the modeling phase by using UML extension mechanisms (UML Profiles). Becasue
UML does not support Aspect Oriented Modeling in its standard specification, UML

profiles generated by different tool vendors are different than each other. This hinders

the full adoption of Aspect Oriented Modeling to the software modeling area. As a result,

model transformation languages lack stability and maturity to deal with UML Profiles.

We have designed and developed an aspect modeler tool named AspectModeler that
allows the definition of aspects in a practical and efficient way. This tool eliminates
some steps that are necessary in other approaches. AspectModeler has a number of
interfaces; base model and aspect model representation, pointcut modeling, pointcut list,
advice modeling, advice list, aspect definition where each of the interfaces plays a
critical role to make aspect modeling easier. The output of AspectModeler is an aspect
file that is a valid Aspect] language code. To run the existing software system with
modelled aspects is simply as putting the generated aspect file into the existing project’s

design environment.

This thesis is divided into 5 chapters. In Chapter 1, the aim of the thesis is introduced.
In Chapter 2, MDA and MDA related standards are discussed detailed. In Chapter 3,
AOP approach and Aspect] as an AOP implementation are discussed detailed. In
Chapter 4, Aspect Oriented Modeling (AOM), related works for AOM and our aspect

modeler tool AspectModeler are discussed detailed. Last chapter presents conclusion.

CHAPTER TWO

MDA

2.1 MDA Definition

“Model is an abstraction of a system or a part of it.” (Gally, 2007). Models provide us
a way to control and manage systems from higher abstraction levels. The history of

modeling is as long as the history of programming.

First programmers coded instructions to the computer in 1s and Os which is named
machine code. Machine code only consist of 1s and Os and different bit patterns
correspond to different CPU (Central Processing Unit) instructions. Programmers had to
know very good knowledge about the CPU to correctly program it. Because first
programs were small and CPU capabilities were limited, it was possible to program

machine by using machine code.

An important software innovation called assembly language made programmers job
easy to program. Assembly language had an higher abstraction level than machine
language. It was more human readable than machine language. With the rise of
assembly language programmers were able to use simple mnemonics that the computer
understands such MOV AX, DX to move data from the D register to the A register. A tool
named assembler converted these simple mnemonics to 1s and Os instead of
programmers. Assembly language also made programs less prune to errors. Becase
programs were less prune to errors, the quality level increased. Assembly language made
writing more comprehensive programs such as payroll, billing ... etc. in shorter times.

The maintenance of the programs were also easy becasue the language itself.

With the advent of third-generation languages(3 GLs) abstraction levels dramatically
increased in programming. These languages, such as FORTRAN and COBOL, were
more powerful, more abstract, more human readable. Like assemblers, these
programming languages had language compilers to translate higher-level instructions to
machine codes. Instructions in these languages were abstract and understandable but
this was not the same as these intructions’ machine code equivalents. A simple

instruction could be represented with tens or hundreds lines of machine codes.

Programmers productivity increased with the increase of abstraction levels in
programming. Becase programming languages were more abstract, they were more
closer to the human thinking. For example, PRINT instruction in FORTRAN describes
the functionality of itself. But this is not the same as MOV AX, DX instruction in
assembly language if you don’t know the meanings of registers. Programmers started to
spent less time to find the correct instruction set with the increase of abstraction levels.

So the productivity also increased.

Today, abstraction levels in software projects are at the highest point in the history.
Programmers do not program anymore, instead they use visual models to design their
projects. “Visual models are simple sketches that don’t contain any relevant information

of the way the project is to be implemented.” (Igor & Jadranka, 2007).

In todays competitive business environment, software products must easily adopt to
new changes to be successful. Software firms that do not continuously improve the
operation, products, and services of their business do not have any chance to play a role
in the industry. With visual modeling approach, software products can easily adopt new
changes without any consistency problem. Because software developers see the big
picture with the help of visual models, consistency of software behaviour is under

control.

When working in a software project, we can draw pictures to visually model the
behaviour of a system or a part of it. Models are just pictures in this scenario and we
can not refer any semantic information by using these pictures. In this condition,
program codes are manually written by programmers with a programming language. In
this scenario, pictures can only be used for documentation to help other software related
business people to understand software behavour. But this removes the automation of
some task in the project lifecycle. If there would be a visual model as a single resource
for software developer to automate some task in the project lifecycle (source code

generation, documentation, ... etc.), it would certainly be better.

Model Driven Development (MDD) is an approach to software development to use
visual models as a single resource for software developers. All the task is done on the
visual model and other software related outputs (source code, documentation, test
code ... etc.) are automatically generated from the source model. This dramatically
increases software product quality and software developer’s productivity. Model Driven

Architecture (MDA) defines standarts for Model Driven Development.

Each abstraction level in programming history can be summarized as in Figure 2.1.

¢

Jnc:easingli
Levels of | Mode I-Driven
#hstlacthnll Architecture

Visual Modeling
Visual Editing

3GL Texiual Development

seudecode - 3GL Textual Modeling

ssembler - Textual Develepment

..

Figure 2.1 Abstraction levels in programming history

Model Driven Development (MDD) keeps you away from coding the program
manually. The generation of program code is done later in the software development
process by software tools that support MDD aproach. By the use of MDD approach, it is
possible to concentrate on the problem domain rather than implementation details.
Because the software industry produced powerful tools that support MDD approach, a

big portion of the program code can automatically be generated easily.

A case study on the use of MDA at Deutsche Bank Bauspar shows how MDD
approach is reducing the software ownership costs at major international corporations
(Watson, (n.d.)). This project involved a maintenance upgrade to an eighties-vintage
COBOL back-office mainframe running CICS & DB2, marrying it to a Web—based
front-end to give users sitting at 30.000 client machines in 1250 Deutsche Bank offices
across Germany access to details of their savings-and-loan accounts. A dozen or so
different kinds of software artifacts, including COBOL modules, Oracle database
schemas, DB2 database schemas, EJBs, XML-RPC interface definitions and Junit test
classes were all created using MDA techniques, with around 60% of the new business
logic and 90% of the database-related code being created this way. Figure 2.2 shows

code generation ratios at different layers of the project.

60% 40%

Front End Layer
Serviets/JS|

Business Layer
EJB

70% 70%

XMLIMQSeries
Mainframe

L=l Business Layer

90% Eeles 60%

Physical Layer
Physical Layer

Figure 2.2 Code generation ratios in Deutsche Bank’s MDA application

90%

The MDA technique seperates the system functionality from the implementation
details. MDA is a framework for Model Driven Development (MDD) defined by
Object Management Group (OMG). The focus is on the modeling task in MDA. You
create model first that is not understandable by the computers which is named
Computation Independent Model (CIM). After CIM you create model that can be
processed by computers which is named Platform Independent Model (PIM), this
model does not contain any platform specific information. After PIM you are ready to
create a model that has platform specific details which is named Platform Specific
Model (PSM). The conversion from PIM to PSM is done automatically by tools that
support MDA. When PSM is created, code generation can also automaticaly be done
without any human intervention. Software developers focus on the domain model rather

than writing thousand lines of program codes.

2.2 Advantages of MDA

Advantages of MDA can be summarized as follows:

e MDA-enabled tools automate the task of generating PSM from PIM and then
generating program code from PSM. This means that software developers
focus more on the domain model design and less on the implementation
details. This approch makes producing new applications faster, better and
cheaper.

e Not only business requirements transformed into the final implementation (
i.e. program code), but also non-business functional requirements such as
security, scalability issues are also transformed into the final implementation.

e Code generated by MDA-enabled tools is undoubtedly has a very high
quality. Code generated by MDA-enabled tools derives from libraries based
on patterns designed by the industry’s best developers. Meaning that

implementation has a very qualified architecture to do the best for
performance, scalability, security, ...etc.

MDA applications are portable because of the platform independent model
feature. Platform independent models designed by MDA-enabled tools can
easily be converted to platform specific representation that consist of the
current platform’s technological details.

“OMG has 15 years’ experience creating modeling standards, and includes all
the major modeling tools vendors and a host of end-user organisations in
diverse domains from manufacturing to medicine. “ (Watson, (n.d.)). This
feature of OMG makes MDA future-proof. When new platforms are
introduces, OMG will add mappings for these new platforms into the MDA
framework. And then tool ventors will implement these specifications in their
MDA enabled tools. So, MDA framework and MDA enabled tools will
continue to stay uptodate in future. Tool vendors have a critical role for this
issue.

In an MDA development project, attention focuses first on the application’s
business functionality and behaviour. This property of MDA makes software
products more value-added for the customer. Value-added product makes the
customer ready to become a bigger player in the industry. In MDA technique,
implementation (technical) details of the software project are also critical
but secondary to business functions. A big portion of these implementation
details can be generated automatically by MDA enabled tools. Software
developer sometimes may hand-code some technical details that MDA-
enabled tools can not generate automatically.

MDA application can interoperate. Because MDA is a standart of
specifications, MDA enabled tools follow these standarts to become
compatible with MDA framework. This feature makes MDA applications
interoperable, meaning that any MDA application can be moved from one

MDA enabled platform to another without any problem.

10

e MDA solves the documentation issue in a practical way. Keeping the
documents up to date with code is tedious and time-consuming. But with
MDA the models, code, and documentation are always in synchronization. As
an example The PathMATE Documentation Map (Duby, 2003) generates
custom documentation containing the models and their associated
descriptions.

e MDA allows the participation of system analysts, stakeholders, also
customers in a part of software development process. For example,
Computation Independent Model (CIM) of the business functionality can be
modelled, reviewed, refined with the contributions of system analysts,
stakeholders, customers. With this approach, some design errors can be

detected early in the design phase.

2.3 Disadvantages of MDA

e An MDD supporting infrastructure must clearly define how the model’s
elements represent real-world elements and software artifacts. Increased
complexity of the modeling languges can be a disadvantage for MDA. Tool
vendors must continuously take user feedbacks about which symbols are easy
to understand and which are not to make modeling easy.

e Generation of PSM from PIM, and generation of program code from PSM is
automated or semi-automated by MDA-enabled tools. Software developer
sometimes may hand-code some technical details that MDA-enabled tools can
not generate automatically. In these situations, manually editing the program
code cannot be easy for the developer. Because the code generated by MDA-
enabled tools derives from libraries based on patterns designed by the
industry’s best developers, sometimes it may be difficult to understand the

program code before editing. Meaning that, higher conversion rates makes

11

MDA-enabled tools more successful from the software developer’s
perspective.

e MDA is standart framework defined by Object Management Group (OMG).
OMG has a concortium that includes all the major modeling tools vendors and
a host of end-user organisations in diverse domains. If tool vendors does not
exactly conform to standards established by OMG, this will be a disadvantage
for MDA applications’ interoperating feature.

e OMG continues to work about standardization issues. These issues makes tool
vendors’ implementations special to their products only. This is also a

disadvantage for MDA applications’ interoperating feature.

2.4 MDA Process

In the MDA approach there are four major steps:

e Generation of a Computation Independent Model (CIM)

e Building a Platform Independent Model (PIM)

e Transforming the PIM into a Platform Specific Model (PSM)
e Generate the code out of the PSM

A CIM shows exactly what the system is expected to do. It hides all the information
technology details to remain independent of how the system will be implemented. CIM
viewpoint has the highest abstraction level because it presents only what the system
expected to do. This feature of CIM makes it possible to bridge the gap between domain
experts and information technologists responsible for implementing the system. In an
MDA application, CIM should have enough information in it to be able to build an exact
PIM. Figure 2.3 shows a CIM example that presents the overall sale process from

marketing to delivery.

12

Marketing Sales Production Quality Control

Warehouse
Management

Shipping

Figure 2.3 CIM example

A PIM is independent of any implementation technology and has a high level of
abstraction level from the viewpoint of a software developer. In an MDA application,
Unified Modeling Language (UML) is used as modeling language. UML is also a
standard defined by OMG (www.omg.org). A PIM includes functionality and
behaviour of the system meaning that it presents how the system will be implemented.
Several PSMs can be generated from a PIM so that, a PIM must be extremely detailed to
generate exact PSMs from it. At this abstraction level of MDA process, arhitects and

designers play a critical role.

cd MDA
Absdract Concrate
Platform MDA Transfomm Platform Specific
Inde pende nt Model R Model (PSM)
(PINY 1 0.

Figure 2.4 Several PSMs from a single PIM

13

Figure 2.5 shows an example PIM with three UML classes, showing the abstract
properties and relationships between an Author, Book and Publisher entities. It has no
platform specific details (for example a specific programming language construct) and
has a clear abstract presentation. It includes all the necessary information such as class

properties, association rules between classes ... etc to create an exact PSM.

Authar Book ==anumeration ==
Marme : String 1 0+ |Title : Ching Eook5tatus
PentAme : String - —(I1SBN : Sting Active

written wiites Status : BookStatus YOtACtlye
Marne . Slring

MurnberCopiesHeld | inl

K

|- Tublish

1 ublished

Publizhcr

Marme : String

Figure 2.5 PIM example

Class diagram shown in Figure 2.5 is created with ArgoUML tool v0.28.1
(http://argouml.tigris.org).

A PSM combines the specifications in the PIM with the details of a particular type of
platform. Because the final implementation code will be generated from the PSM, the
PSM must include all the necessary information in it. Otherwise the generated code will

require the software programmer to make final modifications on it.

14

There are 4 levels of possible automations to build a PSM from a PIM:

e Transformation is completely done by software developer.

e Software developer uses some established patterns for transformation.

e MDA-enabled tool generates some parts of PSM from the PIM, and then the
other parts are manually transformed by software developer.

e MDA-enabled tool generates all parts of PSM from the PIM. This is the ideal

solution that must exists in MDA approach.

The complete PIM is stored in Meta Object Facility (MOF) which is the input of the
mapping step. After the mapping step applied to the PIM, the result PSM is produced.
Figure 2.6 shows the generation process of a PSM from a PIM.

Model-to-

Platform Platform
Independent Mode? Specific Model (
Model (PIM) Mapping PSM)

Mapping
Helper

Code generation step from the PSM produces the implementation of the system for

Figure 2.6 PIM to PSM generation

the particular platform. In this step, the PSM is taken as an input and then automation
tool produces the program code. MDA development tools, available now from many
vendors, can convert a PSM into a working implementation on virtually any middleware

platform: Web Services, XML/SOAP, EJB, C#/.NET, OMG’s own CORBA, or others.

15

Figure 2.7 shows the generated program code of the PIM that is shown in Figure 2.5.
C# programming language is used as the target platform. Code generation is also done

with ArgoUML tool v0.28.1.

In this MDA process, we have not realized the step of generation PSM from the PIM.
Because our MDA-enabled tool generated all parts of the PSM from the PIM and then
generated implementation code automatically. We only selected the target platform (C#

programming language in this example) before generating code from the PIM.

/4 FILE: I/ Desktop/Yilksek Lisars/ Master Thesis/ ygulema/ Examples/ Aspect Modeling/ Diagram Codes// Author.cs
puklic class Ruthor
{

5 P

w

/) Attributes

public String Hame:;
public String Penlime;

1} #* end class Author */

1 & A

£ FILE: D:/Deskiop/Yiksek Lisans/ Master Thesis/ Uygulema/ Examples/ Aspect Modeling Driogram Codes//Boolk.cs
pulkxlic class Book
{

]

/A Attributes

public String Title:

public String ISBH:

puklic BookStatus Status:
public String Hame:

1 public int NumberCopiesHeld:

} #* end class Book =/

FoF
P T

I
1 e h

i /4 FILE: I/ Desktop/Yilksek Lisars/ Master Thesis/ ygulema/ Examples/ Aspect Modeling/ Diagrem Codes//Publisher.cs

21 puklic class Puklisher
22 {
23 /! Attribartes

< public String Hame;

5 } #* end dass Publisher *,-1

Figure 2.7 Code generated from the PIM

Figure 2.8 (Sims, 2002) summarizes the overall MDA process.

16

P | —
A “Mapping” is a set of
(automated) rules &
techniques

Computation Independent
Business Mode!

N

PIM->PIM mapping

N

Platform Independent
Analysis Model

\

PIM->PSM mapping

N .

i

- Models must be

‘marked up” in some
way to help direct

mapping

Platform Specific Akl B
Design Mode/ it
PSM->PSM mapping f E < “eedssugopuofhd trip
PSM->Code mapping

Figure 2.8 Overall MDA process

2.5 Key Standards for MDA

The core standards of MDA are:

e Meta Object Facility (MOF)

e XML Metadata Interchange (XMI)

e Common Warehouse Metamodel (CWM)
e Unified Modeling Language (UML)

These standards are also defined by OMG as MDA framework. These standards
define the core infrastructure of the MDA and greatly contribute to the current state of
system modeling. These standards form the basis for publishing and managing models

within MDA. These standards together with MDA contribute to developing large

17

software systems to solve industry problems. With modeling tools that are built on top
these standards, a large variety of applications from finance to e-commerce, from
telecom to healthcare ... etc can be built with more productivity and less costs. Figure

2.9 illustrates the idea.

Transportation HealthCare

More...

Figure 2.9 OMG’s Model Driven Architecture model

2.5.1 Meta Object Facility (MOF)

The Meta Object Facility (MOF) is an OMG standard and defines a common, abstract
language for defining new metamodels. MOF is a meta-metamodel or the model of a

metamodel.

OMG ratified MOF in 1997 (Frankel, 2003). MOF has the basic premise that there
will be more than one modeling languages to solve different problems in different

domains, so that there must be a standard while defining new modeling languages.

18

We use different set of modeling constructs for different functions. The set of
modeling constructs we use for relational data modeling includes table, column, key, ...
etc. The set modeling constructs we use for class modeling includes class, attribute,
operation, association, ...etc. MOF architects had understood the critical point that these
different modeling constructs in different domains has some common behaviour. These

common behaviours play the critical role on the evaluation of MOF.

MOF is the universal way of describing modeling constructs. MOF has been used to
describe the modeling constructs in relational data modeling. MOF has been used to
describe the modeling constructs in UML class modeling. And MOF can be used to

describe new modeling constructs for new modeling languages.

In the MDA, models are integrated into the development process through the chain of
model transformations from PIM to PSM, and then from PSM to application code. But
to enable this chain of model transformations, MDA requires models to be expressed in
MOF-based language. This guarantees that the models can be managed (storing, parsing,
transforming of models) with no problem between different MDA-enabled tools.
OMG’s other standards as modeling languages; Unified Modeling Language (UML)
and Common Warehouse Metamodel (CWM) are good examples of MOF-based
languages. Code generation of an example UML class diagram that is built in an MDA-

enabled tool can easily be done in another MDA-enabled tool with no problem.

The MOF Model (the MOF’s core meta-metamodel) is object oriented. MOF
borrows this object oriented class modeling constructs from UML and presents them as
the common means for describing the syntax of modeling constructs. For example,
definition of a table construct in relational data modeling language can be made as
similar to a class construct in UML, definition of a column construct in relational data
modeling language can be made as similar to an attribute construct in UML. Because the

MOF Model is object oriented at the root level, other models along the MOF

19

metamodeling hierarchy is also object oriented. This is also the nature of the inheritance

property.

The current version of MOF is 1.4 that specification file can be downloaded from

http://www.omg.org/technology/documents/formal/mof.htm. The details of the

specification can be found here.

2.5.2 XML Metadata Interchange (XMI)

XML Metadata Interchange (XMI) is a framework for defining, interchanging,
manipulating, integrating XML data and objects. XMI can also be used to automatically
produce XML DTDs and XML Schemas from UML or other MOF metamodels. It
means that XMI defines mapping from UML to XML, from other MOF-enabled
modeling languages to XML.

XMI is an important OMG standard due to the prominence of XML in today’s
distributed system. After XML became popular, MOF architects began to study for
representing metadata as XML documents. As a result of this study, in the late 1998, the
OMG adopted a MOF-XML mapping which named as XML Metadata Interchange
(XMI).

In 2001 the W3C (World Wide Web Consortium), owner of the XML specification,
approved XML Schema as the successor to XML DTDs. After the approval of XML
Schema as the successor of XML DTDs, OMG also approved the new XMI
specification which defines a mapping from MOF to XML Schema. Table 2.1 shows the
table of corresponding MOF and XMI versions:

20

Table 2.1 Corresponding MOF and XMI versions

MOF Version XMI Version

MOF 1.3 XMI 1.1

MOF 1.4 (current) XMI 1.2

MOF 1.4 (current) XMI 1.3 (add XML Schema support)
MOF 1.4 (current) XMI 2.0 (current, new format)

MOF 2.0 (in progress) XMI 2.1 (in progress)

There is a misconception about the scope of the XMI standard. Because the UML is
the most well-known MOF metamodel and XML Schemas or XML DTDs can be
automatically generated from UML metamodel, it is believed that XMI is only for UML
metamodels. This is not true for XMI. XMI can also act as a generator to produce an

XML DTD or XML Schema from arbitrary MOF metamodel’s abstract syntax.

Today, some MDA-enabled tools take XMI documents as input. These XMI
documents may store some UML models or some other MOF-enabled modeling
languages’ models. Because XMI standard has XML DTDs or XML Schemas of the
input document, the input XMI documents are validated against XML DTDs or XML
Schemas first and then, these XMI documents can be converted to any MOF-enabled
modeling languages’ models. XMI as an input mechanism can also be defined for XMI
as an output mechanism. Built model (UML model or any other MOF-enabled model)
can be exported to XMI because XMI standard has the mapping MOF-XML.

21

Figure 2.10 illustrates the XMI process.

Validates

Figure 2.10 XMI Process

Figure 2.11 shows an example XML document in XMI 1.2 format. This XMI
document is the result of a class named “MyClass” with has only one attribute named

“myAttribute” type integer.

MyClass

myAdttribute - Integer [1]

XMI 1.2

<UML:Class xmi.id = 'sm$1264eab:fe524af40b:-7fd4' name = 'MyClass' visibility = 'public’
isSpecification = 'false' isRoot = 'false' isLeaf = 'false’ isAbstract = 'false’ isActive = 'false'>
<UML:Classifier.feature>
<UML:Attribute xmi.id = 'sm$1264eab:fe524af40b:-7fd5' name = 'myAttribute’
visibility = 'public’ isSpecification = 'false’' ownerScope = 'instance’ changeability = 'changeable’>
<UML:StructuralFeature.multiplicity>
<UML:Multiplicity xmi.id = 'sm$1264eab:fe524af40b:-7fd6">
<UML:Multiplicity.range>
<UML:MultiplicityRange xmi.id = 'sm$1264eab:fe524af40b:-7fd7" lower = '1" upper = '1'/>
</UML:Multiplicity.range>
</UML:Multiplicity>
</UML:StructuralFeature.multiplicity>
<UML:StructuralFeature.type>
<UML:DataType xmi.idref = 'sm$1264eab:fe524af40b:-7fc7'/>
</UML:StructuralFeature.type>
</UML:Attribute>
</UML:Classifier.feature>
</UML:Class>
<UML:DataType xmi.id = 'sm$1264eab:fe524af40b:-7fc7' name = 'integer’ visibility = 'public’
isSpecification = 'false' isRoot = 'false’ isLeaf = 'false' isAbstract = 'false'/>

Figure 2.11 An example XMI document

22

2.5.3 Common Warehouse Metamodel (CWM)

The Common Warehouse Metamodel (CWM) standardizes a complete,
comprehensive metamodel that enables data modeling, data warehousing, data
transformation, data analysis. Specifications of this modeling language have been
defined by OMG. This standard is a product of cooperative effort between OMG and the
Meta-Data Coalition (MDC). CWM is also a MOF-based modeling language like UML.
The difference between the UML and CWM is; UML is used for application modeling
and CWM is used for data modeling. Meaning that CWM is used for modeling relational
data. It is a good example of applying the MDA paradigm to an application area.

Another similar definition of CWM can be given as the following: “CWM is a
standard set of interfaces that can be used to enable easy interchange of warehouse and
business intelligence metadata between warehouse tools, warehouse platforms and
warehouse metadata repositories in distributed heterogeneous environments” (Gally,

2007).

CWM uses XMI as its interchange mechanism. By this way, CWM benefits the full
power and flexibility of XMI to interchange both warehouse metadata and CWM
metamodel itself. To interchange warehouse metadata or CWM metamodel itself, the
CWM uses the original specifications of XMI meaning that it does not require any other

extensions to XMI.

XMI can act as a generator to produce an XML DTD or XML Schema from arbitrary
MOF metamodel’s abstract syntax. By this way, a standard XML DTD or XML Schema
is generated for CWM metamodel using XMI’s DTD or Schema production rules. After
that, the entire warehouse metadata can be represented as an XML document using

XMI’s Document Production Rules.

23

CWM can be used by six categories of users:

e Warehouse platform and tool vendors
e Professional service providers

e Warehouse developers

e Warehouse administrators

e End users

e Information technology managers

Current version of CWM 1is 1.1 that specification file can be downloaded from
http://www.omg.org/technology/documents/formal/cwm.htm. The details of the

specifications can be found here.

Figure 2.12 shows the fragment of relational data metamodel of the Common
Warehouse Metamodel. As seen from Figure 2.12, CWM metamodel is like UML
metamodel. The fable modeling construct used in CWM is like class modeling construct
used in UML. This is because the MOF borrows object oriented class modeling
constructs from UML and presents them as the common means for describing the syntax
of modeling constructs. Because the MOF model is object oriented at the root level,

CWM model that inherits from MOF is also object oriented.

24

Jconstraint fconstrainedElement

CheckConstraint .+ {ordered)

deferrability : DeferrabilityType !

*| Jconstraint = Column * ftype | SQLDataType
' precision : [nteger
scale : integer [structural- 1 |typeNumber : Integer
0..1 /feature g
Columnset |g” ! isNullable : NullableType Feature [}
« | length : Integer

fowner
Iy / {ordered) collationName : String

characterSetName : String
{ optionScopeColumnSet : NamedColumnSet
{ referencedTableType : SQLStructured Type

NamedColumnSet
[optionScopeColumn : Column
[type : SQLStructuredType
[usingTrigger : Trigger

SQLDistinctType

length : Integer
Query ColumnSet precision : Integer

uery : QueryExpression scale : Integer
e s I sqlSimpleType : SQLSimpleType

sqlDistinctType | *
SQLSimpleType

characterMaximumLength : Integer

1 |characterOctetLength : Integer

* numericPrecision : Integer

[constrainedElement sqiSimpleType numer!cPrecisionRadix : Integer
{ordered) | numericScale :]nteger
View dateTimePrecision : Integer
Table isReadOnly : Boolean
isTemporary : Boolean checkOption : Boolean
temporaryScope : String queryExpression : QueryExpression

[trigger : Trigger
isSystem : Boolean

Figure 2.12 A fragment of the CWM relational data metamodel

2.5.4 Unified Modeling Language (UML)

The Unified Modeling Language (UML) is OMG’s most-used specification and the
way the software developers model application structure, behaviour, architecture,

business process and data structure.

In the MDA approach there are four major steps: generation of a Computation
Independent Model (CIM), building a Platform Independent Model (PIM), transforming
PIM into a Platform Specific Model (PSM) and then generating the code out of the PSM.
Two of these four steps, PIM and PSM are defined in UML in many specifications

25

making OMG’s standard modeling language a key foundation of the MDA. Note that
usage of UML in PIM and PSM is not a requirement; usage of a modeling language that
is MOF-enabled is the key solution for the applications that is MDA-enabled.

As object-oriented analysis and design techniques spread during early 1990s, the
OOAD industry divided into three camps, corresponding to the followers of Grady
Booch, Ivar Jacobson, and Jim Rumbaugh. These three developers had their own
notation, methodological approaches and tools. In the late 1990s, The Rational Software
Corporation brought Ivar Jacobson and Jim Rumbaugh into the company to join Grady
Booch, three developers wrote the first informal UML specification. Then they sent this

first informal specification to OMG for standardization.

Before the first Unified Modeling Language (UML) standards were published, visual
software modeling tools had different notations created by different gurus. This led to
incompatibility of models between different modeling tools in the industry. The absence
of a standardized notation deterred potential users and as an inevitable result the
modeling tool market was tiny and fragmented. Beyond the standardization issues, many
of the modeling tools only allowed sketching of diagrams just a picture. These modeling
tools lacked the ability to derive meanings from sketched diagrams and they could not
check overall consistency between model elements. Sketched models were rarely

integrated into the software development lifecycle.

The UML standard has changed the way of modeling and triggered the dramatic
growth in visual modeling that has led to its worldwide use not only is software design,
but also in non-software disciplines such as systems engineering and in the business

domain.

As tool vendors in OMG community started to implement UML standard
specifications in their modeling tools, continuous feedback from these tool vendors and

user communities that use modeling tools received. These feedbacks helped the UML

26

standard to evolve and mature. The original UML 1 standard of 1997 was backed by 21
OMG member companies and feedbacks from these companies helped OMG to refine
UML specification. After that UML 2 in 2005 was published by OMG. This revision to
UML standard contained all the resolved issues reported by tool vendors and user
communities. Beside that UML 2 standard had also some new improvements in its
underlying structure. UML 2 had the infrastructure specified using OMG’s Meta Object
Facility (MOF) framework. This means that UML 2 is more than just a pretty picture.
Because UML is an MOF-based modeling language since UML 2 standard specification,
it has all the benefits of a MOF-based modeling language. A MOF-based modeling
language can capture the meaning of model elements and can capture relationships
between model elements. A MOF-based modeling language can automatically generate
application code from models. A MOF-based modeling language can automatically
generate application documents from models ... etc. Shortly a MOF-based modeling

language can be included into the MDA process.

These developments in the world of visual modeling have led to establishment of

OMG’s Model Driven Architecture (MDA).
This section briefly have discussed UML standard with its importance in visual
modeling industry and UML standard evolution. In the following sections more detailed

information about the usage of UML standard in the MDA process will be given.

Figure 2.13 shows a fragment of UML metamodel for class modeling.

27

ModelElement
name : Name

?

GeneralizableElement
isRoot : Boolean
isLeaf : Boolean
isAbstract : Boolean

o Vi
Feature .
{ordered}

Namespace

ownerScope : ScopeKind FOWNEr | ccifior
visibility : VisibiltyKind feature 0.1
% A
Structuralfeature BehavioralFeature
multiplicity : Multiplicity isQuery : Boolean
changeability : ChangeableKind
targetScope : ScopeKind
ordering : OrderingKind f
? Operation Class
concurrency : CallConcurrencyKind isActive : Boolean
Attribute isRoot : Boolean
initi . i isLeaf : Boolean
initialValue : Expression Abstract - Boolean
specification : String

Figure 2.13 A fragment of UML metamodel for class modeling

2.6 MOF Metalevels

MOF architecture defines four “metalevels” named M3, M2, M1, and MO0. The

definitions of these metalevels are important in order to be MDA literate.

Level M3 is the MOF itself whose elements are the constructs to define metamodels.
This is the root and most abstract metalevel. MOF elements include Class, Attribute,
Association, and so on. These MOF constructs are used to define new modeling
languages. For a modeling language to be MOF-based, this modeling language’s
modeling constructs must be instances of MOF modeling constructs. M3 level is meta-

metamodel and M3 level is self describing. This level is the end of the line.

28

Level M2 has the metamodels that are defined via MOF constructs. There are a
number of good examples of MOF-based metamodels such as Unified Modeling
Language (UML), Common Warehouse Metamodel (CWM) ... etc. These metamodels’
constructs are defined using the MOF Class, MOF Attribute, MOF Association, and so
on. Figure 2.14 shows an example metamodel with some modeling constructs that are

instances of MOF constructs.

Instance of MOF Class Instance of MOF Attribute
- £

~ ’
S v
-~
rd
-~
~ ’

Y ModelElement |~

name : String

|
|
|
|
:
|
: ’% Instance of MOF Gerleralizes
|
|
|
|
|

{ordered} "~
Table +table +column Column

*>
1

1.%

|

|

| [
I |
| |
| |
| Instance of MOF Class

Instance of MOF Association (with composite aggregation)

Figure 2.14 Example M2 level metamodel constructs

Level M1 has the model elements that are instances of M2 level metamodel
constructs. A UML class diagram can be a good example for the M1 level model. Figure
2.14 shows an example metamodel that has Table, Column ...etc constructs. As an
example M1 level model that is instance of the metamodel shown in Figure 2.14, we can

figure the following:

29

Employee : Address :
Table Column
table column
table
table
column
column
Number : Name :
Column Column

Figure 2.15 Example M1 level model

Employee is an instance of table construct. Employee table has some instances of

column constructs that are named as Address, Number, and Name.

Level MO has objects and data that are instances of M1 level model elements. This is
the leaf level of the metalevel hierarchy. Elements at this level represent real life entities.
As an example MO level model that have instances of the model elements shown in
Figure 2.15, we can consider an employee with Name: “Ahmet Ersin”, Number: 123456

and Address: “Esentepe Mah. Giil Sok. Yagmur Apt. No: 31 Kat: 2 Daire: 3”.

To put it briefly, M2 level elements are instances of M3 level elements. M1 level
elements are instances of M2 level elements. MO level elements are instances of M1
level elements. M3 level is meta-metamodel level and is the end of line. M3 level is the

self describing level.

30

—

M3 layer
MOF Modei meta-metamodel
[1 []
M2 layer
UML IDL
Metamodel Metamodel metamodels

M1 layer

models

UML Models IDL Interfaces

MO layer

Figure 2.16 MOF Metalevels

2.7 More UML

As said before, the UML standard has changed the way of modeling and triggered the
dramatic growth in visual modeling that has led to its worldwide use not only in
software design, but also in non-software disciplines such as systems engineering and in

the business domain.

This section provides details about the most important UML diagrams used in the

visual modeling of computing programs.

UML 2.0 defines thirteen types of diagrams, divided into three categories: six
diagram types represent static application structure; three types represent general types

of behaviour; and four types represent different aspects of interactions.

Structure Diagrams include the Class Diagram, Object Diagram, Component

Diagram, Composite Structure Diagram, Package Diagram and Deployment Diagram.

31

Behaviour Diagrams include the Use Case Diagram, Activity Diagram, and State

Machine Diagram.

Interaction Diagrams derive from the Behaviour Diagram. Interaction Diagrams
include the Sequence Diagram, Communication Diagram, Timing Diagram, and

Interaction Overview Diagram.

Diagram

% Behaviour
I i
Structure Behaviour
Diagram Disgram
@ [
[[| [| |
Class Diagram Cornnnnem E_ijem £§mwrty Us.e Case Stah.a Machine
Diagram Diagram Diagram Diagram Diagram
o Deployment Package Interaction
Structure Diagra Diagra Diagra
Diagram iagram gram iagram
[
| |
Structure Secuerce pleracion
d Qverview
Diagram :
Diagram

Communication
Diagram

Interaction
Figure 2.17 UML 2.0 Diagrams

The most useful, standard UML diagrams (Bell, 2003); use case diagram, class
diagram, sequence diagram, state machine diagram, activity diagram, component

diagram, and deployment diagram will be explained in this section.

Class Diagram is in the Structure Diagrams category because it does not describe the
time-dependent behaviour of the system. The main elements of a class diagram are class,

association, generalization, realization, dependency, aggregation, composition ... etc.

32

Classes are drawn as rectangles. List of attributes and operations are shown in
separate compartments. Relationships among classes are drawn as paths connecting class
rectangles. The different kinds of relationships are distinguished by different kinds of

line styles.

Figure 2.18 shows an example class diagram from the box office application. This
class diagrams states the structure of the system as the following. Customers may have
many reservations, but each reservation is made by only one customer. There are two
kinds of reservations: subscription series and individual reservations. Subscription series
can reserve many tickets and individual reservations can only reserve one ticket. A ticket
can only be reserved at most by one reservation. Every performance has many tickets
available and each performance can be identified by a show, date and time attributes. A

show can be shown by one or more performance.

class

Customer
name:String | atributes
phone: String
add (name,phone) =——— class-scope operation
1| ewner
association T rolenames

| purchased =i

Reservation
date: Date
AN Show
generallzatlonT name: String
1 show
Subscription Individual /
Series Reservation
multiplicities

series: Integer

_ 0.1 \
0.1 ;

1.# | performances

Performance
3.6 Ticket !
date: Date
available:Boolean ﬂ time: TimeOfDay
sell (c:Customer) qualifier
exchange () i S
aperations

Figure 2.18 Class diagram of a box office application

33

An association describes connections among objects in a system. The most common
kind of association is binary association between a pair of classes. Association symbol is
line and drawn from one class to another. Associations carry information that shows
relationships among objects in a system. Without associations, the designed system has

only isolated classes that do not work together.

Each connection of an association to a class is called an association end. Association
ends can have names and the most important property of association ends are
multiplicity. Multiplicity shows that how many instances of a class can be related to one

instance of the other class.

association name

Priority
next | g.1 = self association
L. 0.1
Subscription -
previous
rolename —— = spurce 0.1 =——— multiplicity

=——— hinary association

tickets | =

Reservation participating class

Figure 2.19 Association notation

An aggregation is also an association with a special meaning that depicts part —
whole relationship. It is shown by a hollow-diamond adornment on the end of the path to

the aggregate class.

A composition is a stronger form of association in which the composite object has
the responsibility for managing its parts, such as their allocation and deallocation. It is

shown by a filled-diamond adornment on the end of the path to the composite class.

34

Subscription | asgregate composite Order

() 1 ’ 1

* 1 -.:<
Performance parts parts | Customerinfo Lineltem

Figure 2.20 Aggregation and composition notations

A generalization is a relationship between a more general description and a more
specific description that builds on it and extends it. The more specific description
inherits all the properties, members, relationships of the more general description and
may contain additional information. The more general description is called as parent and

the more specific description is called as child.

A generalization is drawn as an arrow from child to the parent, with a large hollow

triangle on the end connected to the parent.

Order

superclass (parent)

date: Date

confirm{) |=——— abstract operation

=
generalization
MailOrder BoxOfficeOrder
ke lass]
dateFilled: Date hold: Boolean subclass (child)
confirm() confirm()

Figure 2.21 Generalization notation

A realization is a relationship that connects a model element, such as a class, to
another model element, such as an interface. Interface does not include implementation,
shows only behavioral specification. Class that realizes the interface must support all the

operations that the supplier has.

35

Realization is displayed as a dashed arrow with a closed hollow arrowhead. It is

similar to generalization notation except the dashed arrow line style.

cinterfaces realization relationship PopUpMenu
ChoiceBlock === setDefault (choice: Button)
specifier implementation getChoice(): Button

setDefault (choice: Choice)
getChoice (): Choice - RadioButtonArray

~ setDefault (choice: Button)
getChoice(): Button

choice 1.%

1..%# choice String
1..# choice

Choice

Button

Figure 2.22 Realization notation

A dependency is also a relationship between two or more model elements. It
indicates a situation which a change to the supplier element may require a change to the
client element in dependency. A dependency is drawn as a dashed arrow from the client

to the supplier.

BoxOffice - — — — — — — —= SchedulingEngine
dependency

client supplier

Figure 2.23 Dependency notation

Component Diagram is in the Structure Diagrams category. Component Diagram
shows the physical packaging of the reusable pieces of the system into substitutable
units called as components. Components are the high level reusable pieces. A
component diagram shows dependencies among components and each component

realizes some interfaces and use others.

36

A components is a physical unit of implementation with well defined interfaces that
is intended to be used as a replaceable part of a system. Each component includes the
implementation of certain classes from the system design. Beside included
implementation, components may need some extra implementation that it does not
include. In these situations, components depend on the other components that support

the proper interfaces for the required implementation.

A component is drawn as a rectangle with two small rectangles on its side. It may be

attached to another components’ interfaces by solid lines.

-7 % Account
% Transactions 1 Update <= interface
P S P Q‘\p

- | .
companent .= usage dependency

k.

T

realization délp-enc:ien::‘,-'
ATM-GUI

Figure 2.24 Component Diagram

Deployment Diagram is in the Structure Diagrams category. Deployment diagram
shows the physical arrangement of runtime computational resources, such as computers
and their interconnections. Each computation resource in deployment diagram is called

as a node. At runtime, nodes can contain components and objects.

A node is shown as a three dimensional cube with the name of the node at the top of
the cube. Association between nodes represent communication paths. The associations

can have stereotypes to make difference of different kinds of paths.

37

= 1

serverBankServer
«databases
- accountDB:
- Account
Transactions) _ .
7 :lransactions o update <—————f— interface
- A\
Comporent v
instarice i -
)
communication link ' dependency
./ T
nodle client: ATMKiosk 4

instance \
% ATM-GUI

Figure 2.25 Deployment diagram

Use Case Diagram is in the Behaviour Diagrams category because it illustrates a unit
of functionality provided by the system as percieved by outside users, called actors. A
use case is a functionality of a system that is expressed as a list of relations among actors
and the sytem. The main purpose of the use case diagram is to help development teams
to visualize the functional requirements of a system, including the relationship of actors

to essential processes.

To show a use case on the use case diagram, an oval (with the name written) is put
in the middle of the diagram. To draw an actor on a use case diagram, a stick person is
put to the left or right of the use case. Relationships between use cases and actors is

represented as lines drawn from an actor to the use case.

In the example Telephone Catalog use case diagram shown in Figure 2.26, there are
four actors; customer, salesperson, shipping clerk and supervisor. There are four use
cases; check status, place order, fill orders, establish credit. A customer can use check
status, place order and establish credit processes. A salesperson can use check status,
place order processes. A shipping clerk can use fill orders process and a supervisor can

use establish credit process.

38

system name > Telephone Catalog
— actor
T)
use case ———/ check \,__7__ Y
: ‘status /‘ T t—
actor-use case . ——
communication p S) _— /\
,/ place \// Salesperson
—_ order
| fill orders }—
/ (G orders) AN
Customer — Shipping Clerk
Use case name 4 “-‘Stab“Sh\ o
N credit ST e

system boundary .
Supervisor

Figure 2.26 Use case diagram

State Machine Diagram is in the Behaviour Diagrams category. State Machine
diagrams model the possible states of an object of a class. States in the diagram are
connected by transitions. Each state models a period of time during the life of an object
during which it satisfies certain conditions. An event signalled may cause the firing of a
transition that takes the object from one state to the new state. The notation of the state
machine diagrams has five basic elements: the initial starting point which is drawn as a
solid circle, a transition between states which is represented as a line with an open
arrowhead, a state which is represented as a rectangle with rounded corners, a decision
point which is represented as an open circle, one or more termination points which are
represented as a circle with a solid circle inside it. Figure 2.27 shows an example state

machine for ticket selling machine.

39

Purchasing

exit / eject card
submachine reference

-

X N final state
_ include Identify _
- fail —~(®)
initial state . & abnormal e

exit

normal exit | freset selection action
il

Selecting |
internal = pick (seat) / add to selection (seat)
transition A "y
il

push “resume” push "buy” evert

W
¥

-

(Confirming

push “confirm”

s comgletion

Selling j transiticn
atomic .

Figure 2.27 Example state machine diagram

Activity Diagram is in the Behaviour Diagrams category. Activity diagrams show
the procedural flow of control between one or more objects while processing an activity.
Activity diagrams can be used both to model high level business processes and to model
low levels internal class actions. Because activity diagrams are less technical in
appearence, compared to the sequence diagrams, to use activity diagrams for modeling

high level business processes may be a better experience.

An activity diagram’s notation is similar to a state machine diagram’s notation. Like a
state machine diagram, an activity diagram also starts with a solid circle that represents
the initial activity. An activity, as a state in the state machine diagrams, is represented as
a rectangle with rounded corners with the activity’s name enclosed. Activities can be
connected to other activities through transition lines or activities can be connected to
decision points that connect to different activities guarded by the conditions of the
decision point. Activities end with termination point that is represented as a circle with a

solid circle inside it (just as in state machine diagram). Activities can also be grouped

40

into swimlanes to indicate the object that actually performs the activity. Figure 2.28

shows an example activity diagram.

‘) ; “B.l.n.d .M.'.".u.u;t I - ;M.po;in.g 1;;; I
Selects the View Sales
For My Bands Report /L
| 5*Retrieve Bands the Band
Manager Manages
Display Report Criteria
Selection Screen
F] . g
Selectsthe Bandto 75
Wiew Sales Repor For
|
~——
Retrieves Sales Figures
From Sales DB
Displayi Sales
Report
®
- e = ®

Figure 2.28 Example activity diagram example

Sequence Diagram is in the Interaction Diagrams category that derieve from the

Behaviour Diagrams. A sequence diagram shows a detailed flow for a specific use case.

A sequence diagram can show a scenario that is an individual history of a transaction.

They show the calls between the different objects in the call sequence.

A sequence diagram has two dimensions. The vertical dimension shows the sequence

of messages in the time order that they occur. A message is represented as an arrow from

the lifeline of an object to the lifeline of another object. The horizontal dimension shows

the object instances to which the messages are sent.

41

Reading a sequence diagram is very simple. Start at the top left corner with the driver

class instance that starts the sequence. Then follow each message down the diagram.

Figure 2.29 shows an example sequence diagram that illustrates a ticket buying
scenario. The first message is sent by the kiosk driver class that requests the ticket. After
request message processed by box office class, show availability (seat-list) message is
sent back to kiosk class to preview available seat list. After messages are sent between
lifeline, the scenario ends with the eject card message sent from box office class to the

kiosk class.

active olject

, credit card
I kiosk box office I service

request (count, perfermance)

show availability (seat-list)

select (seats)

lifeline (active)

demand payment (cost)

insert card (card number)

message
charge (card number, cost) _

authorized

print tickets (performance, seats)

eject card

Figure 2.29 Example sequence diagram

CHAPTER THREE

ASPECT-ORIENTED PROGRAMMING (AOP)

3.1 AOP Definition

Computer science has experienced an evolution in programming languages
starting with machine language and then using more and more abstract programming
languages as the software industry evolves. Each of these steps in programming
language technology has advanced the ability to achieve clear seperation of concerns

at the implementation level.

Today’s dominant programming paradigm is Object Oriented Programming
paradigm which has the idea of building a software system by decomposing a
problem into objects and then writing code of those objects. Objects with completed
implementations interact together to make a complete solution to the problem. The
mechanisms that Object Oriented Programming (OOP) supports can easily be used to
map a real domain problem into the software domain. For example, to represent a
book in software platform in Object Oriented Programming paradigm, you create a
Book class with attributes name, isbn, author, publisher ...etc and then create an
instance of the Book class to make operations on the Book object. It is so easy with

OOP.

Writing complex applications such as graphical user interfaces, operation systems,
distibuted applications while maintaining is possible with Object Oriented

Programming.
However there have been found some programming problems that OOP technique

may not be enough to clearly capture. Clearly capturing means that implementation of

design decisions is not scattered throughout the code, not resulting

42

in tangled code that is excessively difficult to develop and maintain. These kind of
concerns that result the tangled code in the implementation are named as cross-
cutting concerns. Such cross-cutting concerns can range from high level notions like

security and quality of service to low-level notions such as caching and buffering.

Aspect Oriented Programming technique provides some mechanisms to solve
cross-cutting concerns in a more effective and modular way. Some of these
mechanisms are such that: join point, pointcut, advice, aspect, aspect weaver, inter-
tpe declaration, context exposing ...etc. These mechanisms make it possible to better
program cross-cutting concerns by seperately specifying these concerns and then

weave or compose them together into a coherent implementation.

All programming languages since Fortran have had a way for the seperation of
concerns by creating and calling subprograms. Subprograms in these programming
languages are a good way to implement crosscutting concers. In the OOP technique;
usage of inheritance, polymorphism, helper classes ...etc are also good ways.
However, often cross-cutting concerns can not clearly be implemented by using these
ways. Implementations of these concerns become tangled into other elements. To
overhelm these kind of cross-cutting issues, AOP provides aspects: mechanisms
beyond subprograms and inheritance for localizing the expression of a cross-cutting

concern.

Seperating the expressions of multiple concerns in programming systems with
AOP guarantees simpler system evolution, more comprehensible systems,
adaptability, customizability, and easier reuse. By aggregating cross-cutting concerns
into aspects, there will be no tangled code and this will result as making the aspect

code and the base code easier to understand.

Aspect code and base code is woven to a single implementation by aspect weavers

before the execution of software systems. Aspects are a seperate layer that are built

43

on top of the current implementation, so that base code is not aware of the aspects.

This leads to simpler base code to develop and maintain.

Effectively achieving seperation of concerns in programming leads to high quality
products. In today’s increased software complexity, there are specialized algorithms

for distribution, authentication, access control, synchronization, encryption,

44

redundancy, logging and so forth which are also possibly to be cross-cutting concerns.

Base code developers should not have any knowledge about these algorithms. To
provide a way to easily include these cross-cutting concerns’ implementations into
the software products makes base code developers focus on the real problem domain
except cross-cutting concerns. This increases the productivity of the developers. Base
code developers do not lose any time to have knowledge outside the expertise of the
real problem domain. Every developer tries to do their best in their problem domains
(authentication algorithm developers only focus on authentication, encryption

algorithm developers only focus on encryption ...etc.)

Aspect Oriented Programming is growing rapidly and it is used in many areas, such

as middle-ware, security, fault tolerance, quality of service, and operating systems ...etc.

AORP is not yet a fully mature discipline and needs to be used in more applications to

improved.

3.2 AOP related terms

be

Aspect Oriented Programming technique provides some mechanisms to solve cross-

cutting concerns in a more effective and modular way. Some of these mechanisms are

such that: join point, pointcut, advice, aspect, aspect weaver ... etc. These mechanisms

make it possible to better program cross-cutting concerns by specifying these concerns

and then weave or compose them together into a coherent implementation. In this

45

section, these mechanisms in the underlying AOP environment will be discussed

detailed.

Cross-cutting concern is the most important reason about why Aspect Oriented
Programming technique exists. Cross-cutting is a concern that repeats inside the cody
which makes the code tangled. As an example, if you decide to implement exception
handling in your code, you will possibly use try-catch code template in each function of
the software project. As a result, because the try-catch code template is scattered
throughout the implementation, we may state exception handling is a concern that cross-
cuts the current system. Example of cross-cutting concerns can range from high level
notions like security and quality of service to low-level notions such as caching, logging,
exception handling, buffering ... etc. With Aspect Oriented Programming technique, you

will possibly overhelm these kind of programming issues.

Join point is a mechanism in the underlying AOP environment that states a point
during execution of a program. There are several types of points during program flow

that can be used as join points. Some of these join points are as follows:

e Constructor call

e Constructor call execution

e Method call

e Method call execution

e Field get

e Field set

e Exception handler execution
e (lass initialization

e Object initialization

As an example, “before cash transfer function starts to execute™ point can easily be

captured by the usage of join points.

46

Pointcut is a mechanism in the underlying AOP environment that is a group of
different join points. To represent a pointcut with the collection of join points, join
points are connected with logical operators such as AND, OR, XOR ...etc. A pointcut can
have one or more join points. If a control needs different conditions to be met during
execution, a pointcut is defined that is a group of different join points with each states a

specific point in the program flow.

Figure 3.1 shows an example pointcut written is Aspect] programming language
syntax. The details of Aspect] programming language will be given in the following

sections. Set pointcut in Figure 3.1 returns true if:

e An operation is done on an instance of Nokta class AND
e If method executed starts with ser letters with any arguments and return

values.

s}
O
|
H
s
rt
0
[
ot
0]
i
o
—
i
L
i
L
'--l
ot
(=]
8]
v
—
%
5
i}
i
ot
=
=]
(=3
ot
[y
(3]
0]
~.
=
o
B
(8}
Wi
=

Figure 3.1 Example pointcut code

Advice is a mechanism in the underlying AOP environment that is used to execute a
code segment when a pointcut returns true. As an example, sentence part written as italic
style in the following sentence: “before cash transfer function starts to execute, control
whether active user that tries to make transfer has enough rights” can easily be captured

by the usage of advice.

Advice mechanism allows using of algorithms that are intended to solve cross-cutting
concerns. The invocation of these specialized algorithms’ implementations or
implementations themselves are placed into the code body of advice. When a pointcut
related with advice returns true, the implementations of these specialized algorithms are
executed to solve cross-cutting concerns in an effective and modular way. Advice

mechanism with pointcut specified has a critical role for the seperation of concerns.

47

There are three types of advices:

e Before advice is the simplest type of advice. Invoked before the join point is
invoked.
e After advice has three specialized types.
o After throwing advice runs if the join point throws an exception
o After returning advice runs after join point is executed, if no exception
is thrown.
o Ungqualified advice runs no matter what the outcome of the join point.
e Around advice is a good advice type that is supported in the AOP
environment. It allows the execution of a given control other rather than the

current control in the program flow.

Aspect is a mechanism in the underlying AOP environment that is constructed by the
usage of join points, pointcuts, advices. It is a composed structure and like a class in the

Object Oriented Programming technique.

Inter-type declaration is a mechanism in the underlying AOP environment that
allows programmers to modify base code (component structure) without any
modifications in base code. As an example, programmer can add a new property to an

existing class in component class hierarchy.

Aspect Weaver is a tool that composes the base code and aspect code. Aspect
weaver accepts the base code and aspect code as inputs and then outputs a coherent
program. The woven output code may itself be source code in a language like C and
other programming languages. The woven code is then compiled using a traditional
compiler suitable with woven code’s programming languge. Figure 3.2 illustrates the

idea (Kiczales & et al., (n.d.)).

48

aspect

/" description

languages

basic
functionality
program

— aspect

description

// / Programs
Aspect
Weavep

woven K’

output code >

Figure 3.2 Aspect weaver behaviour

3.3 AOP Challenges

AOP technique provides some mechanisms to solve cross-cutting concerns in a more
effective and modular way. AOP isn’t a new computation theory that solves yet-
unresolved problems. It is a programming technique that targets a specification problem,

modularization of cross-cutting concerns.

This section discusses AOP technique challenges. Some of these challenges are given

in a comparative mode with other programming techniques.

AQP is suitable for many cross-cutting concerns. In an AOP book or tutorial, you
will possibly find an example of AOP used to implement logging and tracing. Because
these examples are for the beginners and don’t show complex details of AOP, it’s

commonly assumed that AOP is good just for tracing and logging.

49

Tracing and logging are the “hello world” examples of AOP. At the system level,
security, transaction management, and thread-safety concerns can be implemented using
AOP. Many business logic problems (low level functions) can also be implemented

using AOP.

AOP usage follows the same path as Object Oriented Programming. When started to
program in OOP technique, classes are written at first step, account, customer, window,
and so on. After some experience in OOP, other kind of objects such as commands,
actions, and observers are started to be programmed. Design patterns are started to be
used. This evolution schema is the same for AOP. At first step, “hello world” examples
are started to be programmed and then, more complex cross-cutting concerns are started

to be implemented using sophisticated AOP constructs.

AOP does not solve any new problems. AOP isn’t a new computation theory that
solves yet-unresolved problems. It is a programming technique that targets a specific
problem, modularization of cross-cutting concerns. Aspects are a seperate layer that are
built on top of the current implementation to solve cross-cutting concerns in an effective

and modular way. AOP does not reject the current OOP technique in any way.

To solve cross-cutting concerns in the coding level, developers wrestle with
implementation overhead again and again. AOP handles these kind of programming
problems in a new way by reducing these overheads by the usage of aspects in the

implementation.

AOQOP vs. well-designed interfaces. AOP is good way for seperation of concerns.
AOP seperates base code from aspects making them largely independent of each other.
This seperation makes it possible to swap implementations of a module without
affecting other modules in the system. This similar strategy is also nearly valid in Object

Oriented Programming technique by creating abstract interfaces which allow you to

50

create various implementations of the same interface. In this situation, OOP developers
say well-designed interfaces can be used instead of AOP. But a closer look at how each

approach impacts on the application as a system tells a different story.

In AOP, base code is not aware of aspects, meaning that every cross-cutting concern
implementation is only stored in aspects. This is not the same in OOP because the base
code has the invocations to interface methods meaning that base code is aware of cross-
cutting concerns’ implementations. To use a different implementation with the same
interface for a cross-cutting concern in AOP do not require any change in the base code.

In OOP, base code must be modified to target new implementation.

AQOP vs. design patterns. A second commonly argued alternative to AOP is the
usage of design patterns which most developers are quite familiar. Design patterns
represent solutions to recurring problems where OOP doesn’t offer direct solutions.
Design patterns definitely help improve modularizing cross-cutting concerns to some
extent, but upon closer examination. If fact, design patterns can improve the complexity
of the base implemetation as compared to using AOP techniques. Design patterns also

require change in base code while AOP does not require.

AQP vs. application frameworks. A third alternative to AOP can be the usage of
application frameworks. Some frameworks such as EJB are commonly used to
modularize cross-cutting concerns. Such frameworks understand commonly encountered
concerns in a particular domain, impose restrictions on user code and then implement
the chosen concerns themselves. For example EJB (Enterprise Java Beans) can handle
persistence management, transaction management, authentication and authorization,
concurrency concerns automatically. But to use application frameworks instead of AOP

has some disadvantages:

e Application frameworks have a learning curve which also exists in AOP

technique. But the difference between frameworks and AOP is that; in AOP

51

you will learn details for once and then use the same AOP constructs in
development, in application frameworks you will have to learn for every new
framework because the new frameworks offer new solution styles to solve the
same problem.

¢ Youdon’t have to like the solution that an application framework offers or the
application framework may not offer a solution for a specific problem or a
part of it. In these situations you have limited solutions to the problems which
feel you helpless. Because AOP constructs are generic and can be used for a
variety of domain problems, you are free to implement cross-cutting concerns

in your own codes.

AQP raises the level of abstraction. AOP raises the level of abstraction more than it
has ever been before. AOP modularizes cross-cutting concerns into aspects, seperate
from classes. It removes cross-cutting concerns’ implementations from the base code.
This leads to a higher level of abstraction because you need to make an effort to
understand the aspects’ interactions with classes. The higher the abstraction of your

classes means the less clear the program flow is.

But developers like the abstraction in programs. It is proved since the evolution of
assembly language up to now. The program flow is hard to understand in higher
abstraction levels but the program code is simpler. The modularization level raises. This
makes the software developers focus more on the real business function implementations
rather than focus on the cross-cutting concerns. The situation is the same for developers
who implement the cross-cutting concerns. They focus more on the cross-cutting
concerns’ details rather than other business function implementations. This kind of

seperation of concerns mechanism leads to more productivity.

AQOP simplifies debugging cross-cutting functionality. Debugging requires right
tools that understand the exact type of an object and the exact control flow, give linear

flow to the navigation between different entities. Despite aspects make control flow less

52

explicit (raising the level of abstraction), choosing right aspect debuggers make cross-
cutting functionality debugging easier. For example, with recent improvements to the
Eclipse AJDT plug-in, debugging aspect-oriented programs is almost as easy as

debugging object oriented ones.

Languages for AOP are very similar with each other. In fact, every AOP
implementation uses a new language but these implementations are very similar to each
other. Figure 3.3 lists some AOP implementations with pointcut construct compared in

each of implementations. The same situation is also true for the other constructs in AOP

implementations.
Style AOP implementation Pointcut
Language Aspectl pointcut logOp() : execution(* Account.*(..));
extension
Annotation- AspectWerkz (using Javadoc) /==
based * @Expression execution(* Account.®(..))
=/
public Pointcut logOp;
Annotation- AspectJ (using Java & @Pointcut(execution(®* Account.®*(..)) ™)
based annotations) public void logOp() {}
KXML-based Spring 2.0 (using AspectJ <aop:pointcut id="logOp" expression="execution(*
pointcut language}) Account.®*(..)) "/»
¥ML-based JBoss AOP <pointcut name="logOp" expr="execution(*

Account-»*=(..))" />

Figure 3.3 Pointcut definition in different AOP implementations

AQOP can be adopted incrementally. Because aspects are a seperate layer than base
code, there is minimum risk to make a software system AOP enabled. As aspects coded,
these aspects can be included to the software system without any change in the base

code.

For example, tracing aspects can be a good starting point to adopt AOP. Because

tracing aspects are the “hello world” examples of AOP, developer has the chance to have

53

some experience about the AOP constructs and AOP paradigms. After having
experience with tracing aspects, writing other more complex cross-cutting concerns’

implementation can be started.

Another good example of starter aspect can be writing a testing aspect. Here you can
inject faults to the running system. For example you can inject a fault to simulate a
network error. You have the chance to see the results of how the designed software
behaves when such kind of a network error occurs. Can it be handled in a smart way or
does the system crash?. For example you can inject a fault to simulate a database level
error. You have the chance to see the results of whether transaction structure of the
system is secure or not ... etc. These kind of aspects are also named as development
aspects. Development aspects help in improving the code coverage and boosting

confidence that you have a solid product.

All of these aspects offer a pluggability feature that does not force you to include
aspects in production. Removing of these aspects from the software system before the
production is so easy. Removing of aspect files from the project is the solution. No
modification to the main code before production means no new risk before production

too.

3.4 AspectJ

Gregor Kiczales and colleagues at Xerox PARC developed Aspect] as the most
popular general purpose AOP implementation and made it available in 2001. IBM’s
research team then offered the more powerful but less usable Hyper/J which emphasizes
the continuity of the practice of modularization of cross-cutting concerns. Beside these,
there are some other AOP implementations such as AspectWerkz, JBoss-AOP,

PostSharp, Spring, GlassBox, AspectC++ ...etc.

54

Aspect Oriented Programming in language Aspect] offers a great deal of power and
improved modularity. Aspect] is the most popular general purpose AOP implemention

which is available since 2001.

Because the Eclipse Foundation’s Aspect] have been used in the application of this

thesis, details of Aspect] language will be discussed detailed in this section.

Aspect] is an extension to Java, and the convention in Eclipse is to keep pure Java
code (even in Aspect] projects) in .java files, and to use the .aj extension for source
which uses Aspect] specific constructs. For example new aspects will be created in .aj
files. This means that the Java editor is still, by default, used for .java files, and the
Aspect] editor used for .aj files. This editor is an extension of the Java editor, so it can

be used for Java code as well.

The Aspect] editor is designed to behave in an equivalent way for Aspect] code as
the Java editor does for Java code. For example; breakpoints, watches are set in the
sameway in Aspect] editor like in the Java editor. Because Aspect] editor extends Java
editor, syntax colouring extends to Aspect] keywords such as aspect, pointcut, round,

proceed ... etc.

For an experienced Java developer to become familiar with Aspect] language syntax
is so simple because the Aspect] language uses Java programming language as base.
When AspectJ language specific constructs are learned, writing the whole aspect code is

the composition of the Java code and Aspect] language constructs.

Details of Eclipse Foundation’s Aspect] language can be found at

http://eclipse.org/aspectj/. This web site consists of different types of contents such as:

links to Aspect] development tools, news and events on the AOP area, recent books and
articles published about AOP, documents for AOP, bugs posted about Aspect]

development tools ... etc.

55

3.4.1 Join points and Pointcuts

Consider the following Java class:

class Point

{

private int x, v;
Point(int x, int v} { this. x = x; this. v = v; }

void setX(int x) { thisx =x; }
void setY(int v) { thisv=v; }

int get™() { return x; }
int getY() { return v; }

setX method in this piece of program says that, when method named setX with an int
argument called on an object of type Point, then the method body this.x = y is executed.
One pattern that can be inferred from this description can be as the following: “when

someting happens, then something gets executed.”

We can define instances of “things that happen” pattern as join points in Aspect].
Join points consist of things like method calls, method executions, object instantiations,

constructor executions, field references, handler executions ... etc.

Pointcuts in Aspect] is the collection of join points and pickout these join points. For

example the pointcut code below:

pointcout =setter(): target(Point) &&
(call (void setX(int)) ||
call (void setY(int)));

pickouts each call to setX(int) or setY(int) when called on an instance of Point class.

56

Pointcut definitions consist of a left-hand side and a right-hand side, seperated by a
colon. The left-hand side consists of the pointcut name and the pointcut parameters
which correspond to the data available when the events happen (context exposing
mechanism). The right-hand side consists of the pointcut itself, meaning that collection

of join points.

Some of the example pointcuts are listed below:

execution(void Point.setX(int)): picked out when a particular method body executes.

call(void Point.setX(int)): picket out when a particular method is called.

handler(ArrayOutOfBoundsException): picked out when an exception handler
executes.

this(SomeType): picket out when the object currently executing is of type SomeType.

target(SomeType): picket out when the target object is of type SomeType.

within(MyClass): picked out when the executing code belongs to class MyClass.

cflow(call(void Test.main())): picket out when the join point is in the control flow of

a call to the Test class’s main method with no argument supplied.

It is possible to use wildcards in the definition of pointcuts. For example;

execution(* *(..)): means the execution of any method regardless of return type and
parameter types.

call(* set(..)): means the call to any method named set regardless of return type and
parameter types.

call(* .new(int, int)): means the call to any class’s constructor which takes exactly

two arguments with type int.

Pointcuts compose through the operations or (“

"), and (“&&”), and not (“!”). For
example;
target(Point) && call(int *()): means any call to any method with return type int

and no parameters on an instance of Point.

57

call(* *(..)) && (within(Line) || within(Point)): means any call to any method
where the call is made from the code in Line’s or Point’s type declaration.
!this(Point) && call(int *(..)): means any call to any method with return type int and

regardless of parameter types when the executing object is any type except Point.

Like classes, interface declarations can also be given in the definition of pointcuts.
For example;
call(* MylInterface.*(..)): means any call to any method regardless of parameter

types and regardless of return type in Mylnterface’s signature.

When methods and constructors run, there are two different times associated with
them. These are when they are called and when they are executed. These two interesting
times are represented by call and execution join points, each of them has a different role

in aspect programming.

At a call join point, the enclosing code is that of the call site. At an execution join
point, the program is already executing the method, so the enclosing code is the method
itself. For example;

call(void m()) && withincode(void m()): means any call to a method named m with
no parameters and no return value where the call is made from the same m method. This
pointcut only capture directly made recursive calls.

execution(void m()) && within(void m()): means the execution of a method named
m with no parameters and no return values where the execution is in the same m method.

This pointcut is the same as execution(void m()) pointcut.

Aspect] has context exposing mechanism via pointcut parameters which correspond
to data available when an event happens. Becasue these parameters will be accessible

inside an advice, parameters improve the flexibility of Aspect]. For example;

58

pointcut setter(Point p): target(p) S&
(call{void setX(int)) || call{void setY(int}));

setter pointcut has one parameter of type Point. This means that any advice that uses this

pointcut has access to a Point object from each join point picket out by setter pointcut.

pointcut testEquality(Point pl, Point p2): target(pl) & &
args(p2) &d&
call(boolean equals(Object));

In the above testEquality pointcut, there are two parameters. Args is a special pointcut
in AspectJ that makes it possible to access the parameters of a method picket out by the
pointcut. In this example, p/ is the target Point object and p2 is the argument Point

object to be compared with p1.

The use of the parameters in pointcuts is very flexible in Aspect]. The most important
rule while using parameters is that: all pointcut parameters must be bound at every join
point picked by the pointcut. For example, definition of the below pointcut will result in

a compilation error:

pointcut wrongPointcut(Point pl, Point p2):
(target(pl) && call(void setX(int})) ||
(target(p2) & & call(void setY(int)));

At the time one of the join points picket out by wrongPointcut pointcut, there is only
one Point object as target. Meaning that pointcut parameters should be mapped with the

join points’ arguments and the target object.

59

3.4.2 Advice

Advice defines pieces of aspect implementation that execute at well-defined points
during the execution of a program. Those points can be given by named pointcuts or by

anonymous pointcuts. Anonymous pointcuts are the pointcuts which do not have a name.

Aspect] supports all types of advices given in AOP literature such as before advice,

after advice and around advice.

The before advice code written below uses a named pointcut with name setter. In this
example, it can also be seen that pointcut parameters are visible to the advice. These

parameters are used by the advice code block for further processing.
pointcut setter(Point pl, int newwval): target(pl) &4& args(newwval)
(call(void set®{(int) || call{void setY{int)}));

hefore(Point p1, int newwval): setter(p1, newwval} {
Svstem.out.println(" About to set somethingin " +pl + " to the new value " + newwval);
¥

Before advice runs just before the join point picked out by the pointcut:

before(Point p, int x): setter(p, x) {
if (Ip.assert™(x)) return;
¥

The after advice written below runs after each join point picked out by the pointcut,

regardless of whether it returns normally or throws an exception:

after(Point p, int x): setter(p, x) {
if (Ip.assertX(x))
throw new PostConditionWiclation();

60

The after returning advice written below runs after each join point picked out by the
pointcut, but only if returns normally. The return value is also visible to the advice code
block to be further processed by the advice. Below advice code uses an anonymous

pointcut.

after(Point p) returning(int x): target(p) & & call{int get¥{)} {
System.out.println("Retuming int value " +x + " forp="+p);

}

The after throwing advice written below runs after each join point picket out by the
pointcut, but only when it throws an exception of type Exception. Instance of the
Exception type can also be accessed inside the advice to be further processed. The below

example also uses an anonymous pointcut.

after() throwing(Exception e): target{Point) & & call(void set®™{int)} {
System.out println(e);
¥

The around advice traps the execution of the join point; it runs instead of the join
point. The original action associated with the join point can also be invoked by the

special proceed call:

void around(Point p, int x): target{p)
& & args(x)
& & call(void set™®(int)} {
if (p.assertX(x))
proceed{p, x);
p.releaseResources();

1

61

3.4.3 Aspect

Aspect is a mechanism that is the composition of join points, pointcuts, advices ...etc.
It is a composed structure and like a class in the Object Oriented Programming

technique. Below is a complete aspect program with one pointcut and two advices.

public aspect SetterAspect
{
pointcut setter{Point p1, int newval): target(p1) && args(newval)
(call(void setX(int) || call(void set¥{int)));

before(Point p1, int newval): setter(p1, newval) {

System.out println{"About to set somethingin " +pl + " to the new value " + newval);
i

after(Point p, int x): setter(p, x) {
if (!p.assertX(x)) throw new PostConditionViolation();
i

CHAPTER FOUR

AOP in MDA

4.1 AOP in MDA Approach

The increasing complexity of current software applications, along with the emergence
of new technologies and the demand of end users for a high quality in the software
systems, require developers to deal with a growing set of software requirements.
Examples of these requirements are concurreny, distribution, persistence, fault recovery,
synchronization, authentication, authorization ... etc which affect a large number of
components in the software system that cause the existence of cross-cutting concerns.
Implementations of these cross-cuttings concerns scatter throughout the entire code
which makes the code tangled. The code tangling hinder the comprehension,

maintainability and evolution of software systems.

In order to manage cross-cutting behaviour issues which hinder the reusability,
adaptability and modularity of a software system, a possible approach is to employ the
principle Seperation of Concerns. There may possible be two dimensions in a software
development process where the seperation of concerns principle appears. These are

horizontal dimension and vertical dimension.

In the horizontal dimension, concerns that should be seperated appear in the same
abstraction level of the system lifecycle (analyses, design, implementation ... etc). In the
vertical dimesion, concerns that should be seperated appear in different abstraction
levels of the system lifecycle. Concerns in both dimensions should be clearly seperated

to increase the usability, adaptability and modularity of a software system.

Model Driven Architecture (MDA) process defines some abstraction levels for the

clear seperation of concerns in the vertical dimension which are Computation

62

63

Independent Model (CIM), Platform Independent Model (PIM) and Platform Specific
Model (PSM). CIM is the most abstract level in modeling and only consists what the
system is expected to do without any information technology details. PSM is the least
abstract level with the details of a particular type of platform. Abstraction levels

decrease through the transformation done from CIM to PIM and then, from PIM to PSM.

However, clear separation of concerns in the horizontal level is not addressed in
MDA approach. MDA approach lacks mechanisms for identifying and separating cross-

cutting concerns.

Aspect Oriented Programming (AOP) approach complements Object Oriented
Programming (OOP) which may not be enough to clearly capture some programming
problems. These problems are the seperation of cross-cutting concerns. AOP provides
aspects: mechanisms beyond subprograms and inheritance for localizing the expression
of a cross-cutting concern. By aggregating cross-cutting concerns into aspects, there will
be no tangled code and this will result as making the aspect code and the base code

easier to understand, maintain, develop ... etc.

The introduction of aspect-oriented constructs in programming has undoubtedly been
one of the major advances in modularizing of software. The usage of AOP approach

in programs improves the following qualities such as:

e The modules of a software are better modularized.

e The better modularization lead to a clear seperation of concerns and therefore
the artifacts are better maintainable and reusable.

e The time-to-market is reduced by a better modularized and simpler design,

resulting in reduction of costs.

64

If aspect-oriented constructs are applied in the early phases of software engineering,
the improvement of the above mentioned qualities can also be applied to the artifacts at

this stage which makes the appearance of Aspect Oriented Modeling (AOM).

AOP addresses the problem of seperation of concerns in the horizontal level.
However, techniques used in the context of AOP concantrate in the system
implementation phase (i.e code level). Therefore such techniques are more suitable for

development processes in which the effort is made at the coding level.

Seperation of cross-cutting concerns (horizontal level) at the modeling level is being
tackled in the area of Aspect Oriented Modeling (AOM). The most attention is being
made on the programming languages level (Aspect], Hyper/J ... etc). There are works in
AOM which focus on techniques for the identification, analyses, management and
representation of cross-cutting concerns in the modeling phase by using UML extension
mechanisms (UML Profiles). Because there is the lack of automatic tool support for
modeling and managing the relationships among the base model (component model) and
the cross-cutting model, this has been an hindrance in the wide-spread adoption of

AOM in the MDA approach.

The main approach can be summarized as the following:

e Raising the abstraction level of aspect modeling through the use of PIM
models representing cross-cutting concerns independent on business models.

e Promoting the reuse of cross-cutting concerns modeled as PIM elements.

e Managing the relationships among the base model (component model) and the
cross-cutting model at the modeling level (making the introduction of aspect-

oriented constructs at the modeling level).

65

In this section, two related works that address the issue of seperation of cross-cutting
concerns at the modeling level and then our aspect modeler tool which proposes a more

pragmatic and efficient way for modeling aspects will be explained detailed.

4.2 Work 1: Weaving Security Aspects into UML 2.0 Design Models

In this section, we will give the details of an approach for systematically weaving
security aspects into UML design models (Mouheb & et al., 2009). This approach
provides an end-to-end approach for systematically weaving security aspects which are
also built as UML models into UML design models (base models). The process starts
with specifying the needed security requirements and ends with injecting the

corresponding solutions at the appropriate locations in the design models.

The main steps of proposed approach are the following:

e Specification of Security Requirements: The designer should be able to
specify the security requirements that he/she wants to enforce on his/her
design. To achieve this, a UML profile is defined such that security
requirements can be attached to UML design elements as stereotypes
parameterized by tagged values.

e Specification of Security Solutions: The security expert provides a security
solution as a security aspect for each security requirement covered by the
security requirements specification profile.

e Definition of UML Join Points: A security solution mainly consists of security
behaviours (advices in AOP jargon) that should be injected
before/after/around some specific points (join points in AOP jargon) of UML
design.

e Design weaving: This step represents the actual addition of security solutions

into UML design.

Figure 4.1 illustrates the proposed approach:

Security

Reguire rrjn; ng/

(1) 4 L
- v

Security Aspects

Libra_r_[.r_ _/ ==

<L ®

Base Model Security Aspect
P Model
I ,@ {; c |_\<z1
"'3'\.: 0 C 2 ,I}]
= - T
Identifying | DD i
join points !

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1

@
.~ Design "

. Weaving -~

L

Secure Woven Model
L o

— . ,
x Developer x Security Expert

Figure 4.1 Overview of the proposed approach

This approach defines a UML Profile called AOSM Profile that allows the

specification of security solutions at the modeling level.

Aspects Specification: An aspect is modeled as a stereotyped class. Advices are
modeled as special kind of operations stereotyped by the name <<advice>>. The advice
behaviour is specified in behavioural diagrams (sequence diagrams, activity diagrams ...
etc). The advice type is given by a tag fype whose values are provided in the
enumeration AdviceType. The location where an advice should be injected is specified

by the meta-element Pointcut.

Ftype: AdviceType

<<glereotype >> <<slereotype>> ctst:remj,ffle:b::
Advice || Fointcut CSIDEC
[BehaviaralFeature]| [BehavioralFeature] [Class]

privilege: boolean

FinstType:

<<Enumerafion>> pp——— Instantlan?nTere
AdviceType Iml_odujim =<Enumeration==
Before InstantiationType
After Perthis
Araund ﬁ i) '\.{‘ Perarget
| Percllow
=<stereotype== <<stereotype=> =<slereotype>>
MNewlMember Generalization Realization
|[Feature] [StructuralFeatunz] [StructuralFeature]

where : Type[1..]

subType : Type[1.."]
superType : Type[1.."]

dass : Class[1.."]

interface : Interface[1..%]

Figure 4.2 The Meta-Model specifying aspects

67

Pointcuts Specification: The meta-model proposed for the specification of pointcuts

is presented in Figure 4.3.

<=stereotype=>| | <=stereotype==
Call Execution qqs{ere&t&fpe}p
[Acticn] [Action] Cflow
‘={StE'I’E'DT‘,|.I'pE'?? }r [}'-".I:T.ii}l"l: :"—'\Cﬂ\"i’[}l‘]
Create <<stereotype=>> -
[Acﬁﬂn] MethodPointcut d«:stermt\:‘.lpe:bp
b | CentrolFlowPointcut
<<stereotype>>) <<stereotype>> |
ObjectPointcut PointcutDesignator
i a x4 =<stereotype==
<<stereotype>> <<stereolypess ScopePointcut
quecs;;zaf ContextPointcut =<slereclype=>
e T Within
/ <<gterectype>> [ActivityPa tition]
<=stereotype== Args ==stereotype=>
This [Pin] Target
[InputPin] order: Integer [InputPin]

Figure 4.3 The Meta-Model specifying pointcuts

The designer instantiates the pointcuts of the SSL aspect (i.e the name of the security
aspect in the proposal) provided by the security aspect by choosing the elements of

his/her model where the SSL advices should be injected. The instantiation process is

implemented with a utility tool. Figure 4.4 illustrates the process:

68

EF) security Hardening Menu [B
Secunty Solubinns Locations
- [¥] S5LAcpect
1 SaLHancls hakeddvic e credentials (]

< <secrecys > Browssr
[[] autherticatiznReguirzd()
| | walidationF ailed()
L[pagen

- SELExchangeidvicel)

Ok

Cancel J

b "

Figure 4.4 User defined join points

The actual join points where the SSL advices should be injected are identified and

linked to the corresponding advices.

| user broweser | | weh Server | | suthenfication Server || dataBase
getURL() |

HTTPRequest()

—
1 ==55LHandshake>> |

<’aLrthan1ic.a1ionRaquimd[D
login'Window() ;‘-L...,_‘_‘____.____,_,ﬁ

credantiats()]

=255 LExchan
oredentials

B

]
]
i
i
I
]
.

;

H

;

;

n

i

] ;

: :

E ‘vaiid ste Credentizts ()] :

i] " ;

break] i i [
i i | validstionFailed | :
E | yasbdafonFaled | ; :
i i~ 1 1 [
! suthen fication Faled | ! ! :
]] | i ;
]] T T r
] i i e i ;
'] 1 validation 0K | :
]] i i ;
: i i i :
' ' ! getData() :
| | : - -
' i L data -
i i = T i
a | —_— | :
‘ \ page M= Genarats i :
i showPage() " 1 WebPagel) ! !
1 1 1 1 [

Figure 4.5 Identifying join points in the base model

As the last step, the advices of the SSL aspect are woven into the base model and a

single woven model is produced. Weaving process is also done automatically. The

69

specification of the SSL aspect using the AOSM profile is given in Figure 4.6. This

specification makes it possible to represent aspects (or aspect-oriented constructs) at the

modeling level.

<< aspad, secrecy>> S5 LAspect

<< newhlember>> S5LUser S5 LImpl jwhere=Cliant}
<< newhlember>> S5LServer: 55 LImpl fwhere=5arver}

<<pointcut>> 551 Hand shakePointcut
<<pointcut>> 551 ExchangeP ointcut
<<advice>> 55LHandshakeAdvica()
{type=After, pointcut=5SLHandsha ke Poinfout}
<<advices> SELExchangeAdvical)
{type=Around, pointcui=55 LExchangeP oinfcut}

recond

F_

|
: =— incramantSaghumbsan()
I = fragment=decrypt{) |
1 |
at! | ——== getFragment() |
I [fr menti=NULL| I‘F::" getligest) |
| 0) LI lg———= ret=validateDigest]) ||
+ 4 + I
—}ifj ! F—— tuldMsg) :
el B I
: frati=0K] :__ alert{badRecordMAC) : :
ImessagaFailad() | I |
| ————— L I
T v T R I —— I
| fragment=hULL e t{gecryptionFailed) : :
! messageFalad]) F : :

e i |
1 |
| ssiMassane I
L -
I 1
I 1

Sequence Diagram S5LExchangefdvice SS5LHandshakeAdvica
T T T T I T
| messEEE : ' | Chentalio |
| W—— breakFragment(message)) 1 }—)I
' e + t SarvarHalo i

lopp J ——— incrementSaghumbsar() 1 k—l
'E—_—_—_-. create Digast() : | Cerfificate [
— e |
I"'_—__; concalencte) | ! Certificate Request !
:-_ ——= enarypt) : [
= concatenste I
1
I

| serwerHeloDone |
|

| I
| Carlificate I

] I
| ChantieyExchange |
L 4

| CertficateVerify |
EEE— |
|
ChangeCigherSpec |
Finished H
i
| ChangeCipherSpec |
Pl b i il

|]
Finished i

Figure 4.6 The specification of the SSL aspect using AOSM profile

70

4.3 Work 2:Designing and Weaving Aspect-Oriented Executable UML Models

In this section , we will give the details of an approach for designing and weaving
aspect-oriented executable UML models (Fuentes&Sanchez, 2007). This approach
focuses on two primary issues: modeling of aspect-oriented constructs (aspect, pointcut,
join points ... etc) and execution of the built models (composition of the base model and
aspect model) to simulate the system behaviour correctly. While explaining the details of
how modeling of aspect-oriented constructs is done, we will somewhere give details of

how a model is executed.

A straightforward and simple mechanism for visualising how a system model works
when all design models are composed together, is to execute it and observe its behaviour.
In order to make a software system model executable, this model must contain a
complete and precise behaviour description. UML and its Action Semantics provides the
basis for complete and precise behaviour modelling of software systems. Several tools

conforming to UML and its Action Semantics has the ability to execute UML models.

The main steps of constructing aspect-oriented UML executable models can be

defined as the following:

e First, a common UML executable model is constructed to model the non
cross-cutting concerns, i.e, the base model.

e Cross-cutting concerns are modelled as aspects using the AOEM (Aspect
Oriented Executable Model) profile. AOEM profile is the UML Profile that
has been built special to this approach.

e How cross-cutting concerns must be composed with the concerns they cross-
cut is specified by means of a pointcut model. AOEM is also used for the
specification of the pointcut model.

e The base model and aspect models are composed, which produces the woven

model. The woven model is also an UML executable model.

71

To perform the weaving operation (weaving the base model and the aspect model),
designed models are exported to XMI format which is also an OMG standard. After
some model transformation steps on models which are represented in XMI files, a single
XMI representation of the woven model is produced. The woven model can then be

imported to any tools conforming to OMG modeling standards to be executed.

An Online Book Store System example used to illustrate the approach. In this system
some concerns: Persistence, Encryption, Currency Conversion are the cross-cutting
concerns. Despite all the study to model these cross-cutting concerns is given in the
original document, we will only show the process of how Persistence cross-cutting

concern is modelled and woven to the base model.

In order to construct executable models, two basic elements are required; an action

language and an operational semantics.

The operational semantics of UML is still in the process of standardisation. Several
tools implementing non-standard operational semantics for UML models already exist

(IUML, Rational Rose RT, Rhapsody ... etc).

The idea behind the operational semantics of UML is quite simpler to undertand.
Firstly, the global system structure is established as a set of components. Then, the
structure of each component is detailed as a set of class diagrams. Then the behaviour of
each class is detailed by using state machines. Transitions and states in state machines

have associated procedures which are specified using an action language.

72

Class diagram in Figure 4.7 shows the structure of the Online Book Store System.

System 1.3 Book SelectedProduct
_ . Clerk -author : String -gquantity : Integer
+reqgister() - 1"; -fitle : String
+unregistar() +packOrder
P 0 -tm-::uké]r
Customer ShoppingCart
0.% name - String R) L
-creditCard - String : +additem(hook - Book, quantity © int)
+removeltem{ book : Book)
+getCreditCard() : String +checkOut()
+creditMotification(ok : Boolean)
+deliveryMotification(ok : Boolean)

Figure 4.7 Class diagram for OBS system

Statechart diagram in Figure 4.8 shows the behaviour of ShoppingCart class. Each

procedure in this diagram will be specified using the UML action language.

 addltem(book-Book quantity-inty Payment CheckOut

Updateltems
) ! requestCreditConfimation ; .
Empty [TtemsAdded checkOut() craditMotification| ok - Boolean)
J

WaitingFor mk:”“?!(ij
I, T CreditConfirmation
II‘. ||l
additem{book:Book, guantity:int) Dilivery
Updateltems ! requestDeliveryConfirmation deliveryMotification{ ok : Boolean)
B . . oy [ok=trug] __
WhaitingForDelivery | E
Confirmation
feendOk
deliveryMotification{ ok : Boolean) [ok=false] / creditbotification{ ok - Boolean) [ok=falze] /
netifyMotDeliveryApproved @notinyc-tCredimnnrm'ed)

Figure 4.8 Statechart diagram for shoppingcart class

The UML action language does not enforce any notation for drawing actions. A new
UML profile that is special to this approach has been developed to specify the set of
actions. Advice behaviours while modeling aspects will also be modelled using a subset

of this profile.

73

The designed profile works as follows: procedures are represented by UML activity
diagrams (meaning that, advice behaviours while modeling aspects will also be drawn as
activity diagrams). Actions are nodes of activity diagrams. Inputs and outputs are
depicted as pins. To distinguish each specific action in the activity diagram, some

stereotypes for these special actions have been built.

Figure 4.9 shows the behaviour of Updateltems procedure in Figure 4.8.
<<ReadSelf>>, <<CreateLinkObject>>, <<AddStructuralFeature>> are stereotypes to

distinguish each action.

book - Book - quaniity : Integer -
! |]_L| hiook fﬁn‘: g

" ceRzadSels> \D_iiaf =<CresteLinkOhjecs | “‘-‘Wﬂcc‘jf ceAddStnuciralFastress | @)
ThisShoppingCart SelectedProduct Cuantity) B

A L - L

Figure 4.9 Updateltems procedure

An aspect is modelled as a common class with special operations which model
advices. Advices differ from common operations in that they are never invoked
explicitly and they are executed by the aspect-oriented weaver without the knowledge of
the base class designer. For this reason, advices do not have parameters. Consequently,
each aspect-oriented language has to provide some mechanisms to allow advices to
retrieve the information related to the join point. In AOEM profile, actions to retrieve
the information related to the join point are represented with special stereotypes.

Advices are modeled using activity diagrams.

Figure 4.10 shows the Persistence aspect model which is a cross-cutting concern in
Online Book Store System. As seen from the figure, Persist advice is modelled AOEM

profile that uses activity diagrams to depict the behaviour of the advice.

74

2l Is et
<<Literal=> . ceCallBehaviers> | 1BIERL caCaiOperation>»
<<FEpECt> I{/__\ =<COMpoNents= El Persister TS GetReference) - L persist .

Parsistence —l Persister

<<3OVioes =+ PRrEst]) IPE'I-‘ tence . >l <<Ge1Ta'get

CratSenedComp

Figure 4.10 Persistence aspect model

To complete aspect-oriented model, pointcut models that specify how to compose the

cross-cutting concerns modelled as aspects with the design they cross-cut are built.

A pointcut expression is a pattern that matches several join points and associates
them with one or more advices. At the modeling level, UML diagrams with wildcards

cexko

(e.g., to represent any sequence of characters or “?” to represent any sequence of
arguments) are used to model pointcuts. In this approach, to intercept interactions

between objects, sequence diagrams are selected to model pointcuts.

A pointcut, according to the AOEM profile, is expressed by means of a sequence
diagram, stereotyped as <<pointcut>>. This stereotype has a tagged value called advice:
an ordered collection of aspect advices. The specific message of the sequence diagram
that must be intercepted is stereotyped as <<joinpoint>>. <<joinpoint>> steretype has

two tagged values:

e Point: which indicates whether the interception point is either the sending or
the reception of the message.
e Time: which specifies when the advice is executed related to the join point

(before, after, around)

Figure 4.11 shows the pointcut model for Persistence aspect. This pointcut returns

true after any method starting with “add” pattern on the ShoppingCart class is executed.

75

=<pointoui>
=d ShoppingCartUpdate /=

{advice =Persistence persisi]}

=<jginpoint=F Ipoint=RECEIVE.
add*(.) 1 time =AFTER}

Figure 4.11 Pointcut model for Persistence aspect

Up to here; base model, aspect model and the pointcut model have been built.
However, to be able to execute entire model set, aspect behaviours must be added to the
modules they cross-cut according to the pointcut specifications, i.e., the weaving process

has to be executed.

The task of the model weaver is to inject the advice behaviours into the places
indicated by the pointcut specifications. The weaving process is defined as a chain of

model transformations illustrated in Figure 4.12.

1 Joinpoint Selection { Advice Injection A
FAN
Poincut Model - -
(] Process i Joinpoint i FAN Ll Advice
. . FPointcuts Selectors T Marked Model Injector
|
S T Legand T T
Base Model T T—— FAN FAN
FEmocel Advice Model|| Woven Model
. A)

Figure 4.12 Model weaving process

The pointcut model is processed by the ProcessPointcuts model transformation ,
which generates a set of model transformations, called JoinpointSelectors. A
JoinpointSelector serves to search all the joinpoints that are selected by a pointcut. These
joinpoints are stereotyped as <<selectedjoinpoint>>, and the JoinpointSelector adds two
tagged values to this stereotype: the advice that must be executed on that joinpoint and
the advice execution time (before, after, around). This information will be required by

the Advicelnjector model transformation in the next step. After applying the

76

JoinpointSelectors to the base model, the marked model, how and where advices must be

injected is obtained.

In the Advicelnjector model transformation step, the corresponding advices must be
injected into the selected joinpoints. The Advicelnjector model transformation takes as

inputs the MarkedModel and the AdviceModel and outputs the woven model.

Figure 4.13 shows the woven model when Persistence advice is injected into the

Updateltems procedure it cross-cuts.

- »
- — estruclureds
) ¥ advicePersist
(" <eReansefes | CAI ceCremsLnkCbct | DewBod "-:-:A:IclBlr.ncMralFaa‘..nra:-:—\CE weLlEral-> "«:alseuulo“»] Cr%""\,
Lm:&h.oppi:g(:a—. T SelectedProduct 7 WriteQuantity) Parsizter L GeReference =

<<Read5ell>=
ThisShoppingCart

Figure 4.13 The woven model

4.4 Our Aspect Modeler Tool (AspectModeler)

We have designed and developed an aspect modeler tool named as AspectModeler
that allows the definition of aspects in a practical and efficient way. The output of the
AspectModeler is the programming code (i.e., AspectModeler tool makes the code
generation of the modeled aspects automatically) and this feature of AspectModeler
makes it an end-to-end product that adopts aspects automatically into the project design

environment.

As mentioned in the above related works for aspect-oriented software modeling,
there are mainly three issues to be solved; specification of a UML Profile that represents
aspect-oriented constructs (aspect, advice, pointcut ... etc) in UML models, poincut
modeling mechanism that matches several join points and associates them with one or

more advices, weaving of aspect models with the base models as the last step.

77

Becasue UML does not support Aspect Oriented Modeling in its standard
specification, the primary solution to represent aspect-oriented constructs in UML is the
usage of UML Profile mechanism. UML Profiles generated by different tool vendors are
different than each other. This hinders the full adoption of Aspect Oriented Modeling to
the software modeling area. As a result, model transformation languages lack stability

and maturity to deal with UML Profiles.

To overhelm the issue of weaving aspect models with the base models,
AspectModeler proposes an idea that delegates this job to the existing and mature aspect
weaver tools. AspectModeler allows developers to build their own models (the base
models and the aspect models) as UML models without specification of any UML
Profile for aspect-oriented constructs, i.e., the developers that build their own models
should not be aware of whether their models will be an aspect model or a base model.
Models are pure UML models without aspect-oriented constructs. AspectModeler only
uses these models without any modification that enables software developers to model
aspects and includes aspect models into the existing software system by generating
aspect oriented programming code in a seperate file. Because this seperate file contains a
valid code in a specific programming language, exisiting aspect weaver tools related to
the generated code can be used to produce a complete and correct aspect-oriented
behaviour. This approach eliminates the model weaving step and delegates it to the

existing technologies.

Modeling of aspect-oriented constructs (aspect, advice, pointcut ...etc) is done with
user friendly interfaces that AspectModeler contains. These interfaces allow software
developers, who are intended to include aspects into the existing software, to easily
define and manage aspect-oriented constructs at the modeling level. Code generation in
AspectModeler is not a last step action, i.e., software developer can also preview the

programming code of the aspect-oriented constructs he/she defined so far.

78

The program code generated by the AspectModeler is in Aspect] programming
language. Becasue Aspect] is the most popular and dominant programming language in
AOP environment, the output of the AspectModeler will possibly be valid in a wide
range of applications. The output of AspectModeler is an aspect file with .aj extension
and inclusion of the code generated by Aspect Modeler to the existing project’s design
environment is simply putting the generated aspect file into the existing project’s design

environment.

AspectModeler takes two inputs: base model and aspect model. Inputs are in XMI
format which is an OMG standard. Models in XMI format are processed according to
the XMI standard specification and shown to the AspectModeler user in an user friendly
interface to clearly model aspects. The input mechanism enforced by AspectModeler
makes it a product conforming to the OMG standards, i.e., inputs don’t constitute a
problem as long as they are produced through an MDA-enabled tool. Figure 4.14
illustrates the approach proposed by AspectModeler.

While explaining AspectModeler tool in this section, we will use two models; one for

base model and the other for aspect model.

Base model has been built for modelling a programming language file processing

system.This system has the following functionalities:

e A file can be created or deleted. File existence can be checked according to a
given FilePath parameter.

e A specific substring in the file can be highlighted.

e Programming language specific constructs such as constructor, method,
property, destructor can be generated. There are two programming languages

supported: C# and Java in this version.

79

Base

. Log Aspects
Requirements Requirements -

[[

I

I

I

|

Ny o :

Log Aspect !

Base Model Model :

I

I

r=>» @ I
I I
I I
i !
1 = 1
I I
1

x Developer

Aspect File (.aj extension)

[7.\' Log Expert

Aspect
Modeler

public aspect DosyaTakipAspect
{

ppointout Dosya¥Yaratilirken(File insFile, MyString paraml)

args (paraml) &&
{ execution (MyBoolean CreateFile (MyString)))

pointcut JavaMethodYaratilirken (JavaFile insJavaFile, MySi
args (paraml, paraml2) &&
{ execution (MyVoid CreateProtectedMethod (MyString, 1!

pointcout JavaClassYaratirken(JavaFile insJavaFile) : targe
{ execution (MyVoid CreateClassConstructor | 1)) :

pointout JavaClassParcalanirken (JavaFile insJavaFile) @ t:
{ execution (MyVoid CreateDestructor | 1) I

Figure 4.14 AspectModeler approach

Aspect model has been built for modelling a log system for the programming
language file processing system (base model). This system has logger classes specialized
for each of the programming language constructs: PropertyLogger, MethodLogger,
ClassLogger ... etc. Software developers who are intended to use log aspect can trace the
running system with comprehensive log messages specific to each functionality in the

running system.

80

Static structures of the aspect model and the base model are shown in Figure 4.15
and Figure 4.16, respectively. Diagrams both in Figure 4.15, Figure 4.16 and in the other
parts of this section is built by using ArgoUML tool v0.28.1 (http://argouml.tigris.org).

This tool has a very advanced support for UML diagrams and import/export utilities for
XMI files that we have needed while developing and testing AspectModeler tool.

Loger

Data - ¥LogData HMethodRetum ¥LogData
newAttr: XLogData

Logl % ethadRetumn

R

PropetyLogger htethodLogaer ClassLogger
Lot % ethadRetum Logl % ethadRetumn Log0) XMethodRetum
ProtectedPropertyLogoer PublicProperyLooger DestrovClassLogoer CreateClassLogger
Log() : ¥MethodRetum Lag() ; ¥MethodRetum Lag() ; ¥MethodReturn Log() : xMethodReturm
Publich ethodLogoer ProtectechethodLooner PrivatemethodLooger
Log() : XMethodReturn Logd) - XMethodRetun Log() : ¥MethodReturn

Figure 4.15 Log aspect model

81

File WyInteger Wy oid

Bize: Mylrtegar
Path : MyString
CheckPath(FilePath : MyString) : MyBoolean

DeleteFile(FilePath : MyString : MyYoid WyString MyBodlzan
CreateFile(FiePath : MyString) - MyBoolean

i

RichTextFile

SelectedCalar ; Mylntager

Highlight String(Startindey . hyInteger, Endindex : Mylnteger) - My oi
SetSelectedColor(value : Myinteger) - Myvaid
GetSelectedColor() Mylnteger

1 i

JavaFie SharpFile
CreateClassCanstructor() : MyVoid CreateClassConstructar) - MyVoid
CreateMethod(Mame : MySting, ParametersString : MyString) - MyVoid CreateMethod(Mame - MyString, ParametersString : MyString) : MyVoid
CreateProperty(Name : MyString) - MyVoid CreateProperty(Name : MyString) - MyYoid
CreateDestructor(: hyVoid CreateDestructon]) © Myvoid
CreatePrivatel ethodiMame : MyString ParametersString - MyString) : My oid CreatePrivateMethadName - MyString,ParametersSiring : MyString) : MyVoid
CreateProtectedi ethod(Mame : MyString ParametersString : hyString) MyVoid | [CreateProtectedh ethod{Mame : MyString P arametersString - MyString) - My oid
CreateProtectedProperty(Hame : MyString) - MyV oid CreateProtectedProperty(Mame : MyString) : My'oid

Figure 4.16 PL file processing system model

4.4.1 Input Models

AspectModeler takes two inputs: base model and aspect model. AspectModeler
expects input models in XMI format. According to the XMI standard specification, input
files are processed and a more human readable representation of the models are shown

to the user. AspectModeler now supports XMI files with version 1.0 and version 1.2.

82

v =

Madel Adres Bilgiler I.ﬁna Model ve Crosscutting Model Detaytan I Modeller Uzerinden Aspect Olugumma I

Ana model adres bilgisi I Ac |

Crosscutting mode! adres bilgisi I Ac |

Mode! Detaylanni Géster |

Figure 4.17 Input model files

ect Modelleme Arac - ol x|
Model Adres Bilgileri Ana Model ve Crosscutting Model Detaylan | Modeler (zerinden Aspect Olugturma |
Ana Medel Detaylan Crosscutting Model Detaylan

E-L_| File

=[] File
- [MyBoolean CheckFath (MySting Fefath)
- [] MyVoid Deletafile (MySting Mefsth)
- [MyBoolean Createfile (MySidng Flefath)
5[] RichTextFile
-] MyVoid Highlight String (Myinteger Startidex, Mylnteger Endindex)
- [] My Vioid Set SelectedCalor (Mylnteger Value)
- [Myinteger Get SelectedColor ()
=-[] JavaFile
- [] MyVioid CresteClassConstructor () R
- [] MyVioid CresteMethod | MyStrng Name, MySiing PammetersSting) EI El PublicMethodLogger
- [] MyVioid CresteProperty (MyStrng Name) ; -] AMethodRetum Log ()
- [] MyVoid CreateDestructor () B |j ProtectedMethodLogger
- [] My Vioid CrestePrivateMethod (MySiing Name, MySiing ParametersSiin,
- [] My Vioid CresteProfectedMethod | MyString Mame, MyStrng P Si
- [] MyVoid CresteProtected Froperty { MyStrng Name)

- [] MyVioid CresteMethod | MyStrng Name, MySiing PammetersSting)
- [] MyVioid CresteProperty (MyStrng Name)

- [] MyVoid CresteDestructor ()

- [] My Vioid CrestePrivateMethod (MySiing Name, MySiing ParametersSiin, El AMethodRetum Log ()
- [] My Vioid CresteProfectedMethod | MySiing Name, MySting ParametersSi = El DestroyClassLogger

- [] MyVioid CresteProfected Froperty { MyStrng Name) e [XMethodRetum Log ()
-] Mylnteger

Figure 4.18 Representation of XMI files as treeview

83

4.4.2 Poincut Modeling

Pointcuts are modelled through a seperate interface in AspectModeler. On the left
panel, static structure of the base model is shown to pick up join points easily. One
pointcut can have one or more join points each specifies a point during the program flow.
Join points are listed in the editable grid component which allows the software developer
to change the type of the join points (call, execute ... etc). When an item that represents a

method is clicked on the left part, join point definition that specifies the selected method

call is automatically added to the join point list grid.

 Model Adres Biaier | Ana Model G Mods Detayian | Modsler Uzerinden Aspect Olustum |
Poirtcut Olugtuma | Pointcut Liteleme | Advice Oluguma | Advice Liteleme [Aspect Olustuma

=-[Fie
={CIFile Pointcut Adi JavaMetod Yaratiien

[MyBoakean CheckFath (MySting Fiefath)

|7 My Vi DeleteFite (MySting FiePath) Hedef Sinf Adi JavaFile

-[7] MyBoakean CreateRie (MySting Fefath)

& [[|RichTextFile Metod Agklama Katima A

-[C] My Vs Highighe Stning (Myinteger Startindex, Myinteger Endlinok R =

[My Void St SeleciedCalbr { Myteger Ve) : g ooy i

-] Mylteger Get SelectedColor [) MyVoid Create PrivateMethod (MySting, MySting) |execution |

& | davaFile MyVoid Create ProtectedMethod { MySting, MyString) |execution -

-7 Vi CreateQiassConstructor ()

(] My Vioid CresteMethod (MySting Name, MyString Parameters Sti)

~[C] My Vi Crete Property (My Sting Name)

-[C] Vi CreateDestructor ()}

-[¥] My Vs Create PrivateMethod { MySting Name, MySting Parameti

-[F] My Viid Create ProtectedMethod (MySting Name, MySting Param,

[T My Viid Create ProtectedProperty (MySiing Name)

=] CSharpFile

-7 Vo CreateQassConstructor)

-[F] My Viid CreateMetbod (MySting Name, MySting ParametersSti)

[T My Vi Crete Propety (My Sting Name)

-[C] Vi CreateDestructor ()}

-] My Vs Create PrivateMethod { Myting Name, MysSting Parameti

[T My Viid Create ProtectedMethod (MySting Name, MySting Param

[T My Viid Crete ProtectedProperty (MySiing Name)

- [Mylnteger

% . MyString

- MyVoid

< i 3 U d

Figure 4.19 Pointcut modeling

84

Pointcut model in Figure 19 pick up join points that includes the following points:

e On the execution of CreateMethod with two string parameters and with return
type MyVoid.

¢ On the execution of CreatePrivateMethod with two string parameters and with
return type MyVoid.

e On the execution of CreateProtectedMethod with two string parameters and

with return type myVoid.

4.4.3 Pointcut List

Listing of modelled pointcuts are made through a seperate interface. This interface
allows designers to review the list of pointcuts with the generated code preview. Code
generation of pointcuts in the Aspect] language is one of the intelligent parts of
AspectModeler. Pointcut code generation is so implemented to use context exposing
mechanism in Aspect]. Aspect] has context exposing mechanism via pointcut
parameters which correspond to data available when an event happens. The most
important rule while using context exposing mechanism, i.e., all pointcut parameters
must be bound at every join point picked by the pointcut, is also applied while

generating pointcut code in AspectModeler.

AspectModeler previews generated code with suitable line indents to make generated

code more readable.

85

0-' Aspect Modelleme Arac _Ino ﬁ
Mode! Adres Bilgileri I Ana Model ve Crosscutting Mode! Detaylan Modeller Uzerinden Aspect Olugtuma |

Pairtcut Olugtuma | Advice Oluguma | Advice Listeleme | Aspect Oluguma |

pointcut JavaMetodYaratiincen(JavaFile insJavaFile, MySting param1, MyString param2) : target(insJavaFile) 4&

args(param 1, paramZ) &&

(execution{MyVoid CreateMethod (MyString, MyString J) I execution(MyVoid CreatePrivateMethod { MyString, MyString)) Il execution{MyVoid CreateProtectedMethod (
lyString, MyString)}

pointcut Dosya'Yaratiliteen (File insFile, MyString param 1) : target insFile) &&
angsiparam 1) &&
 execution{MyBoolean CreateFile (MyString));

pointcut JavaClass Yargtiiicen(JavaFile insJavaFile) : targetiinsJavaFile) &&
| execution{MyVoid CreateClassConstructor)):

pointcut JavaClassParcalanincen{JavaFile insJavaFile) : targetinsJavaFile) &%
 execution{MyVoid CreateDestructor { 1));

Figure 4.20 Pointcut list

4.4.4 Advice Modeling

Advice modeling is done through a seperate interface in AspectModeler. Two advice
types: before and after types are supported at this version of AspectModeler. This
interface has also a left panel that aims to make advice modeling task easier. Because
advices define pieces of aspect implementation that execute at well-defined points
during the execution of a program, left panel contains both base model and aspect model
representations in treeviews. Designer can choose easily which method(s) to execute on

the log system model according to the pointcut and advice type definition.

An advice has three fields that must be assigned by the designer: pointcut info, advice
type and advice implementation. Pointcut info can be selected from a combobox
component that contains pointcut list defined in the previous interfaces. Because
pointcuts are selected from a predefined set of values, advices in the AspectModeler has
named pointcuts. Advice implementation is manually coded by the developer by using
the helper model representations on the left side. When clicked on the items in the model

representations, code generation is automatically done according to the clicked item’s

86

type. For example when a class item is clicked on the left panel, a new object creation

code is automatically written into the advice code section.

o Aspect Modelleme Arac

[Model Adres Bigieri | Ana Model ve Crosscuting Model Delaylan | Modeler Uzerinden Aspect Cluguma |

| Pointeut Olugtuma | Pointcut Listeleme | Advice Olugtuma | Advice Listeleme | Aspect Olugtuma |

=1k -
= [lFie | | Hedef Fotou
T MyBonlean CheckPath (MySting Fefath) e
[My Vo Detetefie (MySting FlePath) vies
.[7| MyBoolean CreateFie (MySting Flefath)
=[] RichTextFile CreateClassLogger insCreateClassLogger = new CreateClassLogger(y,
T Vi Highiht Stang (Mylnteger Startihaiex, Myinteger Bndnde insCreateClassLogger.Log():
[T M Vi Set SelectedtCalor { Myinteger Value)
[F] Myinteger Get SelectedColor)
=[] JavaFile
] My Vorid CreateClassConstructor ()
|7 My Void CreateMethod (My Siing Name, MySting Parameters Stin
T vt CreatePropenty (My Sting Name)
[7| My Void CreateDestructor)
| My Void CreatePrvateMethod { MySting Name. MySting Paramete |
AT My Vo CreateProfectediethod (MySting Name, MySting Pamm
|| My Vi CreateFrotectedPropenty (MySting Name)
= [7|CSharpFile
[MV CreatelassConstructor ()
[M Vinid CresteMethad { My Sering Name, MySting Parameters Sty
|| My Vioid Createfroperty { MySting Name)
[8ol inird et Mot s o |
4| [| 3

m

-

>

=] |:_|Luggsr
& []Logger B
¢ [XMethodRetum Log [)

- [”| PropertyLogger

LT XMethodRetum Log ()
["IMethodLogger

i LT XMethodRetum Log ()
= [|ClassLogger

i] XMethodRetum Lag [)
2 [| ProtectedPropertyLogger
[XMethodRetm Log [)
&[] PublicMethodLogger

s L] XMeghodRetum Log ()
&[] ProtectedMethodLogger
i[O XMethodRetum Log ()
PrivateMethodLogger

LT XMethodRatum Log ()

i[T] XMethodRetum

- [[1XLogData =

d-DXMcdﬁm Log() Temize Kaydet
F\ ["PublicPropertvL oacer i

Figure 4.21 Advice modeling

mn

4.4.5 Advice List

Listing of modelled advices are made through a seperate interface. This interface
allows designers to review the list of advices with the generated code preview. Code
generation of advices in the Aspect] language is also one of the intelligent parts of

AspectModeler. AspectModeler allows the generated advices to retrieve information

87

related to the join point (e.g., the arguments of a message). The related information can

then be used by the designer while writing advice code.

1= Aspect Modelleme Araci B[] b
Mode! Adres Bilgileri | Ana Model ve Crosscutting Model Detaylan Modeler Uzerinden Aspect Olugtumma |

Pairtcut Olugtuma | Paintcut Listeleme | Advice Oluguma | Pspect Oluguma |

after(JavaFile insdavaFile) retuming() : JavaClassYaratiinken(insJavaFile)
i
1
ClassLogger insClassLogger = new ClassLogger]);
insClassLogger.Log();
i

?ﬂer[ﬂle insFile, MyString param 1) retuming() : DosyaYaratilileeninsFile, param1)
1

Logger insLogger = new Logger();
insLogger. Log():
H

after(JavaFile insdavaFile, MyString param1, MyString param2) retuming() : JavaMetodYaratilirken(insJavaFile, param1, param2)
I
1

MethodLogger insMethodLogger = new MethodLogger);
insMethodLogger.Log);
H

after(JavaFile insdavaFile) retuming() : JavaClassParcalanirken(insJavaFie)

I

1
DestroyClassLogger insDestroyClassLogger = new DestroyClassLogger();
insDestroyClassLogger. Log();

i

Figure 4.22 Advice list

4.4.6 Aspect Definition

An aspect is constructed by the usage of join points, pointcuts, advices. So that, after
completing the steps of pointcut modeling and advice modeling, aspect definition is

simply as the definition of aspect name.

To define an aspect, there are three inputs required in AspectModeler. These are
pointcut list, advice list and the aspect name. Because the first two inputs have been
defined in the previous interfaces in AspectModeler, aspect definition interface only

requires aspect name as input.

The generated whole aspect code in aspect definition interface is a valid Aspect]

language code. Aspect definition interface also allows the designer to save aspect code

88

as an aspect file (with .qj extension) into any directory. By saving the aspect code into
the project design environment, aspect modeling process is ended. After saving aspect
file into the project design environment and then compiling the project, aspect weaver
tool of the Aspect] language automatically weaves the advices into the appropriate

locations in the component code (i.e., base code).

o= Aspect Modelleme Arac _ o) %]
Model Adres Bilgileri 1 Ana Model ve Crosscutting Model Detaylan Modeller Ozerinden Aspect Olugtuma ‘

Poirtcut Olugtuma] Paintcut Listeleme | Advice Olugtuma l Advice Listeleme Aspect Olugtuma]

Pspect Adi ILDggerAsped

public aspect LoggerAspect
I

i
nointcut JavaMetodYaratiineeniJavaFile insJavaFile, MySting param1, MyString param?) : target (nsJavaFile) &&

args(param1, param2) &4

{ executionMyVoid CreateMethod { MyString, MyString) | execution (MyVoid CreateProtectedMethod { MyString, MyString)} I execution
(MyVoid Create PrivateMethod (MySting, MySting)});

pointcut DosyaYaratiineen(File insFile, MyString param1) : targetnsFile) 4&

args(param1) 4& ~
{ execution(MyBoolean CreateFile (MySting)) J; o< Save As).‘.]
pointcut JavaClassYartiiteen (JavaFile insJavaFile) : target (nsJavaFile) 4% .’_"- o . : - [| o I |
(execution(MyVoid CreateClassConstructor {) J; W) s bE Tz bl el e Teni AR m Searc lz_"]J
pointcut JavaClassParcalanincen(JavaFile insavaFie) : targetnsJavaFile) & Organize + = Views ~ New Folder
{ execution(MyVoid CreateDestructor { J)): 9 h ‘ o
after|JavaFile insJavaFile) retuming) : JavaClassYartiliden nsJavaFile) Favorite Links Name |'1 Date modified ¥
I
i
(ClassLogger insClassLogger = new ClassLogger(); !-’_ Dicurdents No items match your search.
insClzssLogger.Log(); 3
i 5 Recently Chang...
after{File insFile, MyString param) retuming() : Dosya Yaratiliken(nsFile, param’ <» Recent Places
s
1

Logger insLogger = new Loager]) A Computer
insLogger Log();
i B Desktop
after{JavaFile insJavaFile, MyString param 1, MyString param2) retuming) : Java E Pictures
{ E
MethodLogger insMethodLogger = new MethodLogger(); 9 Music
insMethodLogger.Log(): I"I Searchies
) Public
after{JavaFile insJavaFile) retumingl) : JavaClassParcalanidcen(nsJavaFile)
I
i
DestroyClassLogger insDestroyClassLogger = new DestroyClassLog
insDestroyClassLogger.Log():
Folders Ll [I

File name:

Save as type: |Asped Files (*.a))

+ Hide Folders| Cancel

ENEH

Figure 4.23 Aspect definition

AspectModeler is a tool that enables modeling of aspects in a practical and efficient
way. In addition to modeling aspects, AspectModeler also generates aspect code in

Aspect] language that makes it an end-to-end product in aspect modeling process.

&9

Advantages of AspectModeler compared to the other works discussed in the related

work sections can be listed as the following:

AspectModeler eliminates the step of specification of a UML profile for
modeling aspects. In AspectModeler approach, base models and aspect
models are pure UML models without stereotypes for aspect-oriented
constructs. Designers for aspect models don’t have to encapsulate their
models with aspect-oriented stereotypes, i.e., specification of aspects, advices
...etc. Base model and aspect model designers independently build their
models as PIMs and AspectModeler uses these models without any
modification to model aspects and includes aspect models into the existing
software system by generating aspect oriented programming code in a
seperate file.

AspectModeler eliminates the step of model weaving mechanism.
AspectModeler plays a bridge role between base models and aspect models to
model aspects. Because aspect oriented programming code in Aspect] is
automatically generated as the last step of AspectModeler, there is no need to
define an extra process for weaving of base models and aspect models. After
saving aspect file, generated at the last step of AspectModeler, into the project
design environment and then compiling the project, aspect weaver tool of the
Aspect] language automatically weaves the advices into the appropriate
locations in the component code (i.e., base code). Because aspect weaver tool
for Aspect] is a mature tool, this delegation approach ensures proper
completion of model weaving at program code level.

AspectModeler has a userfriendly interface for modeling pointcuts. Selection
of join points can easily be done through the left panel that shows the details
of base model. By clicking the model items on the left panel, join points are
automatically added to grid component which lists join points of the current

pointcut modelled.

90

AspectModeler generates aspect oriented programming code in Aspect]
language. Becasue Aspect] is the most popular and dominant programming
language in AOP environment, the output of the AspectModeler will possibly
be valid in a wide range of applications.

AspectModeler expects model inputs in XMI format which is an OMG
standard to represent MOF-based models in XML documents. The input
mechanism enforced by AspectModeler makes it a product that can accept
inputs generated by different tool vendors who conform the standards of
OMG and its XMI and UML foundations specially.

Aspect weaving mechanism approach in AspectModeler has some benefits
when it is subject to maintain aspect behaviour. In AspectModeler approach,
because aspect oriented programming code is only stored in aspect files,
modification of aspect files is enough to change the aspects behaviour. But in
model weaving approach, because all advices in the aspect model are injected
into the base model (i.e., single woven model is produced in the model
weaving approach), modification of advices cross-cuts the wowen model (i.e.,
modification job also becomes a cross-cutting concern). There are two
alternatives in model weaving approach; one is to modify the aspect model
and doing all the model transformations again to produce a single woven

model, the other is to modify the woven model which is a laborious task.

Disadvantages of AspectModeler compared to the other works, discussed in the

related work sections, can be listed as the following:

AspectModeler generates aspect oriented programming code only in Aspect]
language. This selection is a valid selection in today’s AOP environment,
because Aspect] is the most popular and dominant language. Unfortunately,
this selection may not be valid with the birth of a more popular and dominant
aspect-oriented programming language. In this situation, AspectModeler may

have to support also this new AOP-based programming language.

91

At this version of AspectModeler, we only support the representation of class
diagrams stored in XMI files. Other works have also supports on activity
diagrams, sequence diagrams ... etc. Representation of other diagram types in
UML should be supported not to hinder the Aspect Oriented Modeling
approach.

During pointcut modeling, AspectModeler only allows the individual
selection of joinpoints. If there are some join points that have the same
pattern, designers have to select join points manually which may be a time-
consuming task. Selection of join points with extra mechanisms (e.g., usage of

wildcards) should be supported to overhelm this issue.

CHAPTER FIVE

CONCLUSION & FUTURE WORK

5.1 Conclusion

Model Driven Architecture (MDA) is an approach to software development to use
visual models as a single resource for software developers. To achieve this goal, MDA
process defines some abstraction levels for the clear seperation of concerns in the
vertical dimension which are Computation Independent Model (CIM), Platform

Independent Model (PIM) and Platform Specific Model (PSM).

However, the clear seperation of concerns in the horizontal level is not addressed in
MDA approach. MDA approach lacks mechanisms for identifying and seperating cross-

cutting concerns.

Aspect Oriented Programming (AOP) approach complements Object Oriented
Programming(OOP) which may not be enough to clearly capture some programming
problems. However, techniques used in the context of AOP concantrate in the system
implementation phase (i.e code level). Seperation of cross-cutting concerns (horizontal
level) at the modeling level is being tackled in the area of Aspect Oriented Modeling
(AOM).

There are related works on Aspect Oriented Modeling that address the issue of
seperation of cross-cutting concerns at the modeling level. Because UML does not
support Aspect Oriented Modeling in its standard specification, solutions from different
tool vendors are different. As a result, modeling of aspects is still in process and

modeling tools still lack stability and maturity to deal with aspect models.

92

93

We have designed and developed an aspect modeler tool named AspectModeler that
allows the definition of aspects in a practical and efficient way. This tool eliminates
some steps that are necessary in other approaches. AspectModeler has a number of
interfaces; base model and aspect model representation, pointcut modeling, pointcut list,
advice modeling, advice list, aspect definition where each of the interfaces plays a
critical role to make aspect modeling easier. The output of AspectModeler is an aspect
file that is a valid Aspect] language code. To run the existing software system with
modelled aspects is simply as putting the generated aspect file into the existing project’s

design environment.

5.2 Future Work

We have developed a tool named AspectModeler that enables modeling of aspects in
a practical and efficient way. There are some disavantages of AspectModeler as well as
it has some advantages compared to the other works. Disadvantages of AspectModeler
can also be represented as future works to be developed to facilitate the full adoption of

Aspect Oriented Modeling.

AspectModeler generates aspect oriented programming code only in Aspect]
language in this version. With the birth of a more popular and dominant aspect oriented
programming language, this new AOP-based programming language may have to

supported by AspectModeler.

Only the representation of class diagrams stored in XMI files is supported in this
version. Representation of other UML diagram types such as activity diagram, sequence

diagram ... etc should be supported in future releases.

Pointcut modeling mechanism should be improved in future releases. Selection of

join points with same pattern is done by individually selecting these points.

94

AspectModeler should make it possible to use wildcards to write joints (i.e.,

representation of more that one join point in a single expression).

Advice body is modelled at programming language level in this version. In future
releases, AspectModeler should make it possible to model advice body with UML

diagrams such as: activity diagram, sequence diagram ...etc.

95

REFERENCES

Bell, D. (June 15, 2003). UML basics: An introduction to the unified modeling language.
Retrieved April 10, 2009, from
http://www.ibm.com/developerworks/rational/library/769.html

Duby, C. K. (September, 2003). Accelerating embedded software development with a
model driven architecture. Retrieved May 11, 2010, from

http://www.omg.org/mda/mda_filessMDA overview.pdf

Frankel, D. S. (2003). Applying MDA to enterprise computing. Indiana: Wiley
Publishing.

Fuentes, L., & Sanchez, P. (2007). Designing and weaving aspect-oriented executable
UML models. Journal Of Object Technology, 6 (7), 109-136.

Gally, M. (May, 2007). What is MDD / MDA and where will it lead the software
development in the feature?. Retrieved December 3, 2009, from
http://seal.ifi.uzh.ch/fileadmin/User Filemount/Vorlesungs Folien/Seminar SE/SS07
/SemSEQ7-Matthias_Gally.pdf

Igor, S., & Jadranka, V. (n.d.). Model driven architecture (MDA). Retrieved August 8,
2009, from
http://www.softwareresearch.net/fileadmin/src/docs/teaching/SS07/Sal/Salevski Ves

eli_Praesentation.pdf

95

Igor, S., & Jadranka, V. (June, 2007). Introduction to model driven architecture (MDA).
Retrieved September 12, 2009, from
http://www.softwareresearch.net/fileadmin/src/docs/teaching/SS07/Sal/Salevski Ves
eli_paper.pdf

Kiczales, G., Irwin, J., Lamping, J., Loingtier, J., Lopes, C. V., Maeda, C., et al. (n.d.).
Aspect-oriented programming. Retrieved October 10, 2009, from
http://fsl.cs.uiuc.edu/images/9/9¢/Kiczales97aspectoriented.pdf

Mouheb, D., Talhi, C., Lima, V., Debbabi, M., Wang, L., & Pourzandi, M. (March 2,
2009). Weaving security aspects into UML 2.0 design models. Retrieved March 31,
2010, from http://www.aspect-modeling.org/aosd09/papers/aom5s-mouheb.pdf

Sims, O. (2002). MDA - real wvalue. Retrieved June 10, 2009, from
http://www.omg.org/mda/mda_files/OMG-Information-Day-Sims _01-01.pdf

Watson, A. (n.d.). Visual modelling: past, present and future. Retrieved December 17,
2008, from http://www.uml.org/Visual Modeling.pdf

