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FACE AND FINGERPRINT RECOGNITION ON  

FIELD PROGRAMMABLE GATE ARRAY 

 

ABSTRACT 

 

 Biometric recognition refers to use of distinctive physiological and behavioral 

characteristics for automatically recognizing a person. A number of biometric 

technologies have been developed such as fingerprint, face, iris and speech are the 

ones that most commonly used. Feature extraction techniques play important role for 

biometric recognition system design.   

 

Field Programmable Gate Arrays (FPGAs) are the programmable logic devices 

that can be configured by the customer after manufacturing. FPGAs are preffered in 

a variety of applications due to ease of programming with low cost. Applications of 

FPGAs include digital signal processing, biometric recognition, medical imaging 

aerospace and defense systems, computer vision and a growing range of other areas. 

 

In this thesis, face and fingerprint recognition systems are implemented on FPGA. 

This study has two working phases. In the offline training phase, face and fingerprint 

images are collected by MATLAB. Then, this database is sent to FPGA to extract 

features. Principal Component Analysis (PCA) is the feature extraction algorithm 

that is used in this study. After all features of face and fingerprint images are 

extracted, the features are stored on the memory of FPGA. In the online test phase or 

recognition phase, the features of test images are extracted then these are compared 

to restored values of the database from the memory of FPGA. The result of 

comparison is then displayed. This thesis also proposes a multibiometric recognition 

system which is constituted from face and fingerprint recognition systems by using 

the fusion at the decision level. 

 

 

Keywords : Face recognition, fingerprint recoginiton, multibiometric recognition, 

FPGA, PCA 
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SAHADA PROGRAMLANABİLİR KAPI DİZİLERİ ÜZERİNDE  

YÜZ VE PARMAK İZİ TANIMA 

 

ÖZ 

  

 Biyometrik tanıma, otomatik olarak bir kişiyi ayırıcı fiziksel ve davranışsal 

niteliklerine göre tanımaya karşılık gelir. Çok sayıda biyometrik teknoloji 

geliştirilmiştir. Parmak izi, yüz, iris ve ses tanıma en yaygın kullanılan biyometrik 

teknolojilerdir. Özellik çıkarma metotları, biyometrik sistem tasarımında önemli bir 

rol oynamaktadır. 

 

 Sahada Programlanabilir Kapı Dizileri (SPKD), üretimden sonra müşteri 

tarafından yeniden yapılandırılabilen programlanabilir mantık elemanlarıdır. 

SPKD’ler düşük maliyetle ve programlanabilme kolaylığı ile çok sayıda uygulamada 

tercih edilmektedir. SPKD içeren uygulamalar sayısal işaret işleme, biyometrik 

tanıma, medikal görüntü işleme, uzay ve savunma sistemleri, bilgisayar görüntüsü 

alanlarında kullanmakta ve kullanım alanları giderek artmaktadır.  

 

Bu tezde, SPKD üzerinde yüz ve parmak izi tanıma sistemi gerçeklenmiştir. Bu 

sistemin iki çalışma aşaması vardır. Çevrimdışı öğrenme aşamasında, yüz ve parmak 

izi resimleri MATLAB tarafından toplanır. Daha sonra oluşturulan bu veritabanı 

öznitelik çıkarma için SPKD’ye gönderilir. Bu çalışmada öznitelik çıkarmak için 

Temel Bileşen Analizi (TBA) algorithması kullanılmıştır. Yüz ve parmak izindeki 

tüm öznitelikler çıkarıldıktan sonra, bu öznitelikler SPKD’nin hafızasında saklanır. 

Çevrimiçi deneme ya da tanıma aşamasında, öncelikle yüz ve parmak izi 

resimlerinden öznitelikler çıkarılır, daha sonra  bu öznitelikler SPKD’nin hafızasında 

saklanan veritabanı ile karşılaştırılır. Karşılaştırma sonucu, tanımlama sonucudur. Bu 

tezde ayrıca yüz ve parmak izi tanıma sistemlerininden oluşan, birleştirmenin karar 

verme seviyesinde yapıldığı çoklu biyometrik tanıma sistemi tasarlanmıştır. 

 

Anahtar Sözcükler : Yüz tanıma, parmak izi tanıma, çoklu biyometrik tanıma, 

Sahada Programlanabilir Kapı Dizileri, Temel Bileşen Analizi 
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CHAPTER ONE 

INTRODUCTION 

 

1.1 Biometric Systems 

 

Biometric recognition term refers to the use of distinctive physiological and 

behavioral characteristics that are called biometric identifiers for automatically 

recognizing individuals (Maltoni, Maio, Jain, & Prabhakar, 2003). A number of 

biometric technologies have been developed and several of them are being used in a 

variety of applications in differet areas. Among these, face, iris, fingerprints, speech 

and hand geometry are the ones that most commonly used in biometric systems. 

Each biometric has its strengths and weakness, so choice of a particular biometric 

typically depends on the requirements of an application. 

 

A biometric system is a pattern recognition system that responsible for 

recognizing a person by determining the authenticity of a specific physiological 

and/or behavioral characteristic possessed by that person. The most important issue 

in designing a practical biometric system is to determine how this biometric 

individual is recognized. Depending on the application, a biometric system may be 

called a verification system or an identification system: 

 

• a verification system authenticates a person’s identity by comparing the captured 

individual characteristic with his/her own biometric template(s) that is stored in the 

system. One-to-one comparison is done to determine whether the identity claimed by 

the individual is true. A verification system either rejects or accepts the user,  

 

• an identification system recognizes an individual characteristic by searching the 

entire template database. One-to-many comparisons is done to establish the identity 

of the individual. The identification system establishes a subject’s identity without 

the subject having to claim an identity. 
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1.2 Multibiometric Systems 

 

 Most of the biometric systems deployed in real world are unimodal and they are 

relied on the evidence of a single source of information. Unimodal biometric systems 

have to contend with a variety of problems such as noisy data, intra-class variations, 

spoof attacks and unacceptable error rates (Ross, & Jain, 2004). Multimodal or 

multibiometric systems, which include multiple sources of information, are offered 

to overcome these limitations in unimodal biometric systems. 

 

 Multibiometric systems represent the fusion of two or more unimodal biometric 

systems. The fusion can occur at the data or feature level, match score level and 

decision level. Figure 1.1 shows the levels of fusion in a biomodal biometric system 

(Ross, & Jain, 2004). Note that; FU, MM and DM stand for fusion, matching and 

decision module respectively in Figure 1.1. 

 

 

   Figure 1.1 Levels of a fusion in a biomdoal biometric system (Ross, & Jain, 2004). 
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 Depending on the number of traits, sensors, and feature sets used, a variety of 

scenarios are possible in a multimodal biometric system (Ross, & Jain, 2004). Figure 

1.2 shows that these various scenarios (Prabhakar, & Jain, 2002);  

 

1) multiple sensors for tracking the same biometric behavior such as using 

optical and capacitive sensors together;  

2) multiple biometrics for the same person such as using face and fingerprint; 

3)  multiple units such as right index and middle fingers of a person;  

4) multiple snapshots of the same biometric such as taking for two templates of 

the right finger of a person 

5) multiple matchers such as using minutiae and non-minutiae based matchers 

are the examples of the applications of multibiometric systems.  

 

 

 

      Figure 1.2 Scenarios in a multimodal biometric system (Prabhakar, & Jain, 2002). 
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Several factors should be considered when designing a multibiometric system. 

Some of these factors are; 

 

 the choice and the number of biometric behaviors, 

 the level in biometric system at which information provided by multiple types 

should be integrated, 

 the methodology adopted to integrate the information, 

 the cost versus matching performance trade-off, 

 system is user friendly or not (Anwar, Rahman, & Azad, 2009). 

 

By combining multiple sources of information, these systems improve matching 

performance, increase population coverage, deter spoofing, and facilitate indexing 

(Ross, & Jain, 2004). So, multibiometric systems are expected to be more reliable 

due to presence of multiple independent pieces of evidence. 

  

1.3 History of Face Recognition Systems 

 

The first way to do face recognition is to look at the major features of the face and 

compare these features with the same features on the other faces. During 1964 and 

1965, Bledsoe, along with Helen Chan and Charles Bisson, worked on using the 

computer to recognize human faces (Bledsoe 1966a, & 1966b; Bledsoe, & Chan 

1965). By using a semi-automated machine, later called man-machine, marks were 

made on photographs. These marks are used to locate major features of the faces 

such as mouths, noses, eyes and ears. The distances and ratios were computed by 

using these marks, then these are compared to reference enrollment data.  

 

In the early 1970's Goldstein, Harmon and Lesk used 21 subjective markers such 

as hair color and lip thickness to create a face recognition system. (Goldstein, 

Harmon, & Lesk, 1971). Because of difficulties in order to automate due to 

subjective nature, many of the measurements were still made by hand. 

 



5 

 

 

A more automated approach to recognition began with Fisher and Elschlagerb just 

a few years after the Goldstein paper. This approach measured the features above 

using templates of features of different pieces of the face and them mapped them all 

onto a global template. After continued research it was found that these features do 

not contain enough unique data to represent an adult face. Another approach is the 

Connectionist approach, which seeks to classify the human face using a com-bination 

of both range of gestures and a set of identifying markers. This is usually 

implemented using 2-dimensional pattern recognition and neural net principles. Most 

of the time this approach requires a huge number of training faces to achieve decent 

accuracy; for that reason it has yet to be implemented on a large scale (Escarra, 

Robinson, Krueger, & Kochelek, 2004) . 

 

The major problem of the early face recognition solutions is the most of feature 

measurements and face locations were computed manually. In 1980’s, the first fully 

auotomated face recognition method is created depending on statistical approach. In 

1988, Kirby and Sirovich applied principle component analysis at Brown University. 

This was considered a milestone in face recognition, because their approach is 

showed that less than one hundred values were required to accurately code a suitably 

aligned and normalized face image (Sirovich, & Kirby, 1987). 

  

In 1991, Turk and Pentland discovered that the residual error coud be used to 

detect face in images while using the eigenfaces technique (Turk, & Pentland, 1991). 

This discovery was enabled to develop reliable real-time automated face recognition 

systems and increase significant interest on face recognition automation field. Since 

then, many different approaches have been published for face recognition over the 

years such as Neural Network, Fisher Linear Discriminant Model (FLD), Dynamic 

Link Architectures (DLA), Hidden Markov Models, Gabor Wavelet Transform, 

Elastic Bunch Graph. Some of these techniques were covered on Section 2.3. 

 

The face recognition technology first captured the public’s attention from the 

media reaction to a trial implementation at the January 2001 Super Bowl, which 

captured surveillance images and compared them to a database of digital mugshots. 
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This demonstration initiated much-needed analysison how to use the technology to 

support national needs while being considerate of public’s social and privacy 

concerns. Today, face recognition technolgy is being used to combat passport fraud, 

support law enforcement, identify missing children, and minimize benefit/identify 

fraud (Smith, Ross, & Colbry, 2006). 

 

Increase in the automation of face recognition provides hardware solutions such 

as application specific integrated circuit (ASIC) designs and field programmable gate 

arrays (FPGA). Using FPGA has many benefits over ASICs, because of low cost 

rapid prototyping and flexibility. One of the first publications implementing FPGA 

as a hardware is released by T. Nakano, T.Morie and A.Iwata in 2003. The 

face/object recognition system using coarse region segmentation and flexible 

template matching was presented and the resistive-fuse network circuit was 

implemented in an FPGA by a pixel serial approach, and coarse region segmentation 

of real images with 64×64 pixels at the video rate was achieved. The flexible 

template matching using dynamic-link architecture was performed in the PC system. 

Figure 1.3 shows this implementation (Nakano, Morie, & Iwata, 2003). 

 

 

        Figure 1.3 The face/object recognition system (Nakano, Morie, & Iwata, 2003). 
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One of the latest research by I. Sajid, M. M. Ahmed, I. Taj, M. Humayun, & F. 

Hameed in 2008, presents a fixed point tecnique with software hardware co-design 

(SHcoD) due to the floatingpoint operations based on eigenvalue algorithms are 

complex in terms of hardware. 

 

 

 

Figure 1.4 Fpga-based system architecture (Sajid, Ahmed, Taj, Humayun, & Hameed, 2008). 

 

They have also stated that fixed point implementation of householder (HH) 

algorithm saves thousands of machine cycles in the cost of losing 0.008 percent 

weight in highest three Eigen value. The system architecture can be seen in Figure 

1.4 (Sajid, Ahmed, Taj, Humayun, & Hameed, 2008). 

 

1.4 History of Fingerprinting 

 

Human fingerprints have been discovered on a large number of archaeological 

and historical items. These findings provide evidence to show that ancient people 

were aware of the individuality of fingerprints, such awareness does not appear to 

have any scientific basis (Lee, & Gaensslen, 2001). The modern scientific fingerprint 

technique was first initiated in the start of sixteenth century. In 1684, Nehemiah 
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Grew, published the first scientific paper reporting his systematic study on the ridge, 

furrow, and pore structure in fingerprints (Lee, & Gaensslen, 2001). 

 

Since then, a large number of researchers interested in fingerprint studies. In 

1788, a detailed description of the anatomical formations of fingerprints was made 

by Mayer (Moenssens, 1971). Thomas Bewick began to use his fingerprint as his 

trademark in 1809. This is believed to be one of the most important milestones in the 

scientific study of fingerprint recognition (Moenssens, 1971). In 1823, Purkinje 

proposed the first fingerprint classification scheme, that classified fingerprints into 

nine categories according to the ridge structures (Moenssens, 1971). In 1880, Henry 

Fauld, first scientifically suggested the individuality of fingerprints based on an 

empirical observation and Herschel asserted that he had practiced fingerprint 

recognition for about 20 years (Lee, & Gaensslen, 2001 and Moenssens, 1971). In 

the late nineteenth century, Sir Francis Galton conducted an extensive study on 

fingerprints (Galton, 1892). In 1888, Galton introduced the minutiae features for 

fingerprint matching. Important advance in fingerprint recognition was made in 1899 

by Edward Henry. Henry established the well-known “Henry system” of fingerprint 

classification (Lee, & Gaensslen, 2001).   

 

In the early twentieth century, fingerprint recognition was formally accepted as a 

valid personal identification method and became a standard routine in forensics (Lee, 

& Gaensslen, 2001). Fingerprint identification agencies were set up worldwide and 

criminal fingerprint databases were established (Lee, & Gaensslen, 2001). Various 

fingerprint recognition techniques such as fingerprint acquisition, fingerprint 

classification, and fingerprint matching were developed. For example, the FBI 

fingerprint identification division was set up in 1924 with a database of 810,000 

fingerprints (Federal Bureau of Investigation, 1984). 

 

Starting in the early 1960s, the FBI, Home Office in the UK, and Paris Police 

Department began to invest a large amount of effort in developing automatic 

fingerprint identification systems (Lee, & Gaensslen, 2001). Based on the 

observations of how human fingerprint experts perform fingerprint recognition, three 
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major problems in designing automatic fingerprint identification systems (AFISs) 

were identified and investigated: digital fingerprint acquisition, local ridge 

characteristic extraction, and ridge characteristic pattern matching and their efforts 

were so successful that today almost every law enforcement agency worldwide uses 

an AFIS (Maltoni, Maio, Jain, & Prabhakar, 2003).  

 

Automatic fingerprint recognition technology has now rapidly grown in civilian 

applications and fingerprint-based biometric systems are so popular for their 

recognition rate. 

 

1.5 Aim of Thesis 

 

The aim of the thesis is to create a fingerprint and face recognition system which 

is established on a Field Programmable Gate Array (FPGA). Principle Component 

Analyis (PCA), is used for extracting features. The fingerprint and face images are 

transformed into PCA basis subspace that is composed from eigenvalues and 

eigenvectors. System development in FPGA includes embedded microprocessor 

design, SDRAM implementation for memory needs, CFI Flash implementation for 

storing PCA results and communication interface for host computer. These parts of 

the design are discussed to develop usability and compability of the system. 

Comparision methods are used to identify the user in the most accurate way.  

 

This thesis proposes a system to acquire a face or a fingerprint image of any user 

and process it to understand if he/she is one of people in the training database. This 

project are combined with two main parts. First and second part can be called as 

offline-training and online-test respectively. Figure 1.5 shows these two parts briefly 

for face recognition.  

 

In the offline-training part for face recognition, face photos are taken from people 

and stored in the host computer. Then, images are resized to increase calculation 

speed and combined in one database matrix in MATLAB. This database matrix are 

sent to FPGA via serial port using RS-232 protocol. At the end of this transmission, 
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PCA feature extraction methods are started in FPGA to create PCA basis and project 

database images to face subspace. At the end of offline-training part, PCA basis 

matrix and projected training matrix of database images are stored in CFI Flash 

memory. The offline-training part for fingerprint recognition is too similar to the face 

recognition and the only difference is the device that used for acquiring images. Face 

images are taken from web-camera and fingerprints are taken via fingerprint reader.  

 

 

 

         Figure 1.5 Offline-training and online test parts for face recognition. 

 

Online-test part starts to procedure by taking a photo or a fingerprint of tester. 

This image is read, resized and sent to FPGA by MATLAB like in the offline-

training method. After FPGA gets the test image, FPGA restores PCA basis matrix 

and projected training matrix of database images from CFI Flash. After projecting 

test image to face or fingerprint subspace by multiplying PCA basis matrix, it is 

compared with projected training matrix and returns result to the host computer via 

serial port. 

 

After the implementation of the face and fingerprint recognition systems 

separately, a multibiometric recognition system, which offers more reliable 

recognition, is implemented by combining these two systems. 
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1.6 Outline of Thesis  

 

This thesis composed of six chapters including the Introduction. Chapter 2 

reviews face recognition processes and Chapter 3 summarizes fingerprint analysis 

and representation techniques. In Chapter 4, programmable logic devices are 

introduced with the devices that are used throughout project. Chapter 5 summarizes 

the system and explains the operation. The preliminary experiments and final results 

are also presented in this chapter. After completing the design of face and fingerprint 

recognition systems separately, they are combined together to construct a 

multibiometric recognition system. Chapter 6 describes this implementation. The last 

chapter of the thesis, Chapter 7, includes conclusions, advantages and disadvantages 

of the system, future works. The algorithm of whole system is in the Appendix part 

of the thesis.  

 



 

12 

 

CHAPTER TWO 

FACE RECOGNITION  

 

2.1 Face Recognition System 

 

Face recognition systems automatically identify faces from images and videos. 

Two operation modes are defined for these systems: face verification and face 

identification, which are described briefly as follows: 

 

a) Face Verification:  

 

The verification task is responsible for verifying faces at the point of access. The 

operation of verification system is shown in Figure 2.1. The user enters his/her name 

or PIN (Personal Identification Number) through a keyboard or a keypad and the 

biometric reader the characteristic of the face to be recognized and converts it to a 

digital format. The digital formatted face data is processed by the feature extractor to 

produce a compact digital representation. The resulting representation is fed to the 

feature matcher to compare it against the template of a single user which is retrieved 

from the system database based on the user's PIN.  

 

 

  Figure 2.1 Face verification system. 

 

b) Face Identification: 

 

PIN isn’t provided by the user in the face identification. This task is to compare 

the representation of the input faces against the templates of all the users in the 
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system database. This system identifies of an enrolled user or producing an alert 

message such as “user not identified”. 

 

 

       Figure 2.2 Face identification system. 

 

2.2 Face Recognition Processing 

 

Face recognition is a visual pattern recognition problem. A face is identified from 

two-dimensional images which are extracted from three-dimensional images. Since 

these real face images vary with pose, expression, illumination and so on, the 

problem is a challenging one. A face recognition process consists of four processes 

and these are shown in Figure 2.3.  

 

 

Figure 2.3 Face recognition processing flow scheme (Li, & Jain, 2004). 

 

Face detection segments the face areas from the background. In the case of video, 

the detected faces may need to be tracked using a face tracking component. Face 

alignment is aimed at achieving more accurate localization and at normalizing faces 

thereby whereas face detection provides coarse estimates of the location and scale of 

each detected face. Facial components, such as eyes, nose, and mouth and facial 



14 

 

 

outline, are located; based on the location points, the input face image is normalized 

with respect to geometrical properties, such as size and pose, using geometrical 

transforms or morphing. The face is usually further normalized with respect to 

photometrical properties such illumination and gray scale. After a face is normalized 

geometrically and photometrically, feature extraction is performed to provide 

effective information that is useful for distinguishing between faces of different 

persons and stable with respect to the geometrical and photometrical variations. For 

face matching, the extracted feature vector of the input face is matched against those 

of enrolled faces in the database; it outputs the identity of the face when a match is 

found with sufficient confidence or indicates an unknown face otherwise (Li, & Jain, 

2004). 

 

2.3 Face Recognition Techniques 

 

This section try to describe the basic feature extraction and face recognition 

techniques such as principal component analysis (PCA), independent component 

analysis (ICA), linear discriminant analysis (LDA), Elastic Bunch Graph Matching 

(EBGM) and neural networks with mathematical theories.  

 

2.3.1 Principal Component Analysis (PCA) 

 

PCA algorithm is common feature extraction technique which is used for face 

recognition. PCA is also used in this thesis, thus this technique is described in detail. 

First section is an overview of PCA, second section shows the mathematical 

background and the last section describes the usage of PCA in face recognition field. 

 

2.3.1.1 Overview of PCA  

 

PCA is a standard linear algebra technique and pioneered by Kirby and Sirovich 

in 1988. This technique is commonly referred to as the use of eigenfaces in face 

recognition. To use this technique, database and test images must be at the same size 

and must first be normalized to line up the eyes and mouth of the subjects within the 
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images. After normalization, PCA is used to reduce the dimension of the data by 

means of data compression basics. This operation reveals the most effective low 

dimensional structure of the facial patterns. The reduction in dimensions removes the 

unuseful information and decomposes the face into orthogonal (or uncorrelated) 

components, which are also known as eigenfaces. 

 

Each face image may be represented as a weighted sum of the eigenfaces and 

these eigenfaces are stored in a 1D array. This 1D array also known as a feature 

vector in PCA literature. When test image is compared to database image, this 

feature vector is used to measure the distance. The PCA approach typically requires 

the full frontal face to be presented each time; otherwise the image results in poor 

performance (Bolme, Beveridge, Teixeira, & Draper, 2003). PCA technique can 

reduce the data needed to identify the individual to 1/1000
th

 of the data presented.  

 

Figure 2.4 shows an example of eigenfaces (MIT Media Laboratory, 2002). 

Feature vectors are derived using eigenfaces. 

 

 

                       Figure 2.4 An example of eigenfaces. 
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2.3.1.2 Theory of PCA 

 

Let the training set of M face images be I1, I2, I3, … , IM. The average of the 

training set is, µ, 

1

1 M

n

n

I
M




                          (2-1) 

  

The difference of each image from the average is defined as; 

 

 i iI                (2-2) 

 

This set of very large vectors is then subject to PCA, which seeks a set of M 

orthonormal vectors, un, which are describing the distribution of whole data. The kth 

vector of this vector, 
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       (2-4) 

 

The vectors uk are eigenvectors and the scalars λk are eigenvalues of the 

covariance matrix which is shown in the following,  

  

             1

1

  

M
T

n n

n

T

C
M
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 







                           (2-5) 

 

where C is the covariance matrix and A = [θ1, θ2,…, θM]. 
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The matrix C, is N
2
 by N

2
, and determining the N

2
 eigenvectors and eigenvalues is 

an intractable task for typical image sizes, so a computationally feasible method to 

find these eigenvectors must be implemented. If the number of data points in the 

image space is less than the dimension of the space (M < N
2
), there is only M – 1, 

rather than N
2
 meaningful eigenvectors (Turk and Pentland, 1991).  By using this 

approach the eigenvectors vi of A
T
A is, 

 

 
T

i i iA Av v                                                    (2-6) 

 

multipliying both sides by A, 

 

 
T

i i iAA Av Av                                 (2-7) 

 

Eq. (2-7) shows that Avi are the eigenvectors of C = AA
T
. By using this analysis, M x 

M matrix, L = A
T
A is constructed. The L is, 

 

T

mn m nL                                                         (2-8) 

 

and shows the M eigenvectors, vl, of L.These vectors are used to determine the linear 

combinations of the M training set face images to form the eigenfaces ul. 

 

                                                
1

,         1,2,...,
M

l lk k

k

u v l M


                  (2-9) 

 

 With this analysis the calculations are greatly reduced, from the order of the 

number of pixels in the images (N
2
) to order of the number of images in the training 

set (M) and in practice, the training set of face images will be relatively small and the 

calculations become quite managable (Turk and Pentland, 1991). 
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2.3.1.3 How to use PCA in Face Recognition 

 

To create a face space from M number of the face images, first L matrix (M x M) 

must be calculated. This L matrix has M eigenvectors. M1 significant eigenvectors 

are chosen from this L matrix which are containing the highest associated 

eigenvalues. Then, by combining the normalized training images according to Eq. (2- 

9) to produce the eigenfaces uk. 

 

For the test step, first the new face image (IT) is projected into facespace by a 

simple operation, 

 

1( )       for 1,2,...,k k Tu I k M         (2-10) 

 

and  is the weights and these weights form the pattern vector, φT
 , 

 

11 2[ , ,..., ]T

M                (2-11) 

 

The pattern vector describes the contribution of each eigenface in representing the 

input face image. After generating pattern vector, the simplest method for 

determining which face class provides the best description of an input face image is 

to find the face class k which minimizes the Euclidean distance,  ,  

 

2

(k k                    (2-12) 

 

where φk is a vector describing the kth face class and the face classes φi are 

calculated by averaging the results of the eigenfaces over a small number of face 

images of each individual. The minimum k , if provides the recognition condition 

under a pre-determined threshold value, kth  person is determined the output of 

recognition system. 
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2.3.2 Linear Discriminant Analysis (LDA) 

 

LDA is a statistical approach for classifying samples of unknown classes based on 

the training samples with known classes (Bolme, Beveridge, Teixeira, & Draper, 

2003). LDA is the technique which aims to maximize variance across the users or 

formerly named between-classes, and minimize variance within the users which is 

also expressed within-class formerly.  

 

In the Figure 2.5, an example of six classes using LDA is shown (Lu, Plataniotis, 

& Venetsanopoulos, 2003). In this figure, each block represents a class. There are 

large variances between-classes, but the variance within-classes is very little. When 

dealing with high dimensinal face data, this technique faces the sample size problem 

that arises where there are a small number of avaliable training samples compared to 

the dimensionality of the sample space (Lu, Plataniotis, & Venetsanopoulos, 2003).   

 

 

Figure 2.5 An example of six classes using LDA. 

 

2.3.2.1 Theory of LDA 

 

As mentioned above, all instances of the same person’s face as being in one class 

and the faces of different subjects as being in different class for all subjects in the 

training must be defined before computing LDA. LDA is a class specific method that 

represents data set make it useful for classification. Given a set of N imgaes {x1, x2, 

…, xn} where each image belongs to one of c classses {X1, X2,…, Xc}. LDA selects a 

linear tranformation matrix W that is the ratio of the between-class scatter and the 

with-in class scatter is maximized. 
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SB is the between-class scatter matrix which represents the scatter of the 

conditional mean vectors, μi’s; around the overall mean vector, µ. SB can be 

expressed by the following formula; 

 

1

( )( )
c

T

B i i i

i

S N    


             (2-13) 

 

where μi denotes the mean of image class Xi, µ denotes the mean of entire data set, Ni 

denotes the number of images in class Xi. 

 

 SW is the within-class scatter matrix which represents the average scatter of the 

sample vectors x of different class Ci around their respective mean μi;  

 

     

1

( )( )
k i

c
T

W k i k i

i x X

S x x 
 

                                       (2-14) 

 

If the within-class scatter matrix SW is not singular, LDA finds an orthonormal matrix 

Wopt which maximizes the ratio of the determinant of the between-class scatter matrix 

to the determinant of the within-class scatter matrix. This matrix can be expressed by 

the following formula; 

 

 1 2arg max   ... 

T

B

opt mT

W

W S W
W w w w

W S W
       (2-15) 

 

The set of solution {wi | i = 1, 2, …, m} is that of generalized eigenvectors of SB and 

SW corresponding to the m largest eigenvalues {λi | i = 1, 2, ..., m}, which can be 

shown that as in following; 

 

   where 1,2,...,B i i W iS w S w i m                    (2-16) 
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In face recognition applications, generally SW is singular, so to overcome this 

singularity, PCA algorithm is first used to reduce the vector dimensions. Combining 

PCA and LDA, first input image x projected into face space y, then projected into 

classification space z; 

 

   

    (only PCA)

   (only LDA)

   (PCA + LDA)

T

T

x

T

y

y x

z W x

z W y







                (2-17) 

 

2.3.3 Independent Component Analysis (ICA) 

 

ICA is another algorithm for face recognition. To better understand the concept, it 

is useful to compare ICA with PCA. PCA depends on the pairwise relationships 

between pixels, but ICA depends on the higher order relationships among pixels in 

the image database. So that, PCA can only represent second order interpixel 

relationships, or relationships that capture the amplitude spectrum of an imgage but 

not its phase spectrum. On the other hand, ICA use high order relationships between 

the pixels and ICA algorithms are capable of capturing the phase spectrum (Bartlett, 

Movellan, & Sejnowski, 2002). 

 

In the ICA implementation of face recognition, input face image represented as an 

n-dimensional random vector. Then, PCA is used to reduce this random vector, 

without losing the higher order statistical components. After that, covariance matrix 

of the result is calculated and factorized form of covariance matrix is obtained. 

Whitening, rotation and normalization are performed respectively to obtain the face 

space of the individuals. Because of using high order relationships between pixels, 

ICA is robust in the presence of noise. 
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2.3.3.1 Theory of ICA 

 

ICA of a random vector searches for a linear transformation which minimizes the 

statistical dependence between its components (Comon, 1994). Let, the image is 

represented by a random vector, X ∈ R
N
, where N is the dimensionality of the image 

space. The vector is formed by concatenating the rows or the coloumns of the image 

which may be normalized to have a unit norm and/or an equalized histogram (Liu, & 

Wechsler, 1999). The covariance matrix of X can be expressed by using expectation 

operator, E(.), as in the following; 

 

      {[ ( )][ ( )] }T

XC E X E X X E X                 (2-18) 

 

where CX ∈ R
NxN

. The ICA of X factorizes the covariance matrix into the following 

expression; 

 

    
T

XC F F                                                       (2-19) 

 

where ∆ is diagonal real positive and F transforms the original data set X to new data 

set Z which are independent or the most independent possible data set. Z can be 

expressed as; 

 

                                         X FZ                                                                   (2-20) 

 

To find the transformation F, Comon developed an algorithm that consists of three 

operations: whitening, rotation and normalization (Comon, 1994). The whitening 

operation transforms a random vector X to U which has a unit covariance matrix and 

U can be expressed by the following formula; 

 

  
1/2X A U                                   (2-21) 

 

where φ and A are derived by solving the following eigenvalue operation; 
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T

XC A                                                             (2-22) 

 

where φ = [φ1, φ2, …, φN] is an orthonormal eigenvector matix and A = diag {λ1, λ2, 

…, λN} is a diagonal eigenvalue matrix of CX. After whitening operation, rotation 

operations performs source separation by minimizing the mutual information 

approximated using high order cumulants to derive independent components. Finally, 

the normalization operation derives unique independent components in terms of 

orientation, unit norm, and order of projections (Comon, 1994). 

  

2.3.4 Elastic Bunch Graph Matching (EBGM) 

 

This algorithm relies on the concept of the non-linear characteristics of the real 

face images, such as pose, expression and variations in illumination. Because, these 

non-linear characteristics are not addressed by the linear analysis methods, such as 

PCA and LDA. An example of elastic bunch graph matching is shown in Figure 2.6 

(Wiskott, 1996). 

 

 

 Figure 2.6 Elastic bunch graph matching (EBGM). 

 

Gabor Wavelet Transform is used to create a dynamic link architecture that 

projects the face image onto an elastic grid. The nodes on the elastic grid that are 

notated by the circles in the previous figure, are formerly called as gabor jets. Gabor 

jets describe the image behaviour around a given pixel. This is the result of a 

convolution of the image with Gabor filter. Gabor filter is used to extract features 
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and detect shapes. Recognition is based on comparing Gabor filter response on each 

Gabor node. 

 

The difficulty with his method is the requirement of accurate landmark 

localization, which can sometimes be achieved by combining PCA and LDA 

methods (Bolme, Beveridge, Teixeira, & Draper, 2003). As mentioned above, 

EBGM based on Gabor Wavelet Transform (GWT), so in the next section the thery 

of GWT is described.  

 

2.3.4.1 Theory of GWT 

 

Dennis Gabor proposed Gabor functions as a tools for signal detection under noise 

effect. Gabor showed that the conjonit time-frequency domain for 1D signals must be 

quantized so that no signal or filter can occupy less than certain minimal area in it 

(D. Gabor, 1946). Gabor also discovered that Gaussian modulated complex 

exponentials provide the best trade off between frequency and time resolution. Gabor 

functions are generalized and reorganized to 2D by Daugman, to use in computer 

vision applications which is expressed below (Daugman, 1980); 
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where Gi is a plane wave characterized by the vector ki enveloped by a Gaussian 

function and σ is the standard deviation of this Gaussian envelope. The center 

frequency of the ith filter is given by the characteristic wave vector which have a 

scale kv and orientation θμ, 
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Daugman proposed that an ensemble of simple cells  is best modeled as a  family 

of 2D Gabor wavelets  sampling  the  frequency domain  in  a  log-polar  manner 

(Daugman, 1980).  This is equivalent to coherent states generated by rotation and 

dilation. The decomposition of an input image I into these states is called the wavelet 

transform and expressed as; 

 

         ( ) ( )́ ( )́ ´i iR x I x G x x dx 
    

                                 (2-25) 

 

Combining Eq. (2-24) and Eq. (2-25), Gabor wavelets are used first by determining 

wave vector scale kv and orientation θμ. Kepenekci show that Gabor filters with 

spatial frequency (v = 0, ..., 4) and 8 orientation (μ = 0, ..., 8) in Figure 2.7 and 

convolving the input image (Figure 2.8a)  with Gabor filters (Figure 2.8b) captures 

the whole frequency spectrum (Kepenekci, 2001). 

 

 

       Figure 2.7 Gabor filters correspond to 5 spatial frequency and 8 orientation. 

 

From the responses of the face image to Gabor filters, peaks are found by searching 

the locations (Figure 2.8c) by using windowing methods to find eyes, nose and 

mouth in the face (Kepenekci, 2001). 
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Figure 2. 8 (a) An example face image from Stirling database (b) Filter responses (c) High energized 

points of Gabor wavelet responses 

 

2.3.5 Neural Networks 

 

Most of the face recognition systems use smart algorithms to recognize the faces 

from the extracted features such as eigenfaces. One of the common technique is the 

artificial neural networks. This algorithm is biogogically inspired and based on the 

functionality of neurons. The equivalent of neurons in neural network are 

perceptrons. Neurons sum the strengths of all electric inputs. Similarly, perceptrons 

generates a weighted sum on their numerical inputs. A neural network is formed for 

each person in the face database by using these perceptrons. 

 

 The neural networks usually consist of three or more layers (Li, & Areibi, 2004). 

First, database images are dimensionally reduced by using PCA. The input layer of  

neural network takes these reduced images. The output layer of a neural network 

produces a numerical value between -1 and 1. In between of these two layers, there 

exist one or more hidden layers which are depend on the application. When using 

neural network for face recognition, using one hidden layer provides a good balance 

between accuracy and complexitiy. Increasing the number of hidden layer, training 

time of the system exponentially increases. 
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 When the neural network is formed for each person, first it must be trained to 

recognize that person. The most common training method is the back propagation 

algorithm (Li, & Areibi, 2004). By using this algorithm, the weights of the 

connections between neurons are set. The result of these connections are high output 

value (near to 1) belong to the person it represents and low output value (near to -1) 

for other people. In the recognition face, neural network system returns the highest 

numerical output for this person. 

  

 The biggest problem of neural networks is that, there is no clear method to find 

the initial network topologies. Since training takes a long time, experimenting with 

such topologies becomes a difficult task (Li, & Areibi, 2004). Another main issue 

occurs when neural networks are tried to use online training, time consuming task 

and the difficulty of adding a new person to database is not well suited for real-time 

applications. 
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CHAPTER THREE  

FINGERPRINT ANALYSIS AND REPRESENTATION 

 

3.1 Introduction 

 

A fingerprint is the reproduction of a fingertip epidermis and is produced when a 

finger is pressed against a smooth surface. The most evident structural characteristic 

of a fingerprint is a pattern of interleaved ridges and valleys; in a fingerprint image 

(Figure 3.1), ridges (also called ridge lines) are dark whereas valleys are bright 

(Maltoni, Maio, Jain, & Prabhakar, 2003). The size of the ridges vary in width from 

100 µm, for very thin ridges, to 300 µm for thick ridges. Generally, the period of a 

ridge/valley cycle is about 500 µm (Stosz, & Alyea, 1994). Injuries such as burns or 

cuts do not affect the underlying ridge structure, and the original pattern is duplicated 

when the new skin grows. 

 

              Figure 3.1 Ridges and valleys on a fingerprint image. 

In fingerprint, ridges and valleys often run in parallel. Sometimes, ridges and 

valleys bifurcate or terminate. If fingerprint is analyzed at the global level, the 

fingerprint pattern exhibits one or more regions where the ridge lines assume 

distinctive shapes. These regions are called singularities or singular regions and they 

can be classified at major and local levels. When major level discussed, it can be 
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seen that, singular regions may be classified into three typologies: loop, delta, and 

whorl. Singular regions of a fingerprint belonging to loop, delta, and whorl types are 

characterized by ∩, Δ, and О shapes, respectively. Figure 3.2 (Maltoni, Maio, Jain, & 

Prabhakar, 2003) shows that major singular regions. This figure also shows that the 

center point of the fingerprint or formerly called core. 

 

             Figure 3.2 Singular regions and core points in fingerprint images. 

When fingerprint patterns discussed in local level, other important features, called 

minutiae can be found. Minutia means small detail; in the context of fingerprints, it 

refers to various ways that the ridges can be discontinuous  and for example, a ridge 

can suddenly come to an end (termination), or can divide into two ridges 

(bifurcation) (Maltoni, Maio, Jain, & Prabhakar, 2003). Figure 3.3.(a) shows that the 

most common minutia types such as termination, bifurcation, lake or crossover.  

These minutiae types are commonly used for fingerprint recognition. The American 

National Standards Institute (ANSI) proposed a minutiae taxonomy method based on 

four classes. These classes are terminations, bifurcations, trifurcations (or 

crossovers), and undetermined. But, the FBI minutiae-coordinate model considers 

only terminations and bifurcations: each minutia is denoted by its class, the x- and y-

coordinates and the angle between the tangent to the ridge line at the minutia position 

and the horizontal axis (Figure. 3.3.(b) and 3.3.(c)) (Wegstein, 1982).  
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Figure 3.3 a) The most common minutiae types; b) Termination minutia : [x 0 ,y 0 ] are the minutia           

coordinates; θ is the angle that the minutia tangent forms with the horizontal axis; c) A bifurcation 

minutia; θ is now defined by means of the termination minutia corresponding to the original 

bifurcation that exists in the negative image (Maltoni, Maio, Jain, & Prabhakar, 2003). 

3.2 Fingerprint Image Processing and Feature Extraction 

 

Most of the fingerprint recognition and classification algorithms require a feature 

extraction stage for identifying remarkable features. The features extracted from 

fingerprint images often have a direct physical counterpart such as singularities or 

minutiae, but sometimes they are not directly related to any physical traits such as 

local orientation image or filter responses. These features may be used directly for 

matching or an intermediate step for the derivation of other features. For example, 

some preprocessing and enhancement steps are often performed to simplify the task 

of minutiae extraction (Maltoni, Maio, Jain, & Prabhakar, 2003).  

 

A fingerprint image, I, is often represented as a two-dimensional surface. When I 

be a gray-scale fingerprint image with g gray-levels, bright pixels associated with 

with gray-levels close to g-1 and dark pixels associated with gray-levels close to 0. 
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3.3 Estimation of Local Ridge Orientation 

 

Let [x, y] be a generic pixel in a fingerprint image. The local ridge orientation at 

[x, y] is the angle θ xy  that the fingerprint ridges, crossing through an arbitrary small 

neighborhood centered at [x, y], form with the horizontal axis (Maltoni, Maio, Jain, 

& Prabhakar, 2003). 

 

Instead of computing local ridge orientation at each pixel, most of the fingerprint 

processing and feature extraction methods estimate the local ridge orientation at 

discrete positions such as local windows. The size of the local windows can be varied 

depending on the application. The fingerprint orientation image is a matrix D whose 

elements encode the local orientation of the fingerprint ridges. Figure 3.4 shows the 

orientation of a fingerprint image (Maltoni, Maio, Jain, & Prabhakar, 2003). Note 

that each element θ ij  shows that the orientation of each window. An additional value 

r ij  is often associated with each element θ ij  to denote the reliability of the 

orientation. The simplest and most natural approach for extracting local ridge 

orientation on a fingerprint image is based on computation of gradients. 

 

 

 

  Figure 3.4 A fingerprint image faded into the corresponding orientation image computed over a     

16 x 16 local windows. Each element denotes the local orientation of the fingerprint ridges, θ ij ;    

the element length is proportional to its reliability, r ij . 
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3.4 Estimation of Local Ridge Frequency 

 

The local ridge frequency (or density) xyf at point [x, y] is the inverse of the 

number of ridges per unit length along a hypothetical segment centered at [x, y] and 

orthogonal to the local ridge orientation θ xy (Maltoni, Maio, Jain, & Prabhakar, 

2003). A frequency image F can be defined if the frequency is estimated at discrete 

positions and arranged into a matrix. First, 32 x 16 oriented window centered at [ ix , 

jy ] is defined. Then the x-signature of the gray-levels is obtained by accumulating, 

for each column x, the gray-levels of the corresponding pixels in the oriented 

window. This kind of averaging makes the gray-level profile more smoother and 

prevents ridge peaks. ijf  is determined as the inverse of the average distance 

between two consecutive peaks of the x-signature. Figure 3.5 shows the estimation of 

local ridge frequency. 

 

 

 

Figure 3.5 Estimation of local ridge frequency. An oriented window centered at [ ix , jy ]. The dashed 

lines show the pixels whose gray-levels are accumulated for a given column of the x-signature. The x-

signature on the right clearly exhibits five peaks; the four distances between consecutive peaks are 

averaged to determine the local ridge frequency (Maltoni, Maio, Jain, & Prabhakar, 2003). 
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3.5 Singularity and Core Detection 

 

Most of the approaches proposed in the literature for singularity detection operate 

on the orientation of the fingerprint image. Poincarè index method is the most 

common method used for detecting singularities and core on a fingerprint pattern. 

This method is summarized in the following section. 

 

3.5.1 Poincarè Index Method 

 

Define G is a vector field and С be a curve in G; then the Poincarè index CGP ,  is 

defined as the total rotation of the vectors of G along curve С (Figure 3.6). 

 

 

                         Figure 3.6 The Poincarè index computed over a curve C immersed in vector  

                         field G (Maltoni, Maio, Jain, & Prabhakar, 2003). 

 

Let G be the field associated with a fingerprint orientation image D and let [i, j] be 

the position of the element θ ij  in the orientation image; then the Poincarè index 

CGP , (i, j) at [i, j]  is computed by first taking the curve С is a closed path defined as 

an ordered sequence of some elements of D. Usually the element [i, j] of D is internal 

point. CGP , (i, j)  is computed by algebraically summing the orientation differences 

between  adjacent elements of curve С. Summing orientation differences require a 

direction to be associated at each orientation. For solving this problem, the direction 

of the first element is randomly selected and the direction of the other elements is 

found by assigning the closest direction to that of the previous element to each 

successive element. On closed curves, the Poincarè index assumes only one of the 
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discrete values: 0°, ±180°, and ±360°. Singularities on a fingerprint image are 

defined in Eq. (2-1).  
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 In 3 x 3 windowing, the path defining curve C is the ordered sequence of the eight 

elements d k  (k = 0, ..., 7) surrounding the internal point [i, j]. The direction of the 

elements d k  is chosen as follows: d 0  is directed upward; d k  (k = 0, ..., 7) is directed 

so that the absolute value of the angle between d k  and d 1k  is less than or equal to 

90° (Maltoni, Maio, Jain, & Prabhakar, 2003). The computation of Poincarè index 

method is in Eq. (2-2) and an example of this method is shown in Figure 3.7 

(Maltoni, Maio, Jain, & Prabhakar, 2003).  
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               Figure 3.7 Example of computation of the Poincare index in the 8-neighborhood of points            

belonging (from the left to the right) to a whorl, loop, and delta singularity, respectively. 

 

3.6 Normalization 

 

In an ideal fingerprint image, ridges and valleys alternate and flow in a locally 

constant direction but in practice the input images must be enhanced before minutiae 
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extraction to increase the performance of fingerprint recognition techniques. 

Normalization is one of the most commonly used enhancement method for 

determining the new intensity value of each pixel in an fingerprint image as;              
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where m and v are the image mean and variance and m 0  and v 0  are the desired mean 

and variance after the normalization process.  

 

Normalization technique is a pixel-wise operation and does not change the ridge 

and valley structures. Figure 3.8 shows an example of normalization process 

(Maltoni, Maio, Jain, & Prabhakar, 2003). Input image is normalized with  desired 

mean and variance values.  

 

 

     Figure 3.8 An example of normalization with values of m 0 =100 and v 0 =100. 

 

3.7 Minutiae Detection 

 

Most of the automatic fingerprint identification systems used minutiae matching 

for fingerprint comparison so, reliable minutiae extraction is an extremely important 
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task and a lot of research has been devoted on this topic. Most of the proposed 

methods for minutiae detection require the fingerprint gray-scale image to be 

converted into a binary image. Some of the binarization processes are dilation, 

erosion, opening, closing, thinning and thicking. These processes are greatly benefit 

from an a priori enhancement. The binary images obtained by the binarization 

process are usually submitted to a thinning stage which allows for the ridge line 

thickness to be reduced to one pixel and finally, a simple image scan allows the 

detection of pixels that correspond to minutiae (Figure 3.9) (Maltoni, Maio, Jain, & 

Prabhakar, 2003). 

 

 

Figure 3.9 a) A fingerprint gray-scale image; b) The image obtained after a binarization of the 

image in (a); c) The image obtained after a thinning of the image in (b).  

 

Once a binary skeleton of a fingerprint image has been obtained, a simple image 

scan allows the pixel corresponding to minutiae to be detected. In fact the pixels 

corresponding to minutiae are characterized by a crossing number and the crossing 

number cn(p) of a pixel p in a binary image is defined as half the sum of the 

differences between pairs of adjacent pixels in the 8-neighborhood of p; 
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where p 0 , p 1 ,..., p 7  are the pixels belonging to an ordered sequence of pixels 

defining the 8- neighborhood of p and val(p) {0,1} is the pixel value (Maltoni, 

Maio, Jain, & Prabhakar, 2003). Figure 3.10 shows and defines a pixel p with val(p) 

= 1 according to crossing number for 3x3 window; 
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• is an intermediate ridge point if cn(p) = 2;  

• corresponds to a termination minutia if cn(p) = 1;  

• defines a more complex minutia (bifurcation, crossover, etc.) if cn(p)   3 (Maltoni, 

Maio, Jain, & Prabhakar, 2003). 

 

 

   Figure 3.10 a) Intra-ridge pixel, b) Termination minutia, c) Bifurcation minutia. 

 

Some authors have proposed that minutiae extraction approaches that work 

directly on the gray-scale images without binarization and thinning because a 

significant amount of information may be lost these processes and these processes 

are time consuming rather than using gray-scale image. Image quality also affects the 

performance of binarization processes.  

 

3.8 Estimation of Ridge Count 

 

Orientation, frequency, absolute position, and type of minutiae are not the only 

features that can be used for fingerprint recognition. The latest studies show that 

using ridge count is increasing the reliability of analysis.  

 

Ridge count is a measurement of the distances between any two points in the 

fingerprint image. Let a and b be two points in a fingerprint; then the ridge count 

between point a and point b is the number of ridges intersected by segment ab 

(Figure 3.11) (Maltoni, Maio, Jain, & Prabhakar, 2003). 
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                                       Figure 3.11 In this example the number of ridges intersected 

                                 by segment ab (ridge count between a  and b) is 8. 

 

3.9 Fingerprint Matching 

 

A fingerprint matching algorithm compares two given fingerprints and returns 

either a degree of similarity or a binary decision such as mated or non-mated like in 

the recognition system. The large number of approaches to fingerprint matching can 

be classified into three families: 

 

1) Correlation-based matching: Two fingerprint images are correlated and the 

correlation between corresponding pixels is computed for different alignments. In 

this thesis one of the most popular correlation-based matching, principal component 

analysis (PCA), is used. 

 

2) Minutiae-based matching: This is the most popular and widely used technique for 

fingerprint comparison. This technique is also being the basis of the fingerprint 

analysis. First, minutiae are extracted from the two fingerprints and stored as sets of 

points. Then, matching algorithm is used for finding the alignment between the 

template and the input minutiae sets. Final result is estimated in the maximum 

number of minutiae pairings. 
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3) Ridge feature-based matching: Minutiae-based extraction is difficult in very low-

quality fingerprint images. However, whereas other features of the fingerprint ridge 

pattern (e.g., local orientation and frequency, ridge shape, texture information) may 

be extracted more reliably than minutiae, their distinctiveness is generally lower 

(Maltoni, Maio, Jain, & Prabhakar, 2003). The approaches belonging to ridge 

feature-based matching compare fingerprints in term of features extracted from the 

ridge pattern.  
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CHAPTER FOUR 

PROGRAMMABLE LOGIC DEVICES 

 

This chapter details the brief history of programmable logic devices from simple 

architectures to modern complex architectures. Interconnect types of programmable 

logic devices and configuration techniques are also discussed. Also two Altera FPGA 

based development kits: UP3 Education Kit and DE2-70 Development Kit used for 

this project has been introduced. 

 

4.1 History of Programmable Logic 

 

By the late of 1970s, printed circuit boards are loaded with standard logic devices. 

Then to offer the ultimate in design flexibility, Ron Cline from Signetics came up 

with the idea of two programmable planes. These planes are provided any 

combination of “AND” and “OR” gates, as well as sharing of AND terms across 

multiple ORs (Xilinx, 2006). 

 

 

         Figure 4.1 Simple PLA architecture. 

 

MMI brings a new technology by fixing one of the programmable planes to 

decrease the propagation delay time through the device and complexity of the 

software. One programmable AND and Fixed OR arrays are called as Programmable 
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Array Logic (PAL) or Simple Programmable Logic Device (Simple PLD). Figure 4.2 

shows the architecture of PAL. 

 

 

                   Figure 4.2 PAL or simple PLD. 

 

With the improvement in PLA and PAL devices, new type of PLD devices are 

introduced which extend the density of SPLDs. These devices are called as Complex 

Programmable Logic Device (CPLD). CPLD’s brings major advantages to industry 

such as; 

 

- Ease of design, 

- Lower Development Costs, 

- Reduced board area, 

- Higher speeds, 

- On-system programming. 

 

 

  Figure 4.3 CPLD architecture. 
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In 1985, Xilinx introduced Field Programmable Gate Array (FPGA) which is an 

alternative type of PLD. FPGA architecture and device configuration methods are 

discussed in the following section. 

 

4.2 FPGA Architecture 

 

There are two types of FPGAs: SRAM-based programmable FPGA and One time 

programmable FPGA. The most commonly used design is SRAM-based design. The 

advantage of this design is reprogramming ability. But, SRAM-based FPGA needs 

reprogramming everytime when it’s powered up. So, most of the designs use a serial 

PROM for storing programming data.   

 

FPGA architecture consists of an array of logic blocks, routing channels and I/O 

communication interconnects. Depending on the vendor these logic blocks called as 

Configure Logic Block (CLB) for Xilinx and Logic Array Block (LAB) for Altera. 

In our thesis, we used Altera based development kits that use Cyclone FPGAs, so 

Altera LAB architecture is described in the next section. 

 

4.2.1 Logic Element (LE) 

 

The smallest unit of logic in the Cyclone II architecture is the Logic Element 

(LE). LE provides advanced features with efficient logic utilization.  

Each LE features: 

 

- A four-input look-up table (LUT), which is a function generator that 

can implement any function of four variables, 

- A programmable register 

- A register chain  and a carry chain connection 

- The ability to drive all types of interconnects: local, row, column, 

register chain, and direct link interconnects 

- Support for register feedback 

- Support for register packing (Cyclone II Handbook, Altera Corp., 2007). 
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Figure 4.4 Cyclone II logic element. 

 

LE operates in two modes by using different resources depending on the 

application. First mode is normal mode and this mode is suitable for combinational 

functions and common logic applications. The second mode is arithmetic mode and 

this mode provides adders, accumulators, counters and comparators. 

 

4.2.2 Logic Array Block (LAB) 

 

Each LAB consists of the following: 

 

- 16 LEs 

- LAB control signals 

- LE carry chains 

- Register chains 

- Local interconnect 

 

The local interconnect transfers signals between LEs in the same LAB. Register 

chain connections transfer the output of one LE’s register to the adjacent LE’s 
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register within an LAB (Cyclone II Handbook, Altera Corp., 2007). Figure 4.5 shows 

Cyclone II LAB architecture. 

 

 

 Figure 4.5 Cyclone II LAB architecture. 

 

Wide variety of connections can be made by investigating Figure 4.5. However, 

this flexible routing increase the logic complexity.  

 

4.3 FPGA Configuration 

 

FPGAs can be configured in several ways such as schematic design entry, using 

hardware description languages (HDLs) and using high-level languages. These 

methods are described in the following sections according to their abstraction level 

from lowest level schematic design entry to highest level high-level language 

compilers. 

 

4.3.1 Schematic Design Entry 

 

Schematic design entry is the lowest level of FPGA configuration. Schematic 

design includes standard logic gates, multiplexers, I/O buffers, storage elements and 
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macros for device specific functions such as adders or plls. The macros can be 

constructed from primitive logic elements to further use in large circuit designs. 

 

Schematic design entry is the least popular method of describing hardware, 

because when the complexity of the circuit increases, it is difficult to follow 

connection nodes in the schematic. 

 

 

Figure 4.6 An example by using schematic design entry. 

 

4.3.2 Hardware Description Languages 

 

Hardware Description Languages (HDLs) are text-based depictions of the 

behaviour of the digital circuit. The differences of HDLs from software 

programming languages  are the ways of describing the propagation of time and 

signal dependencies. The most popular HDLs are VHDL and Verilog HDL. These 

languages are similar but use different notations. 

 

VHDL stands for VHSIC Hardware description language where VHSIC stands for 

very high speed integrated circuit. VHDL was originally develop by the US 

Department of Defense and released in 1985. 

 

Verilog HDL development started in Gateway Design Automation Inc. in 1985. 

Cadence Design Systems purchase Gateway Design Automation in 1990. With this 

purchase, Verilog is started to use in public and very popular in industry from this 

date. 
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library ieee; 

use ieee.std_logic_1164.ALL; 

use ieee.std_logic_unsigned.ALL; 

 

entity halfadder is  

   port (in_A           : in  std_logic; 

         in_B           : in  std_logic; 

         sum            : out std_logic; -- sum out from A+B 

         carry          : out std_logic  -- carry out from A+B 

        ); 

end halfadder; 

 

architecture rtl of halfadder is 

 

begin  

 

   sum <= (in_A XOR in_B); 

   carry <=  in_A AND in_B;    

 

end rtl; 

 

Figure 4.7 Half adder implementation by using VHDL. 

 

module halfadder(in_A,in_B,sum,carry); 

 

input in_A; 

input in_B; 

output sum; 

output carry; 

 

   assign sum = in_A ^ in_B; 

   assign carry = in_A & in_B; 

 

endmodule 

 

Figure 4.8 Half adder implementation by using Verilog HDL. 

 

4.3.3 High-Level Languages 

 

Using high-level programming languages for FPGA design is the increasing 

interest in the industry. The custom language such as C or phyton is compiled to 

generate a Verilog HDL or VHDL circuit description. SystemC, Celoxia’s DK 

Design suite and MyHDL are an example of high-level languages. 

 

Half adder implementation by using VHDL, Verilog HDL and SystemC is shown 

in Figure 4.7, Figure 4.8 and Figure 4.9 respectively. 
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#include “systemc.h” 

SC_MODULE(half_adder) { 

  sc_in<bool>a, b; 

  sc_out<bool>sum, carry; 

  void proc_half_adder(); 

  SC_CTOR(half_adder) { 

    SC_METHOD (proc_half_adder); 

    sensitive << a << b; 

  } 

}; 

 

void half_adder::proc_half_adder() { 

  sum = a ^ b; 

  carry = a & b; 

} 

 

Figure 4.9 Half adder implementation by using SystemC. 

 

4.4 FPGA Development Kits 

  

There are several development boards to explore the capabilities of FPGAs and to 

develop prototypes. In this section, two FPGA development kits used in this project 

have been demonstrated. 

 

4.4.1 UP3 Education Kit 

 

UP3 Education Kit is produced by System Level Solutions (SLS). The following 

informations include general features, UP3 board top view and UP3 development kit 

photo is taken from UP3 Education Reference Manual (Version 0.1, SLS 2004).  

 

The general features of UP3 Education Kit are listed below; 

 

- Features an Altera EP1C6Q240 Device and EPCS1 configuration devices 

- Supports intellectual property based (IP-Based) design both with and without a 

microprocessor. 

- USB 1.1 (Full speed & Low speed) 

- RS 232 Port (Full Modem) and Parallel Port (IEEE1284) 
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- PS/2 Port 

- VGA Port 

- IDE (Integrated Drive Electronics) 

- 128 KBytes of SRAM (64K x 16) 

- 2 MBytes of FLASH (1M x 16) 

- Supports multiple clocks like PCI clock, USB clock, IOAPIC clock and CPU clock 

- JTAG and Active Serial download capability 

- 5V Santa Cruz Long Expansion Card Header provides 72 I/O for the development 

of additional board providing various functionalities 

- One user definable 4-bit switch block 

- Four user definable push button switches, and one global reset switch 

- Four user definable LEDs 

- One 16 x 2 character display LCD Module 

- I2C Real Time Clock. 

 

   Figure 4.10 UP3 board top view. 
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The Device Features of Cyclone EP1C6Q240 FPGA: 

 

- 5980 Logic Elements (LEs) 

- 20 RAM Blocks 

- 92160 Total RAM Bits 

- 2 PLLs 

- 185 Maximum number of I/Os 

 

Figure 4.11 Photo of UP3 board. 

  

4.4.2 DE2-70 Development Kit 

 

 The DE2-70 board is produced by Terasic Technologies. The general features of 

this device and a board photo is taken from Altera DE2-70 Development and 

Education Board User Manual (Version 1.08, Terasic Technologies 2009). 

 

The following hardware is provided on the DE2-70 board: 

 

- Altera Cyclone® II 2C70 FPGA device 

- Altera Serial Configuration device - EPCS16 
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- USB Blaster (on board) for programming and user API control; both JTAG and 

Active Serial (AS) programming modes are supported 

- 2-Mbyte SSRAM 

- Two 32-Mbyte SDRAM 

- 8-Mbyte Flash memory 

- SD Card socket 

- 4 pushbutton switches 

- 18 toggle switches 

- 18 red user LEDs 

- 9 green user LEDs 

- 50-MHz oscillator and 28.63-MHz oscillator for clock sources 

- 24-bit CD-quality audio CODEC with line-in, line-out, and microphone-in jacks 

- VGA DAC (10-bit high-speed triple DACs) with VGA-out connector 

- 2 TV Decoder (NTSC/PAL/SECAM) and TV-in connector 

- 10/100 Ethernet Controller with a connector 

- USB Host/Slave Controller with USB type A and type B connectors 

- RS-232 transceiver and 9-pin connector 

- PS/2 mouse/keyboard connector 

- IrDA transceiver 

- 1 SMA connector 

- Two 40-pin Expansion Headers with diode protection 

 

The Device Features of Cyclone II 2C70 FPGA: 

 

- 68,416 Logic Elements 

- 250 M4K RAM Block 

- 1,152,000 total RAM bits 

- 150 embedded multipliers 

- 4 PLLs 

- 622 user I/O pins 

- FineLine BGA 896-pin package 
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   Figure 4.12 DE2-70 board top view. 
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CHAPTER FIVE 

FPGA-BASED FACE AND FINGERPRINT RECOGNITION SYSTEM 

DESIGN 

 

This chapter describes the implementation of FPGA-based face and fingerprint 

recognition system of this thesis. As mentioned in previous chapters two FPGA 

development kits are used to realize this recognition system. The purpose of using 

two development kits and implementation on these boards are also covered in this 

chapter. In the following sections of this chapter, the first project which are 

implemented to familiarize with FPGAs are also included to the help the FPGA 

beginners.  

 

5.1 Face and Fingerprint Recognition System Design on UP3 Development Kit 

 

5.1.1 Quartus II Software 

 

The first study on UP3 development kit is to learn the usage of design tools. 

Analysis and synthesis tool, Quartus II software, is a powerful programmable logic 

design software that is released from Altera. The most important Quartus II features 

are;  

 

- Implementation of VHDL and Verilog for hardware description 

- Visual edition of logic circuits using schematic entity design 

- Vector waveform simulation. 

 

Quartus II software is a comprehensive environment for system-on-a-

programmable-chip (SOPC) design and includes solutions for all phases of FPGA 

and CPLD design. Quartus II design flow is illustrated in Figure 5.1 which is 

provided by Altera. Altera’s Quartus II software allows us to use Quartus II graphical 

user interface, EDA tool interface or command-line interface for each phase of the 

design flow. Quartus II handbook describes the all features of Quartus II graphical 

user interface for each stage of the design flow. This is shown in Figure 5.2. 
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                              Figure 5.1 Quartus II design flow. 

 

 

         

         Figure 5.2 Quartus II graphical user interface features. 
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5.1.2 Preliminary Study on UP3 Development Kit 

 

After learning the basic features of Quartus II such as how to compile a project 

and how to program the board from Quartus II handbook and some examples, second 

step is to design combinational circuits for getting used to the development board. 

 

First idea is to configure FPGA with different types of combinational circuits, 

which have one or more inputs and similarly one or more outputs. Figure 5.3 shows 

and summarizes first study on UP3 development kit. In these examples DIP switches 

are used as inputs and LEDs are used for outputs. 

 

 

 

 

 

 

 

     Figure 5.3 Overview of FPGA configuration examples using schematic design. 

 

With studying combinational circuits by using schematic entity design, the basic 

concepts of circuit design are learnt, such as connecting components, pin 

assignments, adjusting Quartus II settings, compiling and testing the projects. 

 

After implementing combinational circuits, next step is to design sequential 

circuits. Sequential logic is a type of logic circuit whose output depends not only on 

the present value input but also depends on the previous value of the input. To 

provide present and previous values together, memory or storage elements are used 

in sequential logic. Using memory or storage elements are the major difference 

between sequential logic and combinational logic circuits. Counter is a sequential 

logic device which stores and sometimes displays the number of times a particular 

event or process has occured. For counter design, a memory buffer with clock and 

counter pins are needed.  

   FPGA 

 

 Simple AND/OR Gates 

 Half/Full Adders 

 Comparators 

 Customized combinational 

     logic circuits 

 

Inputs Outputs

st 
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At design step, clock signal is connected to global clock signal of UP3, and reset 

signal is connected to global reset pushbutton. After testing these connections, clock 

signal is same value with global clock signal but, reset signal isn’t same value with 

the of global reset pushbutton. To overcome this issue, reset signal is connected to 

one of DIP switches and tested it with new connection. Using a switch for reset 

signal is solved this problem so this approach has used for all sequential projects 

during the study. When solving reset signal issue, we have tested counter 

implementation by watching LEDs on UP3 development kit. Sequentially lighted and 

unlighted LEDs showed us the correctness of this implementation. 

 

Previous examples with combinational and sequential logic circuits were 

implemented by using scheamatic entity design. After these examples next step is to 

start learning and making some examples with one of hardware description 

languages. VHDL and Verilog HDL are compared in different aspects such as, ease 

of use, ease of understand, ease of learn, etc... and VHDL is selected as a hardware 

description language. Previous examples are coded and tested in VHDL. Learning 

VHDL and understanding the parallelism concept are taken a very long time. 

Because if the complexity of the implementation increases, following and 

understanding the circuit behaviour becomes more difficult. On the otherhand, 

controlling hardware within a pre-determined rising edge or falling edge of clock 

signal is the biggest advantage of using VHDL. 

 

 

    Figure 5.4 First approach of our face recognition system design.  
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For the implementation of face recognition system, a system that includes a PC 

and a UP3 development kit is preferred. Figure 5.4 summarizes this face recognition 

system. In this system, major operations such as capturing and processing image, 

computation of principal component analysis (PCA) is implemented on PC.  

 

As described in Figure 5.4, PCA algorithm is run on MATLAB for creating 

features for database images and these features are sent to FPGA via serial port and 

will be stored in FPGA’s SRAM Cells. When a face image is tested, this must be 

projected to the face space by using PCA basis matrix on host PC and then, projected 

test image will be sent to FPGA to compare and determine the result. At last, the 

result will be sent back to host PC to show which user is recognized. This system and 

design concepts are discussed in the following sections. In Section 5.1.3 PCA 

algorithm implementation in MATLAB is described. Section 5.1.4 gives the basic 

concepts of Universal Asynchronous Receiver/Transmitter (UART) structure and 

Section 5.1.5 shows UART implementation in VHDL. The results and findings are 

mentioned in Section 5.1.6.  

 

 5.1.3 PCA implementation on MATLAB 

 

Before implementing PCA on UP3 development kit, first PCA algorithm is 

implemented in MATLAB. ORL Database is used for this implementation. There are 

20 people and 10 images for each person in this database. The size of the images in 

this database are 112x92. Figure 5.5 shows some example images from this database. 

  

As a start 8 images of 6 people are selected for creating the database and the rest 2 

images are used for tests. The source code of this system is in the Appendix with the 

folder name of “5_1_3_PCA_MATLAB”. 

 

FaceRec.m is the main MATLAB function of this implementation. In this 

implementation, first the images that are used for database are resized from 112x92 

to 48x48 and stored on a different folder. Each image on the new folder are 

transformed into vectors and placed one column of new population matrix. For 
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example, first image in the folder is converted to a vector of 2304x1, then this vector 

is put to first column of population matrix. This process is continued for all images. 

By processing for 48 images (6 people and 8 images for each people), population 

matrix is created with size of 2304x48. Loadpop.m is responsible for this duty. This 

population matrix, X, is used for creating the basis function. Makebasis.m shows the 

PCA algorithm implementation. First, covariance of X is computed then eigenvalues 

and eigenfaces are found. By sorting eigenvalues in descending order, eigenface 

vector or face space vector, A, is computed. The size of A is 2304x2304. Next step is 

to project population matrix, X, to face space by multiplying the face space vector, A. 

The result of this multiplication is stated as Ytrain in the source code. To reduce the 

computation time, only the first a few eigenvectors are used. User enters the number 

of eigenvectors that will be used on creating Ytrain matrix in the start of the 

programme.  

 

 

                 Figure 5.5 Some examples from ORL Database. 

 

Test step is similar with database creation step. User also enters the person and 

image number that will be tested. First, image is resized then projected face space by  

multiplying by A. The result of this multiplication is Xtest. After computing Xtest, the 

last thing is to compare Ytrain and Xtest by using Euclidean distance and absolute 

distance, then to return result to the user.  
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Figure 5.6 shows the user’s inputs. As seen from this figure the number of people 

and images from each person for database creation is asked from the user. The image 

from will be tested is also asked with the number of eigenface that will be used. 

 

 

 Figure 5.6 User’s inputs face recognition programme on MATLAB. 

 

 

 Figure 5.7 Output of the programme on MATLAB. 

 

Figure 5.7 shows output of the programme. new_result_person and 

new_result_person_norm holds the result of comparision between Ytrain and Xtest 

by using Euclidean distance and absolute distance respectively. 
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Figure 5.8.a shows the tested image on this example and Figure 5.8.b shows the 

face images of test person in the database. Note that, the poses of the 2nd person 

images in the database are different, but PCA algorithm has successfuly identified 

the person. Figure 5.9 shows another test on the system. 

 

 

Figure 5.8 a) 9th image of 2nd person that used for test. b) First 6 image of 2nd person. Note that 

these images are included in database. 

 

 

Figure 5.9 Another test result. a) 10th image of 1st person that used for test. b) First 6 image of 1st 

person. Note that these images are included in database. 

 

Table 5.1 Recognition table for this system 

Recognition Table 
test image 

9th 10th 

p
er

so
n

 n
u

m
b

er
 1st + + 

2nd + + 

3rd + + 

4th + + 

5th + + 

6th + + 
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To understand the performance of this system recognition rate must be computed 

with testing all images that are not used for database creation. Table 5.1 shows the 

test results for each images. 

 

Note that “+” signs in Table 5.1 shows that recognition for this image is correct. 

The all results are correct so the recognition rate for this system is %100. Before 

implementing this system on FPGA, changing some parameters allows to understand 

the variying on recognition rate. By using the same PCA algorithm new systems are 

created by changing image numbers for database and changing the number of 

eigenvectors. “System-II”, “System-III” and “System-IV” includes 6 images from 6 

people with the number of eigenvectors that used for creating face spaces are 5, 3 

and 1 respectively. Recognition tables for these systems are given below. Note that, 

7th, 8th, 9th and 10th images of each person are tested. 

 

Table 5.2 Recognition table for System-II with 5 eigenvectors. 

Recognition Table 
test image 

7th 8th 9th 10th 

   
 p

er
so

n
 n

u
m

b
er

 1st + + + + 

2nd + + + + 

3rd + + + + 

4th + + + + 

5th + + + + 

6th + + + + 

 

Table 5.2 shows that the recognition rate of System-II is %100. When comparing 

Table 5.1 and 5.2, it can be seen that image numbers that are used for creating 

database can be decreased. It is too important because, the aim of the project is to 

implement this algorithm on FPGA. In embedded system designs, using less 

resources decrease the implementation cost and computation time.    
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Table 5.3 Recognition table for System-III with 3 eigenvectors. 

Recognition Table 
test image 

7th 8th 9th 10th 
   

 p
er

so
n

 n
u

m
b

er
 1st + + + - 

2nd + + + + 

3rd + + + + 

4th + + + + 

5th + + + + 

6th + + + + 
 

Table 5.4 Recognition table for System-IV with 1 eigenvector. 

Recognition Table 
test image 

7th 8th 9th 10th 

   
 p

er
so

n
 n

u
m

b
er

 1st + + + - 

2nd + - + + 

3rd + + + + 

4th + - - - 

5th - + - - 

6th - - + - 

 

Table 5.2, Table 5.3 and Table 5.4 shows the effect of the number of eigenvectors 

that are used for creating the system. Note that “-” marks in Table 5.3 and Table 5.4 

show that the recognition is fail for that images. Table 5.3 shows that the recognition 

rate of System-III is approximately %96. By comparing Table 5.2 and Table 5.3, 

decreasing the number eigenvectors shows an acceptable recognition rate. 

Decreasing the number of eigenvectors is also important to decrease computation 

time. Table 5.4 shows that the recognition rate is nearly %54 in System-IV. This 

recognition rate is unacceptable for system design. 

 

From the comparisons of Table 5.1 with Table 5.2 and Table 5.2 with Table 5.3, 

using 6 images for creating database and selecting 3 eigenvectors are enough for 

PCA algorithm implementation on FPGA. This know-how is used for further system 

implementations on FPGA. 

 

After completing the PCA implementation on MATLAB, according to targeted 

implementation in Figure 5.4, serial communication with host PC and FPGA is 

studied. Following section briefly describes the basic concepts of UART. 
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5.1.4 UART 

This section briefly describes a universal asynchronous receiver/transmitter 

(UART). UART is the part of computer hardware that translates data between 

parallel and serial forms. Today, UARTs are commonly included in microcontrollers 

and they are commonly used in conjunction with other communication standards 

such as EIA RS-232. 

UART controller is the key component of the serial communications subsystem of 

computer hardware. The UART takes bytes of data and transmits the individual bits 

in a sequential bit-stream. At the destination, a second UART takes this bit-stream 

and re-assembles these bits into complete bytes. Serial transmission of digital 

information is much more cost effective than parallel transmission through multiple 

wires.  

 

Figure 5.10 Transmit and receive waveforms for 10-bit asynchronous serial protocol (Maxim,        

2007). 

In asynchronous transmitting, UARTs send a "start" bit, five to eight data bits, 

from least significant bit (LSB) to most significant bit (MSB), an optional "parity" 

bit, and then one, one and a half, or two "stop" bits. The state of start bit is the 
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opposite polarity of the data-line's idle state and  the state of stop bit is the data-line's 

idle state. The stop bit provides a delay before the next character can start. 

Asynchronous transmission allows data to be transmitted without sending the 

clock signal the receiver. So, the sender and receiver must agree on timing 

parameters. Framing error and parity check are the most common error detection 

methods that are used in UARTs.  

Figure 5.11 shows the internal structure of the UART. UART has 3 main 

components: Baud Rate Generator, Transmitter and Receiver. 

 
 

         Figure 5.11 Internal structure of the UART (Weinstein, Volz, & Redecker, 2004). 

 

5.1.4.1 UART Baud Rate Generator 

 

The UART Baud Rate Generator defines and generates the clock used for 

transmitting and receiving data via the UART. UART clock can be divided very 

precisely to acquire an error-free bit transportation. Figure 5.12 shows the baud rate 

generator. 
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          Figure 5.12 Baud rate generator (Weinstein, Volz, & Redecker, 2004). 

In Figure 5.12, the clock generated by the UART baud rate generator is 16 times 

higher than the baud rate that needed for transferring data. This clock is used by the 

Data Recovery Logic.This module samples the data and filters it a bit, so that less 

errors occur in data receiving.  

The clock used for shifting in the data is divided by 16 and therefore corresponds 

to the baud rate.The formula for calculating the Baud rate generated from a UART 

Baud Rate Register (UBRR) is; 

16( 1)

CLKf
BAUD

UBRR



              (5-1) 

But, in practice system clock and baud rate are constant and known values. So 

modifying Eq. (5-1) yield that Eq. (5-2). UBRR register is programmed hardware or 

software to satisfy this clock and baud rate.  

     1
(16 )

CLKf
UBRR

xBAUD
                           (5-2) 

If system clock is 50 MHz and 115200 Baud is needed, the UBRR value 

26.126736. So, it’s 26. The error due to baud rate is the actual baud rate divided by 
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the desired baud rate. The actual baud rate can be computed from Eq. (5-1), 115740 

baud. 115740/115200, is 1.005 and therefore error is %0.005.  

5.1.4.2 UART Transmitter 

The UART transmitter sends data from the UART core to some other device such 

as data logger, PC, another UART,  etc...) at the specified Baud Rate. Figure 5.13 

shows the internal structure of UART transmitter. 

 

      Figure 5.13 Internal structure of UART transmitter (Weinstein, Volz, & Redecker, 2004). 

The transmission process is initiated by writing data to Uart Data Register (UDR). 

This data is then transferred to the TX shift register when the previously written byte 

has been shifted out completely. When a byte is transferred to the TX shift register, 

the Uart Data Register Empty (UDRE) flag is set. The interrupt service routine of 

UDRE can now write the next byte to UDR without corrupting the transmission in 

progress. When a byte is completely shifted out and no new data has been written to 

UDR, shows the transmission is over, transmit complete (TXC) or end of 

transmisson (EOT) flag is set. 
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5.1.4.3 UART Receiver 

The UART receiver is basically built up like the transmitter. UART receiver uses 

data recovery logic for sampling the data and set an interrupt for the completion of 

data reception. The data is sampled in the middle of the bit to be received because the 

baud rate of the data recovery logic is 16 times of the actual baud rate. The baud rate 

value for shifting bits  is same with the transmitter. When the reception is over, 

receiver complete (RXC) or end of reception(EOR) flag is set. Figure 5.14 shows the 

internal structure of UART receiver. 

 

   Figure 5.14 Internal structure of UART receiver (Weinstein, Volz, & Redecker, 2004). 

 

5.1.5 UART Implementation in VHDL 

 

In this thesis UART implementation in VHDL is started with baud generator 

design. Then transmitter and receiver parts are implemented respectively. In the test 

step, hyperterminal and MATLAB serial communication toolbox are used. Note that 

baud generator design is tested when transmitter design is finished. The 

implementation results are described in the Section 5.1.6. 
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5.1.5.1 Baud Generator Design in VHDL 

 

Baud generator is a component that is used for both transmitter and receiver 

designs. Actually this module is simply a clock counter. For providing the 

transmission baud rate, baud generator counts clock ticks and create a new clock 

period. The entity of baud generator that used for transmitter is shown in Figure 5.15. 

This module takes a global clock input with transmitter’s baud enable to start the 

transmission, and produces baud rate as an output. Figure 5.16 shows the code 

segment that counts clock ticks and used for generating 115200 baud rate as an 

output where dividenum is “01A0h”.    

 

entity baudgen is  

   port (global_clock       : in  std_logic; 

         tx_ck_enable_baud  : in  std_logic; 

         baud_rate          : out std_logic 

        ); 

end baudgen; 

 

Figure 5.15 Baud generator entity that is designed for UART transmitter.  

 

NEWBAUD : process (global_clock)  

 

begin 

if(global_clock = '1' and global_clock'event) then 

 if (counter = dividenum) then 

   baud_rate <= '1'; 

   counter <= (others => '0'); 

 elsif (tx_ck_enable_baud = '1') then 

   baud_rate <= '0'; 

   counter <= counter + 1; 

 else 

   baud_rate <= '0'; 

   counter <= (others => '0'); 

 end if; 

end if;   

 

Figure 5.16 Code segment that is used for generating 115200 baud rate.  

 

5.1.5.2 UART Transmitter Design in VHDL 

 

Transmitter is dutied for transmitting bytes with a speed of baud rate. Figure 5.17 

shows the entity of transmitter module. In this module, g_clock is the global clock 
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signal that is routed to baud generator module, tx_data is the output bit of the state 

machine, eoto is the output that shows the end of transmission, data is the 8-bit input 

data that is sent via transmitter and write_tr is the transmitter enable input bit. 

 

entity uart_transmitter is  

   port (g_clock  : in  std_logic; 

         tx_data  : out  std_logic; 

         eoto     : out  std_logic; 

         data     : in  std_logic_vector(7 downto 0); 

         write_tr : in std_logic 

        ); 

end uart_transmitter; 

 

Figure 5.17 UART transmitter entity.  

  

Figure 5.18 shows the transmitter state machine. State machine is a key 

component of transmitter component because in this component, one byte of 8-bit 

input data is decomposed as a bit in each state, then sent respect to baud rate. The 

working principle of the state machine is same with the serial transmit in Figure 5.10. 

The flow of these states are started with transmit enable (tx_enable). If transmitter 

does not send any data, it is always in S0 state. S0 state is the idle state of transmitter. 

When transmit is enabled, at S0 state, start bit is sent first. Then, each bit of the data 

is sent from LSB to MSB while states are processed from S1 to S8. After the 

transmission of each bit of data is completed, at S9 state, stop bit is sent and end of 

transmission flag is set. At S9 state, the next state is also set to S0 and if there exist 

another byte that waits for transmission, transmitter state machine is started again for 

the next byte, until the last byte is sent. 

 

TX_STATE_MACHINE: process(current_state,tx_enable,datain,data) 

 

 begin 

  case current_state is 

 

   when S0 => 

    datain <= data; 

    eot <= '0'; 

    if (tx_enable = '1') then 

     txd <= '0'; 

     next_state <= S1; 

     TRANSMITTING<='1'; 

    else 

     txd <= '1'; 
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     TRANSMITTING<='0'; 

     next_state <= S0; 

    end if;  

   when S1 => 

    txd <= datain(0); 

    eot <= '0'; 

    TRANSMITTING<='1'; 

    next_state <= S2; 

   when S2 => 

    txd <= datain(1); 

    eot <= '0'; 

    TRANSMITTING<='1'; 

    next_state <= S3;   

   when S3 => 

    txd <= datain(2); 

    eot <= '0'; 

    TRANSMITTING<='1'; 

    next_state <= S4;    

   when S4 => 

    txd <= datain(3); 

    eot <= '0'; 

    TRANSMITTING<='1'; 

    next_state <= S5; 

   when S5 => 

    txd <= datain(4); 

    eot <= '0'; 

    TRANSMITTING<='1'; 

    next_state <= S6; 

   when S6 => 

    txd <= datain(5); 

    eot <= '0'; 

    TRANSMITTING<='1'; 

    next_state <= S7; 

   when S7 => 

    txd <= datain(6); 

    eot <= '0'; 

    TRANSMITTING<='1'; 

    next_state <= S8; 

   when S8 => 

    txd <= datain(7); 

    eot <= '0'; 

    TRANSMITTING<='1'; 

    next_state <= S9; 

   when S9 => 

    txd <= '1'; 

    eot <= '1'; 

    TRANSMITTING<='1'; 

    next_state <= S0; 

   when others => 

    null; 

 

  end case; 

 

 end process TX_STATE_MACHINE;  

 

Figure 5.18 Transmitter state machine. 
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5.1.5.3 UART Receiver Design in VHDL 

 

The receiver is responsible for capturing the input bit stream and composing these 

bits to a 8-bit data vector. Figure 5.19 shows the receiver entity. In this module, 

gl_clock is the global clock signal that is routed to baud generator module, rx_data is 

the input bit, rx_enable shows enable of receiver, rx_ck_baud_enable shows enable 

of receiver’s baud generator, data_out is the 8-bit data vector output of receiver 

module, data_rdy is signaled when data_out is constructed and eoro is the end of 

receiver flag. 

 

entity uart_receiver is  

   

   port (gl_clock           : in  std_logic; 

         rx_data            : in  std_logic; 

         rx_enable          : in  std_logic; 

         rx_ck_baud_enable  : in  std_logic; 

         data_out           : out  std_logic_vector(7 downto 0); 

         data_rdy           : out  std_logic; 

         eoro               : out std_logic 

         ); 

 

end uart_receiver; 

 

Figure 5.19 UART receiver entity.  

 

Figure 5.19 shows the receiver state machine and receiver data shift mechanism. 

Note that, rec_baud_clock in data shifting process, is the output of receiver’s baud 

generator. Receiver state machine is similar to the transmitter state machine. The 

working principle of the state machine is same with the serial receive in Figure 5.10. 

The flow of these states are started with receive enable (start). If receiver is on a wait 

condition, it is always in S0 state. S0 state is the idle state of receiver. When 

reception is started, at S0 state, start bit is received first. Then, each bit is shifted 

from LSB to MSB and while states are processed from S1 to S8. The shifted bits are 

stored in data. If stop bit is received at the end of the reception of each data bit, at S9 

state, end of receiver flag is set. data_rdy flag is also set at receiver when reception is 

finished. At S9 state, the next state is also set to S0 and receiver is started to listen to 

the port.   
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RXD_STATE_MACHINE:process(start,current_state,rx_enable,receiving) 

 begin 

 if (rx_enable = '0') then 

  if (start = '1' or receiving = '1') then 

   case current_state is 

    when S0 => 

     eor <='0'; 

     if (start = '1') then 

      next_state <= S1; 

      receiving <= '1'; 

     else 

      next_state <= S0; 

      receiving <= '0'; 

     end if; 

    when S1 => 

     receiving <= '1'; 

     eor <= '0'; 

     next_state <= S2; 

    when S2 => 

     receiving <= '1'; 

     eor <= '0'; 

     next_state <= S3; 

    when S3 => 

     receiving <= '1'; 

     eor <= '0'; 

     next_state <= S4; 

    when S4 => 

     receiving <= '1'; 

     eor <= '0'; 

     next_state <= S5; 

    when S5 => 

     receiving <= '1'; 

     eor <= '0'; 

     next_state <= S6; 

    when S6 => 

     receiving <= '1'; 

     eor <= '0'; 

     next_state <= S7; 

    when S7 => 

     receiving <= '1'; 

     eor <= '0'; 

     next_state <= S8; 

    when S8 => 

     receiving <= '1'; 

     eor <= '0'; 

     next_state <= S9; 

    when S9 => 

     receiving <= '1'; 

     eor <= '1'; 

     next_state <= S0; 

    when others =>    

     null; 

   end case; 

  end if; 

 end if; 

 end process RXD_STATE_MACHINE; 

 

RXD_SHIFT : process (rec_baud_clock,rx_enable) 

 begin 
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 if (rx_enable = '0') then 

  if (rising_edge(rec_baud_clock)) then 

   if (eor = '0') then 

    data <= rx_data & data(7 downto 1); 

   end if; 

  end if; 

 end if; 

 end process RXD_SHIFT; 

 

Figure 5.19 Receiver state machine. 

 

5.1.6 UART Implementation Results and Findings 

 

To test the UART implementation; Quartus II simulator tool, hyperterminal and 

MATLAB serial communication toolbox are used. This section shows the results of 

some test subsystems such as, one byte transmitter design, one byte receiver design 

and array transmitter design. For face recognition test system, as illustrated in Figure 

5.4, database and test features are extracted in MATLAB then these features are 

compared in UP3 development kit. First the comparision system is simulated then 

testing with MATLAB. 

 

5.1.6.1 One Byte Transmitter 

 

 Quartus II Simulator Tool is used for simulating this system. Simulation is started 

after creating the functional netlist on the project. Transmitter is initiated by the code 

segment that shown in Figure 5.20. Note that the components of this module are 

mentioned in Section 5.1.5.2. datainput is the one byte data that will be transmitted. 

The source code of this system is in the Appendix with the folder name of 

“5_1_6_1_UART_Transmitter”. Figure 5.21 and Figure 5.22 shows the simulation 

results when datainput is “55h” and “66h” respectively. 

 

 

START_ONLY_TRANSMIT: uart_transmitter port map (CLK,TX_OUT,                                                                                            

EOT_LED,datainput,write_main); 

 

 

Figure 5.20 Call of transmitter part from main function.  
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Figure 5.21 Transmitter simulation when datainput is 55h.  

 

 

 

Figure 5.22 Transmitter simulation when datainput is 66h.  

 

5.1.6.2 One Byte Receiver 

 

After implementation and testing transmitter design, next step is to test receiver 

implementation. Figure 5.23 shows the code segment that used to call receiver. To 

observe if the receiver implementation works properly, the received data is sent back 

again via transmitter. The test of this subsytem is done by using hyperterminal. 

Figure 5.24 shows the test step with communication settings. When character “a” is 

sent from hyperterminal, the receiver module gets “a” and send back to 

hyperterminal via transmitter. “b,c,1,6” are also sent and received. The source code 
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of this system is in the Appendix with the folder name of 

“5_1_6_2_UART_Receiver”. 

 

START_ONLY_RECEIVER: uart_receiver port map (CLK,RX_DATA,                                                                                            

receive_enable,reset_receiver,received_data,DATA_RDY,signal_EOR); 

 

datainput <= received_data 

EOR <= signal_EOR 

 

START_ONLY_TRANSMIT: uart_transmitter port map (CLK,TX_OUT,                                                                                            

EOT_LED,datainput,write_main); 

 

Figure 5.23 Call of receiver and transmitter part from main function.  

 

 

 

Figure 5.24 Communication port settings and receiver test. 

 

5.1.6.3 Array Transmitter 

 

Array transmitter is similar to the one byte transmitter. Figure 5.25 shows the 

definition of array. 10h, 20h, 30h and 40h are the elements of this array. One byte of 

this array is sent until the transmission of all bytes are completed. Figure 5.26 shows 
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the simulation of array transmitter. The source code of this system is in the Appendix 

with the folder name of “5_1_6_3_UART_Array_Transmitter”. 

 

type data_array is array (3 downto 0) of std_logic_vector (7                  

     downto 0); 

                                            

signal data_block : data_array := ( 0 => x”10”,  1 => x”20”, 

                                    2 => x”30”,  3 => x”40” );                 

 

Figure 5.25 Definition of array.  

 

 

 

Figure 5.26 Simulation of array transmitter.  

 

5.1.6.4 Simulation of Internal Database and Test Comparison  

 

This study is the first step of comparison. Internal database and test block are 

created for testing this operation. These blocks are shown in Figure 5.27. RAM 

symbolizes the database which has 4 different images with 4 bytes of each element. 

RAMtest symbolizes the test image with 4 bytes. 

 

type RAM is array (2 ** ADDRESS_WIDTH - 1 DOWNTO 0) ) of 

std_logic_vector (DATA_WIDTH - 1 DOWNTO 0); 

signal data_block : RAM := (0      => x"04",1      => x"04", 

        2      => x"04",3      => x"04", 

        4      => x"02",5      => x"02", 

        6      => x"02",7      => x"02", 

        8      => x"03",9      => x"03", 

       10      => x"03",11      => x"03", 

       12      => x"05",13      => x"05", 

       14      => x"05",15      => x"05"); 

type RAMtest is array (ADDRESS_WIDTH - 1 DOWNTO 0) OF of 

std_logic_vector (DATA_WIDTH - 1 DOWNTO 0); 

signal new_block : RAMtest := (0      => x"01",1      => x"01", 

    2      => x"01",3      => x"01");                 

 

Figure 5.27 Definition of internal database and test.  
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 From Figure 5.27, it can be easily seen that the RAMtest is closer to RAM’s 

second element than the others. The result of this comparison is sent via transmitter, 

so it can be simulated like in the Figure 5.28. The source code of this system is in the 

Appendix with the folder name of “5_1_6_4_Internal_Database_And_Test”. 

 

 

 

Figure 5.28 Simulation of comparison result, 2, is sent via transmitter.  

 

5.1.6.5 Comparing Database and Test after Receiving from MATLAB 

 

After testing the comparison system internally, by using the same approach in 

Section 5.1.6.4, 16 bytes of database and 4 bytes of test are compared. The difference 

of this study is using UART implementation instead of simulation. Database and test 

are sent from MATLAB then these are compared on UP3, at last the result of 

comparison is sent to MATLAB again, and MATLAB shows the comparison result.  

 

 

 

 

Figure 5.29 Database and test are sent from MATLAB. Result is also read from MATLAB.  
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Figure 5.29 shows an example of this operation. At first a serial object, s2, is 

defined with baud rate 115200. Then serial port is opened to the communication by 

fopen. The database and test are sent to UP3 respectively by using fwrite. The result 

of the comparison is sent from UP3 and is readed by using fread in MATLAB. The 

source code of this system is in the Appendix with the folder name of 

“5_1_6_5_Database_and_Test_sent_from_MATLAB”. 

 

5.1.6.6 Face Recognition System on UP3 Development Kit  

     

The last study on UP3 development kit is to test the system that shown in Figure 

5.4. The aim is to realize the system that is given in Section 5.1.3. Face images from 

6 people with 8 different poses images are used to create database. Then, this 

database must be stored on UP3 development kit. A database block is created with 

the size of 2304x48 and a test block is created with the size of 2304x1 like in the 

Figure 5.27. When, this system is tried to compile on Quartus II, compilation is 

ended with an error. This error states that this design cannot fit the device. The size 

of arrays are decreased to check whether the project is compile or not. Because the 

database block has more that 100000 elements. If the size of database block is 

decreased from 2304x48 to nearly 5000 elements, compilation is ended without an 

eror. But compilation report states that %98 percent logic elements of FPGA is used. 

This is shown in Figure 5.30.  

 

As mentioned before, FPGA SRAM Cells are used as a memory on UP3. The 

error when the size of database block is 2304x48 shows that if the size of arrays are 

increased, UP3 is uncapable to store these arrays in internal SRAM Cells. After 

internal memory is not sufficient for this design, the 8 MB SDRAM on UP3 is 

planned to store these features. But to use 8 MB SDRAM on UP3 development kit, 

Nios II CPU, which is a soft-core processor, must be used to reach external memory 

resources. However, since the USB blaster cable to program Nios II CPU in UP3 kit 

is expensive, a new kit with higher memory resources has been purchased. 
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Fingerprint recognition implementation cannot be tested on UP3 development kit 

due to capability of this board The implementation of face and fingerprint 

recognition continoues with the new development kit. The implementation steps and 

the results are started to describe in the next section.  

 

 

 

     Figure 5.30 Compilation report with decreased size of database block.  

 

5.2 Face and Fingerprint Recognition System Design on DE2-70  

 

DE2-70 development kit has more powerful features than the UP3 development 

kit. These features are mentioned in Section 4.4.2. To use these features of new 

development kit, the implementation idea of the recognition system is changed. With 

the new kit, PCA algorithm is moved from MATLAB to FPGA. Both face and 
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fingerprint recognition, only images are resized and sent from MATLAB, then the 

rest of all operations including PCA basis creation and comparison steps are 

implemented on DE2-70. Nios II CPU is designed with memory and I/O resources 

on Altera SOPC Builder and configured in Nios II IDE. Using Nios II IDE allows 

using C programming language instead of VHDL. So designing steps in C, is faster 

than VHDL. 

 

To use external memory resources on development kit, Nios II soft-core CPU 

must be used. Both UP3 and DE2-70 development kits have two programming 

modes: Parallel and Serial. In the parallel configuration mode, the EPCS 

programming flash is programmed and the configuration file isn’t erased on power-

off. Projects that are implemented on UP3 are configured in parallel programming 

mode. On DE2-70, serial programming mode is used, and system is programmed 

every power off via JTAG. 

 

This section describes face and fingerprint recognition system by starting 

hardware design of the project. Section 5.2.1 shows and describes the hardware 

implementation. Section 5.2.2 describes the face recognition implementation on 

DE2-70 with results. In Section 5.2.3, the implementation of fingerprint recognition 

system is discussed. 

 

5.2.1 Hardware Design of Face and Fingerprint Recognition System 

 

Altera SOPC Builder is a tool of Quartus II software that is used for system on 

programmable chip (SOPC) designs. By using this tool, FPGA chip can be 

programmed as a CPU, Nios II CPU, and the other system components are integrated 

to system design easily. From Figure 5.30 to Figure 5.39, the integration of the 

components are shown. The design of the system starts with adding the design 

components. These components are Nios II CPU, phase locked loop (PLL), JTAG 

UART, interval timer, parallel input/output (PIO), SDRAM Controllers, Flash 

Memory and UART. 
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Figure 5.30 shows the SOPC Builder screen after all components added and the 

names of components are changed without any configuration. The next step is to 

configure these components.  

 

 

 

Figure 5.30 SOPC Builder screen after all components are added. 

 

As shown in Figure 5.30, external clock source that is provided by the crystal on 

the development kit is 50 MHz. The SDRAM on the DE2-70 operates at 100 MHz, 

so to provide all components with same clock, PLL component is configured first. 

By using Altera ALTPLL MegaWizard, from the external 50 MHz clock, three 

clocks are generated. Figure 5.31 shows the generated clocks. In this figure, input 

clock, inclk0, is 50 MHz. c0 is 100 MHz with the same phase of inclk0. c1 and c2 

have a -108 degree phase difference even if the frequency is same with c0, 100 MHz. 

Clock phase shift setting is set to -3 ns from PLL wizard to provide this phase 

difference. Note that, SDRAM Controllers (sdram_0 and sdram_1) that are 

illustrated in Figure 5.30, are gated same clock with CPU, but the memory 

components (real memory chips) on the development kit must be gated with the 
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clocks (c1 and c2) that have phase differences. -3 ns phase shift is found 

experimentally to equalize the CPU and SDRAM clocks. 

 

 

                                         Figure 5.31 Altera PLL output. 

 

After adjusting clocks for the system, next step is to configure Nios II CPU. There 

are 3 types of configurable Nios II CPU for Alera FPGAs. These are Nios II/f (/f: 

fast) which is an optimized for the highest performance, Nios II/e (/e: economy) 

which is an optimized for smallest size and Nios II/s (/s: standard) which is balanced 

for performance and size.  Nios II/f is selected for the system in this thesis. 

Embedded multipliers with hardware divide option is also selected. Note that, 

increasing the features of Nios II CPU, occupy more logic elements (LEs). For Nios 

II/f CPU 1400 - 1800 LEs are used. Reset vector and exception vector addresses 

must be determined in the design. In this system these vectors are relied on sdram_0. 

Figure 5.32 shows this configuration screen. 

 

 As mentioned in the introduction of Section 5.2, JTAG UART is used for serial 

configuration. JTAG UART core provides host access via JTAG pins on the FPGA. 

For time-based operations such as configuring watchdog timer or resetting the 

system in a pre-determined time are realized by interval timer block of SOPC 

Builder. JTAG UART and interval timer must be implemented on Nios II CPU 

designs. The settings of JTAG UART and interval timer is shown in Figure 5.33. 

 



82 

 

 

 

 

 Figure 5.32 Nios II CPU configuration. 

 

 

 

 Figure 5.33 JTAG UART and interval timer configurations. 
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SDRAM Controllers, sdram_0 and sdram_1, are configured as in the Figure 5.34. 

Data width is set to 16 bits and address widths are created by using 13 rows and 9 

columns. The sizes of sdram_0 and sdram_1 are 32 MBytes (256 MBits) and totally 

64 MBytes of SDRAM memory. 

 

 

 

Figure 5.34 SDRAM controllers, sdram_0 and sdram_1, configurations. 

 

The flash memory is used to store PCA basis matrix and projections of database to 

the PCA basis on this system. Flash memory is placed on behind of Avalon memory 

mapped tristate slave in SOPC Builder. 4 MBytes of flash memory by setting address 

width to 22 and data width to 8 is created in the system building environment that 

shown in Figure 5.35. 

 

UART module allows communication with MATLAB like in the implementations 

on UP3 development kit. 115200 baud rate is used again. The other settings of 

UART is shown in Figure 5.36. 
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         Figure 5.35 Flash memory configuration. 

 

 

 

 

       Figure 5.36 UART configuration. 
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After configuring all components, base addresses and IRQ settings are arranged 

automatically from SOPC Builder settings. The last situation of SOPC Builder screen 

at the end of configuration and the address map is shown in Figure 5.37 and 5.38 

respectively. 

 

 

 

Figure 5.37 SOPC Builder screen at the end of configuring components. 

 

 

 

         Figure 5.38 Address map. 
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The system is generated after configuring all components by using “Generate” 

button of SOPC Builder.  After generating the system without any error, pins that 

used on the board must be assigned. During system generation in SOPC Builder, 

system component of the design is also created with the name of system, systop in 

this case. The systop component are added to library of Quartus II schematic design 

like AND gate, or a multiplexer. This component is used to assign pins of the circuit. 

Figure 5.39 shows systop component. 

 

 

 

                           Figure 5.39 systop component. 
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The hardware design of this system is completed with pin assignments. Figure 

5.40 shows the pin assignments of systop. Figure 5.41 and Figure 5.42 show the 

SDRAM and flash memory pin assignments respectively.  

 

 Note that, for global reset and flash memory reset signals, DIP switches are used. 

SW17 pin is assigned to global reset and SW1 pin is assigned to flash memory reset 

on DE2-70 development kit. 
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Figure 5.40 Pin assignments of systop component. 
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          Figure 5.41 Pin assignments of SDRAM. 
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                 Figure 5.42 Pin assignments of flash memory. 
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5.2.2 Implementation of Face Recognition System on DE2-70 

 

As mentioned in the introduction of Section 5.2, new implementation idea brings 

new design methods. According to this new idea, all operations excluding image 

taking and resizing, are implemented on the FPGA. Therefore, a new software 

mechanism is developed for the system that is designed in Section 5.2.1. The new 

software mechanism to configure FPGA is mentioned in Section 5.2.2.1 and the 

operations on MATLAB are described in Section 5.2.2.2. System designs with lower 

recognition rates that may be called as preliminary designs for face recognition, are 

introduced in Section 5.2.2.3. And the last section, Section 5.2.2.4, includes the final 

face recognition results that have the best recognition rate during this study. 

 

5.2.2.1 Software Design on DE2-70 

 

Nios II IDE is the environment of configuring FPGA by writing a high level 

language, C/C++. This tool has some useful features such as adding hardware and 

software breakpoints that are used for debugging the configuration software. This 

section introduces configuration software. The source code of this system is in the 

Appendix with the folder name of “5_2_2_1_Face_Recognition_Configuration_Sw”. 

 

The software for configuring the FPGA controls all of the parameters size by 

using two variables. Variable KISI_SAY states that the number of images that used 

for creating database and FEATURE_SAY  states that the size of each image. For 

example DATABASE_SIZE equals to KISI_SAY x FEATURE_SAY and TEST_SIZE 

equals to FEATURE_SAY.  

 

As already described in the previous sections that database and test images are 

received from MATLAB after resizing operation. UART Core that added to system 

during SOPC Builder design, is the module that allows to listen serial port and 

receive/transmit informations. To use UART core, two header files must be included: 

“altera_avalon_uart.h” that includes the UART device drivers and 

“altera_avalon_uart_regs.h” that includes the pre-defined status and control registers 
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of UART. On the main() function, UART module is defined as a routine that serves 

when the serial port interrupt occurs. Figure 5.43 shows that the UART interrupt 

service routine that used in the system design. Note that, UART_BASE is the start 

address of UART that shown in Figure 5.38. When system is generated in SOPC 

Builder, this address is added to table in “system.h” file. In this service routine first 

the status register is controlled. If the receiver ready flag (ALTERA_ AVALON_ 

UART_CONTROL_RRDY_MSK) is set, UART is ready to receive data. RxHeadData 

shows the buffer assigned for the database. Receiving bytes and storing them to 

RxHeadData is continued until all of the database elements are sent. If the pointer of 

the buffer shows the exact number with database, the new received bytes are 

interpreted as the elements of test array and stored in RxTest. This approach is 

followed since the database and test features are sent respectively from MATLAB.   

   

 

void uart_isr(void* context,alt_u32 id) 

{ 

alt_u32 status; 

  

status = IORD_ALTERA_AVALON_UART_STATUS(UART_BASE); 

      

if(status & ALTERA_AVALON_UART_CONTROL_RRDY_MSK) 

{ 

    

 if(RxHeadData < DATABASE_SIZE) 

 { 

 RxDataBase[RxHeadData]=IORD_ALTERA_AVALON_UART_RXDATA(UART_BASE); 

 IOWR_ALTERA_AVALON_UART_STATUS(UART_BASE,0); 

        

  if((++RxHeadData) > (DATABASE_SIZE - 1)) 

  { 

  // 

  } 

    }else{ 

   RxTest[RxHeadTest] = IORD_ALTERA_AVALON_UART_RXDATA(UART_BASE); 

   IOWR_ALTERA_AVALON_UART_STATUS(UART_BASE,0); 

         

       if((++RxHeadTest) > TEST_SIZE - 1) 

       { 

         //RxHeadTest = 0; 

       } 

    }  

 }  

} 

 

Figure 5.43 UART interrupt service routine.  
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Offline training and online test steps are used along the implementation of this 

thesis. The implementation of the configuration file for FPGA, is also followed these 

two steps. Note that previously described UART implementation is an interrupt 

service routine, so it is called in both offline training and online test.   

  

Offline training is started with programming FPGA. Serial configuration file that 

holds the hardware and software implementation of the project is programmed via 

JTAG. “data gelmiyor...” print message shows that database is not created on the 

system before. If this moment, the vectorized database is sent from MATLAB, 

FPGA receives this database and save this information on an unsigned char TempMat 

array. The size of this array is KISI_SAY x FEATURE_SAY. Next step is to arrange 

this array as a matrix with KISI_SAY coloumns and FEATURE_SAY rows.  

 

data and data2 matrices hold the resized images like in MATLAB. data is 

overwritten in PCA algorithm, so another matrix, data2, is also created to keep 

original input array. Note that, vector() and matrix() functions allocate a float vector 

and matrix respectively. Similarly, free_vector() and free_matrix() functions are used 

to deallocate the memory regions. 

 

PCA algorithm is implemented with a similar way to Section 5.1.3. The algorithm 

start with taking covariance of database images. Covariance of database is calculated 

by using covcol(). symmat is returned from this function. Then tred2() function, 

which is called as householder function, started to produce real and symmetric 

tridiagonal matrix. This process is called as triangular decomposition. After 

triangular decomposition step, this symmetric tridiagonal matrix is reduced in tqli(). 

After tqli(), evals contains the eigenvalues and the coloumns of symmat contain the 

associated eigenvectors. Size of symmat is FEATURE_SAY x FEATURE_SAY, so the 

result of this multiplication is enormous when the features are from an image. As 

noted in Section 5.1.3 that after sorting the eigenvectors from higher to lower, 

selecting 3 eigenvectors are sufficient for successful recognition rates in MATLAB 

implementation.. As also noted that this approach is used on further system designs 

which are impelemented on FPGA. To select 3 eigenvectors, symmat2 is generated 
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from symmat matrix. This matrix, symmat2, can be called as a PCA basis matrix, 

because this matrix is used to project database and test features to the face space. 

ytrain is the projection of database features to the face space. The size of ytrain is 

FEATURE_SAY x 3..The offline training part ends with storing, the PCA basis matrix 

(symmat2) and projection of database to the face space (ytrain), to the flash memory. 

These matrices are formed as a vector and the all elements of the vector are 

converted from float to char before writing data to flash memory by using 

ConvertAllAndWrite2FlashAsChar(). This conversion is added to prevent errors 

during writing and reading from flash memory. ytrain is written to 0x10000 address, 

and symmat2 is written to 0x60000 address. To make sure that the offline training is 

run once, control mechanism that is shown in the Figure 5.44 is added. 0xFF or 255 

is the value of empty bytes and if one of these offsets have different values from 

0xFF, this shows that the offline training has already finished, so the code is routed 

to TEST_FONKSIYONU. Note that FlashTestYtrain and FlashTestPcaBasis are 2 

bytes of test data that readed from flash memory. 

   

. 

.. 

if ((FlashTestYtrain[0]!=255)||(FlashTestYtrain[1]!=255) 

   ||(FlashTestPcaBasis[0]!=255)||(FlashTestPcaBasis[1]!=255)) 

               

      {        

        printf ("flash does not empty \n"); 

        goto TEST_FONKSIYONU; 

         

      }else 

     { 

        printf ("flash empty \n"); 

       while (1) 

      {               

        printf ("data gelmiyor...\n"); 

        .. 

        .    

       }     

 

Figure 5.44 Offline training or online test are selected according to flash memory contents.  

 

Online test step is started after the creation of database or it can be started after 

power-on if the flash memory is written before. “testi yolla...” print message shows 

that system is ready to get test data from MATLAB. After, test is sent from 

MATLAB, it is stored in unsigned char TempMat2 array. The size of the array is 
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FEATURE_SAY. After the reception of test is completed, a new float test matrix is 

created. The reason of creating such a float type matrix because the numbers that are 

evaluated at offline training step are float type. Even if they are written to flash as 

char type, the actual value of them is identified with float type. So, communication 

and flash read/write functions use unsigned char type variables, but operations such 

as triangular decomposition or matrix multiplication need float type variables. As 

mentioned in Section 5.1.3, the projections of database and test to the face space 

must be compared to identify the correct people. From offline training part, 

projections of database features are stored in flash memory with PCA basis matrix. 

So, at this step, flash content must be restored. RestoreAllFromFlash() function 

restores the array, that is started the offset address that passed to this function, from 

flash memory. FlashYtrain and FlashPcaBasis are the restored, then the data types 

are changed from unsigned char to float. NewYtrain and NewPcaBasis are created 

after this data type change. Note that, NewYtrain and NewPcaBasis corresponds and 

holds same values with ytrain and symmat2 respectively, when comparing with 

offline training phase. Online test phase ends with comparing the database and test 

projections. toplam[] holds the sum of absolute distances for each image. The 

minimum value of toplam[] shows that the nearest image in the database. The group 

number of this image is the recognition result of this system.  

 

5.2.2.2 Implementation on MATLAB  

 

After moving PCA algorithm to FPGA when getting the new FPGA development 

kit, DE2-70, MATLAB implementation is also changed. Now, MATLAB is only 

responsible for getting and resizing images. ORL Database is used again for 

verifying and testing the implementation.  

 

In this section, an example of image preprocessing steps for one face image are 

shown. As mentioned in Section 5.1.3, the size of the face image in ORL Database is 

112x92. First, the input image from ORL Database is taken from image database. 

Then imresize, that is also one of the funtions of MATLAB image processing 

toolbox, is used to resize the images. Figure 5.45.a shows the input image, Figure 
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5.45.b shows the resized image from 112x92 to 40x40. Note that, the process that is 

shown in Figure 5.45 is applied to all images sequentially on the database. 

 

 

 

      Figure 5.45 a) Input image b) Resized image.  

 

The size of the image after resize operation, using fdmex algorithm and 

windowing the image are the experiments on the system for finding the best 

recognition rate. These are described with more detail in Section 5.2.2.3 and Section 

5.2.2.4.  

 

5.2.2.3 Preliminary Experiments 

 

The first approach on the implementation is to use same approach that is 

described on Section 5.1.3. The working steps of the face recognition system is 

described for the first experiment, to better understand the process with showing the 

size of matrices. Other experiments are also followed the same instructions, but the 

size of matrices differ for each design. 48 face images of 6 people, with 8 face 

images with different poses belongs to same person , are used for creating database. 

The remaining 2 face images from each people are used for test phase. The size of 
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database and test matrices are, after resizing the images from 112x92 to 48x48, 

2304x48 and 2304x1 respectively. Note that, the rows represent pixels in the image 

and the columns represent the image number. To collect all data from UART module 

of the FPGA design, KISI_SAY is modified as 48 and FEATURE_SAY is modified as 

2304. The database matrix that is created on FPGA, data, is the transpose of the 

database matrix that is created on MATLAB with size of 48x2304. PCA basis 

matrix, symmat, is created from data with the size of 2304x2304. After sorting 

eigenvalues from heighest to lowest, 3 of them is selected and stored in symmat2 

array. Face space projections, ytrain, can be calculated as by multiplying data and 

symmat2. Size of ytrain and symmat2 are 48x3 and 2304x3 respectively and they are 

stored in flash memory to be used in online test phase. At the test phase, after 

restoring ytrain and symmat2 from flash memory, the received test matrix, test with 

the size of 1x2304, is projected into to face space by multipliying symmat2 then 

compared to ytrain. The comparison result gives the recognized person. 

 

The performance of the system is determined by calculating the recognition rate. 

But, for the system in first experiment, the recognition rate have not been calculated. 

Because of the size of matrices are too big (for example: symmat size is 2304x2304), 

the computation and calculation with these float numbers take very long time. For 

this case, the generation of the offline training step takes nearly two and a half days. 

The unacceptability of this time, provide testing different system implementations 

instead of trying to calculate recognition rate. 

 

First approach shows that, resizing image from 112x92 to 48x48 is not enough, 

because computation time is still too high. To reduce computation time, the first idea 

is to further decrease the image sizes. 15x15, 20x20, 30x30 and 40x40 sizes are 

tested. As expected from above, 15x15 image has 225 pixels so it is compiled 

quickly but recognition rate is nearly %40. During these tests, it has also been 

noticed that after the images largerthan 18x18 pixels, unexpected and unpredicted 

errors are seen on FPGA. So, for following tests, database size is created under 400 

elements. With the new conditions, acquiring high recognition rate is more difficult. 

Two test systems are created to test the performance of the resizing. 
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In Table 5.5 and Table 5.6, recognition tables for two systems are shown. In these 

tables the rows represent the people for which the system is trained for. The columns 

show if the test image recognized for this recognition correctly or not.  Table 5.5 

shows “System-A” with face images of 5 people and 8 images from each person. In 

this table since that the first 8 images are used for training, the system is tested with 

9th and 10th images, “+” and “-” signs show whether these images for these 5 people 

recognized or not, respectively. Table 5.6 shows “System-B” with with face images 

of 5 people and 6 images from each person. The recognition rates of System-A and 

System-B are %60 and %55 respectively. 

 

Table 5.5 Recognition table for System-A. 

Recognition Table 
test image 

9th 10th 

p
er

so
n

 n
u

m
b

er
 

1st + + 

2nd - + 

3rd + - 

4th + - 

5th - + 

 

Table 5.6 Recognition table for System-B. 

Recognition Table 
test image 

7th 8th 9th 10th 

p
er

so
n

 n
u

m
b

er
 1st - + - + 

2nd + - + + 

3rd - - - + 

4th + + + - 

5th - + + - 

 

Second approach is based on fdmex function. After encountering problems on 

image resizing, some other algorithms are researched over the internet and one of 

them, fdmex, is selected. fdmex is a dynamic link library file that used in OpenCV. 

This function can be worked with C/C++ or MATLAB. The reason of using fdmex is 

decreasing the image size by cropping the faces of each images by calling a function 

only. Figure 5.46.a shows an input image, 5.46.b shows the cropped face image by 
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fdmex. Then cropped image is resized to 15x15. Figure 5.46.c shows the resized 

cropped image. 

 

 

 

Figure 5.46 a) Input image b) Cropped image by fdmex. c) Cropped image is resized to 15x15. 

 

In Table 5.7 and Table 5.8, recognition tables for two system that used fdmex are 

shown. Table 5.7 shows “System-C” with face images of 5 people and 7 images from 

each person, Table 5.8 shows “System-D” with face images of 5 people and 6 images 

from each person. The recognition rates of System-C and System-D are %50 and 

%47 respectively. However, it has been observed that fdmex algorithm does not crop 

faces successfully for each image which lowers the recognition rate. Therefore, 

fdmex has not been used in the later stages. The source code of this system is in the 

Appendix with the folder name of “5_2_2_3_fdmex_example”. 

 

Table 5.7 Recognition table for System-C. 

Recognition Table 
test image 

8th 9th 10th 

p
er

so
n

 n
u

m
b

er
 1st + - + 

2nd - + + 

3rd - - + 

4th + + - 

5th + + - 
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Table 5.8 Recognition table for System-D. 

Recognition Table 
test image 

7th 8th 9th 10th 
p

er
so

n
 n

u
m

b
er

 1st + - - - 

2nd - + + - 

3rd - + - - 

4th + + - - 

5th - + - + 

 

Third approach is developed after failing with the previous two approaches. As 

mentioned before, a natural threshold for the image size according to test results is 

seen as 15x15. “If this size is used a region of an image instead of using for the total 

size of an image, maybe the recognition rate increases” is the start idea of creating a 

new test subsystem. It is thought that, image size after resize operation is 30x30, then 

image are divided into 4 regions. The size of each region are 15x15. Figure 5.47.a 

shows the input image, 5.47.b shows the resized image to 30x30 and 5.47.c shows 

the regions on the image. 

 

 

 

Figure 5.47 a) Input image b) Resized image (30x30)  c) Four regions of 30x30 image. 
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Table 5.9, Table 5.10, Table 5.11 and Table 5.12 show the recognition results of 4 

regions for “System-E”. Region 1, Region 2, Region 3 and Region 4 has the 

recognition rate of %80, %55, %40 and %50 respectively.  

 

Table 5.9 Recognition table for Region 1 of System-E. 

Recognition Table 
test image 

7th 8th 9th 10th 

p
er

so
n

 n
u

m
b

er
 1st + + + + 

2nd + + + + 

3rd + - - + 

4th + + + - 

5th + + - + 
 

Table 5.10 Recognition table for Region 2 of System-E. 

Recognition Table 
test image 

7th 8th 9th 10th 

p
er

so
n

 n
u

m
b

er
 1st + + + - 

2nd - + + - 

3rd - + + + 

4th + - + - 

5th - - - + 
 

Table 5.11 Recognition table for Region 3 of System-E. 

Recognition Table 
test image 

7th 8th 9th 10th 

p
er

so
n

 n
u

m
b

er
 1st - - - - 

2nd - - + + 

3rd + + - + 

4th + - - - 

5th - - + + 

 

Even if the recognition rate is higher in the Region 1, the recognition rates of the 

other regions are unacceptable. Different 5 images are used for creating database, but 

it is seen that the results differ from this system and the recognition rate for this 

approach is dependent to the database images. 
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Table 5.12 Recognition table for Region 4 of System-E. 

Recognition Table 
test image 

7th 8th 9th 10th 
p

er
so

n
 n

u
m

b
er

 1st + + + + 

2nd - - - - 

3rd + + - + 

4th + + - - 

5th - + - - 

 

5.2.2.4 Final Implementation 

 

The difference of recognition rates between the regions that is described in the 

region based approach are led us to change implementation method again. And 

finally, the local windowing on the face image is tested. At this approach, first the 

input image is resized to 40x40. At previous implementations, if a size of 40x40 

image is sent directly to FPGA, computation takes a very long time. After resizing 

the image to 40x40, 4x4 windows are created from this image. Instead of sending the 

pixel value directly to FPGA, the mean of these 4x4 windows are sent. So, for each 

image, local mean matrix with the size of 13x13 are extracted from resized image by 

using 4x4 local windowing approach. With this approach 169 (13x13) elements are 

sent for one image instead of sending 1600 (40x40) elements. 

 

For creating the database, face images of 5 people and 7 images from each person, 

are taken to create a new test system, “System-F”. Since 35 face images are used for 

database creation, the size of feature matrix, which is calculating by taking mean of 

4x4 local windows for each image, is 169x35. So, the variables that holds the image 

size, KISI_SAY, and feature size, FEATURE_SAY are set to 35 and 169 respectively. 

With these settings, FPGA implementation is compiled again by using the same 

instructions in Section 5.2.2.1. Note that, the maximum size is allocated for symmat 

matrix with 169x169 in this design. As comparing this size with the previous 

experiments, computation time of database is faster than before. 
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When database creation is completed after writing ytrain and symmat2 to the flash 

memory, test image is asked from the system. When the size of 13x13 local mean 

matrix for test image is received from the system, it is projected to PCA basis space 

by multipliying NewFlashPcaBasis, then compared to NewFlashYtrain. 

NewFlashPcaBasis and NewFlashYtrain are the matrices that restored from flash and 

respects to symmat2 and ytrain matrices on offline training respectively. The 

absolute distances from this comparison is stored on toplam vector. Note that, the 

size of toplam vector is same with KISI_SAY. After the minimum of toplam vector is 

computed, the group number, result_of_recognition that identifies the recognition 

result is assigned and printed to the console. The source code of this system is in the 

Appendix with the folder name of “5_2_2_4_Highest_Recognition_Rate_For_Face_ 

Recognition”. 

 

 

Figure 5.48 Output of System-F.  

 

Figure 5.48 shows an example of the output of System-F. The 8th image of 

second person is tested. Minimum element of toplam is stated by min_indice, 14, 
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shows that the closest image in the database. Result of recognition is shown as 2 

which is a correct result. 

 

Table 5.13 shows that the recognition table for System-F. Recognition fails for 

one image so the recognition rate for this system is %93.3.  

 

Table 5.13 Recognition table for System-F. 

Recognition Table 
test image 

8th 9th 10th 

p
er

so
n

 n
u

m
b

er
 1st + + + 

2nd + + + 

3rd + + + 

4th + + + 

5th - + + 

 

 Another test subsystem is created by decreasing the image numbers that are taken 

from each person to 6. Database of “System-G” is created by taking face images of 5 

people and 6 images from each person. Note that System-F and System-G are created 

with same people. Only the size of database is decreased. Table 5.14 shows that the 

recognition table for System-G. Recognition fails for three images, so the recognition 

rate for this system is %85. 

 

Table 5.14 Recognition table for System-G. 

Recognition Table 
test image 

7th 8th 9th 10th 

p
er

so
n

 n
u

m
b

er
 1st + + + + 

2nd + + + + 

3rd + + + + 

4th + - - - 

5th + + + + 

 

To make sure about the recognition rate, the images of different 5 people is used 

to create database. Like in the above test systems, first system is created by taking 

face images of 5 people and 7 images from each person, System-H; second system is 
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created by taking face images of 5 people and 6 images from each person, System-J. 

The recognition tables of System-H and System-J is shown in Table 5.15 and Table 

5.16 respectively. 

 

 Table 5.15 Recognition table for System-H. 

Recognition Table 
test image 

8th 9th 10th 

p
er

so
n

 n
u

m
b

er
 1st + + + 

2nd + + + 

3rd + + + 

4th + - + 

5th + + + 

 

Table 5.16 Recognition table for System-J. 

Recognition Table 
test image 

7th 8th 9th 10th 

p
er

so
n

 n
u

m
b

er
 1st + + + + 

2nd + + + + 

3rd + + + + 

4th + + - + 

5th + - + + 

 

From Table 5.15 and Table 5.16, recognition rates can be extracted. The 

recognition rate for System-H is %93.3 and the recognition rate for System-J is %90. 

 

When comparing the last four tables; Table 5.13, Table 5.14, Table 5.15 and 

Table 5.16; the minimum recognition rate is %85 and the maximum recognition rate 

is %93.3. These results are the highest recognition rates when compared to previous 

implementations and recognition rates are acceptable for the implementation of a 

face recognition system. 
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5.2.2.5 General Performance of the Face Recognition System 

 

The general performance and the total accuracy of the face recognition system are 

found by constructing a confusion matrix. Confusion matrix is typically called a 

matching matrix and shows the matching rate for each person. Each row of the 

confusion matrix represents the instances in a predicted class, while each column of 

the confusion matrix represents the instances in an actual class. 

 

 In the previous recognition tables, database images were selected from 5 people 

with the face images from 1
st
 to 6

th
 according to original ORL Database for each 

person. The rest of the face images were used as test images. But, to construct a 

confusion matrix, different face images must be selected for database and test 

without changing the percentage of database images (%60) and test images (%40) to 

total face images. Database and test images are selected by using cross-validation 

technique which is used for estimating the performance of a predictive model. 

 

 Cross-validation algorithm is implemented in MATLAB by using crossvalind 

function from Bioinformatics Toolbox of MATLAB. The source code of this system 

is in the Appendix with the folder name of “5_2_2_5_Cross_Validation”. The output 

of the algorithm is a matrix and each row represents the images and each column 

represents the number of test subsytem. The elements of the cross-validation matrix 

are 0’s and 1’s. 1’s show that the corresponding image must be selected for database 

an and similarly 0’s show that the corresponding image must be selected as test 

image.  

 

 25 test subsystems are created by using cross-validation technique and recognition 

tables are found for each subsystems. Confusion matrices are constructed by 

combining the all results of these recognition tables. Table 5.17 shows the general 

performance of the face recognition system on the confusion matrix. Note that, the 

values on this table are shown with the percent (%).  
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Table 5.17 Results of the face recognition system on the confusion matrix. 

Confusion  Matrix 1st 2nd 3rd 4th 5th 

1st 100 0 0 0 0 

2nd 0 100 0 0 0 

3rd 1 0 97 2 0 

4th 0 0 12 88 0 

5th 0 0 0 0 100 

 

From Table 5.17, it can be seen that the images of 1
st
, 2

nd
 and 5

th
 person are 

recognized without any error. Even if the %1 and %2 images of the 3
rd

 person are 

recognized as 1
st
 and 4

th
 person respectively, %97 images of the 3

rd
 person are 

recognized successfully. The lowest performance of the face recognition system is 

seen on the 4
th

 person with an error rate of %12. The reason of the lowest 

performance for this case is the pose variance in the images of the 4
th

 person. 

 

The total accuracy of the face recognition system can be found by dividing the 

number of true recognitions to the number of the all images. For this system, the total 

accuracy is %97. This total accuracy value is also allowed to implement the face 

recognition system as a part of multibiometric recognition system. 
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5.2.3 Implementation of Fingerprint Recognition System on DE2-70 

 

In the under-graduate project in 2007, fingerprint recognition system for access 

control systems was designed by applying morphological image processing 

techniques (Dilcan, 2007). Local and global features were extracted from the input 

fingerprint image then these were used on comparison step. But in this study, the 

recognition rate of the fingerprint identification system is tried to find by using PCA 

algorithm. So, implementation of fingerprint recognition system is started after 

completing the face recognition system. Taking the mean of the windows as features 

approach, that mentioned in Section 5.2.2.4 which has a highest recognition rate, is 

also used directly on fingerprint recognition system. Since, approach is the same with 

face recognition, implementation takes less time than face recognition system.  

 

Hardware design on the FPGA of the fingerprint recognition system, is also same 

with the face recognition system. The only difference is image acquistion. To take 

fingerprint images fingerprint scanner is used. Section 5.2.3.1 describes this scanner, 

in Section 5.2.3.2 preliminary experiments for the fingerprint recognition system is 

introduced and in Section 5.2.3.3 final impelementation is proposed with giving the 

recognition results.  

 

5.2.3.1 Fingerprint Scanner 

 

In this fingerprint recognition system, U.are.U 4000B USB Fingerprint Reader is 

employed to get fingerprint images. Figure 5.49 shows the images of this reader. 

When the user simply places his/her finger on the glowing scanner window, the 

reader quickly and automatically scans the fingerprint. On-board electronics of this 

scanner calibrate the reader and encrypt the scanned data before sending it over the 

USB interface. This encrypted data is stored with binary values in code memory of 

the device. 
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Figure 5.49 Images of U.are.U 4000B USB Fingerprint Reader (Dilcan, 2007). 

 

In this system, the original fingerprint image is needed instead of encrypted binary 

data to use as an input to the PCA algorithm. For this reason, biokeydemo, that is 

released from ZK Software, is used for providing the fingerprint image in JPEG 

format. By using this software, enrollment and identification tasks of the biometric 

systems can be performed. The user interface of biokeydemo is shown in Figure 5.50. 

“Save fingerprint image” check box is used to store images that shown in 

biokeydemo user interface. Note that, most of the fingerprint scanners do not store 

the fingerprint as an image. Because, the fingerprint images of any person can be 

stored to custom database only for the test purposes. 

 

 

 

                    Figure 5.50 biokeydemo user interface (Dilcan, 2007). 
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5.2.3.2 Preliminary Experiments 

 

After a finger is pressed the fingerprint scan area, if “Save fingerprint image” 

check box of biokeydemo is enabled, it is stored as a JPEG image on the host 

computer. This fingerprint image is a colored image with the size of 500x550x3. To 

use this image in PCA algorithm, first it is converted into gray-scale then the most 

detailed part of the image is cropped to construct a new fingerprint image with the 

size of 400x400. Figure 5.51.a shows that the scanned image and the Figure 5.51.b 

shows the cropped image.  

 

 

 

Figure 5.51 a) Scanned image (500x550x3) b) Cropped gray-scale image (400x400). 

 

The cropped image is the input of offline training step just like in the face 

recognition system. Then, the gray-scale fingerprint image is resized by using 

imresize function. The new size of the fingerprint image is set to 100x100. Figure 

5.52.a shows the gray-scale image with the size of 400x400, and Figure 5.52.b shows 

the new image that is resized to 100x100.   

 

The approach in Section 5.2.2.4, that provides the highest recognition rate on face 

recognition system, is also used for fingerprint recognition system with a little 

difference. As mentioned in that section, input face image is resized to 40x40 then 

local mean matrix is extracted by using 4x4 local windows. But for fingerprint 
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recognition, local mean matrix is extracted from 100x100 resized image by using 

11x11 local windows. The reason for using with different size of local windows for 

the face and fingerprint recognition systems is the difference of the input images. 

The size of local windows for these systems are selected from the results of the 

extensive experiments.   

 

 

 

Figure 5.52 a) Cropped gray-scale image (400x400) b) Resized image (100x100). 

 

The size of local mean matrix is 13x13, so the database size is 169x35 which is 

constructing by taking fingerprint images of 5 people and 7 images from each 

person. This system, System-K, is sent to FPGA via UART to start offline training 

phase. The variables KISI_SAY and FEATURE_SAY that used for configuring this 

system are 35 and 169 respectively. PCA algorithm is run after getting database 

features. PCA basis matrix, symmat2, and projections of fingerprint images to this 

basis, ytrain, are stored in the flash memory. 

 

At online test phase, test image is sent to FPGA and projected to PCA basis space 

by multiplying NewFlashPcaBasis that is restored symmat2 matrix from flash . This 

projection is compared to NewFlashYtrain that is also restored ytrain matrix. 

Absolute distances are computed and toplam vector is constituted. The minimum 

element of this toplam vector, result_of_recognition, holds the recognition result.  
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Table 5.18 shows the recognition table for System-K. The recognoition rate is 

very low by using the same approach in face recognition system implementation that 

mentioned in Section 5.2.2.4. 

 

Table 5.18 Recognition table for System-K. 

Recognition Table 
test image 

8th 9th 10th 

p
er

so
n

 n
u

m
b

er
 1st + - - 

2nd - + + 

3rd - - - 

4th + - + 

5th - + - 

 

Another system, System-L, is created to get better recognition rate. The big size of 

the input image, 400x400, is thought the reason of the low recognition rate in the 

System-K. To decrease the size of the input image local ridge orientation, which is 

mentioned in Section 3.3, is used to find the core region of a fingerprint. Note that, 

core region is the biggest orientation of the fingerprint image. By using the 

estimation of local ridge orientation approach, core region of the input image is 

found and cropped. The size of the core region is 180x260. Figure 5.53.a shows the 

gray-scale fingerprint image with the size of 400x400, and Figure 5.53.b shows the 

core region of the input image with the size of 180x260.  

 

 

 

Figure 5.53 a) Input image (400x400) b) Core region of the input image (180x260). 
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Core region of the fingerprint image is then resized to 100x100. Figure 5.54 

shows the core region of the fingerprint image after resize operation. 

 

 

 

Figure 5.54 a) Core of the input image (180x260) b) Resized core region of the input  

image (100x100). 

 

Local mean matrix with a size of 13x13, is extracted from resized core image. For 

offline training phase, the database is constructing by taking fingerprint images of 5 

people and 7 images from each person. For System-L, offline training and online test 

phases are same with System-K and the recognition table is shown in Table 5.19. 

 

Table 5.19 Recognition table for System-L. 

Recognition Table 
test image 

8th 9th 10th 

p
er

so
n

 n
u

m
b

er
 1st + - + 

2nd - + + 

3rd - + - 

4th + - + 

5th - + - 

 

Table 5.19 shows that the recognition rate for System-L is %53.3. 
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5.2.3.3 Final Implementation 

 

PCA algorithm in the previous trials are suspected from the low recognition rates. 

Therefore, the statistical variables such as mean and standart deviation of local 

windows are used for feature extraction with the estimation of local ridge orientation 

instead of PCA. 

 

For offline training phase. first the input image with the size of 500x550x3 is 

converted to gray-scale and the most detail part of the image is cropped. The new 

size of the fingerprint image is 400x400. Local ridge orientations of the local 

windows, theta, with the size of 20x20, are calculated. After that, the fingerprint 

image with the size of 400x400, is resized to 100x100 by using imresize function of 

MATLAB. From this image means (f_wmean) and standard deviations (f_wdev) of 

5x5 local windows are extracted. The extracted features; theta, f_wmean and f_wdev 

are converted to vectors then sent to FPGA. These features are stored on the flash 

memory on FPGA. The size of the features for one image is 1200x1. System-M is 

constructed with the fingerprint images of 5 people and 7 images from each person. 

The size of the database is 1200x35 for this system. 

 

The features that are extracted at the offline training phase are also extracted for 

the fingerprint image that will be tested at the online test phase. Absolute distances 

are used for comparing. Recognition table for System-M is shown in Table 5.20. 

 

Table 5.20 Recognition table for System-M. 

Recognition Table 
test image 

8th 9th 10th 

p
er

so
n

 n
u

m
b

er
 1st + + + 

2nd + + + 

3rd + + + 

4th + + + 

5th + + + 
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To make sure about the recognition rate, System-N is created by taking the 

fingerprint images of 5 people and 6 images from each person. Recognition table for 

System-N is shown in Table 5.21. 

 

Table 5.21 Recognition table for System-N. 

Recognition Table 
test image 

7th 8th 9th 10th 

p
er

so
n

 n
u

m
b

er
 1st + + + + 

2nd + + + + 

3rd + + + + 

4th + + + + 

5th - + + + 

 

As seen from Table 5.20 and Table 5.21, after removing PCA algorithm the 

recognition rates are increased and higher from %90 percent. Even if the reason of 

this high recognition rate performance is dependent on the input image quality, it is 

totally acceptable for such a fingerprint recognition system. The source code of this 

system is in the Appendix with the folder name of “5_2_3_3_Highest_Recognition_ 

Rate_For_Fingerprint_Recognition”. 

 

5.2.3.4 General Performance of the Fingerprint Recognition System 

 

For measuring the general performance of the fingerprint recognition system, 

same approach in Section 5.2.2.5 is used. The test subsystems are constructed by 

cross validation technique and the results are shown on the confusion matrix. Table 

5.22 shows the general performance of the fingerprint recognition system on the 

confusion matrix. Note that, the values on this table are shown with the percent (%).  

 

From Table 5.22, it can be seen that the images of 1
st
 and 4

th
 person are 

recognized without any error. The %1 images of the 2
nd

 person, %4 images of the 1
st 

person and %7 images of the 5
th

 person are recognized as 3
rd

, 1
st
 and 4

th
 person 

respectively. The lowest performance of the fingerprint recognition system is seen on 

the 5
th

 person with an error rate of %7. 
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Table 5.22 Results of the fingerprint recognition system on the confusion matrix. 

Confusion  Matrix 1st 2nd 3rd 4th 5th 

1st 100 0 0 0 0 

2nd 0 99 1 0 0 

3rd 4 0 96 0 0 

4th 0 0 0 100 0 

5th 0 0 0 7 93 

 

 

The total accuracy of the fingerprint recognition system is %97.6 This total 

accuracy value is also allowed to implement the fingerprint recognition system as a 

part of multibiometric recognition system. 
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CHAPTER SIX 

FPGA-BASED MULTIBIOMETRIC RECOGNITION SYSTEM DESIGN 

 

This chapter describes the implementation of FPGA-based multibiometric 

recognition system. After implementation of the face and fingerprint recognition 

systems successfully, the next step is to combine these two recognition systems in 

order to achieve a more reliable recognition system. This chapter summarizes the 

implementation steps of multibiometric recognition system and introduces the 

implementation results. 

 

6.1 Implementation of Multibiometric Recognition System on DE2-70 

 

Before introducing the multibiometric recognition system design, it is useful to 

describe that the hardware design is same with face and fingerprint recognition 

systems. Section 5.2.1 shows the basic system components and describes the 

hardware design procedure. 

 

Software design of multibiometric recognition system is also similar with face and 

fingerprint recognition system with slight differences. As stated before, face images 

are resized and formed as the means of local windows then sent to FPGA as an input 

of the PCA algorithm in face recognition system. Unlike the face system, the 

statistical variables such as means and standard deviations with local ridge 

orientations are used as features instead of using PCA algorithm in fingerprint 

recognition system. Note that, MATLAB and FPGA source codes of this system are 

in the in the Appendix with the folder name of “6_1_ Implementation_of_ 

Multibiometric_Recognition_System”. 

 

In this multibiometric recognition system, each person is described by his/her face 

image and corresponding fingerprint image. For an example, if 4
th

 face image of the 

1
st
 person is selected for creating the database, 4

th
 fingerprint image of the 1

st
 person 

is also selected. Offline training starts with the creation database block which is also 

similar to the previous implementations and nsmultibiometric_train function is used 
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for this operation in MATLAB. In this function, first face images are resized. Then, 

the means of local windows are extracted from each resized face image. For 5 people 

with 6 face images from each person, total size of these features are 169x30 and they 

are stored in Xbasis_face. Instead of sending Xbasis_face directly to FPGA like in 

face recognition system, feature extraction step of fingerprint images is started in 

multibiometric recognition system. From the fingerprint images; means, standard 

deviations and ridge orientations of local windows are extracted. The total size of 

these features, for 5 people with 6 fingerprint images from each person, is 1200x30 

and they are stored in Xbasis_fing. After completing the construction of each blocks 

separately, they are combined together in Xbasis_tot, then sent to FPGA. After 

FPGA receives this database, first the face and fingerprint blocks are separated. 

Then, the same offline training algorithm that is described in Section 5.2.2.4 is used 

for face portion and  the same offline training algorithm that is described in Section 

5.2.3.3 is used for fingerprint portion sequentially. Offline training ends by storing 

face and fingerprint features on the flash memory. 

 

Online test phase is similar with previous face and fingerprint implementations. 

For MATLAB side, the difference is the combining test blocks together before 

sending to FPGA. The difference of the configuration software that runs on FPGA is 

the decision level of the algorithm. As mentioned in Section 1.2, in the 

multibiometric systems; the fusion can occur at the data or feature level, match score 

level and decision level. In this multibiometric recognition system implementation 

fusion occurs at the decision level. After result_of_face_recognition and 

result_of_fing_recognition, which are the recognition results of face and fingerprint 

recognition portions, are found sequentially the multibiometric recognition decision 

is calculated by ANDing these two results. As a summary, if same person is 

recognized in both of face and fingerprint portions of the system, the number of this 

person is printed to the console as a multibiometric recognition result. Otherwise, 

system gives an error message such as “person does not recognized”.  
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6.2 General Performance of the Multibiometric Recognition System 

 

For measuring the general performance of the multibiometric recognition system, 

same approach in Section 5.2.2.5 and Section 5.2.3.4 is used. The test subsystems are 

constructed by cross validation technique and the results are shown on the confusion 

matrix. Table 6.1 shows the general performance of the multibiometric recognition 

system on the confusion matrix. Note that, the values on this table are shown with the 

percent (%).  

 

Table 6.1 Results of the multibiometric recognition system on the confusion matrix 

Confusion  Matrix 1st 2nd 3rd 4th 5th 

1st 100 0 0 0 0 

2nd 0 99 1 0 0 

3rd 4 0 94 2 0 

4th 0 0 12 88 0 

5th 0 0 0 7 93 

 

From Table 6.1, it can be seen that the images of 1
st
 person are recognized without 

any error. The %1 images of the 2
nd

 person are recognized as 3rd person. %4 images 

of the 3rd person are recognized as 1st person, while %2 images are recognized as 

4th person. %12 images of 4th person and %7 images of the 5th person are 

recognized as 3rd and 4th respectively. The lowest performance of the 

multibiometric recognition system is seen on the 4
th

 person with an error rate of %12 

which is the same error rate with face recognition system due to ANDing mechanism 

of the multibiometric recognition system. 

 

The total accuracy of the multibiometric recognition system is %94.8. Using AND 

mechanism at the decision level reduces the recognition rate of the total system but 

offers more reliable biometric system implementation. 
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CHAPTER SEVEN 

CONCLUSIONS 

 

7.1 Summary of the Project 

 

Biometric systems recognize a person automatically from his/her physiological 

and behavioral traits. Face and fingerprint recognition are the popular technologies of 

the biometric systems. In this thesis, real-time face and fingerprint recognition 

system is realized. This system has two working stages: offline training and online 

test. 

 

To deploy a face and fingerprint recognition system, faces and fingerprints are 

processed. In offline training phase, the data is collected and feautures are extracted. 

In online testing phase, the test image is compared with the database. Data collection 

steps such as getting face images and scanning fingerprint images are implemented 

on host PC. Combination of these images and resizing images are provided by 

MATLAB on host PC. Data processing such as feature extraction, and comparison 

steps are implemented on FPGA. Principal Component Analysis (PCA) is used to 

extract features from face images and statistical variables with ridge orientations of 

local windows are used for fingerprint images.  

 

The aim is to provide the highest recognition rate for each system. To reach this 

target, many different approaches and methods are tested such as changing the size 

of the image after resize operation, using face detection algorithm and windowing the 

image. The best accuracy has been obtained with PCA algorithm for face recognition 

and statistical variables with ridge orientations of local windows are used for 

fingerprint recognition. PCA algorithm on FPGA is fed by the output of these 

methods to reduce computation time at the feature extraction. The general 

performance of the system is calculated after generating 25 test subsystems by using 

cross-validation technique. Combining the recognition results of the test subsystems 

show that the total accuracy of the face and fingerprint recognition systems. For this 

implementation, the total accuracy of the face and fingerprint recognition system is 
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%97 and %97.6, respectively. After implementing face and fingerprint recognition 

systems successfully, these recognition systems are combined together to construct a 

multibiometric recognition system. In this multibiometric recognition system, fusion 

occurs at the decision level by using AND mechnasim. The general performance of 

the multibiometric recognition system is also calculated as results of the 25 test 

subsytems. The total accuracy of the multibiometric recognition system is %94.8. 

Since ANDing mechanism is used on multibiometric system, the recognition rate is 

reduced slighty when compared to face and fingerprint recognition systems. 

 

For face recognition system, the computation time of the offline training phase on 

FPGA is nearly ten minutes after receiving database from MATLAB and online test 

phase just takes a few seconds to show the recognition result. For fingerprint 

recognition system, database is constructed under a minute and test phase just takes a 

few seconds. The computation time of the multibiometric system is nearly the 

summation of consumed time in face and fingerprint recognition systems. 

 

7.2 Advantages – Disadvantages 

 

The ability to update the functionality after shipping, partial re-configuration, 

various customization methods and the low non-recurring engineering costs are the 

most important features of the FPGAs. In this thesis, UP3 and DE2-70 development 

kits are used. VHDL is used for designing a UART module on UP3 and DE2-70 is 

used for implementing face, fingerprint and multibiometric recognition systems by 

using high level language at the configuration step. Various implementation methods 

on these two development kits can only be realized on FPGA with a short time 

period. 

 

For implementing a real time recognition system, three important criteria must be 

considered. These are high recognition rate, short response time of the recognition 

system and low implementation cost. In this thesis, two of three features are 

successfully accomplished. This thesis offers three systems such as face, fingerprint 

and multibiometric recognition systems with high recognition rates and a person can 



122 

 

 

be recognized in a few seconds. But, the integration of these systems to the real life 

is very difficult because the high cost of the project and using two separate 

environments such as MATLAB and FPGA. 

 

For the personal aspect, using two FPGA development kits bring some advantages 

such as learning simulation and compilation of the projects on Quartus II, help for 

using hardware components such as memory or I/O elements directly from software, 

learning parallel configuration of a system by using VHDL and serial configuration 

of a system by C/C++ via Nios II IDE. The disadvantage is only the time that is spent 

on the first development kit, UP3. The reason of spending much time on UP3 are the 

difficulties of VHDL coding and understanding that the memory resources of UP3 

cannot meet project specifications.  

 

This study also helps for entering FPGA world by designing face, fingerprint and 

multibiometric recognition systems. As a hope that, interests of the people and 

applications of the FPGAs are increased to bring unique designs to FPGA world.  

 

7.3 Troubleshooting 

 

In the first development kit, UP3, for the communication between host PC and 

UP3, UART core is implemented in VHDL for using as a part of the recognition 

system. In this implementation, there are some clock-based issues such as missing a 

part of data during communication, but they are solved by shifting clock internally. 

 

The most important problem faced with during this study on DE2-70 is the large 

dimension of the matrices in PCA algorithm. Because, if the input size of the PCA 

algorithm has bigger than 400 elements, unpredicted and unexpected errors are 

occured on the face recognition system. So, the input size of the PCA algorithm is 

adjusted and controlled by using local windowing to provide stability of the system. 

 

For fingerprint recognition system, which is also implemented in DE2-70, 

statistical variables and ridge orientations of local windows are used to extract 
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features from the input images after facing low recognition rates when PCA 

algorithm is used.  

 

7.4 Cost Analysis 

 

UP3 development kit is provided by the university, so this kit has not any effect 

on the total budget of the thesis. DE2–70 development kit has been purchased with a 

cost of $400, after facing memory issues on UP3. Fingerprint scanner, which is 

bought for the under-graduate project, is nearly $200. So, this scanner has not also 

any effect on the budget. Note that, the Quartus II software is provided with 

development kits. 

 

7.5 Future Work 

 

For a future study, all system components such as imaging and scanning devices 

that are connected to host PC can be moved and implemented on FPGA. The feature 

extraction method, PCA, can be changed by the other methods such as Independent 

Component Analysis (ICA) and Linear Discriminant Analysis (LDA). In this project, 

comparison method is the comparing absolute distances. In a future study, 

classification methods may be used. 
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APPENDIX 

 

An “Appendix CD” is prepared which contains all MATLAB files, VHDL files 

and Nios II system designs that are used in this thesis. The folder names are 

dedicated to section numbers to reach source codes easily. Source code availability is 

mentioned in each section. As a remember, the content of “Appendix CD” is also 

given in the following with section name and corresponding folder name in the 

“Appendix CD”; 

 

  Section 5.1.3 PCA implementation on MATLAB - 5_1_3_PCA_MATLAB 

  Section  5.1.6.1 One Byte Transmitter - 5_1_6_1_UART_Transmitter 

  Section  5.1.6.2 One Byte Receiver - 5_1_6_2_UART_ Receiver 

  Section  5.1.6.3 Array Transmitter - 5_1_6_3_UART_ Array_Transmitter 

  Section 5.1.6.4 Simulation of Internal Database and Test Comparison -

5_1_6_4_Internal_Database_And_Test 

  Section 5.1.6.5 Comparing Database and Test after Receiving from MATLAB 

- 5_1_6_5_Database_and_Test_sent_from_MATLAB 

  Section 5.2.2.1 Software Design on DE2-70  

- 5_2_2_1_Face_Recognition_Configuration_Sw 

  Section 5.2.2.3 Preliminary Experiments - 5_2_2_3_fdmex_example 

  Section 5.2.2.4 Final Implementation  

        - 5_2_2_4_Highest_Recognition_Rate_For_Face_Recognition 

 Section 5.2.2.5 General Performance of the Face Recognition System 

       - 5_2_2_5_Cross_Validation 

 Section 5.2.3.3 Final Implementation  

- 5_2_3_3_Highest_Recognition_ Rate_For_Fingerprint_Recognition 

 Section 6.1 Implementation of Multibiometric Recognition System on DE2-70 

- 6_1_ Implementation_of_ Multibiometric_Recognition_System 

 

 

 

 


