

DOKUZ EYLÜL UNIVERSITY

GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

FACE AND FINGERPRINT RECOGNITION ON

FIELD PROGRAMMABLE GATE ARRAY

by

Enes DİLCAN

October, 2010

İZMİR

FACE AND FINGERPRINT RECOGNITION ON

FIELD PROGRAMMABLE GATE ARRAY

A Thesis Submitted to the

Graduate School of Natural and Applied Sciences of Dokuz Eylül University

In Partial Fulfillment of the Requirements for the Degree of Master of

Science in Electrical and Electronics Engineering

by

Enes DİLCAN

October, 2010

İZMİR

ii

M.Sc THESIS EXAMINATION RESULT FORM

 We have read the thesis entitled “FACE AND FINGERPRINT

RECOGNITION ON FIELD PROGRAMMABLE GATE ARRAY” completed

by ENES DİLCAN under supervision of ASST. PROF. DR. NALAN ERDAŞ

ÖZKURT and we certify that in our opinion it is fully adequate, in scope and in

quality, as a thesis for the degree of Master of Science.

 Asst. Prof. Dr. Nalan Erdaş ÖZKURT

 Supervisor

 (Jury Member) (Jury Member)

Prof.Dr. Mustafa SABUNCU

Director

Graduate School of Natural and Applied Sciences

iii

ACKNOWLEDGEMENTS

 I would like to thank my advisor Asst. Prof. Dr. Nalan Erdaş ÖZKURT for her

guidance and support in every stage of my research. The technique background and

the research experience I have gained under her care will be valuable asset to me in

the future.

I also would like to thank to my dear friend Gökhan ÇETİN for his absolute

guidance, supports and patience during this research. His endless friendship and

encouragement always motivated me.

Finally, I would like to thank Çiğdem COŞKUN and my family for their

motivation and never ending support throughout my life.

Enes DİLCAN

iv

FACE AND FINGERPRINT RECOGNITION ON

FIELD PROGRAMMABLE GATE ARRAY

ABSTRACT

 Biometric recognition refers to use of distinctive physiological and behavioral

characteristics for automatically recognizing a person. A number of biometric

technologies have been developed such as fingerprint, face, iris and speech are the

ones that most commonly used. Feature extraction techniques play important role for

biometric recognition system design.

Field Programmable Gate Arrays (FPGAs) are the programmable logic devices

that can be configured by the customer after manufacturing. FPGAs are preffered in

a variety of applications due to ease of programming with low cost. Applications of

FPGAs include digital signal processing, biometric recognition, medical imaging

aerospace and defense systems, computer vision and a growing range of other areas.

In this thesis, face and fingerprint recognition systems are implemented on FPGA.

This study has two working phases. In the offline training phase, face and fingerprint

images are collected by MATLAB. Then, this database is sent to FPGA to extract

features. Principal Component Analysis (PCA) is the feature extraction algorithm

that is used in this study. After all features of face and fingerprint images are

extracted, the features are stored on the memory of FPGA. In the online test phase or

recognition phase, the features of test images are extracted then these are compared

to restored values of the database from the memory of FPGA. The result of

comparison is then displayed. This thesis also proposes a multibiometric recognition

system which is constituted from face and fingerprint recognition systems by using

the fusion at the decision level.

Keywords : Face recognition, fingerprint recoginiton, multibiometric recognition,

FPGA, PCA

v

SAHADA PROGRAMLANABİLİR KAPI DİZİLERİ ÜZERİNDE

YÜZ VE PARMAK İZİ TANIMA

ÖZ

 Biyometrik tanıma, otomatik olarak bir kişiyi ayırıcı fiziksel ve davranışsal

niteliklerine göre tanımaya karşılık gelir. Çok sayıda biyometrik teknoloji

geliştirilmiştir. Parmak izi, yüz, iris ve ses tanıma en yaygın kullanılan biyometrik

teknolojilerdir. Özellik çıkarma metotları, biyometrik sistem tasarımında önemli bir

rol oynamaktadır.

 Sahada Programlanabilir Kapı Dizileri (SPKD), üretimden sonra müşteri

tarafından yeniden yapılandırılabilen programlanabilir mantık elemanlarıdır.

SPKD’ler düşük maliyetle ve programlanabilme kolaylığı ile çok sayıda uygulamada

tercih edilmektedir. SPKD içeren uygulamalar sayısal işaret işleme, biyometrik

tanıma, medikal görüntü işleme, uzay ve savunma sistemleri, bilgisayar görüntüsü

alanlarında kullanmakta ve kullanım alanları giderek artmaktadır.

Bu tezde, SPKD üzerinde yüz ve parmak izi tanıma sistemi gerçeklenmiştir. Bu

sistemin iki çalışma aşaması vardır. Çevrimdışı öğrenme aşamasında, yüz ve parmak

izi resimleri MATLAB tarafından toplanır. Daha sonra oluşturulan bu veritabanı

öznitelik çıkarma için SPKD’ye gönderilir. Bu çalışmada öznitelik çıkarmak için

Temel Bileşen Analizi (TBA) algorithması kullanılmıştır. Yüz ve parmak izindeki

tüm öznitelikler çıkarıldıktan sonra, bu öznitelikler SPKD’nin hafızasında saklanır.

Çevrimiçi deneme ya da tanıma aşamasında, öncelikle yüz ve parmak izi

resimlerinden öznitelikler çıkarılır, daha sonra bu öznitelikler SPKD’nin hafızasında

saklanan veritabanı ile karşılaştırılır. Karşılaştırma sonucu, tanımlama sonucudur. Bu

tezde ayrıca yüz ve parmak izi tanıma sistemlerininden oluşan, birleştirmenin karar

verme seviyesinde yapıldığı çoklu biyometrik tanıma sistemi tasarlanmıştır.

Anahtar Sözcükler : Yüz tanıma, parmak izi tanıma, çoklu biyometrik tanıma,

Sahada Programlanabilir Kapı Dizileri, Temel Bileşen Analizi

vi

CONTENTS

 Page

M.Sc THESIS EXAMINATION RESULT FORM ... ii

ACKNOWLEDGEMENTS .. iii

ABSTRACT .. iv

ÖZ .. v

CHAPTER ONE – INTRODUCTION .. 1

1.1 Biometric Systems ... 1

1.2 Multibiometric Systems .. 2

1.3 History of Face Recognition Systems ... 4

1.4 History of Fingerprinting... 7

1.5 Aim of Thesis .. 9

1.6 Outline of Thesis ... 11

CHAPTER TWO – FACE RECOGNITION .. 12

2.1 Face Recognition System .. 12

2.2 Face Recognition Processing ... 13

2.3 Face Recognition Techniques ... 14

2.3.1 Principal Component Analysis (PCA) ... 14

2.3.1.1 Overview of PCA ... 14

2.3.1.2 Theory of PCA ... 16

2.3.1.3 How to use PCA in Face Recognition ... 18

2.3.2 Linear Discriminant Analysis (LDA) .. 19

2.3.2.1 Theory of LDA .. 19

2.3.3 Independent Component Analysis (ICA) .. 21

2.3.3.1 Theory of ICA .. 22

2.3.4 Elastic Bunch Graph Matching (EBGM) .. 23

vii

2.3.4.1 Theory of GWT.. 24

2.3.5 Neural Networks .. 26

CHAPTER THREE – FINGERPRINT ANALYSIS AND

REPRESENTATION……………………………………………………………...28

3.1 Introduction ... 28

3.2 Fingerprint Image Processing and Feature Extraction 30

3.3 Estimation of Local Ridge Orientation ... 31

3.4 Estimation of Local Ridge Frequency ... 32

3.5 Singularity and Core Detection ... 33

3.5.1 Poincarè Index Method .. 33

3.6 Normalization .. 34

3.7 Minutiae Detection .. 35

3.8 Estimation of Ridge Count .. 37

3.9 Fingerprint Matching ... 38

CHAPTER FOUR – PROGRAMMABLE LOGIC DEVICES….…...…………40

4.1 History of Programmable Logic .. 40

4.2 FPGA Architecture .. 42

4.2.1 Logic Element (LE) ... 42

4.2.2 Logic Array Block (LAB) ... 43

4.3 FPGA Configuration ... 44

4.3.1 Schematic Design Entry .. 44

4.3.2 Hardware Description Languages.. 45

4.3.3 High-Level Languages... 46

4.4 FPGA Development Kits ... 47

4.4.1 UP3 Education Kit ... 47

4.4.2 DE2-70 Development Kit .. 49

viii

CHAPTER FIVE – FPGA-BASED FACE AND FINGERPRINT

RECOGNITION SYSTEM DESIGN………………………….….…...…………52

5.1 Face and Fingerprint Recognition System Design on UP3 Development Kit 52

5.1.1 Quartus II Software.. 52

5.1.2 Preliminary Study on UP3 Development Kit .. 54

5.1.3 PCA implementation on MATLAB... 56

5.1.4 UART .. 62

5.1.4.1 UART Baud Rate Generator .. 63

5.1.4.2 UART Transmitter ... 65

5.1.4.3 UART Receiver ... 66

5.1.5 UART Implementation in VHDL .. 66

5.1.5.1 Baud Generator Design in VHDL.. 67

5.1.5.2 UART Transmitter Design in VHDL .. 67

5.1.5.3 UART Receiver Design in VHDL ... 70

5.1.6 UART Implementation Results and Findings ... 72

5.1.6.1 One Byte Transmitter ... 72

5.1.6.2 One Byte Receiver ... 73

5.1.6.3 Array Transmitter ... 74

5.1.6.4 Simulation of Internal Database and Test Comparison 75

5.1.6.5 Comparing Database and Test after Receiving from MATLAB 76

5.1.6.6 Face Recognition System on UP3 Development Kit 77

5.2 Face and Fingerprint Recognition System Design on DE2-70 78

5.2.1 Hardware Design of Face and Fingerprint Recognition System 79

5.2.2 Implementation of Face Recognition System on DE2-70 91

5.2.2.1 Software Design on DE2-70 .. 91

5.2.2.2 Implementation on MATLAB ... 95

5.2.2.3 Preliminary Experiments ... 96

5.2.2.4 Final Implementation ... 102

5.2.2.5 General Performance of the Face Recognition System 106

5.2.3 Implementation of Fingerprint Recognition System on DE2-70 108

5.2.3.1 Fingerprint Scanner .. 108

ix

5.2.3.2 Preliminary Experiments ... 110

5.2.3.3 Final Implementation ... 114

5.2.3.4 General Performance of the Fingerprint Recognition System 115

CHAPTER SIX – FPGA-BASED MULTIBIOMETRIC RECOGNITION

SYSTEM DESIGN…………………………………………………..….….……..117

6.1 Implementation of Multibiometric Recognition System on DE2-70……….117

6.2 General Performance of the Multibiometric Recognition System 119

CHAPTER SEVEN – CONCLUSIONS………………………….…….….……120

7.1 Summary of the Project ... 120

7.2 Advantages - Disadvantages ... 121

7.3 Troubleshooting ... 122

7.4 Cost Analysis ... 123

7.5 Future Work .. 123

REFERENCES ……………….……..……………………………….…...………124

APPENDIX …….…………………………………………………………………128

1

CHAPTER ONE

INTRODUCTION

1.1 Biometric Systems

Biometric recognition term refers to the use of distinctive physiological and

behavioral characteristics that are called biometric identifiers for automatically

recognizing individuals (Maltoni, Maio, Jain, & Prabhakar, 2003). A number of

biometric technologies have been developed and several of them are being used in a

variety of applications in differet areas. Among these, face, iris, fingerprints, speech

and hand geometry are the ones that most commonly used in biometric systems.

Each biometric has its strengths and weakness, so choice of a particular biometric

typically depends on the requirements of an application.

A biometric system is a pattern recognition system that responsible for

recognizing a person by determining the authenticity of a specific physiological

and/or behavioral characteristic possessed by that person. The most important issue

in designing a practical biometric system is to determine how this biometric

individual is recognized. Depending on the application, a biometric system may be

called a verification system or an identification system:

• a verification system authenticates a person’s identity by comparing the captured

individual characteristic with his/her own biometric template(s) that is stored in the

system. One-to-one comparison is done to determine whether the identity claimed by

the individual is true. A verification system either rejects or accepts the user,

• an identification system recognizes an individual characteristic by searching the

entire template database. One-to-many comparisons is done to establish the identity

of the individual. The identification system establishes a subject’s identity without

the subject having to claim an identity.

2

1.2 Multibiometric Systems

 Most of the biometric systems deployed in real world are unimodal and they are

relied on the evidence of a single source of information. Unimodal biometric systems

have to contend with a variety of problems such as noisy data, intra-class variations,

spoof attacks and unacceptable error rates (Ross, & Jain, 2004). Multimodal or

multibiometric systems, which include multiple sources of information, are offered

to overcome these limitations in unimodal biometric systems.

 Multibiometric systems represent the fusion of two or more unimodal biometric

systems. The fusion can occur at the data or feature level, match score level and

decision level. Figure 1.1 shows the levels of fusion in a biomodal biometric system

(Ross, & Jain, 2004). Note that; FU, MM and DM stand for fusion, matching and

decision module respectively in Figure 1.1.

 Figure 1.1 Levels of a fusion in a biomdoal biometric system (Ross, & Jain, 2004).

3

 Depending on the number of traits, sensors, and feature sets used, a variety of

scenarios are possible in a multimodal biometric system (Ross, & Jain, 2004). Figure

1.2 shows that these various scenarios (Prabhakar, & Jain, 2002);

1) multiple sensors for tracking the same biometric behavior such as using

optical and capacitive sensors together;

2) multiple biometrics for the same person such as using face and fingerprint;

3) multiple units such as right index and middle fingers of a person;

4) multiple snapshots of the same biometric such as taking for two templates of

the right finger of a person

5) multiple matchers such as using minutiae and non-minutiae based matchers

are the examples of the applications of multibiometric systems.

 Figure 1.2 Scenarios in a multimodal biometric system (Prabhakar, & Jain, 2002).

4

Several factors should be considered when designing a multibiometric system.

Some of these factors are;

 the choice and the number of biometric behaviors,

 the level in biometric system at which information provided by multiple types

should be integrated,

 the methodology adopted to integrate the information,

 the cost versus matching performance trade-off,

 system is user friendly or not (Anwar, Rahman, & Azad, 2009).

By combining multiple sources of information, these systems improve matching

performance, increase population coverage, deter spoofing, and facilitate indexing

(Ross, & Jain, 2004). So, multibiometric systems are expected to be more reliable

due to presence of multiple independent pieces of evidence.

1.3 History of Face Recognition Systems

The first way to do face recognition is to look at the major features of the face and

compare these features with the same features on the other faces. During 1964 and

1965, Bledsoe, along with Helen Chan and Charles Bisson, worked on using the

computer to recognize human faces (Bledsoe 1966a, & 1966b; Bledsoe, & Chan

1965). By using a semi-automated machine, later called man-machine, marks were

made on photographs. These marks are used to locate major features of the faces

such as mouths, noses, eyes and ears. The distances and ratios were computed by

using these marks, then these are compared to reference enrollment data.

In the early 1970's Goldstein, Harmon and Lesk used 21 subjective markers such

as hair color and lip thickness to create a face recognition system. (Goldstein,

Harmon, & Lesk, 1971). Because of difficulties in order to automate due to

subjective nature, many of the measurements were still made by hand.

5

A more automated approach to recognition began with Fisher and Elschlagerb just

a few years after the Goldstein paper. This approach measured the features above

using templates of features of different pieces of the face and them mapped them all

onto a global template. After continued research it was found that these features do

not contain enough unique data to represent an adult face. Another approach is the

Connectionist approach, which seeks to classify the human face using a com-bination

of both range of gestures and a set of identifying markers. This is usually

implemented using 2-dimensional pattern recognition and neural net principles. Most

of the time this approach requires a huge number of training faces to achieve decent

accuracy; for that reason it has yet to be implemented on a large scale (Escarra,

Robinson, Krueger, & Kochelek, 2004) .

The major problem of the early face recognition solutions is the most of feature

measurements and face locations were computed manually. In 1980’s, the first fully

auotomated face recognition method is created depending on statistical approach. In

1988, Kirby and Sirovich applied principle component analysis at Brown University.

This was considered a milestone in face recognition, because their approach is

showed that less than one hundred values were required to accurately code a suitably

aligned and normalized face image (Sirovich, & Kirby, 1987).

In 1991, Turk and Pentland discovered that the residual error coud be used to

detect face in images while using the eigenfaces technique (Turk, & Pentland, 1991).

This discovery was enabled to develop reliable real-time automated face recognition

systems and increase significant interest on face recognition automation field. Since

then, many different approaches have been published for face recognition over the

years such as Neural Network, Fisher Linear Discriminant Model (FLD), Dynamic

Link Architectures (DLA), Hidden Markov Models, Gabor Wavelet Transform,

Elastic Bunch Graph. Some of these techniques were covered on Section 2.3.

The face recognition technology first captured the public’s attention from the

media reaction to a trial implementation at the January 2001 Super Bowl, which

captured surveillance images and compared them to a database of digital mugshots.

6

This demonstration initiated much-needed analysison how to use the technology to

support national needs while being considerate of public’s social and privacy

concerns. Today, face recognition technolgy is being used to combat passport fraud,

support law enforcement, identify missing children, and minimize benefit/identify

fraud (Smith, Ross, & Colbry, 2006).

Increase in the automation of face recognition provides hardware solutions such

as application specific integrated circuit (ASIC) designs and field programmable gate

arrays (FPGA). Using FPGA has many benefits over ASICs, because of low cost

rapid prototyping and flexibility. One of the first publications implementing FPGA

as a hardware is released by T. Nakano, T.Morie and A.Iwata in 2003. The

face/object recognition system using coarse region segmentation and flexible

template matching was presented and the resistive-fuse network circuit was

implemented in an FPGA by a pixel serial approach, and coarse region segmentation

of real images with 64×64 pixels at the video rate was achieved. The flexible

template matching using dynamic-link architecture was performed in the PC system.

Figure 1.3 shows this implementation (Nakano, Morie, & Iwata, 2003).

 Figure 1.3 The face/object recognition system (Nakano, Morie, & Iwata, 2003).

7

One of the latest research by I. Sajid, M. M. Ahmed, I. Taj, M. Humayun, & F.

Hameed in 2008, presents a fixed point tecnique with software hardware co-design

(SHcoD) due to the floatingpoint operations based on eigenvalue algorithms are

complex in terms of hardware.

Figure 1.4 Fpga-based system architecture (Sajid, Ahmed, Taj, Humayun, & Hameed, 2008).

They have also stated that fixed point implementation of householder (HH)

algorithm saves thousands of machine cycles in the cost of losing 0.008 percent

weight in highest three Eigen value. The system architecture can be seen in Figure

1.4 (Sajid, Ahmed, Taj, Humayun, & Hameed, 2008).

1.4 History of Fingerprinting

Human fingerprints have been discovered on a large number of archaeological

and historical items. These findings provide evidence to show that ancient people

were aware of the individuality of fingerprints, such awareness does not appear to

have any scientific basis (Lee, & Gaensslen, 2001). The modern scientific fingerprint

technique was first initiated in the start of sixteenth century. In 1684, Nehemiah

8

Grew, published the first scientific paper reporting his systematic study on the ridge,

furrow, and pore structure in fingerprints (Lee, & Gaensslen, 2001).

Since then, a large number of researchers interested in fingerprint studies. In

1788, a detailed description of the anatomical formations of fingerprints was made

by Mayer (Moenssens, 1971). Thomas Bewick began to use his fingerprint as his

trademark in 1809. This is believed to be one of the most important milestones in the

scientific study of fingerprint recognition (Moenssens, 1971). In 1823, Purkinje

proposed the first fingerprint classification scheme, that classified fingerprints into

nine categories according to the ridge structures (Moenssens, 1971). In 1880, Henry

Fauld, first scientifically suggested the individuality of fingerprints based on an

empirical observation and Herschel asserted that he had practiced fingerprint

recognition for about 20 years (Lee, & Gaensslen, 2001 and Moenssens, 1971). In

the late nineteenth century, Sir Francis Galton conducted an extensive study on

fingerprints (Galton, 1892). In 1888, Galton introduced the minutiae features for

fingerprint matching. Important advance in fingerprint recognition was made in 1899

by Edward Henry. Henry established the well-known “Henry system” of fingerprint

classification (Lee, & Gaensslen, 2001).

In the early twentieth century, fingerprint recognition was formally accepted as a

valid personal identification method and became a standard routine in forensics (Lee,

& Gaensslen, 2001). Fingerprint identification agencies were set up worldwide and

criminal fingerprint databases were established (Lee, & Gaensslen, 2001). Various

fingerprint recognition techniques such as fingerprint acquisition, fingerprint

classification, and fingerprint matching were developed. For example, the FBI

fingerprint identification division was set up in 1924 with a database of 810,000

fingerprints (Federal Bureau of Investigation, 1984).

Starting in the early 1960s, the FBI, Home Office in the UK, and Paris Police

Department began to invest a large amount of effort in developing automatic

fingerprint identification systems (Lee, & Gaensslen, 2001). Based on the

observations of how human fingerprint experts perform fingerprint recognition, three

9

major problems in designing automatic fingerprint identification systems (AFISs)

were identified and investigated: digital fingerprint acquisition, local ridge

characteristic extraction, and ridge characteristic pattern matching and their efforts

were so successful that today almost every law enforcement agency worldwide uses

an AFIS (Maltoni, Maio, Jain, & Prabhakar, 2003).

Automatic fingerprint recognition technology has now rapidly grown in civilian

applications and fingerprint-based biometric systems are so popular for their

recognition rate.

1.5 Aim of Thesis

The aim of the thesis is to create a fingerprint and face recognition system which

is established on a Field Programmable Gate Array (FPGA). Principle Component

Analyis (PCA), is used for extracting features. The fingerprint and face images are

transformed into PCA basis subspace that is composed from eigenvalues and

eigenvectors. System development in FPGA includes embedded microprocessor

design, SDRAM implementation for memory needs, CFI Flash implementation for

storing PCA results and communication interface for host computer. These parts of

the design are discussed to develop usability and compability of the system.

Comparision methods are used to identify the user in the most accurate way.

This thesis proposes a system to acquire a face or a fingerprint image of any user

and process it to understand if he/she is one of people in the training database. This

project are combined with two main parts. First and second part can be called as

offline-training and online-test respectively. Figure 1.5 shows these two parts briefly

for face recognition.

In the offline-training part for face recognition, face photos are taken from people

and stored in the host computer. Then, images are resized to increase calculation

speed and combined in one database matrix in MATLAB. This database matrix are

sent to FPGA via serial port using RS-232 protocol. At the end of this transmission,

10

PCA feature extraction methods are started in FPGA to create PCA basis and project

database images to face subspace. At the end of offline-training part, PCA basis

matrix and projected training matrix of database images are stored in CFI Flash

memory. The offline-training part for fingerprint recognition is too similar to the face

recognition and the only difference is the device that used for acquiring images. Face

images are taken from web-camera and fingerprints are taken via fingerprint reader.

 Figure 1.5 Offline-training and online test parts for face recognition.

Online-test part starts to procedure by taking a photo or a fingerprint of tester.

This image is read, resized and sent to FPGA by MATLAB like in the offline-

training method. After FPGA gets the test image, FPGA restores PCA basis matrix

and projected training matrix of database images from CFI Flash. After projecting

test image to face or fingerprint subspace by multiplying PCA basis matrix, it is

compared with projected training matrix and returns result to the host computer via

serial port.

After the implementation of the face and fingerprint recognition systems

separately, a multibiometric recognition system, which offers more reliable

recognition, is implemented by combining these two systems.

11

1.6 Outline of Thesis

This thesis composed of six chapters including the Introduction. Chapter 2

reviews face recognition processes and Chapter 3 summarizes fingerprint analysis

and representation techniques. In Chapter 4, programmable logic devices are

introduced with the devices that are used throughout project. Chapter 5 summarizes

the system and explains the operation. The preliminary experiments and final results

are also presented in this chapter. After completing the design of face and fingerprint

recognition systems separately, they are combined together to construct a

multibiometric recognition system. Chapter 6 describes this implementation. The last

chapter of the thesis, Chapter 7, includes conclusions, advantages and disadvantages

of the system, future works. The algorithm of whole system is in the Appendix part

of the thesis.

12

CHAPTER TWO

FACE RECOGNITION

2.1 Face Recognition System

Face recognition systems automatically identify faces from images and videos.

Two operation modes are defined for these systems: face verification and face

identification, which are described briefly as follows:

a) Face Verification:

The verification task is responsible for verifying faces at the point of access. The

operation of verification system is shown in Figure 2.1. The user enters his/her name

or PIN (Personal Identification Number) through a keyboard or a keypad and the

biometric reader the characteristic of the face to be recognized and converts it to a

digital format. The digital formatted face data is processed by the feature extractor to

produce a compact digital representation. The resulting representation is fed to the

feature matcher to compare it against the template of a single user which is retrieved

from the system database based on the user's PIN.

 Figure 2.1 Face verification system.

b) Face Identification:

PIN isn’t provided by the user in the face identification. This task is to compare

the representation of the input faces against the templates of all the users in the

13

system database. This system identifies of an enrolled user or producing an alert

message such as “user not identified”.

 Figure 2.2 Face identification system.

2.2 Face Recognition Processing

Face recognition is a visual pattern recognition problem. A face is identified from

two-dimensional images which are extracted from three-dimensional images. Since

these real face images vary with pose, expression, illumination and so on, the

problem is a challenging one. A face recognition process consists of four processes

and these are shown in Figure 2.3.

Figure 2.3 Face recognition processing flow scheme (Li, & Jain, 2004).

Face detection segments the face areas from the background. In the case of video,

the detected faces may need to be tracked using a face tracking component. Face

alignment is aimed at achieving more accurate localization and at normalizing faces

thereby whereas face detection provides coarse estimates of the location and scale of

each detected face. Facial components, such as eyes, nose, and mouth and facial

14

outline, are located; based on the location points, the input face image is normalized

with respect to geometrical properties, such as size and pose, using geometrical

transforms or morphing. The face is usually further normalized with respect to

photometrical properties such illumination and gray scale. After a face is normalized

geometrically and photometrically, feature extraction is performed to provide

effective information that is useful for distinguishing between faces of different

persons and stable with respect to the geometrical and photometrical variations. For

face matching, the extracted feature vector of the input face is matched against those

of enrolled faces in the database; it outputs the identity of the face when a match is

found with sufficient confidence or indicates an unknown face otherwise (Li, & Jain,

2004).

2.3 Face Recognition Techniques

This section try to describe the basic feature extraction and face recognition

techniques such as principal component analysis (PCA), independent component

analysis (ICA), linear discriminant analysis (LDA), Elastic Bunch Graph Matching

(EBGM) and neural networks with mathematical theories.

2.3.1 Principal Component Analysis (PCA)

PCA algorithm is common feature extraction technique which is used for face

recognition. PCA is also used in this thesis, thus this technique is described in detail.

First section is an overview of PCA, second section shows the mathematical

background and the last section describes the usage of PCA in face recognition field.

2.3.1.1 Overview of PCA

PCA is a standard linear algebra technique and pioneered by Kirby and Sirovich

in 1988. This technique is commonly referred to as the use of eigenfaces in face

recognition. To use this technique, database and test images must be at the same size

and must first be normalized to line up the eyes and mouth of the subjects within the

15

images. After normalization, PCA is used to reduce the dimension of the data by

means of data compression basics. This operation reveals the most effective low

dimensional structure of the facial patterns. The reduction in dimensions removes the

unuseful information and decomposes the face into orthogonal (or uncorrelated)

components, which are also known as eigenfaces.

Each face image may be represented as a weighted sum of the eigenfaces and

these eigenfaces are stored in a 1D array. This 1D array also known as a feature

vector in PCA literature. When test image is compared to database image, this

feature vector is used to measure the distance. The PCA approach typically requires

the full frontal face to be presented each time; otherwise the image results in poor

performance (Bolme, Beveridge, Teixeira, & Draper, 2003). PCA technique can

reduce the data needed to identify the individual to 1/1000
th

 of the data presented.

Figure 2.4 shows an example of eigenfaces (MIT Media Laboratory, 2002).

Feature vectors are derived using eigenfaces.

 Figure 2.4 An example of eigenfaces.

16

2.3.1.2 Theory of PCA

Let the training set of M face images be I1, I2, I3, … , IM. The average of the

training set is, µ,

1

1 M

n

n

I
M




  (2-1)

The difference of each image from the average is defined as;

 i iI   (2-2)

This set of very large vectors is then subject to PCA, which seeks a set of M

orthonormal vectors, un, which are describing the distribution of whole data. The kth

vector of this vector,

2

1

1
()

M
T

k k n

n

u
M

 


  (2-3)

is a maximum subject to

1, if

0, otherwise

T

l k lk

l k
u u 


  


 (2-4)

The vectors uk are eigenvectors and the scalars λk are eigenvalues of the

covariance matrix which is shown in the following,

 1

1

M
T

n n

n

T

C
M

AA

 







 (2-5)

where C is the covariance matrix and A = [θ1, θ2,…, θM].

17

The matrix C, is N
2
 by N

2
, and determining the N

2
 eigenvectors and eigenvalues is

an intractable task for typical image sizes, so a computationally feasible method to

find these eigenvectors must be implemented. If the number of data points in the

image space is less than the dimension of the space (M < N
2
), there is only M – 1,

rather than N
2
 meaningful eigenvectors (Turk and Pentland, 1991). By using this

approach the eigenvectors vi of A
T
A is,

T

i i iA Av v (2-6)

multipliying both sides by A,

T

i i iAA Av Av (2-7)

Eq. (2-7) shows that Avi are the eigenvectors of C = AA
T
. By using this analysis, M x

M matrix, L = A
T
A is constructed. The L is,

T

mn m nL   (2-8)

and shows the M eigenvectors, vl, of L.These vectors are used to determine the linear

combinations of the M training set face images to form the eigenfaces ul.

1

, 1,2,...,
M

l lk k

k

u v l M


  (2-9)

 With this analysis the calculations are greatly reduced, from the order of the

number of pixels in the images (N
2
) to order of the number of images in the training

set (M) and in practice, the training set of face images will be relatively small and the

calculations become quite managable (Turk and Pentland, 1991).

18

2.3.1.3 How to use PCA in Face Recognition

To create a face space from M number of the face images, first L matrix (M x M)

must be calculated. This L matrix has M eigenvectors. M1 significant eigenvectors

are chosen from this L matrix which are containing the highest associated

eigenvalues. Then, by combining the normalized training images according to Eq. (2-

9) to produce the eigenfaces uk.

For the test step, first the new face image (IT) is projected into facespace by a

simple operation,

1() for 1,2,...,k k Tu I k M    (2-10)

and  is the weights and these weights form the pattern vector, φT
 ,

11 2[, ,...,]T

M    (2-11)

The pattern vector describes the contribution of each eigenface in representing the

input face image. After generating pattern vector, the simplest method for

determining which face class provides the best description of an input face image is

to find the face class k which minimizes the Euclidean distance,  ,

2

(k k    (2-12)

where φk is a vector describing the kth face class and the face classes φi are

calculated by averaging the results of the eigenfaces over a small number of face

images of each individual. The minimum k , if provides the recognition condition

under a pre-determined threshold value, kth person is determined the output of

recognition system.

19

2.3.2 Linear Discriminant Analysis (LDA)

LDA is a statistical approach for classifying samples of unknown classes based on

the training samples with known classes (Bolme, Beveridge, Teixeira, & Draper,

2003). LDA is the technique which aims to maximize variance across the users or

formerly named between-classes, and minimize variance within the users which is

also expressed within-class formerly.

In the Figure 2.5, an example of six classes using LDA is shown (Lu, Plataniotis,

& Venetsanopoulos, 2003). In this figure, each block represents a class. There are

large variances between-classes, but the variance within-classes is very little. When

dealing with high dimensinal face data, this technique faces the sample size problem

that arises where there are a small number of avaliable training samples compared to

the dimensionality of the sample space (Lu, Plataniotis, & Venetsanopoulos, 2003).

Figure 2.5 An example of six classes using LDA.

2.3.2.1 Theory of LDA

As mentioned above, all instances of the same person’s face as being in one class

and the faces of different subjects as being in different class for all subjects in the

training must be defined before computing LDA. LDA is a class specific method that

represents data set make it useful for classification. Given a set of N imgaes {x1, x2,

…, xn} where each image belongs to one of c classses {X1, X2,…, Xc}. LDA selects a

linear tranformation matrix W that is the ratio of the between-class scatter and the

with-in class scatter is maximized.

20

SB is the between-class scatter matrix which represents the scatter of the

conditional mean vectors, μi’s; around the overall mean vector, µ. SB can be

expressed by the following formula;

1

()()
c

T

B i i i

i

S N    


   (2-13)

where μi denotes the mean of image class Xi, µ denotes the mean of entire data set, Ni

denotes the number of images in class Xi.

 SW is the within-class scatter matrix which represents the average scatter of the

sample vectors x of different class Ci around their respective mean μi;

1

()()
k i

c
T

W k i k i

i x X

S x x 
 

    (2-14)

If the within-class scatter matrix SW is not singular, LDA finds an orthonormal matrix

Wopt which maximizes the ratio of the determinant of the between-class scatter matrix

to the determinant of the within-class scatter matrix. This matrix can be expressed by

the following formula;

 1 2arg max ...

T

B

opt mT

W

W S W
W w w w

W S W
  (2-15)

The set of solution {wi | i = 1, 2, …, m} is that of generalized eigenvectors of SB and

SW corresponding to the m largest eigenvalues {λi | i = 1, 2, ..., m}, which can be

shown that as in following;

 where 1,2,...,B i i W iS w S w i m  (2-16)

21

In face recognition applications, generally SW is singular, so to overcome this

singularity, PCA algorithm is first used to reduce the vector dimensions. Combining

PCA and LDA, first input image x projected into face space y, then projected into

classification space z;

 (only PCA)

 (only LDA)

 (PCA + LDA)

T

T

x

T

y

y x

z W x

z W y







 (2-17)

2.3.3 Independent Component Analysis (ICA)

ICA is another algorithm for face recognition. To better understand the concept, it

is useful to compare ICA with PCA. PCA depends on the pairwise relationships

between pixels, but ICA depends on the higher order relationships among pixels in

the image database. So that, PCA can only represent second order interpixel

relationships, or relationships that capture the amplitude spectrum of an imgage but

not its phase spectrum. On the other hand, ICA use high order relationships between

the pixels and ICA algorithms are capable of capturing the phase spectrum (Bartlett,

Movellan, & Sejnowski, 2002).

In the ICA implementation of face recognition, input face image represented as an

n-dimensional random vector. Then, PCA is used to reduce this random vector,

without losing the higher order statistical components. After that, covariance matrix

of the result is calculated and factorized form of covariance matrix is obtained.

Whitening, rotation and normalization are performed respectively to obtain the face

space of the individuals. Because of using high order relationships between pixels,

ICA is robust in the presence of noise.

22

2.3.3.1 Theory of ICA

ICA of a random vector searches for a linear transformation which minimizes the

statistical dependence between its components (Comon, 1994). Let, the image is

represented by a random vector, X ∈ R
N
, where N is the dimensionality of the image

space. The vector is formed by concatenating the rows or the coloumns of the image

which may be normalized to have a unit norm and/or an equalized histogram (Liu, &

Wechsler, 1999). The covariance matrix of X can be expressed by using expectation

operator, E(.), as in the following;

 {[()][()] }T

XC E X E X X E X   (2-18)

where CX ∈ R
NxN

. The ICA of X factorizes the covariance matrix into the following

expression;

T

XC F F  (2-19)

where ∆ is diagonal real positive and F transforms the original data set X to new data

set Z which are independent or the most independent possible data set. Z can be

expressed as;

 X FZ (2-20)

To find the transformation F, Comon developed an algorithm that consists of three

operations: whitening, rotation and normalization (Comon, 1994). The whitening

operation transforms a random vector X to U which has a unit covariance matrix and

U can be expressed by the following formula;

1/2X A U (2-21)

where φ and A are derived by solving the following eigenvalue operation;

23

T

XC A  (2-22)

where φ = [φ1, φ2, …, φN] is an orthonormal eigenvector matix and A = diag {λ1, λ2,

…, λN} is a diagonal eigenvalue matrix of CX. After whitening operation, rotation

operations performs source separation by minimizing the mutual information

approximated using high order cumulants to derive independent components. Finally,

the normalization operation derives unique independent components in terms of

orientation, unit norm, and order of projections (Comon, 1994).

2.3.4 Elastic Bunch Graph Matching (EBGM)

This algorithm relies on the concept of the non-linear characteristics of the real

face images, such as pose, expression and variations in illumination. Because, these

non-linear characteristics are not addressed by the linear analysis methods, such as

PCA and LDA. An example of elastic bunch graph matching is shown in Figure 2.6

(Wiskott, 1996).

 Figure 2.6 Elastic bunch graph matching (EBGM).

Gabor Wavelet Transform is used to create a dynamic link architecture that

projects the face image onto an elastic grid. The nodes on the elastic grid that are

notated by the circles in the previous figure, are formerly called as gabor jets. Gabor

jets describe the image behaviour around a given pixel. This is the result of a

convolution of the image with Gabor filter. Gabor filter is used to extract features

24

and detect shapes. Recognition is based on comparing Gabor filter response on each

Gabor node.

The difficulty with his method is the requirement of accurate landmark

localization, which can sometimes be achieved by combining PCA and LDA

methods (Bolme, Beveridge, Teixeira, & Draper, 2003). As mentioned above,

EBGM based on Gabor Wavelet Transform (GWT), so in the next section the thery

of GWT is described.

2.3.4.1 Theory of GWT

Dennis Gabor proposed Gabor functions as a tools for signal detection under noise

effect. Gabor showed that the conjonit time-frequency domain for 1D signals must be

quantized so that no signal or filter can occupy less than certain minimal area in it

(D. Gabor, 1946). Gabor also discovered that Gaussian modulated complex

exponentials provide the best trade off between frequency and time resolution. Gabor

functions are generalized and reorganized to 2D by Daugman, to use in computer

vision applications which is expressed below (Daugman, 1980);

2 2
2

2

2

2 2
2

()

i

i

k x

i jk x

i

k
G x e e e







  
  

  

 
 




 (2-23)

where Gi is a plane wave characterized by the vector ki enveloped by a Gaussian

function and σ is the standard deviation of this Gaussian envelope. The center

frequency of the ith filter is given by the characteristic wave vector which have a

scale kv and orientation θμ,

cos

sin

vix

i

iy v

kk
k

k k









  
      
   

 (2-24)

25

Daugman proposed that an ensemble of simple cells is best modeled as a family

of 2D Gabor wavelets sampling the frequency domain in a log-polar manner

(Daugman, 1980). This is equivalent to coherent states generated by rotation and

dilation. The decomposition of an input image I into these states is called the wavelet

transform and expressed as;

 () ()́ ()́ ´i iR x I x G x x dx 
    

 (2-25)

Combining Eq. (2-24) and Eq. (2-25), Gabor wavelets are used first by determining

wave vector scale kv and orientation θμ. Kepenekci show that Gabor filters with

spatial frequency (v = 0, ..., 4) and 8 orientation (μ = 0, ..., 8) in Figure 2.7 and

convolving the input image (Figure 2.8a) with Gabor filters (Figure 2.8b) captures

the whole frequency spectrum (Kepenekci, 2001).

 Figure 2.7 Gabor filters correspond to 5 spatial frequency and 8 orientation.

From the responses of the face image to Gabor filters, peaks are found by searching

the locations (Figure 2.8c) by using windowing methods to find eyes, nose and

mouth in the face (Kepenekci, 2001).

26

Figure 2. 8 (a) An example face image from Stirling database (b) Filter responses (c) High energized

points of Gabor wavelet responses

2.3.5 Neural Networks

Most of the face recognition systems use smart algorithms to recognize the faces

from the extracted features such as eigenfaces. One of the common technique is the

artificial neural networks. This algorithm is biogogically inspired and based on the

functionality of neurons. The equivalent of neurons in neural network are

perceptrons. Neurons sum the strengths of all electric inputs. Similarly, perceptrons

generates a weighted sum on their numerical inputs. A neural network is formed for

each person in the face database by using these perceptrons.

 The neural networks usually consist of three or more layers (Li, & Areibi, 2004).

First, database images are dimensionally reduced by using PCA. The input layer of

neural network takes these reduced images. The output layer of a neural network

produces a numerical value between -1 and 1. In between of these two layers, there

exist one or more hidden layers which are depend on the application. When using

neural network for face recognition, using one hidden layer provides a good balance

between accuracy and complexitiy. Increasing the number of hidden layer, training

time of the system exponentially increases.

27

 When the neural network is formed for each person, first it must be trained to

recognize that person. The most common training method is the back propagation

algorithm (Li, & Areibi, 2004). By using this algorithm, the weights of the

connections between neurons are set. The result of these connections are high output

value (near to 1) belong to the person it represents and low output value (near to -1)

for other people. In the recognition face, neural network system returns the highest

numerical output for this person.

 The biggest problem of neural networks is that, there is no clear method to find

the initial network topologies. Since training takes a long time, experimenting with

such topologies becomes a difficult task (Li, & Areibi, 2004). Another main issue

occurs when neural networks are tried to use online training, time consuming task

and the difficulty of adding a new person to database is not well suited for real-time

applications.

28

CHAPTER THREE

FINGERPRINT ANALYSIS AND REPRESENTATION

3.1 Introduction

A fingerprint is the reproduction of a fingertip epidermis and is produced when a

finger is pressed against a smooth surface. The most evident structural characteristic

of a fingerprint is a pattern of interleaved ridges and valleys; in a fingerprint image

(Figure 3.1), ridges (also called ridge lines) are dark whereas valleys are bright

(Maltoni, Maio, Jain, & Prabhakar, 2003). The size of the ridges vary in width from

100 µm, for very thin ridges, to 300 µm for thick ridges. Generally, the period of a

ridge/valley cycle is about 500 µm (Stosz, & Alyea, 1994). Injuries such as burns or

cuts do not affect the underlying ridge structure, and the original pattern is duplicated

when the new skin grows.

 Figure 3.1 Ridges and valleys on a fingerprint image.

In fingerprint, ridges and valleys often run in parallel. Sometimes, ridges and

valleys bifurcate or terminate. If fingerprint is analyzed at the global level, the

fingerprint pattern exhibits one or more regions where the ridge lines assume

distinctive shapes. These regions are called singularities or singular regions and they

can be classified at major and local levels. When major level discussed, it can be

29

seen that, singular regions may be classified into three typologies: loop, delta, and

whorl. Singular regions of a fingerprint belonging to loop, delta, and whorl types are

characterized by ∩, Δ, and О shapes, respectively. Figure 3.2 (Maltoni, Maio, Jain, &

Prabhakar, 2003) shows that major singular regions. This figure also shows that the

center point of the fingerprint or formerly called core.

 Figure 3.2 Singular regions and core points in fingerprint images.

When fingerprint patterns discussed in local level, other important features, called

minutiae can be found. Minutia means small detail; in the context of fingerprints, it

refers to various ways that the ridges can be discontinuous and for example, a ridge

can suddenly come to an end (termination), or can divide into two ridges

(bifurcation) (Maltoni, Maio, Jain, & Prabhakar, 2003). Figure 3.3.(a) shows that the

most common minutia types such as termination, bifurcation, lake or crossover.

These minutiae types are commonly used for fingerprint recognition. The American

National Standards Institute (ANSI) proposed a minutiae taxonomy method based on

four classes. These classes are terminations, bifurcations, trifurcations (or

crossovers), and undetermined. But, the FBI minutiae-coordinate model considers

only terminations and bifurcations: each minutia is denoted by its class, the x- and y-

coordinates and the angle between the tangent to the ridge line at the minutia position

and the horizontal axis (Figure. 3.3.(b) and 3.3.(c)) (Wegstein, 1982).

30

Figure 3.3 a) The most common minutiae types; b) Termination minutia : [x 0 ,y 0] are the minutia

coordinates; θ is the angle that the minutia tangent forms with the horizontal axis; c) A bifurcation

minutia; θ is now defined by means of the termination minutia corresponding to the original

bifurcation that exists in the negative image (Maltoni, Maio, Jain, & Prabhakar, 2003).

3.2 Fingerprint Image Processing and Feature Extraction

Most of the fingerprint recognition and classification algorithms require a feature

extraction stage for identifying remarkable features. The features extracted from

fingerprint images often have a direct physical counterpart such as singularities or

minutiae, but sometimes they are not directly related to any physical traits such as

local orientation image or filter responses. These features may be used directly for

matching or an intermediate step for the derivation of other features. For example,

some preprocessing and enhancement steps are often performed to simplify the task

of minutiae extraction (Maltoni, Maio, Jain, & Prabhakar, 2003).

A fingerprint image, I, is often represented as a two-dimensional surface. When I

be a gray-scale fingerprint image with g gray-levels, bright pixels associated with

with gray-levels close to g-1 and dark pixels associated with gray-levels close to 0.

31

3.3 Estimation of Local Ridge Orientation

Let [x, y] be a generic pixel in a fingerprint image. The local ridge orientation at

[x, y] is the angle θ xy that the fingerprint ridges, crossing through an arbitrary small

neighborhood centered at [x, y], form with the horizontal axis (Maltoni, Maio, Jain,

& Prabhakar, 2003).

Instead of computing local ridge orientation at each pixel, most of the fingerprint

processing and feature extraction methods estimate the local ridge orientation at

discrete positions such as local windows. The size of the local windows can be varied

depending on the application. The fingerprint orientation image is a matrix D whose

elements encode the local orientation of the fingerprint ridges. Figure 3.4 shows the

orientation of a fingerprint image (Maltoni, Maio, Jain, & Prabhakar, 2003). Note

that each element θ ij shows that the orientation of each window. An additional value

r ij is often associated with each element θ ij to denote the reliability of the

orientation. The simplest and most natural approach for extracting local ridge

orientation on a fingerprint image is based on computation of gradients.

 Figure 3.4 A fingerprint image faded into the corresponding orientation image computed over a

16 x 16 local windows. Each element denotes the local orientation of the fingerprint ridges, θ ij ;

the element length is proportional to its reliability, r ij .

32

3.4 Estimation of Local Ridge Frequency

The local ridge frequency (or density) xyf at point [x, y] is the inverse of the

number of ridges per unit length along a hypothetical segment centered at [x, y] and

orthogonal to the local ridge orientation θ xy (Maltoni, Maio, Jain, & Prabhakar,

2003). A frequency image F can be defined if the frequency is estimated at discrete

positions and arranged into a matrix. First, 32 x 16 oriented window centered at [ix ,

jy] is defined. Then the x-signature of the gray-levels is obtained by accumulating,

for each column x, the gray-levels of the corresponding pixels in the oriented

window. This kind of averaging makes the gray-level profile more smoother and

prevents ridge peaks. ijf is determined as the inverse of the average distance

between two consecutive peaks of the x-signature. Figure 3.5 shows the estimation of

local ridge frequency.

Figure 3.5 Estimation of local ridge frequency. An oriented window centered at [ix , jy]. The dashed

lines show the pixels whose gray-levels are accumulated for a given column of the x-signature. The x-

signature on the right clearly exhibits five peaks; the four distances between consecutive peaks are

averaged to determine the local ridge frequency (Maltoni, Maio, Jain, & Prabhakar, 2003).

33

3.5 Singularity and Core Detection

Most of the approaches proposed in the literature for singularity detection operate

on the orientation of the fingerprint image. Poincarè index method is the most

common method used for detecting singularities and core on a fingerprint pattern.

This method is summarized in the following section.

3.5.1 Poincarè Index Method

Define G is a vector field and С be a curve in G; then the Poincarè index CGP , is

defined as the total rotation of the vectors of G along curve С (Figure 3.6).

 Figure 3.6 The Poincarè index computed over a curve C immersed in vector

 field G (Maltoni, Maio, Jain, & Prabhakar, 2003).

Let G be the field associated with a fingerprint orientation image D and let [i, j] be

the position of the element θ ij in the orientation image; then the Poincarè index

CGP , (i, j) at [i, j] is computed by first taking the curve С is a closed path defined as

an ordered sequence of some elements of D. Usually the element [i, j] of D is internal

point. CGP , (i, j) is computed by algebraically summing the orientation differences

between adjacent elements of curve С. Summing orientation differences require a

direction to be associated at each orientation. For solving this problem, the direction

of the first element is randomly selected and the direction of the other elements is

found by assigning the closest direction to that of the previous element to each

successive element. On closed curves, the Poincarè index assumes only one of the

34

discrete values: 0°, ±180°, and ±360°. Singularities on a fingerprint image are

defined in Eq. (2-1).

 
 
 
 

.

regionsingular typedelta a tobelongs,if,180

regionsingular typeloop a tobelongs,if,180

regionsingular type whorla tobelongs,if,360

regionsingular any tobelongnot does,if,0

,



































ji

ji

ji

ji

P CG (3-1)

 In 3 x 3 windowing, the path defining curve C is the ordered sequence of the eight

elements d k (k = 0, ..., 7) surrounding the internal point [i, j]. The direction of the

elements d k is chosen as follows: d 0 is directed upward; d k (k = 0, ..., 7) is directed

so that the absolute value of the angle between d k and d 1k is less than or equal to

90° (Maltoni, Maio, Jain, & Prabhakar, 2003). The computation of Poincarè index

method is in Eq. (2-2) and an example of this method is shown in Figure 3.7

(Maltoni, Maio, Jain, & Prabhakar, 2003).

  



7,...,0

8mod1, ,),(
k

kkCG ddanglejiP . (3-2)

 Figure 3.7 Example of computation of the Poincare index in the 8-neighborhood of points

belonging (from the left to the right) to a whorl, loop, and delta singularity, respectively.

3.6 Normalization

In an ideal fingerprint image, ridges and valleys alternate and flow in a locally

constant direction but in practice the input images must be enhanced before minutiae

35

extraction to increase the performance of fingerprint recognition techniques.

Normalization is one of the most commonly used enhancement method for

determining the new intensity value of each pixel in an fingerprint image as;

 
    

  
.

otherwise,/,

, if,/,
,

0

2

0

0

2

0'




















vvmyxIm

myxIvvmyxIm
yxI (3-3)

where m and v are the image mean and variance and m 0 and v 0 are the desired mean

and variance after the normalization process.

Normalization technique is a pixel-wise operation and does not change the ridge

and valley structures. Figure 3.8 shows an example of normalization process

(Maltoni, Maio, Jain, & Prabhakar, 2003). Input image is normalized with desired

mean and variance values.

 Figure 3.8 An example of normalization with values of m 0 =100 and v 0 =100.

3.7 Minutiae Detection

Most of the automatic fingerprint identification systems used minutiae matching

for fingerprint comparison so, reliable minutiae extraction is an extremely important

36

task and a lot of research has been devoted on this topic. Most of the proposed

methods for minutiae detection require the fingerprint gray-scale image to be

converted into a binary image. Some of the binarization processes are dilation,

erosion, opening, closing, thinning and thicking. These processes are greatly benefit

from an a priori enhancement. The binary images obtained by the binarization

process are usually submitted to a thinning stage which allows for the ridge line

thickness to be reduced to one pixel and finally, a simple image scan allows the

detection of pixels that correspond to minutiae (Figure 3.9) (Maltoni, Maio, Jain, &

Prabhakar, 2003).

Figure 3.9 a) A fingerprint gray-scale image; b) The image obtained after a binarization of the

image in (a); c) The image obtained after a thinning of the image in (b).

Once a binary skeleton of a fingerprint image has been obtained, a simple image

scan allows the pixel corresponding to minutiae to be detected. In fact the pixels

corresponding to minutiae are characterized by a crossing number and the crossing

number cn(p) of a pixel p in a binary image is defined as half the sum of the

differences between pairs of adjacent pixels in the 8-neighborhood of p;

   



8,...1

18mod, |,)(|
2

1

i

ii pvalpvalpcn (3-4)

where p 0 , p 1 ,..., p 7 are the pixels belonging to an ordered sequence of pixels

defining the 8- neighborhood of p and val(p) {0,1} is the pixel value (Maltoni,

Maio, Jain, & Prabhakar, 2003). Figure 3.10 shows and defines a pixel p with val(p)

= 1 according to crossing number for 3x3 window;

37

• is an intermediate ridge point if cn(p) = 2;

• corresponds to a termination minutia if cn(p) = 1;

• defines a more complex minutia (bifurcation, crossover, etc.) if cn(p)  3 (Maltoni,

Maio, Jain, & Prabhakar, 2003).

 Figure 3.10 a) Intra-ridge pixel, b) Termination minutia, c) Bifurcation minutia.

Some authors have proposed that minutiae extraction approaches that work

directly on the gray-scale images without binarization and thinning because a

significant amount of information may be lost these processes and these processes

are time consuming rather than using gray-scale image. Image quality also affects the

performance of binarization processes.

3.8 Estimation of Ridge Count

Orientation, frequency, absolute position, and type of minutiae are not the only

features that can be used for fingerprint recognition. The latest studies show that

using ridge count is increasing the reliability of analysis.

Ridge count is a measurement of the distances between any two points in the

fingerprint image. Let a and b be two points in a fingerprint; then the ridge count

between point a and point b is the number of ridges intersected by segment ab

(Figure 3.11) (Maltoni, Maio, Jain, & Prabhakar, 2003).

38

 Figure 3.11 In this example the number of ridges intersected

 by segment ab (ridge count between a and b) is 8.

3.9 Fingerprint Matching

A fingerprint matching algorithm compares two given fingerprints and returns

either a degree of similarity or a binary decision such as mated or non-mated like in

the recognition system. The large number of approaches to fingerprint matching can

be classified into three families:

1) Correlation-based matching: Two fingerprint images are correlated and the

correlation between corresponding pixels is computed for different alignments. In

this thesis one of the most popular correlation-based matching, principal component

analysis (PCA), is used.

2) Minutiae-based matching: This is the most popular and widely used technique for

fingerprint comparison. This technique is also being the basis of the fingerprint

analysis. First, minutiae are extracted from the two fingerprints and stored as sets of

points. Then, matching algorithm is used for finding the alignment between the

template and the input minutiae sets. Final result is estimated in the maximum

number of minutiae pairings.

39

3) Ridge feature-based matching: Minutiae-based extraction is difficult in very low-

quality fingerprint images. However, whereas other features of the fingerprint ridge

pattern (e.g., local orientation and frequency, ridge shape, texture information) may

be extracted more reliably than minutiae, their distinctiveness is generally lower

(Maltoni, Maio, Jain, & Prabhakar, 2003). The approaches belonging to ridge

feature-based matching compare fingerprints in term of features extracted from the

ridge pattern.

40

CHAPTER FOUR

PROGRAMMABLE LOGIC DEVICES

This chapter details the brief history of programmable logic devices from simple

architectures to modern complex architectures. Interconnect types of programmable

logic devices and configuration techniques are also discussed. Also two Altera FPGA

based development kits: UP3 Education Kit and DE2-70 Development Kit used for

this project has been introduced.

4.1 History of Programmable Logic

By the late of 1970s, printed circuit boards are loaded with standard logic devices.

Then to offer the ultimate in design flexibility, Ron Cline from Signetics came up

with the idea of two programmable planes. These planes are provided any

combination of “AND” and “OR” gates, as well as sharing of AND terms across

multiple ORs (Xilinx, 2006).

 Figure 4.1 Simple PLA architecture.

MMI brings a new technology by fixing one of the programmable planes to

decrease the propagation delay time through the device and complexity of the

software. One programmable AND and Fixed OR arrays are called as Programmable

41

Array Logic (PAL) or Simple Programmable Logic Device (Simple PLD). Figure 4.2

shows the architecture of PAL.

 Figure 4.2 PAL or simple PLD.

With the improvement in PLA and PAL devices, new type of PLD devices are

introduced which extend the density of SPLDs. These devices are called as Complex

Programmable Logic Device (CPLD). CPLD’s brings major advantages to industry

such as;

- Ease of design,

- Lower Development Costs,

- Reduced board area,

- Higher speeds,

- On-system programming.

 Figure 4.3 CPLD architecture.

42

In 1985, Xilinx introduced Field Programmable Gate Array (FPGA) which is an

alternative type of PLD. FPGA architecture and device configuration methods are

discussed in the following section.

4.2 FPGA Architecture

There are two types of FPGAs: SRAM-based programmable FPGA and One time

programmable FPGA. The most commonly used design is SRAM-based design. The

advantage of this design is reprogramming ability. But, SRAM-based FPGA needs

reprogramming everytime when it’s powered up. So, most of the designs use a serial

PROM for storing programming data.

FPGA architecture consists of an array of logic blocks, routing channels and I/O

communication interconnects. Depending on the vendor these logic blocks called as

Configure Logic Block (CLB) for Xilinx and Logic Array Block (LAB) for Altera.

In our thesis, we used Altera based development kits that use Cyclone FPGAs, so

Altera LAB architecture is described in the next section.

4.2.1 Logic Element (LE)

The smallest unit of logic in the Cyclone II architecture is the Logic Element

(LE). LE provides advanced features with efficient logic utilization.

Each LE features:

- A four-input look-up table (LUT), which is a function generator that

can implement any function of four variables,

- A programmable register

- A register chain and a carry chain connection

- The ability to drive all types of interconnects: local, row, column,

register chain, and direct link interconnects

- Support for register feedback

- Support for register packing (Cyclone II Handbook, Altera Corp., 2007).

43

Figure 4.4 Cyclone II logic element.

LE operates in two modes by using different resources depending on the

application. First mode is normal mode and this mode is suitable for combinational

functions and common logic applications. The second mode is arithmetic mode and

this mode provides adders, accumulators, counters and comparators.

4.2.2 Logic Array Block (LAB)

Each LAB consists of the following:

- 16 LEs

- LAB control signals

- LE carry chains

- Register chains

- Local interconnect

The local interconnect transfers signals between LEs in the same LAB. Register

chain connections transfer the output of one LE’s register to the adjacent LE’s

44

register within an LAB (Cyclone II Handbook, Altera Corp., 2007). Figure 4.5 shows

Cyclone II LAB architecture.

 Figure 4.5 Cyclone II LAB architecture.

Wide variety of connections can be made by investigating Figure 4.5. However,

this flexible routing increase the logic complexity.

4.3 FPGA Configuration

FPGAs can be configured in several ways such as schematic design entry, using

hardware description languages (HDLs) and using high-level languages. These

methods are described in the following sections according to their abstraction level

from lowest level schematic design entry to highest level high-level language

compilers.

4.3.1 Schematic Design Entry

Schematic design entry is the lowest level of FPGA configuration. Schematic

design includes standard logic gates, multiplexers, I/O buffers, storage elements and

45

macros for device specific functions such as adders or plls. The macros can be

constructed from primitive logic elements to further use in large circuit designs.

Schematic design entry is the least popular method of describing hardware,

because when the complexity of the circuit increases, it is difficult to follow

connection nodes in the schematic.

Figure 4.6 An example by using schematic design entry.

4.3.2 Hardware Description Languages

Hardware Description Languages (HDLs) are text-based depictions of the

behaviour of the digital circuit. The differences of HDLs from software

programming languages are the ways of describing the propagation of time and

signal dependencies. The most popular HDLs are VHDL and Verilog HDL. These

languages are similar but use different notations.

VHDL stands for VHSIC Hardware description language where VHSIC stands for

very high speed integrated circuit. VHDL was originally develop by the US

Department of Defense and released in 1985.

Verilog HDL development started in Gateway Design Automation Inc. in 1985.

Cadence Design Systems purchase Gateway Design Automation in 1990. With this

purchase, Verilog is started to use in public and very popular in industry from this

date.

46

library ieee;

use ieee.std_logic_1164.ALL;

use ieee.std_logic_unsigned.ALL;

entity halfadder is

 port (in_A : in std_logic;

 in_B : in std_logic;

 sum : out std_logic; -- sum out from A+B

 carry : out std_logic -- carry out from A+B

);

end halfadder;

architecture rtl of halfadder is

begin

 sum <= (in_A XOR in_B);

 carry <= in_A AND in_B;

end rtl;

Figure 4.7 Half adder implementation by using VHDL.

module halfadder(in_A,in_B,sum,carry);

input in_A;

input in_B;

output sum;

output carry;

 assign sum = in_A ^ in_B;

 assign carry = in_A & in_B;

endmodule

Figure 4.8 Half adder implementation by using Verilog HDL.

4.3.3 High-Level Languages

Using high-level programming languages for FPGA design is the increasing

interest in the industry. The custom language such as C or phyton is compiled to

generate a Verilog HDL or VHDL circuit description. SystemC, Celoxia’s DK

Design suite and MyHDL are an example of high-level languages.

Half adder implementation by using VHDL, Verilog HDL and SystemC is shown

in Figure 4.7, Figure 4.8 and Figure 4.9 respectively.

47

#include “systemc.h”

SC_MODULE(half_adder) {

 sc_in<bool>a, b;

 sc_out<bool>sum, carry;

 void proc_half_adder();

 SC_CTOR(half_adder) {

 SC_METHOD (proc_half_adder);

 sensitive << a << b;

 }

};

void half_adder::proc_half_adder() {

 sum = a ^ b;

 carry = a & b;

}

Figure 4.9 Half adder implementation by using SystemC.

4.4 FPGA Development Kits

There are several development boards to explore the capabilities of FPGAs and to

develop prototypes. In this section, two FPGA development kits used in this project

have been demonstrated.

4.4.1 UP3 Education Kit

UP3 Education Kit is produced by System Level Solutions (SLS). The following

informations include general features, UP3 board top view and UP3 development kit

photo is taken from UP3 Education Reference Manual (Version 0.1, SLS 2004).

The general features of UP3 Education Kit are listed below;

- Features an Altera EP1C6Q240 Device and EPCS1 configuration devices

- Supports intellectual property based (IP-Based) design both with and without a

microprocessor.

- USB 1.1 (Full speed & Low speed)

- RS 232 Port (Full Modem) and Parallel Port (IEEE1284)

48

- PS/2 Port

- VGA Port

- IDE (Integrated Drive Electronics)

- 128 KBytes of SRAM (64K x 16)

- 2 MBytes of FLASH (1M x 16)

- Supports multiple clocks like PCI clock, USB clock, IOAPIC clock and CPU clock

- JTAG and Active Serial download capability

- 5V Santa Cruz Long Expansion Card Header provides 72 I/O for the development

of additional board providing various functionalities

- One user definable 4-bit switch block

- Four user definable push button switches, and one global reset switch

- Four user definable LEDs

- One 16 x 2 character display LCD Module

- I2C Real Time Clock.

 Figure 4.10 UP3 board top view.

49

The Device Features of Cyclone EP1C6Q240 FPGA:

- 5980 Logic Elements (LEs)

- 20 RAM Blocks

- 92160 Total RAM Bits

- 2 PLLs

- 185 Maximum number of I/Os

Figure 4.11 Photo of UP3 board.

4.4.2 DE2-70 Development Kit

 The DE2-70 board is produced by Terasic Technologies. The general features of

this device and a board photo is taken from Altera DE2-70 Development and

Education Board User Manual (Version 1.08, Terasic Technologies 2009).

The following hardware is provided on the DE2-70 board:

- Altera Cyclone® II 2C70 FPGA device

- Altera Serial Configuration device - EPCS16

50

- USB Blaster (on board) for programming and user API control; both JTAG and

Active Serial (AS) programming modes are supported

- 2-Mbyte SSRAM

- Two 32-Mbyte SDRAM

- 8-Mbyte Flash memory

- SD Card socket

- 4 pushbutton switches

- 18 toggle switches

- 18 red user LEDs

- 9 green user LEDs

- 50-MHz oscillator and 28.63-MHz oscillator for clock sources

- 24-bit CD-quality audio CODEC with line-in, line-out, and microphone-in jacks

- VGA DAC (10-bit high-speed triple DACs) with VGA-out connector

- 2 TV Decoder (NTSC/PAL/SECAM) and TV-in connector

- 10/100 Ethernet Controller with a connector

- USB Host/Slave Controller with USB type A and type B connectors

- RS-232 transceiver and 9-pin connector

- PS/2 mouse/keyboard connector

- IrDA transceiver

- 1 SMA connector

- Two 40-pin Expansion Headers with diode protection

The Device Features of Cyclone II 2C70 FPGA:

- 68,416 Logic Elements

- 250 M4K RAM Block

- 1,152,000 total RAM bits

- 150 embedded multipliers

- 4 PLLs

- 622 user I/O pins

- FineLine BGA 896-pin package

51

 Figure 4.12 DE2-70 board top view.

52

CHAPTER FIVE

FPGA-BASED FACE AND FINGERPRINT RECOGNITION SYSTEM

DESIGN

This chapter describes the implementation of FPGA-based face and fingerprint

recognition system of this thesis. As mentioned in previous chapters two FPGA

development kits are used to realize this recognition system. The purpose of using

two development kits and implementation on these boards are also covered in this

chapter. In the following sections of this chapter, the first project which are

implemented to familiarize with FPGAs are also included to the help the FPGA

beginners.

5.1 Face and Fingerprint Recognition System Design on UP3 Development Kit

5.1.1 Quartus II Software

The first study on UP3 development kit is to learn the usage of design tools.

Analysis and synthesis tool, Quartus II software, is a powerful programmable logic

design software that is released from Altera. The most important Quartus II features

are;

- Implementation of VHDL and Verilog for hardware description

- Visual edition of logic circuits using schematic entity design

- Vector waveform simulation.

Quartus II software is a comprehensive environment for system-on-a-

programmable-chip (SOPC) design and includes solutions for all phases of FPGA

and CPLD design. Quartus II design flow is illustrated in Figure 5.1 which is

provided by Altera. Altera’s Quartus II software allows us to use Quartus II graphical

user interface, EDA tool interface or command-line interface for each phase of the

design flow. Quartus II handbook describes the all features of Quartus II graphical

user interface for each stage of the design flow. This is shown in Figure 5.2.

53

 Figure 5.1 Quartus II design flow.

 Figure 5.2 Quartus II graphical user interface features.

54

5.1.2 Preliminary Study on UP3 Development Kit

After learning the basic features of Quartus II such as how to compile a project

and how to program the board from Quartus II handbook and some examples, second

step is to design combinational circuits for getting used to the development board.

First idea is to configure FPGA with different types of combinational circuits,

which have one or more inputs and similarly one or more outputs. Figure 5.3 shows

and summarizes first study on UP3 development kit. In these examples DIP switches

are used as inputs and LEDs are used for outputs.

 Figure 5.3 Overview of FPGA configuration examples using schematic design.

With studying combinational circuits by using schematic entity design, the basic

concepts of circuit design are learnt, such as connecting components, pin

assignments, adjusting Quartus II settings, compiling and testing the projects.

After implementing combinational circuits, next step is to design sequential

circuits. Sequential logic is a type of logic circuit whose output depends not only on

the present value input but also depends on the previous value of the input. To

provide present and previous values together, memory or storage elements are used

in sequential logic. Using memory or storage elements are the major difference

between sequential logic and combinational logic circuits. Counter is a sequential

logic device which stores and sometimes displays the number of times a particular

event or process has occured. For counter design, a memory buffer with clock and

counter pins are needed.

 FPGA

 Simple AND/OR Gates

 Half/Full Adders

 Comparators

 Customized combinational

 logic circuits

Inputs Outputs

st

55

At design step, clock signal is connected to global clock signal of UP3, and reset

signal is connected to global reset pushbutton. After testing these connections, clock

signal is same value with global clock signal but, reset signal isn’t same value with

the of global reset pushbutton. To overcome this issue, reset signal is connected to

one of DIP switches and tested it with new connection. Using a switch for reset

signal is solved this problem so this approach has used for all sequential projects

during the study. When solving reset signal issue, we have tested counter

implementation by watching LEDs on UP3 development kit. Sequentially lighted and

unlighted LEDs showed us the correctness of this implementation.

Previous examples with combinational and sequential logic circuits were

implemented by using scheamatic entity design. After these examples next step is to

start learning and making some examples with one of hardware description

languages. VHDL and Verilog HDL are compared in different aspects such as, ease

of use, ease of understand, ease of learn, etc... and VHDL is selected as a hardware

description language. Previous examples are coded and tested in VHDL. Learning

VHDL and understanding the parallelism concept are taken a very long time.

Because if the complexity of the implementation increases, following and

understanding the circuit behaviour becomes more difficult. On the otherhand,

controlling hardware within a pre-determined rising edge or falling edge of clock

signal is the biggest advantage of using VHDL.

 Figure 5.4 First approach of our face recognition system design.

56

For the implementation of face recognition system, a system that includes a PC

and a UP3 development kit is preferred. Figure 5.4 summarizes this face recognition

system. In this system, major operations such as capturing and processing image,

computation of principal component analysis (PCA) is implemented on PC.

As described in Figure 5.4, PCA algorithm is run on MATLAB for creating

features for database images and these features are sent to FPGA via serial port and

will be stored in FPGA’s SRAM Cells. When a face image is tested, this must be

projected to the face space by using PCA basis matrix on host PC and then, projected

test image will be sent to FPGA to compare and determine the result. At last, the

result will be sent back to host PC to show which user is recognized. This system and

design concepts are discussed in the following sections. In Section 5.1.3 PCA

algorithm implementation in MATLAB is described. Section 5.1.4 gives the basic

concepts of Universal Asynchronous Receiver/Transmitter (UART) structure and

Section 5.1.5 shows UART implementation in VHDL. The results and findings are

mentioned in Section 5.1.6.

 5.1.3 PCA implementation on MATLAB

Before implementing PCA on UP3 development kit, first PCA algorithm is

implemented in MATLAB. ORL Database is used for this implementation. There are

20 people and 10 images for each person in this database. The size of the images in

this database are 112x92. Figure 5.5 shows some example images from this database.

As a start 8 images of 6 people are selected for creating the database and the rest 2

images are used for tests. The source code of this system is in the Appendix with the

folder name of “5_1_3_PCA_MATLAB”.

FaceRec.m is the main MATLAB function of this implementation. In this

implementation, first the images that are used for database are resized from 112x92

to 48x48 and stored on a different folder. Each image on the new folder are

transformed into vectors and placed one column of new population matrix. For

57

example, first image in the folder is converted to a vector of 2304x1, then this vector

is put to first column of population matrix. This process is continued for all images.

By processing for 48 images (6 people and 8 images for each people), population

matrix is created with size of 2304x48. Loadpop.m is responsible for this duty. This

population matrix, X, is used for creating the basis function. Makebasis.m shows the

PCA algorithm implementation. First, covariance of X is computed then eigenvalues

and eigenfaces are found. By sorting eigenvalues in descending order, eigenface

vector or face space vector, A, is computed. The size of A is 2304x2304. Next step is

to project population matrix, X, to face space by multiplying the face space vector, A.

The result of this multiplication is stated as Ytrain in the source code. To reduce the

computation time, only the first a few eigenvectors are used. User enters the number

of eigenvectors that will be used on creating Ytrain matrix in the start of the

programme.

 Figure 5.5 Some examples from ORL Database.

Test step is similar with database creation step. User also enters the person and

image number that will be tested. First, image is resized then projected face space by

multiplying by A. The result of this multiplication is Xtest. After computing Xtest, the

last thing is to compare Ytrain and Xtest by using Euclidean distance and absolute

distance, then to return result to the user.

58

Figure 5.6 shows the user’s inputs. As seen from this figure the number of people

and images from each person for database creation is asked from the user. The image

from will be tested is also asked with the number of eigenface that will be used.

 Figure 5.6 User’s inputs face recognition programme on MATLAB.

 Figure 5.7 Output of the programme on MATLAB.

Figure 5.7 shows output of the programme. new_result_person and

new_result_person_norm holds the result of comparision between Ytrain and Xtest

by using Euclidean distance and absolute distance respectively.

59

Figure 5.8.a shows the tested image on this example and Figure 5.8.b shows the

face images of test person in the database. Note that, the poses of the 2nd person

images in the database are different, but PCA algorithm has successfuly identified

the person. Figure 5.9 shows another test on the system.

Figure 5.8 a) 9th image of 2nd person that used for test. b) First 6 image of 2nd person. Note that

these images are included in database.

Figure 5.9 Another test result. a) 10th image of 1st person that used for test. b) First 6 image of 1st

person. Note that these images are included in database.

Table 5.1 Recognition table for this system

Recognition Table
test image

9th 10th

p
er

so
n

 n
u

m
b

er
 1st + +

2nd + +

3rd + +

4th + +

5th + +

6th + +

60

To understand the performance of this system recognition rate must be computed

with testing all images that are not used for database creation. Table 5.1 shows the

test results for each images.

Note that “+” signs in Table 5.1 shows that recognition for this image is correct.

The all results are correct so the recognition rate for this system is %100. Before

implementing this system on FPGA, changing some parameters allows to understand

the variying on recognition rate. By using the same PCA algorithm new systems are

created by changing image numbers for database and changing the number of

eigenvectors. “System-II”, “System-III” and “System-IV” includes 6 images from 6

people with the number of eigenvectors that used for creating face spaces are 5, 3

and 1 respectively. Recognition tables for these systems are given below. Note that,

7th, 8th, 9th and 10th images of each person are tested.

Table 5.2 Recognition table for System-II with 5 eigenvectors.

Recognition Table
test image

7th 8th 9th 10th

 p

er
so

n
 n

u
m

b
er

 1st + + + +

2nd + + + +

3rd + + + +

4th + + + +

5th + + + +

6th + + + +

Table 5.2 shows that the recognition rate of System-II is %100. When comparing

Table 5.1 and 5.2, it can be seen that image numbers that are used for creating

database can be decreased. It is too important because, the aim of the project is to

implement this algorithm on FPGA. In embedded system designs, using less

resources decrease the implementation cost and computation time.

61

Table 5.3 Recognition table for System-III with 3 eigenvectors.

Recognition Table
test image

7th 8th 9th 10th

 p
er

so
n

 n
u

m
b

er
 1st + + + -

2nd + + + +

3rd + + + +

4th + + + +

5th + + + +

6th + + + +

Table 5.4 Recognition table for System-IV with 1 eigenvector.

Recognition Table
test image

7th 8th 9th 10th

 p

er
so

n
 n

u
m

b
er

 1st + + + -

2nd + - + +

3rd + + + +

4th + - - -

5th - + - -

6th - - + -

Table 5.2, Table 5.3 and Table 5.4 shows the effect of the number of eigenvectors

that are used for creating the system. Note that “-” marks in Table 5.3 and Table 5.4

show that the recognition is fail for that images. Table 5.3 shows that the recognition

rate of System-III is approximately %96. By comparing Table 5.2 and Table 5.3,

decreasing the number eigenvectors shows an acceptable recognition rate.

Decreasing the number of eigenvectors is also important to decrease computation

time. Table 5.4 shows that the recognition rate is nearly %54 in System-IV. This

recognition rate is unacceptable for system design.

From the comparisons of Table 5.1 with Table 5.2 and Table 5.2 with Table 5.3,

using 6 images for creating database and selecting 3 eigenvectors are enough for

PCA algorithm implementation on FPGA. This know-how is used for further system

implementations on FPGA.

After completing the PCA implementation on MATLAB, according to targeted

implementation in Figure 5.4, serial communication with host PC and FPGA is

studied. Following section briefly describes the basic concepts of UART.

62

5.1.4 UART

This section briefly describes a universal asynchronous receiver/transmitter

(UART). UART is the part of computer hardware that translates data between

parallel and serial forms. Today, UARTs are commonly included in microcontrollers

and they are commonly used in conjunction with other communication standards

such as EIA RS-232.

UART controller is the key component of the serial communications subsystem of

computer hardware. The UART takes bytes of data and transmits the individual bits

in a sequential bit-stream. At the destination, a second UART takes this bit-stream

and re-assembles these bits into complete bytes. Serial transmission of digital

information is much more cost effective than parallel transmission through multiple

wires.

Figure 5.10 Transmit and receive waveforms for 10-bit asynchronous serial protocol (Maxim,

2007).

In asynchronous transmitting, UARTs send a "start" bit, five to eight data bits,

from least significant bit (LSB) to most significant bit (MSB), an optional "parity"

bit, and then one, one and a half, or two "stop" bits. The state of start bit is the

63

opposite polarity of the data-line's idle state and the state of stop bit is the data-line's

idle state. The stop bit provides a delay before the next character can start.

Asynchronous transmission allows data to be transmitted without sending the

clock signal the receiver. So, the sender and receiver must agree on timing

parameters. Framing error and parity check are the most common error detection

methods that are used in UARTs.

Figure 5.11 shows the internal structure of the UART. UART has 3 main

components: Baud Rate Generator, Transmitter and Receiver.

 Figure 5.11 Internal structure of the UART (Weinstein, Volz, & Redecker, 2004).

5.1.4.1 UART Baud Rate Generator

The UART Baud Rate Generator defines and generates the clock used for

transmitting and receiving data via the UART. UART clock can be divided very

precisely to acquire an error-free bit transportation. Figure 5.12 shows the baud rate

generator.

64

 Figure 5.12 Baud rate generator (Weinstein, Volz, & Redecker, 2004).

In Figure 5.12, the clock generated by the UART baud rate generator is 16 times

higher than the baud rate that needed for transferring data. This clock is used by the

Data Recovery Logic.This module samples the data and filters it a bit, so that less

errors occur in data receiving.

The clock used for shifting in the data is divided by 16 and therefore corresponds

to the baud rate.The formula for calculating the Baud rate generated from a UART

Baud Rate Register (UBRR) is;

16(1)

CLKf
BAUD

UBRR



 (5-1)

But, in practice system clock and baud rate are constant and known values. So

modifying Eq. (5-1) yield that Eq. (5-2). UBRR register is programmed hardware or

software to satisfy this clock and baud rate.

 1
(16)

CLKf
UBRR

xBAUD
  (5-2)

If system clock is 50 MHz and 115200 Baud is needed, the UBRR value

26.126736. So, it’s 26. The error due to baud rate is the actual baud rate divided by

65

the desired baud rate. The actual baud rate can be computed from Eq. (5-1), 115740

baud. 115740/115200, is 1.005 and therefore error is %0.005.

5.1.4.2 UART Transmitter

The UART transmitter sends data from the UART core to some other device such

as data logger, PC, another UART, etc...) at the specified Baud Rate. Figure 5.13

shows the internal structure of UART transmitter.

 Figure 5.13 Internal structure of UART transmitter (Weinstein, Volz, & Redecker, 2004).

The transmission process is initiated by writing data to Uart Data Register (UDR).

This data is then transferred to the TX shift register when the previously written byte

has been shifted out completely. When a byte is transferred to the TX shift register,

the Uart Data Register Empty (UDRE) flag is set. The interrupt service routine of

UDRE can now write the next byte to UDR without corrupting the transmission in

progress. When a byte is completely shifted out and no new data has been written to

UDR, shows the transmission is over, transmit complete (TXC) or end of

transmisson (EOT) flag is set.

66

5.1.4.3 UART Receiver

The UART receiver is basically built up like the transmitter. UART receiver uses

data recovery logic for sampling the data and set an interrupt for the completion of

data reception. The data is sampled in the middle of the bit to be received because the

baud rate of the data recovery logic is 16 times of the actual baud rate. The baud rate

value for shifting bits is same with the transmitter. When the reception is over,

receiver complete (RXC) or end of reception(EOR) flag is set. Figure 5.14 shows the

internal structure of UART receiver.

 Figure 5.14 Internal structure of UART receiver (Weinstein, Volz, & Redecker, 2004).

5.1.5 UART Implementation in VHDL

In this thesis UART implementation in VHDL is started with baud generator

design. Then transmitter and receiver parts are implemented respectively. In the test

step, hyperterminal and MATLAB serial communication toolbox are used. Note that

baud generator design is tested when transmitter design is finished. The

implementation results are described in the Section 5.1.6.

67

5.1.5.1 Baud Generator Design in VHDL

Baud generator is a component that is used for both transmitter and receiver

designs. Actually this module is simply a clock counter. For providing the

transmission baud rate, baud generator counts clock ticks and create a new clock

period. The entity of baud generator that used for transmitter is shown in Figure 5.15.

This module takes a global clock input with transmitter’s baud enable to start the

transmission, and produces baud rate as an output. Figure 5.16 shows the code

segment that counts clock ticks and used for generating 115200 baud rate as an

output where dividenum is “01A0h”.

entity baudgen is

 port (global_clock : in std_logic;

 tx_ck_enable_baud : in std_logic;

 baud_rate : out std_logic

);

end baudgen;

Figure 5.15 Baud generator entity that is designed for UART transmitter.

NEWBAUD : process (global_clock)

begin

if(global_clock = '1' and global_clock'event) then

 if (counter = dividenum) then

 baud_rate <= '1';

 counter <= (others => '0');

 elsif (tx_ck_enable_baud = '1') then

 baud_rate <= '0';

 counter <= counter + 1;

 else

 baud_rate <= '0';

 counter <= (others => '0');

 end if;

end if;

Figure 5.16 Code segment that is used for generating 115200 baud rate.

5.1.5.2 UART Transmitter Design in VHDL

Transmitter is dutied for transmitting bytes with a speed of baud rate. Figure 5.17

shows the entity of transmitter module. In this module, g_clock is the global clock

68

signal that is routed to baud generator module, tx_data is the output bit of the state

machine, eoto is the output that shows the end of transmission, data is the 8-bit input

data that is sent via transmitter and write_tr is the transmitter enable input bit.

entity uart_transmitter is

 port (g_clock : in std_logic;

 tx_data : out std_logic;

 eoto : out std_logic;

 data : in std_logic_vector(7 downto 0);

 write_tr : in std_logic

);

end uart_transmitter;

Figure 5.17 UART transmitter entity.

Figure 5.18 shows the transmitter state machine. State machine is a key

component of transmitter component because in this component, one byte of 8-bit

input data is decomposed as a bit in each state, then sent respect to baud rate. The

working principle of the state machine is same with the serial transmit in Figure 5.10.

The flow of these states are started with transmit enable (tx_enable). If transmitter

does not send any data, it is always in S0 state. S0 state is the idle state of transmitter.

When transmit is enabled, at S0 state, start bit is sent first. Then, each bit of the data

is sent from LSB to MSB while states are processed from S1 to S8. After the

transmission of each bit of data is completed, at S9 state, stop bit is sent and end of

transmission flag is set. At S9 state, the next state is also set to S0 and if there exist

another byte that waits for transmission, transmitter state machine is started again for

the next byte, until the last byte is sent.

TX_STATE_MACHINE: process(current_state,tx_enable,datain,data)

 begin

 case current_state is

 when S0 =>

 datain <= data;

 eot <= '0';

 if (tx_enable = '1') then

 txd <= '0';

 next_state <= S1;

 TRANSMITTING<='1';

 else

 txd <= '1';

69

 TRANSMITTING<='0';

 next_state <= S0;

 end if;

 when S1 =>

 txd <= datain(0);

 eot <= '0';

 TRANSMITTING<='1';

 next_state <= S2;

 when S2 =>

 txd <= datain(1);

 eot <= '0';

 TRANSMITTING<='1';

 next_state <= S3;

 when S3 =>

 txd <= datain(2);

 eot <= '0';

 TRANSMITTING<='1';

 next_state <= S4;

 when S4 =>

 txd <= datain(3);

 eot <= '0';

 TRANSMITTING<='1';

 next_state <= S5;

 when S5 =>

 txd <= datain(4);

 eot <= '0';

 TRANSMITTING<='1';

 next_state <= S6;

 when S6 =>

 txd <= datain(5);

 eot <= '0';

 TRANSMITTING<='1';

 next_state <= S7;

 when S7 =>

 txd <= datain(6);

 eot <= '0';

 TRANSMITTING<='1';

 next_state <= S8;

 when S8 =>

 txd <= datain(7);

 eot <= '0';

 TRANSMITTING<='1';

 next_state <= S9;

 when S9 =>

 txd <= '1';

 eot <= '1';

 TRANSMITTING<='1';

 next_state <= S0;

 when others =>

 null;

 end case;

 end process TX_STATE_MACHINE;

Figure 5.18 Transmitter state machine.

70

5.1.5.3 UART Receiver Design in VHDL

The receiver is responsible for capturing the input bit stream and composing these

bits to a 8-bit data vector. Figure 5.19 shows the receiver entity. In this module,

gl_clock is the global clock signal that is routed to baud generator module, rx_data is

the input bit, rx_enable shows enable of receiver, rx_ck_baud_enable shows enable

of receiver’s baud generator, data_out is the 8-bit data vector output of receiver

module, data_rdy is signaled when data_out is constructed and eoro is the end of

receiver flag.

entity uart_receiver is

 port (gl_clock : in std_logic;

 rx_data : in std_logic;

 rx_enable : in std_logic;

 rx_ck_baud_enable : in std_logic;

 data_out : out std_logic_vector(7 downto 0);

 data_rdy : out std_logic;

 eoro : out std_logic

);

end uart_receiver;

Figure 5.19 UART receiver entity.

Figure 5.19 shows the receiver state machine and receiver data shift mechanism.

Note that, rec_baud_clock in data shifting process, is the output of receiver’s baud

generator. Receiver state machine is similar to the transmitter state machine. The

working principle of the state machine is same with the serial receive in Figure 5.10.

The flow of these states are started with receive enable (start). If receiver is on a wait

condition, it is always in S0 state. S0 state is the idle state of receiver. When

reception is started, at S0 state, start bit is received first. Then, each bit is shifted

from LSB to MSB and while states are processed from S1 to S8. The shifted bits are

stored in data. If stop bit is received at the end of the reception of each data bit, at S9

state, end of receiver flag is set. data_rdy flag is also set at receiver when reception is

finished. At S9 state, the next state is also set to S0 and receiver is started to listen to

the port.

71

RXD_STATE_MACHINE:process(start,current_state,rx_enable,receiving)

 begin

 if (rx_enable = '0') then

 if (start = '1' or receiving = '1') then

 case current_state is

 when S0 =>

 eor <='0';

 if (start = '1') then

 next_state <= S1;

 receiving <= '1';

 else

 next_state <= S0;

 receiving <= '0';

 end if;

 when S1 =>

 receiving <= '1';

 eor <= '0';

 next_state <= S2;

 when S2 =>

 receiving <= '1';

 eor <= '0';

 next_state <= S3;

 when S3 =>

 receiving <= '1';

 eor <= '0';

 next_state <= S4;

 when S4 =>

 receiving <= '1';

 eor <= '0';

 next_state <= S5;

 when S5 =>

 receiving <= '1';

 eor <= '0';

 next_state <= S6;

 when S6 =>

 receiving <= '1';

 eor <= '0';

 next_state <= S7;

 when S7 =>

 receiving <= '1';

 eor <= '0';

 next_state <= S8;

 when S8 =>

 receiving <= '1';

 eor <= '0';

 next_state <= S9;

 when S9 =>

 receiving <= '1';

 eor <= '1';

 next_state <= S0;

 when others =>

 null;

 end case;

 end if;

 end if;

 end process RXD_STATE_MACHINE;

RXD_SHIFT : process (rec_baud_clock,rx_enable)

 begin

72

 if (rx_enable = '0') then

 if (rising_edge(rec_baud_clock)) then

 if (eor = '0') then

 data <= rx_data & data(7 downto 1);

 end if;

 end if;

 end if;

 end process RXD_SHIFT;

Figure 5.19 Receiver state machine.

5.1.6 UART Implementation Results and Findings

To test the UART implementation; Quartus II simulator tool, hyperterminal and

MATLAB serial communication toolbox are used. This section shows the results of

some test subsystems such as, one byte transmitter design, one byte receiver design

and array transmitter design. For face recognition test system, as illustrated in Figure

5.4, database and test features are extracted in MATLAB then these features are

compared in UP3 development kit. First the comparision system is simulated then

testing with MATLAB.

5.1.6.1 One Byte Transmitter

 Quartus II Simulator Tool is used for simulating this system. Simulation is started

after creating the functional netlist on the project. Transmitter is initiated by the code

segment that shown in Figure 5.20. Note that the components of this module are

mentioned in Section 5.1.5.2. datainput is the one byte data that will be transmitted.

The source code of this system is in the Appendix with the folder name of

“5_1_6_1_UART_Transmitter”. Figure 5.21 and Figure 5.22 shows the simulation

results when datainput is “55h” and “66h” respectively.

START_ONLY_TRANSMIT: uart_transmitter port map (CLK,TX_OUT,

EOT_LED,datainput,write_main);

Figure 5.20 Call of transmitter part from main function.

73

Figure 5.21 Transmitter simulation when datainput is 55h.

Figure 5.22 Transmitter simulation when datainput is 66h.

5.1.6.2 One Byte Receiver

After implementation and testing transmitter design, next step is to test receiver

implementation. Figure 5.23 shows the code segment that used to call receiver. To

observe if the receiver implementation works properly, the received data is sent back

again via transmitter. The test of this subsytem is done by using hyperterminal.

Figure 5.24 shows the test step with communication settings. When character “a” is

sent from hyperterminal, the receiver module gets “a” and send back to

hyperterminal via transmitter. “b,c,1,6” are also sent and received. The source code

74

of this system is in the Appendix with the folder name of

“5_1_6_2_UART_Receiver”.

START_ONLY_RECEIVER: uart_receiver port map (CLK,RX_DATA,

receive_enable,reset_receiver,received_data,DATA_RDY,signal_EOR);

datainput <= received_data

EOR <= signal_EOR

START_ONLY_TRANSMIT: uart_transmitter port map (CLK,TX_OUT,

EOT_LED,datainput,write_main);

Figure 5.23 Call of receiver and transmitter part from main function.

Figure 5.24 Communication port settings and receiver test.

5.1.6.3 Array Transmitter

Array transmitter is similar to the one byte transmitter. Figure 5.25 shows the

definition of array. 10h, 20h, 30h and 40h are the elements of this array. One byte of

this array is sent until the transmission of all bytes are completed. Figure 5.26 shows

75

the simulation of array transmitter. The source code of this system is in the Appendix

with the folder name of “5_1_6_3_UART_Array_Transmitter”.

type data_array is array (3 downto 0) of std_logic_vector (7

 downto 0);

signal data_block : data_array := (0 => x”10”, 1 => x”20”,

 2 => x”30”, 3 => x”40”);

Figure 5.25 Definition of array.

Figure 5.26 Simulation of array transmitter.

5.1.6.4 Simulation of Internal Database and Test Comparison

This study is the first step of comparison. Internal database and test block are

created for testing this operation. These blocks are shown in Figure 5.27. RAM

symbolizes the database which has 4 different images with 4 bytes of each element.

RAMtest symbolizes the test image with 4 bytes.

type RAM is array (2 ** ADDRESS_WIDTH - 1 DOWNTO 0)) of

std_logic_vector (DATA_WIDTH - 1 DOWNTO 0);

signal data_block : RAM := (0 => x"04",1 => x"04",

 2 => x"04",3 => x"04",

 4 => x"02",5 => x"02",

 6 => x"02",7 => x"02",

 8 => x"03",9 => x"03",

 10 => x"03",11 => x"03",

 12 => x"05",13 => x"05",

 14 => x"05",15 => x"05");

type RAMtest is array (ADDRESS_WIDTH - 1 DOWNTO 0) OF of

std_logic_vector (DATA_WIDTH - 1 DOWNTO 0);

signal new_block : RAMtest := (0 => x"01",1 => x"01",

 2 => x"01",3 => x"01");

Figure 5.27 Definition of internal database and test.

76

 From Figure 5.27, it can be easily seen that the RAMtest is closer to RAM’s

second element than the others. The result of this comparison is sent via transmitter,

so it can be simulated like in the Figure 5.28. The source code of this system is in the

Appendix with the folder name of “5_1_6_4_Internal_Database_And_Test”.

Figure 5.28 Simulation of comparison result, 2, is sent via transmitter.

5.1.6.5 Comparing Database and Test after Receiving from MATLAB

After testing the comparison system internally, by using the same approach in

Section 5.1.6.4, 16 bytes of database and 4 bytes of test are compared. The difference

of this study is using UART implementation instead of simulation. Database and test

are sent from MATLAB then these are compared on UP3, at last the result of

comparison is sent to MATLAB again, and MATLAB shows the comparison result.

Figure 5.29 Database and test are sent from MATLAB. Result is also read from MATLAB.

77

Figure 5.29 shows an example of this operation. At first a serial object, s2, is

defined with baud rate 115200. Then serial port is opened to the communication by

fopen. The database and test are sent to UP3 respectively by using fwrite. The result

of the comparison is sent from UP3 and is readed by using fread in MATLAB. The

source code of this system is in the Appendix with the folder name of

“5_1_6_5_Database_and_Test_sent_from_MATLAB”.

5.1.6.6 Face Recognition System on UP3 Development Kit

The last study on UP3 development kit is to test the system that shown in Figure

5.4. The aim is to realize the system that is given in Section 5.1.3. Face images from

6 people with 8 different poses images are used to create database. Then, this

database must be stored on UP3 development kit. A database block is created with

the size of 2304x48 and a test block is created with the size of 2304x1 like in the

Figure 5.27. When, this system is tried to compile on Quartus II, compilation is

ended with an error. This error states that this design cannot fit the device. The size

of arrays are decreased to check whether the project is compile or not. Because the

database block has more that 100000 elements. If the size of database block is

decreased from 2304x48 to nearly 5000 elements, compilation is ended without an

eror. But compilation report states that %98 percent logic elements of FPGA is used.

This is shown in Figure 5.30.

As mentioned before, FPGA SRAM Cells are used as a memory on UP3. The

error when the size of database block is 2304x48 shows that if the size of arrays are

increased, UP3 is uncapable to store these arrays in internal SRAM Cells. After

internal memory is not sufficient for this design, the 8 MB SDRAM on UP3 is

planned to store these features. But to use 8 MB SDRAM on UP3 development kit,

Nios II CPU, which is a soft-core processor, must be used to reach external memory

resources. However, since the USB blaster cable to program Nios II CPU in UP3 kit

is expensive, a new kit with higher memory resources has been purchased.

78

Fingerprint recognition implementation cannot be tested on UP3 development kit

due to capability of this board The implementation of face and fingerprint

recognition continoues with the new development kit. The implementation steps and

the results are started to describe in the next section.

 Figure 5.30 Compilation report with decreased size of database block.

5.2 Face and Fingerprint Recognition System Design on DE2-70

DE2-70 development kit has more powerful features than the UP3 development

kit. These features are mentioned in Section 4.4.2. To use these features of new

development kit, the implementation idea of the recognition system is changed. With

the new kit, PCA algorithm is moved from MATLAB to FPGA. Both face and

79

fingerprint recognition, only images are resized and sent from MATLAB, then the

rest of all operations including PCA basis creation and comparison steps are

implemented on DE2-70. Nios II CPU is designed with memory and I/O resources

on Altera SOPC Builder and configured in Nios II IDE. Using Nios II IDE allows

using C programming language instead of VHDL. So designing steps in C, is faster

than VHDL.

To use external memory resources on development kit, Nios II soft-core CPU

must be used. Both UP3 and DE2-70 development kits have two programming

modes: Parallel and Serial. In the parallel configuration mode, the EPCS

programming flash is programmed and the configuration file isn’t erased on power-

off. Projects that are implemented on UP3 are configured in parallel programming

mode. On DE2-70, serial programming mode is used, and system is programmed

every power off via JTAG.

This section describes face and fingerprint recognition system by starting

hardware design of the project. Section 5.2.1 shows and describes the hardware

implementation. Section 5.2.2 describes the face recognition implementation on

DE2-70 with results. In Section 5.2.3, the implementation of fingerprint recognition

system is discussed.

5.2.1 Hardware Design of Face and Fingerprint Recognition System

Altera SOPC Builder is a tool of Quartus II software that is used for system on

programmable chip (SOPC) designs. By using this tool, FPGA chip can be

programmed as a CPU, Nios II CPU, and the other system components are integrated

to system design easily. From Figure 5.30 to Figure 5.39, the integration of the

components are shown. The design of the system starts with adding the design

components. These components are Nios II CPU, phase locked loop (PLL), JTAG

UART, interval timer, parallel input/output (PIO), SDRAM Controllers, Flash

Memory and UART.

80

Figure 5.30 shows the SOPC Builder screen after all components added and the

names of components are changed without any configuration. The next step is to

configure these components.

Figure 5.30 SOPC Builder screen after all components are added.

As shown in Figure 5.30, external clock source that is provided by the crystal on

the development kit is 50 MHz. The SDRAM on the DE2-70 operates at 100 MHz,

so to provide all components with same clock, PLL component is configured first.

By using Altera ALTPLL MegaWizard, from the external 50 MHz clock, three

clocks are generated. Figure 5.31 shows the generated clocks. In this figure, input

clock, inclk0, is 50 MHz. c0 is 100 MHz with the same phase of inclk0. c1 and c2

have a -108 degree phase difference even if the frequency is same with c0, 100 MHz.

Clock phase shift setting is set to -3 ns from PLL wizard to provide this phase

difference. Note that, SDRAM Controllers (sdram_0 and sdram_1) that are

illustrated in Figure 5.30, are gated same clock with CPU, but the memory

components (real memory chips) on the development kit must be gated with the

81

clocks (c1 and c2) that have phase differences. -3 ns phase shift is found

experimentally to equalize the CPU and SDRAM clocks.

 Figure 5.31 Altera PLL output.

After adjusting clocks for the system, next step is to configure Nios II CPU. There

are 3 types of configurable Nios II CPU for Alera FPGAs. These are Nios II/f (/f:

fast) which is an optimized for the highest performance, Nios II/e (/e: economy)

which is an optimized for smallest size and Nios II/s (/s: standard) which is balanced

for performance and size. Nios II/f is selected for the system in this thesis.

Embedded multipliers with hardware divide option is also selected. Note that,

increasing the features of Nios II CPU, occupy more logic elements (LEs). For Nios

II/f CPU 1400 - 1800 LEs are used. Reset vector and exception vector addresses

must be determined in the design. In this system these vectors are relied on sdram_0.

Figure 5.32 shows this configuration screen.

 As mentioned in the introduction of Section 5.2, JTAG UART is used for serial

configuration. JTAG UART core provides host access via JTAG pins on the FPGA.

For time-based operations such as configuring watchdog timer or resetting the

system in a pre-determined time are realized by interval timer block of SOPC

Builder. JTAG UART and interval timer must be implemented on Nios II CPU

designs. The settings of JTAG UART and interval timer is shown in Figure 5.33.

82

 Figure 5.32 Nios II CPU configuration.

 Figure 5.33 JTAG UART and interval timer configurations.

83

SDRAM Controllers, sdram_0 and sdram_1, are configured as in the Figure 5.34.

Data width is set to 16 bits and address widths are created by using 13 rows and 9

columns. The sizes of sdram_0 and sdram_1 are 32 MBytes (256 MBits) and totally

64 MBytes of SDRAM memory.

Figure 5.34 SDRAM controllers, sdram_0 and sdram_1, configurations.

The flash memory is used to store PCA basis matrix and projections of database to

the PCA basis on this system. Flash memory is placed on behind of Avalon memory

mapped tristate slave in SOPC Builder. 4 MBytes of flash memory by setting address

width to 22 and data width to 8 is created in the system building environment that

shown in Figure 5.35.

UART module allows communication with MATLAB like in the implementations

on UP3 development kit. 115200 baud rate is used again. The other settings of

UART is shown in Figure 5.36.

84

 Figure 5.35 Flash memory configuration.

 Figure 5.36 UART configuration.

85

After configuring all components, base addresses and IRQ settings are arranged

automatically from SOPC Builder settings. The last situation of SOPC Builder screen

at the end of configuration and the address map is shown in Figure 5.37 and 5.38

respectively.

Figure 5.37 SOPC Builder screen at the end of configuring components.

 Figure 5.38 Address map.

86

The system is generated after configuring all components by using “Generate”

button of SOPC Builder. After generating the system without any error, pins that

used on the board must be assigned. During system generation in SOPC Builder,

system component of the design is also created with the name of system, systop in

this case. The systop component are added to library of Quartus II schematic design

like AND gate, or a multiplexer. This component is used to assign pins of the circuit.

Figure 5.39 shows systop component.

 Figure 5.39 systop component.

87

The hardware design of this system is completed with pin assignments. Figure

5.40 shows the pin assignments of systop. Figure 5.41 and Figure 5.42 show the

SDRAM and flash memory pin assignments respectively.

 Note that, for global reset and flash memory reset signals, DIP switches are used.

SW17 pin is assigned to global reset and SW1 pin is assigned to flash memory reset

on DE2-70 development kit.

88

Figure 5.40 Pin assignments of systop component.

89

 Figure 5.41 Pin assignments of SDRAM.

90

 Figure 5.42 Pin assignments of flash memory.

91

5.2.2 Implementation of Face Recognition System on DE2-70

As mentioned in the introduction of Section 5.2, new implementation idea brings

new design methods. According to this new idea, all operations excluding image

taking and resizing, are implemented on the FPGA. Therefore, a new software

mechanism is developed for the system that is designed in Section 5.2.1. The new

software mechanism to configure FPGA is mentioned in Section 5.2.2.1 and the

operations on MATLAB are described in Section 5.2.2.2. System designs with lower

recognition rates that may be called as preliminary designs for face recognition, are

introduced in Section 5.2.2.3. And the last section, Section 5.2.2.4, includes the final

face recognition results that have the best recognition rate during this study.

5.2.2.1 Software Design on DE2-70

Nios II IDE is the environment of configuring FPGA by writing a high level

language, C/C++. This tool has some useful features such as adding hardware and

software breakpoints that are used for debugging the configuration software. This

section introduces configuration software. The source code of this system is in the

Appendix with the folder name of “5_2_2_1_Face_Recognition_Configuration_Sw”.

The software for configuring the FPGA controls all of the parameters size by

using two variables. Variable KISI_SAY states that the number of images that used

for creating database and FEATURE_SAY states that the size of each image. For

example DATABASE_SIZE equals to KISI_SAY x FEATURE_SAY and TEST_SIZE

equals to FEATURE_SAY.

As already described in the previous sections that database and test images are

received from MATLAB after resizing operation. UART Core that added to system

during SOPC Builder design, is the module that allows to listen serial port and

receive/transmit informations. To use UART core, two header files must be included:

“altera_avalon_uart.h” that includes the UART device drivers and

“altera_avalon_uart_regs.h” that includes the pre-defined status and control registers

92

of UART. On the main() function, UART module is defined as a routine that serves

when the serial port interrupt occurs. Figure 5.43 shows that the UART interrupt

service routine that used in the system design. Note that, UART_BASE is the start

address of UART that shown in Figure 5.38. When system is generated in SOPC

Builder, this address is added to table in “system.h” file. In this service routine first

the status register is controlled. If the receiver ready flag (ALTERA_ AVALON_

UART_CONTROL_RRDY_MSK) is set, UART is ready to receive data. RxHeadData

shows the buffer assigned for the database. Receiving bytes and storing them to

RxHeadData is continued until all of the database elements are sent. If the pointer of

the buffer shows the exact number with database, the new received bytes are

interpreted as the elements of test array and stored in RxTest. This approach is

followed since the database and test features are sent respectively from MATLAB.

void uart_isr(void* context,alt_u32 id)

{

alt_u32 status;

status = IORD_ALTERA_AVALON_UART_STATUS(UART_BASE);

if(status & ALTERA_AVALON_UART_CONTROL_RRDY_MSK)

{

 if(RxHeadData < DATABASE_SIZE)

 {

 RxDataBase[RxHeadData]=IORD_ALTERA_AVALON_UART_RXDATA(UART_BASE);

 IOWR_ALTERA_AVALON_UART_STATUS(UART_BASE,0);

 if((++RxHeadData) > (DATABASE_SIZE - 1))

 {

 //

 }

 }else{

 RxTest[RxHeadTest] = IORD_ALTERA_AVALON_UART_RXDATA(UART_BASE);

 IOWR_ALTERA_AVALON_UART_STATUS(UART_BASE,0);

 if((++RxHeadTest) > TEST_SIZE - 1)

 {

 //RxHeadTest = 0;

 }

 }

 }

}

Figure 5.43 UART interrupt service routine.

93

Offline training and online test steps are used along the implementation of this

thesis. The implementation of the configuration file for FPGA, is also followed these

two steps. Note that previously described UART implementation is an interrupt

service routine, so it is called in both offline training and online test.

Offline training is started with programming FPGA. Serial configuration file that

holds the hardware and software implementation of the project is programmed via

JTAG. “data gelmiyor...” print message shows that database is not created on the

system before. If this moment, the vectorized database is sent from MATLAB,

FPGA receives this database and save this information on an unsigned char TempMat

array. The size of this array is KISI_SAY x FEATURE_SAY. Next step is to arrange

this array as a matrix with KISI_SAY coloumns and FEATURE_SAY rows.

data and data2 matrices hold the resized images like in MATLAB. data is

overwritten in PCA algorithm, so another matrix, data2, is also created to keep

original input array. Note that, vector() and matrix() functions allocate a float vector

and matrix respectively. Similarly, free_vector() and free_matrix() functions are used

to deallocate the memory regions.

PCA algorithm is implemented with a similar way to Section 5.1.3. The algorithm

start with taking covariance of database images. Covariance of database is calculated

by using covcol(). symmat is returned from this function. Then tred2() function,

which is called as householder function, started to produce real and symmetric

tridiagonal matrix. This process is called as triangular decomposition. After

triangular decomposition step, this symmetric tridiagonal matrix is reduced in tqli().

After tqli(), evals contains the eigenvalues and the coloumns of symmat contain the

associated eigenvectors. Size of symmat is FEATURE_SAY x FEATURE_SAY, so the

result of this multiplication is enormous when the features are from an image. As

noted in Section 5.1.3 that after sorting the eigenvectors from higher to lower,

selecting 3 eigenvectors are sufficient for successful recognition rates in MATLAB

implementation.. As also noted that this approach is used on further system designs

which are impelemented on FPGA. To select 3 eigenvectors, symmat2 is generated

94

from symmat matrix. This matrix, symmat2, can be called as a PCA basis matrix,

because this matrix is used to project database and test features to the face space.

ytrain is the projection of database features to the face space. The size of ytrain is

FEATURE_SAY x 3..The offline training part ends with storing, the PCA basis matrix

(symmat2) and projection of database to the face space (ytrain), to the flash memory.

These matrices are formed as a vector and the all elements of the vector are

converted from float to char before writing data to flash memory by using

ConvertAllAndWrite2FlashAsChar(). This conversion is added to prevent errors

during writing and reading from flash memory. ytrain is written to 0x10000 address,

and symmat2 is written to 0x60000 address. To make sure that the offline training is

run once, control mechanism that is shown in the Figure 5.44 is added. 0xFF or 255

is the value of empty bytes and if one of these offsets have different values from

0xFF, this shows that the offline training has already finished, so the code is routed

to TEST_FONKSIYONU. Note that FlashTestYtrain and FlashTestPcaBasis are 2

bytes of test data that readed from flash memory.

.

..

if ((FlashTestYtrain[0]!=255)||(FlashTestYtrain[1]!=255)

 ||(FlashTestPcaBasis[0]!=255)||(FlashTestPcaBasis[1]!=255))

 {

 printf ("flash does not empty \n");

 goto TEST_FONKSIYONU;

 }else

 {

 printf ("flash empty \n");

 while (1)

 {

 printf ("data gelmiyor...\n");

 ..

 .

 }

Figure 5.44 Offline training or online test are selected according to flash memory contents.

Online test step is started after the creation of database or it can be started after

power-on if the flash memory is written before. “testi yolla...” print message shows

that system is ready to get test data from MATLAB. After, test is sent from

MATLAB, it is stored in unsigned char TempMat2 array. The size of the array is

95

FEATURE_SAY. After the reception of test is completed, a new float test matrix is

created. The reason of creating such a float type matrix because the numbers that are

evaluated at offline training step are float type. Even if they are written to flash as

char type, the actual value of them is identified with float type. So, communication

and flash read/write functions use unsigned char type variables, but operations such

as triangular decomposition or matrix multiplication need float type variables. As

mentioned in Section 5.1.3, the projections of database and test to the face space

must be compared to identify the correct people. From offline training part,

projections of database features are stored in flash memory with PCA basis matrix.

So, at this step, flash content must be restored. RestoreAllFromFlash() function

restores the array, that is started the offset address that passed to this function, from

flash memory. FlashYtrain and FlashPcaBasis are the restored, then the data types

are changed from unsigned char to float. NewYtrain and NewPcaBasis are created

after this data type change. Note that, NewYtrain and NewPcaBasis corresponds and

holds same values with ytrain and symmat2 respectively, when comparing with

offline training phase. Online test phase ends with comparing the database and test

projections. toplam[] holds the sum of absolute distances for each image. The

minimum value of toplam[] shows that the nearest image in the database. The group

number of this image is the recognition result of this system.

5.2.2.2 Implementation on MATLAB

After moving PCA algorithm to FPGA when getting the new FPGA development

kit, DE2-70, MATLAB implementation is also changed. Now, MATLAB is only

responsible for getting and resizing images. ORL Database is used again for

verifying and testing the implementation.

In this section, an example of image preprocessing steps for one face image are

shown. As mentioned in Section 5.1.3, the size of the face image in ORL Database is

112x92. First, the input image from ORL Database is taken from image database.

Then imresize, that is also one of the funtions of MATLAB image processing

toolbox, is used to resize the images. Figure 5.45.a shows the input image, Figure

96

5.45.b shows the resized image from 112x92 to 40x40. Note that, the process that is

shown in Figure 5.45 is applied to all images sequentially on the database.

 Figure 5.45 a) Input image b) Resized image.

The size of the image after resize operation, using fdmex algorithm and

windowing the image are the experiments on the system for finding the best

recognition rate. These are described with more detail in Section 5.2.2.3 and Section

5.2.2.4.

5.2.2.3 Preliminary Experiments

The first approach on the implementation is to use same approach that is

described on Section 5.1.3. The working steps of the face recognition system is

described for the first experiment, to better understand the process with showing the

size of matrices. Other experiments are also followed the same instructions, but the

size of matrices differ for each design. 48 face images of 6 people, with 8 face

images with different poses belongs to same person , are used for creating database.

The remaining 2 face images from each people are used for test phase. The size of

97

database and test matrices are, after resizing the images from 112x92 to 48x48,

2304x48 and 2304x1 respectively. Note that, the rows represent pixels in the image

and the columns represent the image number. To collect all data from UART module

of the FPGA design, KISI_SAY is modified as 48 and FEATURE_SAY is modified as

2304. The database matrix that is created on FPGA, data, is the transpose of the

database matrix that is created on MATLAB with size of 48x2304. PCA basis

matrix, symmat, is created from data with the size of 2304x2304. After sorting

eigenvalues from heighest to lowest, 3 of them is selected and stored in symmat2

array. Face space projections, ytrain, can be calculated as by multiplying data and

symmat2. Size of ytrain and symmat2 are 48x3 and 2304x3 respectively and they are

stored in flash memory to be used in online test phase. At the test phase, after

restoring ytrain and symmat2 from flash memory, the received test matrix, test with

the size of 1x2304, is projected into to face space by multipliying symmat2 then

compared to ytrain. The comparison result gives the recognized person.

The performance of the system is determined by calculating the recognition rate.

But, for the system in first experiment, the recognition rate have not been calculated.

Because of the size of matrices are too big (for example: symmat size is 2304x2304),

the computation and calculation with these float numbers take very long time. For

this case, the generation of the offline training step takes nearly two and a half days.

The unacceptability of this time, provide testing different system implementations

instead of trying to calculate recognition rate.

First approach shows that, resizing image from 112x92 to 48x48 is not enough,

because computation time is still too high. To reduce computation time, the first idea

is to further decrease the image sizes. 15x15, 20x20, 30x30 and 40x40 sizes are

tested. As expected from above, 15x15 image has 225 pixels so it is compiled

quickly but recognition rate is nearly %40. During these tests, it has also been

noticed that after the images largerthan 18x18 pixels, unexpected and unpredicted

errors are seen on FPGA. So, for following tests, database size is created under 400

elements. With the new conditions, acquiring high recognition rate is more difficult.

Two test systems are created to test the performance of the resizing.

98

In Table 5.5 and Table 5.6, recognition tables for two systems are shown. In these

tables the rows represent the people for which the system is trained for. The columns

show if the test image recognized for this recognition correctly or not. Table 5.5

shows “System-A” with face images of 5 people and 8 images from each person. In

this table since that the first 8 images are used for training, the system is tested with

9th and 10th images, “+” and “-” signs show whether these images for these 5 people

recognized or not, respectively. Table 5.6 shows “System-B” with with face images

of 5 people and 6 images from each person. The recognition rates of System-A and

System-B are %60 and %55 respectively.

Table 5.5 Recognition table for System-A.

Recognition Table
test image

9th 10th

p
er

so
n

 n
u

m
b

er

1st + +

2nd - +

3rd + -

4th + -

5th - +

Table 5.6 Recognition table for System-B.

Recognition Table
test image

7th 8th 9th 10th

p
er

so
n

 n
u

m
b

er
 1st - + - +

2nd + - + +

3rd - - - +

4th + + + -

5th - + + -

Second approach is based on fdmex function. After encountering problems on

image resizing, some other algorithms are researched over the internet and one of

them, fdmex, is selected. fdmex is a dynamic link library file that used in OpenCV.

This function can be worked with C/C++ or MATLAB. The reason of using fdmex is

decreasing the image size by cropping the faces of each images by calling a function

only. Figure 5.46.a shows an input image, 5.46.b shows the cropped face image by

99

fdmex. Then cropped image is resized to 15x15. Figure 5.46.c shows the resized

cropped image.

Figure 5.46 a) Input image b) Cropped image by fdmex. c) Cropped image is resized to 15x15.

In Table 5.7 and Table 5.8, recognition tables for two system that used fdmex are

shown. Table 5.7 shows “System-C” with face images of 5 people and 7 images from

each person, Table 5.8 shows “System-D” with face images of 5 people and 6 images

from each person. The recognition rates of System-C and System-D are %50 and

%47 respectively. However, it has been observed that fdmex algorithm does not crop

faces successfully for each image which lowers the recognition rate. Therefore,

fdmex has not been used in the later stages. The source code of this system is in the

Appendix with the folder name of “5_2_2_3_fdmex_example”.

Table 5.7 Recognition table for System-C.

Recognition Table
test image

8th 9th 10th

p
er

so
n

 n
u

m
b

er
 1st + - +

2nd - + +

3rd - - +

4th + + -

5th + + -

100

Table 5.8 Recognition table for System-D.

Recognition Table
test image

7th 8th 9th 10th
p

er
so

n
 n

u
m

b
er

 1st + - - -

2nd - + + -

3rd - + - -

4th + + - -

5th - + - +

Third approach is developed after failing with the previous two approaches. As

mentioned before, a natural threshold for the image size according to test results is

seen as 15x15. “If this size is used a region of an image instead of using for the total

size of an image, maybe the recognition rate increases” is the start idea of creating a

new test subsystem. It is thought that, image size after resize operation is 30x30, then

image are divided into 4 regions. The size of each region are 15x15. Figure 5.47.a

shows the input image, 5.47.b shows the resized image to 30x30 and 5.47.c shows

the regions on the image.

Figure 5.47 a) Input image b) Resized image (30x30) c) Four regions of 30x30 image.

101

Table 5.9, Table 5.10, Table 5.11 and Table 5.12 show the recognition results of 4

regions for “System-E”. Region 1, Region 2, Region 3 and Region 4 has the

recognition rate of %80, %55, %40 and %50 respectively.

Table 5.9 Recognition table for Region 1 of System-E.

Recognition Table
test image

7th 8th 9th 10th

p
er

so
n

 n
u

m
b

er
 1st + + + +

2nd + + + +

3rd + - - +

4th + + + -

5th + + - +

Table 5.10 Recognition table for Region 2 of System-E.

Recognition Table
test image

7th 8th 9th 10th

p
er

so
n

 n
u

m
b

er
 1st + + + -

2nd - + + -

3rd - + + +

4th + - + -

5th - - - +

Table 5.11 Recognition table for Region 3 of System-E.

Recognition Table
test image

7th 8th 9th 10th

p
er

so
n

 n
u

m
b

er
 1st - - - -

2nd - - + +

3rd + + - +

4th + - - -

5th - - + +

Even if the recognition rate is higher in the Region 1, the recognition rates of the

other regions are unacceptable. Different 5 images are used for creating database, but

it is seen that the results differ from this system and the recognition rate for this

approach is dependent to the database images.

102

Table 5.12 Recognition table for Region 4 of System-E.

Recognition Table
test image

7th 8th 9th 10th
p

er
so

n
 n

u
m

b
er

 1st + + + +

2nd - - - -

3rd + + - +

4th + + - -

5th - + - -

5.2.2.4 Final Implementation

The difference of recognition rates between the regions that is described in the

region based approach are led us to change implementation method again. And

finally, the local windowing on the face image is tested. At this approach, first the

input image is resized to 40x40. At previous implementations, if a size of 40x40

image is sent directly to FPGA, computation takes a very long time. After resizing

the image to 40x40, 4x4 windows are created from this image. Instead of sending the

pixel value directly to FPGA, the mean of these 4x4 windows are sent. So, for each

image, local mean matrix with the size of 13x13 are extracted from resized image by

using 4x4 local windowing approach. With this approach 169 (13x13) elements are

sent for one image instead of sending 1600 (40x40) elements.

For creating the database, face images of 5 people and 7 images from each person,

are taken to create a new test system, “System-F”. Since 35 face images are used for

database creation, the size of feature matrix, which is calculating by taking mean of

4x4 local windows for each image, is 169x35. So, the variables that holds the image

size, KISI_SAY, and feature size, FEATURE_SAY are set to 35 and 169 respectively.

With these settings, FPGA implementation is compiled again by using the same

instructions in Section 5.2.2.1. Note that, the maximum size is allocated for symmat

matrix with 169x169 in this design. As comparing this size with the previous

experiments, computation time of database is faster than before.

103

When database creation is completed after writing ytrain and symmat2 to the flash

memory, test image is asked from the system. When the size of 13x13 local mean

matrix for test image is received from the system, it is projected to PCA basis space

by multipliying NewFlashPcaBasis, then compared to NewFlashYtrain.

NewFlashPcaBasis and NewFlashYtrain are the matrices that restored from flash and

respects to symmat2 and ytrain matrices on offline training respectively. The

absolute distances from this comparison is stored on toplam vector. Note that, the

size of toplam vector is same with KISI_SAY. After the minimum of toplam vector is

computed, the group number, result_of_recognition that identifies the recognition

result is assigned and printed to the console. The source code of this system is in the

Appendix with the folder name of “5_2_2_4_Highest_Recognition_Rate_For_Face_

Recognition”.

Figure 5.48 Output of System-F.

Figure 5.48 shows an example of the output of System-F. The 8th image of

second person is tested. Minimum element of toplam is stated by min_indice, 14,

104

shows that the closest image in the database. Result of recognition is shown as 2

which is a correct result.

Table 5.13 shows that the recognition table for System-F. Recognition fails for

one image so the recognition rate for this system is %93.3.

Table 5.13 Recognition table for System-F.

Recognition Table
test image

8th 9th 10th

p
er

so
n

 n
u

m
b

er
 1st + + +

2nd + + +

3rd + + +

4th + + +

5th - + +

 Another test subsystem is created by decreasing the image numbers that are taken

from each person to 6. Database of “System-G” is created by taking face images of 5

people and 6 images from each person. Note that System-F and System-G are created

with same people. Only the size of database is decreased. Table 5.14 shows that the

recognition table for System-G. Recognition fails for three images, so the recognition

rate for this system is %85.

Table 5.14 Recognition table for System-G.

Recognition Table
test image

7th 8th 9th 10th

p
er

so
n

 n
u

m
b

er
 1st + + + +

2nd + + + +

3rd + + + +

4th + - - -

5th + + + +

To make sure about the recognition rate, the images of different 5 people is used

to create database. Like in the above test systems, first system is created by taking

face images of 5 people and 7 images from each person, System-H; second system is

105

created by taking face images of 5 people and 6 images from each person, System-J.

The recognition tables of System-H and System-J is shown in Table 5.15 and Table

5.16 respectively.

 Table 5.15 Recognition table for System-H.

Recognition Table
test image

8th 9th 10th

p
er

so
n

 n
u

m
b

er
 1st + + +

2nd + + +

3rd + + +

4th + - +

5th + + +

Table 5.16 Recognition table for System-J.

Recognition Table
test image

7th 8th 9th 10th

p
er

so
n

 n
u

m
b

er
 1st + + + +

2nd + + + +

3rd + + + +

4th + + - +

5th + - + +

From Table 5.15 and Table 5.16, recognition rates can be extracted. The

recognition rate for System-H is %93.3 and the recognition rate for System-J is %90.

When comparing the last four tables; Table 5.13, Table 5.14, Table 5.15 and

Table 5.16; the minimum recognition rate is %85 and the maximum recognition rate

is %93.3. These results are the highest recognition rates when compared to previous

implementations and recognition rates are acceptable for the implementation of a

face recognition system.

106

5.2.2.5 General Performance of the Face Recognition System

The general performance and the total accuracy of the face recognition system are

found by constructing a confusion matrix. Confusion matrix is typically called a

matching matrix and shows the matching rate for each person. Each row of the

confusion matrix represents the instances in a predicted class, while each column of

the confusion matrix represents the instances in an actual class.

 In the previous recognition tables, database images were selected from 5 people

with the face images from 1
st
 to 6

th
 according to original ORL Database for each

person. The rest of the face images were used as test images. But, to construct a

confusion matrix, different face images must be selected for database and test

without changing the percentage of database images (%60) and test images (%40) to

total face images. Database and test images are selected by using cross-validation

technique which is used for estimating the performance of a predictive model.

 Cross-validation algorithm is implemented in MATLAB by using crossvalind

function from Bioinformatics Toolbox of MATLAB. The source code of this system

is in the Appendix with the folder name of “5_2_2_5_Cross_Validation”. The output

of the algorithm is a matrix and each row represents the images and each column

represents the number of test subsytem. The elements of the cross-validation matrix

are 0’s and 1’s. 1’s show that the corresponding image must be selected for database

an and similarly 0’s show that the corresponding image must be selected as test

image.

 25 test subsystems are created by using cross-validation technique and recognition

tables are found for each subsystems. Confusion matrices are constructed by

combining the all results of these recognition tables. Table 5.17 shows the general

performance of the face recognition system on the confusion matrix. Note that, the

values on this table are shown with the percent (%).

107

Table 5.17 Results of the face recognition system on the confusion matrix.

Confusion Matrix 1st 2nd 3rd 4th 5th

1st 100 0 0 0 0

2nd 0 100 0 0 0

3rd 1 0 97 2 0

4th 0 0 12 88 0

5th 0 0 0 0 100

From Table 5.17, it can be seen that the images of 1
st
, 2

nd
 and 5

th
 person are

recognized without any error. Even if the %1 and %2 images of the 3
rd

 person are

recognized as 1
st
 and 4

th
 person respectively, %97 images of the 3

rd
 person are

recognized successfully. The lowest performance of the face recognition system is

seen on the 4
th

 person with an error rate of %12. The reason of the lowest

performance for this case is the pose variance in the images of the 4
th

 person.

The total accuracy of the face recognition system can be found by dividing the

number of true recognitions to the number of the all images. For this system, the total

accuracy is %97. This total accuracy value is also allowed to implement the face

recognition system as a part of multibiometric recognition system.

108

5.2.3 Implementation of Fingerprint Recognition System on DE2-70

In the under-graduate project in 2007, fingerprint recognition system for access

control systems was designed by applying morphological image processing

techniques (Dilcan, 2007). Local and global features were extracted from the input

fingerprint image then these were used on comparison step. But in this study, the

recognition rate of the fingerprint identification system is tried to find by using PCA

algorithm. So, implementation of fingerprint recognition system is started after

completing the face recognition system. Taking the mean of the windows as features

approach, that mentioned in Section 5.2.2.4 which has a highest recognition rate, is

also used directly on fingerprint recognition system. Since, approach is the same with

face recognition, implementation takes less time than face recognition system.

Hardware design on the FPGA of the fingerprint recognition system, is also same

with the face recognition system. The only difference is image acquistion. To take

fingerprint images fingerprint scanner is used. Section 5.2.3.1 describes this scanner,

in Section 5.2.3.2 preliminary experiments for the fingerprint recognition system is

introduced and in Section 5.2.3.3 final impelementation is proposed with giving the

recognition results.

5.2.3.1 Fingerprint Scanner

In this fingerprint recognition system, U.are.U 4000B USB Fingerprint Reader is

employed to get fingerprint images. Figure 5.49 shows the images of this reader.

When the user simply places his/her finger on the glowing scanner window, the

reader quickly and automatically scans the fingerprint. On-board electronics of this

scanner calibrate the reader and encrypt the scanned data before sending it over the

USB interface. This encrypted data is stored with binary values in code memory of

the device.

109

Figure 5.49 Images of U.are.U 4000B USB Fingerprint Reader (Dilcan, 2007).

In this system, the original fingerprint image is needed instead of encrypted binary

data to use as an input to the PCA algorithm. For this reason, biokeydemo, that is

released from ZK Software, is used for providing the fingerprint image in JPEG

format. By using this software, enrollment and identification tasks of the biometric

systems can be performed. The user interface of biokeydemo is shown in Figure 5.50.

“Save fingerprint image” check box is used to store images that shown in

biokeydemo user interface. Note that, most of the fingerprint scanners do not store

the fingerprint as an image. Because, the fingerprint images of any person can be

stored to custom database only for the test purposes.

 Figure 5.50 biokeydemo user interface (Dilcan, 2007).

110

5.2.3.2 Preliminary Experiments

After a finger is pressed the fingerprint scan area, if “Save fingerprint image”

check box of biokeydemo is enabled, it is stored as a JPEG image on the host

computer. This fingerprint image is a colored image with the size of 500x550x3. To

use this image in PCA algorithm, first it is converted into gray-scale then the most

detailed part of the image is cropped to construct a new fingerprint image with the

size of 400x400. Figure 5.51.a shows that the scanned image and the Figure 5.51.b

shows the cropped image.

Figure 5.51 a) Scanned image (500x550x3) b) Cropped gray-scale image (400x400).

The cropped image is the input of offline training step just like in the face

recognition system. Then, the gray-scale fingerprint image is resized by using

imresize function. The new size of the fingerprint image is set to 100x100. Figure

5.52.a shows the gray-scale image with the size of 400x400, and Figure 5.52.b shows

the new image that is resized to 100x100.

The approach in Section 5.2.2.4, that provides the highest recognition rate on face

recognition system, is also used for fingerprint recognition system with a little

difference. As mentioned in that section, input face image is resized to 40x40 then

local mean matrix is extracted by using 4x4 local windows. But for fingerprint

111

recognition, local mean matrix is extracted from 100x100 resized image by using

11x11 local windows. The reason for using with different size of local windows for

the face and fingerprint recognition systems is the difference of the input images.

The size of local windows for these systems are selected from the results of the

extensive experiments.

Figure 5.52 a) Cropped gray-scale image (400x400) b) Resized image (100x100).

The size of local mean matrix is 13x13, so the database size is 169x35 which is

constructing by taking fingerprint images of 5 people and 7 images from each

person. This system, System-K, is sent to FPGA via UART to start offline training

phase. The variables KISI_SAY and FEATURE_SAY that used for configuring this

system are 35 and 169 respectively. PCA algorithm is run after getting database

features. PCA basis matrix, symmat2, and projections of fingerprint images to this

basis, ytrain, are stored in the flash memory.

At online test phase, test image is sent to FPGA and projected to PCA basis space

by multiplying NewFlashPcaBasis that is restored symmat2 matrix from flash . This

projection is compared to NewFlashYtrain that is also restored ytrain matrix.

Absolute distances are computed and toplam vector is constituted. The minimum

element of this toplam vector, result_of_recognition, holds the recognition result.

112

Table 5.18 shows the recognition table for System-K. The recognoition rate is

very low by using the same approach in face recognition system implementation that

mentioned in Section 5.2.2.4.

Table 5.18 Recognition table for System-K.

Recognition Table
test image

8th 9th 10th

p
er

so
n

 n
u

m
b

er
 1st + - -

2nd - + +

3rd - - -

4th + - +

5th - + -

Another system, System-L, is created to get better recognition rate. The big size of

the input image, 400x400, is thought the reason of the low recognition rate in the

System-K. To decrease the size of the input image local ridge orientation, which is

mentioned in Section 3.3, is used to find the core region of a fingerprint. Note that,

core region is the biggest orientation of the fingerprint image. By using the

estimation of local ridge orientation approach, core region of the input image is

found and cropped. The size of the core region is 180x260. Figure 5.53.a shows the

gray-scale fingerprint image with the size of 400x400, and Figure 5.53.b shows the

core region of the input image with the size of 180x260.

Figure 5.53 a) Input image (400x400) b) Core region of the input image (180x260).

113

Core region of the fingerprint image is then resized to 100x100. Figure 5.54

shows the core region of the fingerprint image after resize operation.

Figure 5.54 a) Core of the input image (180x260) b) Resized core region of the input

image (100x100).

Local mean matrix with a size of 13x13, is extracted from resized core image. For

offline training phase, the database is constructing by taking fingerprint images of 5

people and 7 images from each person. For System-L, offline training and online test

phases are same with System-K and the recognition table is shown in Table 5.19.

Table 5.19 Recognition table for System-L.

Recognition Table
test image

8th 9th 10th

p
er

so
n

 n
u

m
b

er
 1st + - +

2nd - + +

3rd - + -

4th + - +

5th - + -

Table 5.19 shows that the recognition rate for System-L is %53.3.

114

5.2.3.3 Final Implementation

PCA algorithm in the previous trials are suspected from the low recognition rates.

Therefore, the statistical variables such as mean and standart deviation of local

windows are used for feature extraction with the estimation of local ridge orientation

instead of PCA.

For offline training phase. first the input image with the size of 500x550x3 is

converted to gray-scale and the most detail part of the image is cropped. The new

size of the fingerprint image is 400x400. Local ridge orientations of the local

windows, theta, with the size of 20x20, are calculated. After that, the fingerprint

image with the size of 400x400, is resized to 100x100 by using imresize function of

MATLAB. From this image means (f_wmean) and standard deviations (f_wdev) of

5x5 local windows are extracted. The extracted features; theta, f_wmean and f_wdev

are converted to vectors then sent to FPGA. These features are stored on the flash

memory on FPGA. The size of the features for one image is 1200x1. System-M is

constructed with the fingerprint images of 5 people and 7 images from each person.

The size of the database is 1200x35 for this system.

The features that are extracted at the offline training phase are also extracted for

the fingerprint image that will be tested at the online test phase. Absolute distances

are used for comparing. Recognition table for System-M is shown in Table 5.20.

Table 5.20 Recognition table for System-M.

Recognition Table
test image

8th 9th 10th

p
er

so
n

 n
u

m
b

er
 1st + + +

2nd + + +

3rd + + +

4th + + +

5th + + +

115

To make sure about the recognition rate, System-N is created by taking the

fingerprint images of 5 people and 6 images from each person. Recognition table for

System-N is shown in Table 5.21.

Table 5.21 Recognition table for System-N.

Recognition Table
test image

7th 8th 9th 10th

p
er

so
n

 n
u

m
b

er
 1st + + + +

2nd + + + +

3rd + + + +

4th + + + +

5th - + + +

As seen from Table 5.20 and Table 5.21, after removing PCA algorithm the

recognition rates are increased and higher from %90 percent. Even if the reason of

this high recognition rate performance is dependent on the input image quality, it is

totally acceptable for such a fingerprint recognition system. The source code of this

system is in the Appendix with the folder name of “5_2_3_3_Highest_Recognition_

Rate_For_Fingerprint_Recognition”.

5.2.3.4 General Performance of the Fingerprint Recognition System

For measuring the general performance of the fingerprint recognition system,

same approach in Section 5.2.2.5 is used. The test subsystems are constructed by

cross validation technique and the results are shown on the confusion matrix. Table

5.22 shows the general performance of the fingerprint recognition system on the

confusion matrix. Note that, the values on this table are shown with the percent (%).

From Table 5.22, it can be seen that the images of 1
st
 and 4

th
 person are

recognized without any error. The %1 images of the 2
nd

 person, %4 images of the 1
st

person and %7 images of the 5
th

 person are recognized as 3
rd

, 1
st
 and 4

th
 person

respectively. The lowest performance of the fingerprint recognition system is seen on

the 5
th

 person with an error rate of %7.

116

Table 5.22 Results of the fingerprint recognition system on the confusion matrix.

Confusion Matrix 1st 2nd 3rd 4th 5th

1st 100 0 0 0 0

2nd 0 99 1 0 0

3rd 4 0 96 0 0

4th 0 0 0 100 0

5th 0 0 0 7 93

The total accuracy of the fingerprint recognition system is %97.6 This total

accuracy value is also allowed to implement the fingerprint recognition system as a

part of multibiometric recognition system.

117

CHAPTER SIX

FPGA-BASED MULTIBIOMETRIC RECOGNITION SYSTEM DESIGN

This chapter describes the implementation of FPGA-based multibiometric

recognition system. After implementation of the face and fingerprint recognition

systems successfully, the next step is to combine these two recognition systems in

order to achieve a more reliable recognition system. This chapter summarizes the

implementation steps of multibiometric recognition system and introduces the

implementation results.

6.1 Implementation of Multibiometric Recognition System on DE2-70

Before introducing the multibiometric recognition system design, it is useful to

describe that the hardware design is same with face and fingerprint recognition

systems. Section 5.2.1 shows the basic system components and describes the

hardware design procedure.

Software design of multibiometric recognition system is also similar with face and

fingerprint recognition system with slight differences. As stated before, face images

are resized and formed as the means of local windows then sent to FPGA as an input

of the PCA algorithm in face recognition system. Unlike the face system, the

statistical variables such as means and standard deviations with local ridge

orientations are used as features instead of using PCA algorithm in fingerprint

recognition system. Note that, MATLAB and FPGA source codes of this system are

in the in the Appendix with the folder name of “6_1_ Implementation_of_

Multibiometric_Recognition_System”.

In this multibiometric recognition system, each person is described by his/her face

image and corresponding fingerprint image. For an example, if 4
th

 face image of the

1
st
 person is selected for creating the database, 4

th
 fingerprint image of the 1

st
 person

is also selected. Offline training starts with the creation database block which is also

similar to the previous implementations and nsmultibiometric_train function is used

118

for this operation in MATLAB. In this function, first face images are resized. Then,

the means of local windows are extracted from each resized face image. For 5 people

with 6 face images from each person, total size of these features are 169x30 and they

are stored in Xbasis_face. Instead of sending Xbasis_face directly to FPGA like in

face recognition system, feature extraction step of fingerprint images is started in

multibiometric recognition system. From the fingerprint images; means, standard

deviations and ridge orientations of local windows are extracted. The total size of

these features, for 5 people with 6 fingerprint images from each person, is 1200x30

and they are stored in Xbasis_fing. After completing the construction of each blocks

separately, they are combined together in Xbasis_tot, then sent to FPGA. After

FPGA receives this database, first the face and fingerprint blocks are separated.

Then, the same offline training algorithm that is described in Section 5.2.2.4 is used

for face portion and the same offline training algorithm that is described in Section

5.2.3.3 is used for fingerprint portion sequentially. Offline training ends by storing

face and fingerprint features on the flash memory.

Online test phase is similar with previous face and fingerprint implementations.

For MATLAB side, the difference is the combining test blocks together before

sending to FPGA. The difference of the configuration software that runs on FPGA is

the decision level of the algorithm. As mentioned in Section 1.2, in the

multibiometric systems; the fusion can occur at the data or feature level, match score

level and decision level. In this multibiometric recognition system implementation

fusion occurs at the decision level. After result_of_face_recognition and

result_of_fing_recognition, which are the recognition results of face and fingerprint

recognition portions, are found sequentially the multibiometric recognition decision

is calculated by ANDing these two results. As a summary, if same person is

recognized in both of face and fingerprint portions of the system, the number of this

person is printed to the console as a multibiometric recognition result. Otherwise,

system gives an error message such as “person does not recognized”.

119

6.2 General Performance of the Multibiometric Recognition System

For measuring the general performance of the multibiometric recognition system,

same approach in Section 5.2.2.5 and Section 5.2.3.4 is used. The test subsystems are

constructed by cross validation technique and the results are shown on the confusion

matrix. Table 6.1 shows the general performance of the multibiometric recognition

system on the confusion matrix. Note that, the values on this table are shown with the

percent (%).

Table 6.1 Results of the multibiometric recognition system on the confusion matrix

Confusion Matrix 1st 2nd 3rd 4th 5th

1st 100 0 0 0 0

2nd 0 99 1 0 0

3rd 4 0 94 2 0

4th 0 0 12 88 0

5th 0 0 0 7 93

From Table 6.1, it can be seen that the images of 1
st
 person are recognized without

any error. The %1 images of the 2
nd

 person are recognized as 3rd person. %4 images

of the 3rd person are recognized as 1st person, while %2 images are recognized as

4th person. %12 images of 4th person and %7 images of the 5th person are

recognized as 3rd and 4th respectively. The lowest performance of the

multibiometric recognition system is seen on the 4
th

 person with an error rate of %12

which is the same error rate with face recognition system due to ANDing mechanism

of the multibiometric recognition system.

The total accuracy of the multibiometric recognition system is %94.8. Using AND

mechanism at the decision level reduces the recognition rate of the total system but

offers more reliable biometric system implementation.

120

CHAPTER SEVEN

CONCLUSIONS

7.1 Summary of the Project

Biometric systems recognize a person automatically from his/her physiological

and behavioral traits. Face and fingerprint recognition are the popular technologies of

the biometric systems. In this thesis, real-time face and fingerprint recognition

system is realized. This system has two working stages: offline training and online

test.

To deploy a face and fingerprint recognition system, faces and fingerprints are

processed. In offline training phase, the data is collected and feautures are extracted.

In online testing phase, the test image is compared with the database. Data collection

steps such as getting face images and scanning fingerprint images are implemented

on host PC. Combination of these images and resizing images are provided by

MATLAB on host PC. Data processing such as feature extraction, and comparison

steps are implemented on FPGA. Principal Component Analysis (PCA) is used to

extract features from face images and statistical variables with ridge orientations of

local windows are used for fingerprint images.

The aim is to provide the highest recognition rate for each system. To reach this

target, many different approaches and methods are tested such as changing the size

of the image after resize operation, using face detection algorithm and windowing the

image. The best accuracy has been obtained with PCA algorithm for face recognition

and statistical variables with ridge orientations of local windows are used for

fingerprint recognition. PCA algorithm on FPGA is fed by the output of these

methods to reduce computation time at the feature extraction. The general

performance of the system is calculated after generating 25 test subsystems by using

cross-validation technique. Combining the recognition results of the test subsystems

show that the total accuracy of the face and fingerprint recognition systems. For this

implementation, the total accuracy of the face and fingerprint recognition system is

121

%97 and %97.6, respectively. After implementing face and fingerprint recognition

systems successfully, these recognition systems are combined together to construct a

multibiometric recognition system. In this multibiometric recognition system, fusion

occurs at the decision level by using AND mechnasim. The general performance of

the multibiometric recognition system is also calculated as results of the 25 test

subsytems. The total accuracy of the multibiometric recognition system is %94.8.

Since ANDing mechanism is used on multibiometric system, the recognition rate is

reduced slighty when compared to face and fingerprint recognition systems.

For face recognition system, the computation time of the offline training phase on

FPGA is nearly ten minutes after receiving database from MATLAB and online test

phase just takes a few seconds to show the recognition result. For fingerprint

recognition system, database is constructed under a minute and test phase just takes a

few seconds. The computation time of the multibiometric system is nearly the

summation of consumed time in face and fingerprint recognition systems.

7.2 Advantages – Disadvantages

The ability to update the functionality after shipping, partial re-configuration,

various customization methods and the low non-recurring engineering costs are the

most important features of the FPGAs. In this thesis, UP3 and DE2-70 development

kits are used. VHDL is used for designing a UART module on UP3 and DE2-70 is

used for implementing face, fingerprint and multibiometric recognition systems by

using high level language at the configuration step. Various implementation methods

on these two development kits can only be realized on FPGA with a short time

period.

For implementing a real time recognition system, three important criteria must be

considered. These are high recognition rate, short response time of the recognition

system and low implementation cost. In this thesis, two of three features are

successfully accomplished. This thesis offers three systems such as face, fingerprint

and multibiometric recognition systems with high recognition rates and a person can

122

be recognized in a few seconds. But, the integration of these systems to the real life

is very difficult because the high cost of the project and using two separate

environments such as MATLAB and FPGA.

For the personal aspect, using two FPGA development kits bring some advantages

such as learning simulation and compilation of the projects on Quartus II, help for

using hardware components such as memory or I/O elements directly from software,

learning parallel configuration of a system by using VHDL and serial configuration

of a system by C/C++ via Nios II IDE. The disadvantage is only the time that is spent

on the first development kit, UP3. The reason of spending much time on UP3 are the

difficulties of VHDL coding and understanding that the memory resources of UP3

cannot meet project specifications.

This study also helps for entering FPGA world by designing face, fingerprint and

multibiometric recognition systems. As a hope that, interests of the people and

applications of the FPGAs are increased to bring unique designs to FPGA world.

7.3 Troubleshooting

In the first development kit, UP3, for the communication between host PC and

UP3, UART core is implemented in VHDL for using as a part of the recognition

system. In this implementation, there are some clock-based issues such as missing a

part of data during communication, but they are solved by shifting clock internally.

The most important problem faced with during this study on DE2-70 is the large

dimension of the matrices in PCA algorithm. Because, if the input size of the PCA

algorithm has bigger than 400 elements, unpredicted and unexpected errors are

occured on the face recognition system. So, the input size of the PCA algorithm is

adjusted and controlled by using local windowing to provide stability of the system.

For fingerprint recognition system, which is also implemented in DE2-70,

statistical variables and ridge orientations of local windows are used to extract

123

features from the input images after facing low recognition rates when PCA

algorithm is used.

7.4 Cost Analysis

UP3 development kit is provided by the university, so this kit has not any effect

on the total budget of the thesis. DE2–70 development kit has been purchased with a

cost of $400, after facing memory issues on UP3. Fingerprint scanner, which is

bought for the under-graduate project, is nearly $200. So, this scanner has not also

any effect on the budget. Note that, the Quartus II software is provided with

development kits.

7.5 Future Work

For a future study, all system components such as imaging and scanning devices

that are connected to host PC can be moved and implemented on FPGA. The feature

extraction method, PCA, can be changed by the other methods such as Independent

Component Analysis (ICA) and Linear Discriminant Analysis (LDA). In this project,

comparison method is the comparing absolute distances. In a future study,

classification methods may be used.

124

REFERENCES

Anwar F., Rahman A., & Azad S. (2009). Multibiometric Systems Based Verification

Technique. European Journal of Scientific Research, ISSN 1450-216X Vol.34 No.2, pp.

260-270.

Altera (2007). Cyclone II Handbook, Altera Corporations.

Bartlett M. S., Movellan J. R., & Sejnowski T. J. (2002). Face Recognition by Independent

Component Analysis. IEEE Trans. on Neural Networks, Vol. 13, No. 6, November

2002, pp. 1450-1464.

Bledsoe, W. W., & Chan, H. (1965). A Man-Machine Facial Recognition System-Some

Preliminary Results. Technical Report PRI 19A, Panoramic Research, Inc., Palo Alto,

California.

Bledsoe, W. W. (1966a). Man-Machine Facial Recognition: Report on a Large-Scale

Experiment. Technical Report PRI 22, Panoramic Research, Inc., Palo Alto, California.

Bledsoe, W. W. (1966b). Some Results on Multicategory Patten Recognition. Journal of

the Association for Computing Machinery 13 (2): 304-316.

Bolme D., Beveridge R., Teixeira M., & Draper B. (2003). The CSU Face Identification

Evaluation System: Its Purpose, Features and Structure. International Conference on

Vision Systems, April 1-3, Graz, Austria.

Comon P. (1994). Independent component analysis, a new concept? Signal Processing,

36: 287-314.

Daugman J. G. (1980). Two dimensional spectral analysis of cortial receptive field profile.

Vision Research, vol. 20., pp. 847-856.

125

Dilcan E. (2007). Fingerprint Identification For Access Control Systems, Dokuz Eylul

University, Department of Electrical and Electronics Engineering, Undergraduate

thesis, June 2007.

Escarra M., Robinson M., Krueger J., & Kochelek D. (2004). American Psychological

Assocation Publication Manual: Results of Eigenface Detection Tests. Retrieved May,

2010 from http://cnx.org/content/m12536 /1.3/

Federal Bureau of Investigation. (1984). The Science of Fingerprints. Washington

D.C.: U.S. Government Printing Office.

Gabor D. (1946). Theory of communication. J. IEEE, vol. 93, pp. 429-459.

Galton F. (1892). Finger Prints. London: Macmillan.

Goldstein A. J., Harmon L. D., & Lesk B. (1971). Identification of Human Faces. Proc.

IEEE, May 1971, Vol. 59, No. 5, 748-760.

Kepenekci B. (2001). Face Recognition Using Gabor Wavelet Transform. Middle East

Technical University, Department of Electrical and Electronics Engineering, PhD

thesis.

Lee H. C., & Gaensslen R. E. (2001). Advances in Fingerprint Technology, 2nd edition,

Elsevier, New York.

Li S. Z., & Jain A. K. (2004). Handbook of Face Recognition, Springer.

Li X., & Areibi S. (2004). A Hardware/Software Co-design Approach for Face

Recognition. Proc. 16th International Conference on Microelectronics, Tunis, Tunisia,

December 2004.

Liu C. & Wechsler H. (1999). Comparative Assesment of Independent Component

Analysis (ICA) for Face Recognition. Second International Conference on Audio- and

126

Video- based Biometric Person Authentication, AVBPA’99, Washington D. C., USA,

March 22-24.

Lu J., Plataniotis K. N., & Venetsanopoluos A. N. (2003). Boosting Linear Discriminant

Analysis for Face Recognition. Proc. IEEE, September 2003, Vol.1, 657-660.

Lu J., Plataniotis K. N., & Venetsanopoluos A. N. (2003). Regularized Discriminant

Analysis For the Small Sample Size Problem in Face Recognition. Pattern Recognition

Letters, December 2003, Vol. 24, Issue 16 : 3079-3087.

Maltoni D., Mario D., Jain A. K., & Prabhakar S. (2003), Handbook of Fingerprint

Recognition, Springer.

MIT Media Laboratory Vision and Modeling Group (2002). Photobook/Eigenfaces Demo,

Massachusetts Institute of Technology.

Moenssens A. (1971). Fingerprint Techniques, Chilton, London.

Nakano T., Morie T., & Iwata A. (2003). A Face/Object Recognition System Using FPGA

Implementation of Coarse Region Segmentation, SICE Annual Conference in Fukui,

August 4-6. Fukui University, Japan.

Prabhakar S., & Jain A. K. (2002). Decision-level fusion in fingerprint verification.

Pattern Recognition, vol. 35, no.4, pp. 861-874, Springer.

Ross A., & Jain A. K. (2004). Multimodal Biometrics: An Overview. Appeared in Proc.

Of 12th European Signal Processing Conference (EUSIPCO), (Vienna, Austria), pp.

1221-1224.

Sajid I., Ahmed M. M., Taj I., Humayun M., & Hameed F. (2008). Design of High

Performance FPGA Based Face Recognition System. PIERS Proceedings, Cambridge,

USA, July 2.

127

Sirovich L., & Kirby M. (1987). A Low-Dimensional Procedure for the Characterization

of Human Faces. J. Optical Soc. Am. A, 1987, Vol. 4, No.3, 519-524.

SLS (2004). UP3 user manual Version 0.1, SLS Corporations.

Smith K., Ross. A, & Colbry A. (2006). Face Recognition. National Science and

Technology Council (NSTC).

Stosz J. D., & Alyea L.A. (1994). Automated System for Fingerprint Authentication Using

Pores and Ridge Structure. Proc. of SPIE (Automatic Systems for the Identification and

Inspection of Humans), vol. 2277, pp. 210−223, 1994

Terasic (2009). DE2-70 user manual Version 1.08, Terasic Technologies.

Turk. M. A., & Pentland A. P. (1991). Face Recognition Using Eigenfaces. Proc. IEEE,

1991, 586-591.

Wegstein J. H. S. (1992). An Automated Fingerprint Identification System. T^NBS Special

Publication 500-89, February 1982.

Weinstein A., Volz J, & Redecer C. (2004). Application note 4041: Implementing a

Software UART on the MAXQ3210, May 03, 2007.

Wiskott L. (1996). Face Recognition by Elastic Bunch Graph Matching. Retrieved

June, 2010 from http://www.neuroinformatik.ruhr-uni-bochum.de/ini/VDM/

research/computerVision/graphMatching/identification/faceRecognition/contens

.html.

Xilinx (2006). Programmable Logic Handbook. Xilinx Technologies.

128

APPENDIX

An “Appendix CD” is prepared which contains all MATLAB files, VHDL files

and Nios II system designs that are used in this thesis. The folder names are

dedicated to section numbers to reach source codes easily. Source code availability is

mentioned in each section. As a remember, the content of “Appendix CD” is also

given in the following with section name and corresponding folder name in the

“Appendix CD”;

 Section 5.1.3 PCA implementation on MATLAB - 5_1_3_PCA_MATLAB

 Section 5.1.6.1 One Byte Transmitter - 5_1_6_1_UART_Transmitter

 Section 5.1.6.2 One Byte Receiver - 5_1_6_2_UART_ Receiver

 Section 5.1.6.3 Array Transmitter - 5_1_6_3_UART_ Array_Transmitter

 Section 5.1.6.4 Simulation of Internal Database and Test Comparison -

5_1_6_4_Internal_Database_And_Test

 Section 5.1.6.5 Comparing Database and Test after Receiving from MATLAB

- 5_1_6_5_Database_and_Test_sent_from_MATLAB

 Section 5.2.2.1 Software Design on DE2-70

- 5_2_2_1_Face_Recognition_Configuration_Sw

 Section 5.2.2.3 Preliminary Experiments - 5_2_2_3_fdmex_example

 Section 5.2.2.4 Final Implementation

 - 5_2_2_4_Highest_Recognition_Rate_For_Face_Recognition

 Section 5.2.2.5 General Performance of the Face Recognition System

 - 5_2_2_5_Cross_Validation

 Section 5.2.3.3 Final Implementation

- 5_2_3_3_Highest_Recognition_ Rate_For_Fingerprint_Recognition

 Section 6.1 Implementation of Multibiometric Recognition System on DE2-70

- 6_1_ Implementation_of_ Multibiometric_Recognition_System

