

DOKUZ EYLÜL U�IVERSITY

 GRADUATE SCHOOL OF �ATURAL A�D APPLIED SCIE�CES

FACE RECOG�ITIO� USI�G �EURAL �ETWORKS

O� FIELD PROGRAMMABLE GATE ARRAY

by

Recep DOĞA�

March, 2011

ĐZMĐR

FACE RECOG�ITIO� USI�G �EURAL �ETWORKS

O� FIELD PROGRAMMABLE GATE ARRAY

A Thesis Submitted to the

Graduate School of �atural and Applied Sciences of Dokuz Eylül University

In Partial Fulfillment of the Requirements for the Degree of Master of

Science in Electrical and Electronics Engineering

by

Recep DOĞA�

March, 2011

ĐZMĐR

ii

M.Sc THESIS EXAMI�ATIO� RESULT FORM

 We have read the thesis entitled “FACE RECOG�ITIO� USI�G �EURAL

�ETWORKS O� FIELD PROGRAMMABLE GATE ARRAY” completed by

RECEP DOĞA� under supervision of ASST. PROF. DR. �ALA� ERDAŞ

ÖZKURT and we certify that in our opinion it is fully adequate, in scope and in

quality, as a thesis for the degree of Master of Science.

iii

ACK�OWLEDGEME�TS

 I would like to thank my advisor Asst. Prof. Dr. Nalan Erdaş ÖZKURT for her

guidance and support in every stage of my research. This research is successfully

completed thanks to her goodwill and selfless assistance.

 I also would like to thank my family for endless support and their motivation

during my reserch.

 Recep DOĞAN

iv

FACE RECOG�ITIO� USI�G �EURAL �ETWORKS O� FIELD

PROGRAMMABLE GATE ARRAY

ABSTRACT

 Biometric is a science of digital technology which is used to identify people based

on unique physical or biological characteristics. There are several biometric

technologies such as fingerprint, face, iris and speech recognition. The feature

extraction techniques play important role for biometric recognition system design.

 Recently, the Field Programmable Gate Arrays (FPGAs) have been commonly

used in several applications such as digital signal processing, biometric recognition,

medical imaging aerospace and defense systems, computer vision. Basically, FPGAs

are the programmable logic devices. Each function of logic block can be organized

by user. FPGAs are preffered in a variety of applications.

In this thesis, a face recognition system which is implemented on FPGA has been

introduced. The principle component analysis (PCA) has been used for feature

extraction and recognition has been accomplished by artificial neural network

(ANN).

Since the training of the artificial neural network is a long process using only one

processor on FPGA, a hierarchical classification with multiple processor approach

has been followed. Thus, 47.2% system speedup has been obtained for a recognition

rate of 93.9%.

Keywords : Face recognition, Neural network, Multiprocessor system, FPGA (Field

Programmable Gate Arrays), PCA (Principle Component Analysis).

v

SAHADA PROGRAMLA�ABĐLE� KAPI DĐZĐLERĐ�DE YAPAY SĐ�ĐR

AĞLARI ĐLE YÜZ TA�IMA

ÖZ

 Biyometrik, kendine özgü fiziksel veya biyolojik niteliklerine dayalı olarak

insanların kimliğini tespit etmek için kullanılan dijital teknolojiden faydalanma

bilimidir. Çok sayıda biyometrik teknoloji geliştirilmiştir. Parmak izi, yüz, iris ve ses

tanıma en yaygın kullanılan biyometrik teknolojilerdir. Özellik çıkarma metotları,

biyometrik sistem tasarımında önemli bir rol oynamaktadır.

 SPDK (Sahada Programlanabilir Kapı Dizileri) içeren uygulamalar, sayısal işaret

işleme, biyometrik tanıma, medikal görüntü işleme, uzay ve savunma sistemleri,

bilgisayar görüntüsü alanlarında kullanılmaktadır. SPKD programlanabilir mantık

elemanlarıdır. Her bir mantık bloğunun işlevi kullanıcı tarafından

düzenlenebilmektedir. SPDK çok sayıda uygulamada tercih edilmektedir.

 Bu tezde SPDK üzerinde gerçekleştirilen yüz tanıma işlemi tanıtılmıştır. Öznitelik

çıkarma işlemi için temel bileşen analizi (TBA) kullanılmıştır ve tanıma işlemi yapay

sinir ağı (YSA) tarafından gerçekleştirilmiştir.

 SPKD (Sahada Programlanabilir Kapı Dizileri) üzerinde bir işlemci kullanılarak,

yapay sinir ağının eğitilmesi uzun süren bir işlemdir. Bu nedenle, hiyerarşik

sınıflama yöntemi kullanılarak çok işlemcili sistem geliştirilmiştir. Böylelikle, %93.9

tanıma oranı için sistemin %47.2 daha hızlı çalışması sağlanmıştır.

Anahtar Sözcükler : Yüz tanıma, Yapay sinir ağı, Çok işlemcili sistem, Sahada

Programlanabilir Kapı Dizileri (SPKD), Temel Bileşen Analizi (TBA).

vi

CO�TE�TS

 Page

M.Sc THESIS EXAMINATION RESULT FORM .. ii

ACKNOWLEDGEMENTS .. iii

ABSTRACT .. iv

ÖZ .. v

CHAPTER O�E – I�TRODUCTIO� .. 1

1.1 General Overview to Biometric Systems .. 1

1.2 History of Face Recognition Systems ... 2

1.3 General Overview to Multiprocessor and FPGA Systems 5

1.4 Aim of the Thesis ... 7

1.5 Outline of Thesis .. 7

CHAPTER TWO – FACE RECOG�ITIO�... 9

2.1 Face Recognition System .. 9

2.2 Face Recognition Processing .. 10

2.3 Face Recognition Techniques ... 11

2.3.1 Principal Component Analysis (PCA) ... 11

2.3.2 Linear Discriminant Analysis (LDA)... 14

2.3.3 Independent Component Analysis (ICA) ... 17

2.3.4 Bayesian Face Rocognition Method .. 19

CHAPTER THREE –ARTIFICIAL �EURAL �ETWORKS………….……...21

3.1 Introduction .. 21

3.2 Biological Neuron .. 21

3.3 Neural Network Model ... 22

3.3.1 Simple Single Unit Network.. 22

vii

3.3.2 Multi Layer Perceptron ... 23

3.3.2.1 Introduction to Multi Layer Perceptron(MLP) 23

3.3.2.2 Backpropagation Algorithm ... 23

3.3.2.3 Theory of Backpropagation ... 25

3.3.3 Learning in Neural Networks .. 28

3.3.3.1 Input Data Selection .. 28

3.3.3.2 Preprocessing-Postprocessing .. 28

3.3.3.3 Cross-Validation .. 29

3.3.3.4 Number of Hidden Neurons ... 29

3.3.3.5 Initializing Weights ... 29

3.3.3.6 Activation Functions .. 30

CHAPTER FOUR – FIELD PROGRAMMABLE GATE ARRAYS …………32

4.1 Introduction to Field Programmable Gate Arras(FPGA) 32

4.2 FPGA Architecture ... 33

4.2.1 Logic Element (LE) .. 34

4.2.2 Logic Array Block (LAB) ... 36

4.3 FPGA Configuration .. 37

4.3.1 Schematic Design Entry .. 37

4.3.2 Hardware Description Languages (HDL) .. 37

4.3.3 High Level Languages .. 39

4.4 DE2-70 Development Kit ... 40

CHAPTER FIVE – MULTIPROCESSOR SYSTEMS ...…...….…...…………..42

5.1 Introduction to Multiprocessor Systems .. 42

5.2 Hardware Design .. 42

5.2.1 Autonomous Multiprocessors .. 42

5.2.2 Non-Autonomous Multiprocessor ... 43

5.2.3 The Shared System Resources ... 44

5.2.3.1 Shared Memory ... 44

viii

5.2.3.2 Shared Bus .. 45

5.2.3.3 Shared Peripherals ... 45

5.2.4 Hardware Mutex Core ... 46

5.3 Software Design ... 46

5.3.1 Program Memory .. 46

5.3.2 Boot Adresses ... 50

CHAPTER SIX – FPGA-BASED FACE RECOG�ITIO� SYSTEM

DESIG�…………………………………………………..….….……………….....52

6.1 Implementation of Face Recognition System Design on DE2-70…………...52

6.1.1 General Overview of Face Recognition System 52

6.1.2 Programs Used in the Project .. 56

6.1.3 Implementation Steps of Face Recognition System 57

6.1.3.1 Creating Database .. 57

6.1.3.2 Resizing Images .. 58

6.1.3.3 Applying Principle Component Analysis (PCA) 60

6.1.3.4 Sending Database to FPGA ... 61

6.1.3.5 Receiving Database from HOST PC .. 62

6.1.3.6 Normalization ... 62

6.1.3.7 Training Neural Network ... 63

6.1.3.8 Testing Neural Network ... 65

6.2 Single Processor Face Recognition System ... 66

6.2.1 Hardware Design .. 66

6.2.2 Software Design .. 69

6.3 Multi Processor Face Recognition System .. 72

6.3.1 Hardware Design .. 72

6.3.2 Software Design .. 75

6.3.2.1 Hierarchical Clustering .. 76

6.3.2.2 Multiprocessor System Software .. 77

6.4 General Overview to Face Recognition System Performance 80

ix

CHAPTER SEVE� – CO�CLUSIO�S………………..………….…….….……82

7.1 Summary of the Project .. 82

7.2 Advantages - Disadvantages ... 82

7.3 Troubleshooting ... 83

7.4 Cost Analysis ... 83

7.5 Future Work ... 84

REFERE�CES ……………….……..…………………….………….…...……… 85

APPE�DIX …….………………………………………….……………………….89

1

CHAPTER O�E

I�TRODUCTIO�

1.1 General Overview to Biometric Systems

 Biometric is a science of digital technology which is used to identify people based

on unique physical or biological characteristics. A number of biometric technologies

have been developed such as fingerprint, face, iris and speech. Feature extraction

techniques play important role for biometric recognition system design.

 A biometric system is essentially a pattern recognition system that operates by

acquiring biometric data from an individual, extracting a feature set from the

acquired data, and comparing this feature set against the template set in the database

(A. K. Jain, A. Ross, & S. Prabhakar, 2004). Depending on the application, a

biometric system may be called either in verification system or identification system:

• In the verification mode, the system validates a person’s identity by comparing

the captured biometric data with her own biometric template(s) stored system

database. In such a system, an individual who desires to be recognized claims an

identity, usually via a PIN (Personal Identification Number), a user name, a smart

card, etc., and the system conducts a one-to-one comparison to determine whether

the claim is true or not (e.g., “Does this biometric data belong to Bob?”). Identity

verification is typically used for positive recognition, where the aim is to prevent

multiple people from using the same identity (J. L. Wayman, 2001).

• In the identification mode, the system recognizes an individual by searching the

templates of all the users in the database for a match. Therefore, the system conducts

a one-to-many comparison to establish an individual’s identity (or fails if the subject

is not enrolled in the system database) without the subject having to claim an identity

(e.g., “Whose biometric data is this”). Identification is a critical component in

negative recognition applications where the system establishes whether the person is

2

who she (implicitly or explicitly) denies to be. The purpose of negative recognition is

to prevent a single person from using multiple identities (J. L. Wayman, 2001).

 The block diagrams of a verification system and an identification system are

shown in Figure 1.1.

Figure 1.1 Block diagrams of enrollment, verification and identification tasks are shown

using the four main modules of biometric system (A. K. Jain, A. Ross, & S. Prabhakar,

2004).

1.2 History of Face Recognition Systems

 The intuitive way to do face recognition is to look at the major features of the face

and compare these feature with the same features on the other faces. The first

attempts to do this began in the 1960’s with semi-automated system. During 1964

and 1965, Bledsoe, along with Helen Chan and Charles Bisson, worked on using the

computer to recognize human faces (W. W. Bledsoe, 1966a, & 1966b; W. W.

3

Bledsoe, & H. Chan, 1965). Marks were made on photographs to locate the major

features, it used features such as eyes, ears, noses, and mouths. Distances and ratios

were computed from these marks to a common reference point and compared to

reference data.

 In the early 1970's Goldstein, Harmon and Lesk used 21 subjective markers such

as hair color and lip thickness to create a face recognition system. (A. J. Goldstein, L.

D. Harmon, & B. Lesk, 1971). This proved even harder to automate due to the

subjective nature of many of the measurements still made completely by hand.

A more automated approach to recognition began with Fisher and Elschlagerb just

a few years after the Goldstein paper. This approach measured the features above

using templates of features of different pieces of the face and them mapped them all

onto a global template. After continued research it was found that these features do

not contain enough unique data to represent an adult face. Another approach is the

Connectionist approach, which seeks to classify the human face using a com-bination

of both range of gestures and a set of identifying markers. This is usually

implemented using 2-dimensional pattern recognition and neural net principles. Most

of the time this approach requires a huge number of training faces to achieve decent

accuracy; for that reason it has yet to be implemented on a large scale (M. Escarra,

M. Robinson, J. Krueger, & D. Kochelek, 2004) .

The first fully automated system to be developed utilized very general pattern

recognition. It compared faces to a generic face model of expected features and

created a series of patterns for an image relative to this model. This approach is

mainly statistical and relies on histograms and the grayscale value. Kirby and

Sirovich pioneered the eigenface approach in 1988 at Brown University (M. Escarra,

M. Robinson, J. Krueger, & D. Kochelek, 2004) . This was considered a milestone in

face recognition, because their approach is showed that less than one hundred values

were required to accurately code a suitably aligned and normalized face image (L.

Sirovich & M. Kirby, 1987).

4

 In 1991, Turk and Pentland discovered that the residual error coud be used to detect

face in images while using the eigenfaces technique. A discovery was enabled reliable

real-time automated face recognition systems. Although the approach was somewhat

constrained by environmental factors, it nonetheless created significant interest in

furthering development of automated face recognition technologies (M. A. Turk & A. P.

Pentland, 1991).

 Since then, many different approaches have been developed for face recognition

over the years such as Neural Network, Dynamic Link Architectures (DLA), Gabor

Wavelet Transform, Elastic Bunch Graph, Hidden Markov Models. In 2010, M.

Agarwal, N. Jain, H. Agrawal and M. Kumar worked on face recognition using

principle component analysis (PCA), eigenface and neural network. This approach

presents a methodology for face recognition based on information theory approach of

coding and decoding the face image. Proposed methodology is connection of two

stages: Feature extraction using principle component analysis and recognition using

the feed forward back propagation Neural Network. The algorithm has been tested

400 images (40 classes). A recognition score for test lot is calculated by considering

almost all the variants of feature extraction. The proposed methods were tested on

Olivetti and Oracle Research Laboratory (ORL) face database. Test results gave a

recognition rate of 97.018% (M. Agarwal, N. Jain, H. Agrawal, & M. Kumar, 2010).

 Increasing of face recognition systems bring about hardware solutions such as

application specific integrated circuit (ASIC) designs and field programmable gate

arrays (FPGA). One of the first publications implementing FPGA as a hardware is

released by T. Nakano, T. Morie and A. Iwata in 2003. The face/object recognition

system using coarse region segmentation and flexible template matching was

presented and the resistive-fuse network circuit was implemented in an FPGA by a

pixel serial approach, and coarse region segmentation of real images with 64×64

pixels at the video rate was achieved. The flexible template matching using dynamic

link architecture was performed in the PC system. Figure 1.2 shows this

implementation (T. Nakano, T. Morie, & A. Iwata, 2003).

5

Figure 1.2 The face/object recognition system (T. Nakano, T. Morie, & A. Iwata, 2003).

1.3 General Overview to Multiprocessor and FPGA Systems

 Advances in Field-Programmable Gate Array (FPGA) technologies have led to

programmable devices with greater density, speed and functionality. It is possible to

implement a highly complex System-on-Programmable-Chip (SoPC) using on-chip

FPGA resources (e.g., DSP blocks, PLLs, RAM blocks, etc.) and vendor-provided

intellectual property (IP) cores. Furthermore, it is possible to build Multiprocessor on

a Programmable Chip (MPoPC) systems, where the number of softcore processors

that can be used in a MPoPC system is only limited by device resources (A. Hung,

W. Bishop, & A. Kennings, 2005).

 There are several multiprocessor system designs which are implemented to

increase performance of systems (C. Y. Tseng & Y.C. Chen, 2008). In study of C. Y.

Tseng and Y.C. Chen, the performance of one, two, three, and four processors

systems have been observed by running the benchmark program to measure the

speedup. At the beginning, they run benchmark program to one processor system and

test its execution time. Then, distribute their benchmark program for two, three, and

four processors system independently. The speedup of two benchmark programs is

6

shown in Figure 1.3. The figure shows that the slope of these two lines becomes

gradually small (C. Y. Tseng & Y.C. Chen, 2008).

 Figure 1.3 The speedup of two benchmarks (C. Y. Tseng & Y.C. Chen, 2008).

 In VAR experiment, the one processor system as the standard system is made.

Execution time of system is about 99.78 seconds. When VAR benchmark runs on

two processors system, system spends 70.75 seconds. The speedup for two

processors system is 1.41. When program runs in three and four processors system,

system spends 58.26 and 54.95 seconds. Their speedups are 1.71 and 1.82 (C. Y.

Tseng & Y.C. Chen, 2008).

 In Array experiment result, the execution time for one processor system is 63.01

seconds, execution time for two processors is 43.6 seconds, execution time for three

processors is 34.32 seconds and execution time for four processors is 29.27 seconds.

The speedups are 1, 1.445, 1.836, and 2.152 (C. Y. Tseng & Y.C. Chen, 2008).

 According to an another study, A. Tumeo, F. Regazzoni, G. Palermo, F. Ferrandi,

and D. Sciuto presented the design of a reliable face recognition system implemented

on Field Programmable Gate Array (FPGA). The proposed implementation uses the

concept of multiprocessor architecture, paralel software and dynamic reconfiguration

to satisfy the requirement of a reliable system. The target multiprocessor architecture

is extended to support the dynamic reconfiguration of the processing unit to provide

reliability to processors fault. The experimental results show that, due to the

7

multiprocessor architecture, the parallel face recognition algorithm can achieve a

speed up of 63% with respect to the sequential version (A. Tumeo, F. Regazzoni, G.

Palermo, F. Ferrandi, & D. Sciuto, 2010).

1.4 Aim of the Thesis

 The aim of the thesis is to improve a previously implemented face recognition

system running on Field Programmable Gate Array (FPGA). The proposed system

rely on artificial neural networks for recognition while the previous system use

Euclidian distance comparison. Furthermore, in order to have a faster training

hierarchical classification with multiple processors approach has been followed.

The database of face images are stored in the host computer. Then, images are

resized to increase calculation speed and combined in one database matrix and PCA

features are extracted in MATLAB. This database matrix are sent to FPGA via serial

port using RS-232 protocol. The neural network is trained with these features. Feed

forward backpropagation algorithm is used as a neural network learning algorithm.

Neural network system consist of 3 layers which are input layer, hidden layer and

output layer. Input layer includes 10 neurons, hidden layer includes 5 neurons and

output layer includes 1 neuron.

Since the training phase takes too long when only a single processor is used, a

multiprocessor system with two processor is designed to reduce the training time.

The speed of the multiprocessor system is approximately doubled.

Upon completion of training phase, the feature vector of test image is extracted by

PCA and sent to the FPGA in order to find the owner of the image by neural

network.

1.5 Outline of Thesis

 This thesis is composed of seven chapters including the Introduction. Chapter 2

reviews face recognition processes, feature extraction methods and Principle

8

Component Analysis (PCA). Chapter 3 defines ANN; describe its properties and the

algorithm which is used in this project. In Chapter 4, programmable logic device is

introduced with the device that is used throughout project. In Chapter 5 design of

multiprocessor system has been considered. Chapter 6 summarizes the face

recognition system using field programmable gate array (FPGA) and explains the

operation. The experiments and final results are also presented in this chapter. The

last chapter of the thesis, Chapter 7, includes conclusions, advantages and

disadvantages of the system, cost analysis, troubleshooting and future works. The

algorithm of whole system is in the Appendix part of the thesis.

9

CHAPTER TWO

FACE RECOG�ITIO�

2.1 Face Recognition System

 Face recognition systems automatically identfy or verify a person from images or

videos. Face recognition systems can be operated in the following two modes:

• Face Verification:

 A one to one comparison of a captured biometric with a stored template to verify

that the individual is who he claims to be. It can be done conjuction with a smart

card, username or ID number. The operation of verification system is shown in

Figure 2.1.

 Figure 2.1 Face verification system (E. Dilcan, 2010).

• Face Identification:

 A one to many comparison of the captured biometric against a biometric database

in attempt to identify an unknown individual. The identification only succeeds in

identifying the individual if the comparison of the biometric sample to a template in

the database falls within a previously set threshold. The operation of identification

system is shown in Figure 2.2.

9

10

 Figure 2.2 Face identification system (E. Dilcan, 2010).

2.2 Face Recognition Processing

 Face recognition is a visual pattern recognition problem. A face recognition

system generally consist of four main parts as shown in Figure 2.3: detection,

alignment, feature extraction and matching.

 Figure 2.3 Face recognition processing flow scheme (S. Z. Li & A. K. Jain, 2004).

Face detection segments the face areas from the background. In the case of video,

the detected faces may need to be tracked using a face tracking component. Face

alignment is aimed at achieving more accurate localization and at normalizing faces

thereby whereas face detection provides coarse estimates of the location and scale of

each detected face. Facial components, such as eyes, nose, and mouth and facial

outline, are located; based on the location points, the input face image is normalized

with respect to geometrical properties, such as size and pose, using geometrical

transforms or morphing. The face is usually further normalized with respect to

photometrical properties such illumination and gray scale. After a face is normalized

geometrically and photometrically, feature extraction is performed to provide

11

effective information that is useful for distinguishing between faces of different

persons and stable with respect to the geometrical and photometrical variations. For

face matching, the extracted feature vector of the input face is matched against those

of enrolled faces in the database; it outputs the identity of the face when a match is

found with sufficient confidence or indicates an unknown face otherwise (S. Z. Li &

A. K. Jain, 2004).

2.3 Face Recognition Techniques

Face recognition is a very active research area specialising on how to recognize

faces within images or videos. There are many algorithms to perform face

recognition including: principal component analysis (PCA), independent component

analysis (ICA), linear discriminant analysis (LDA), Elastic Bunch Graph Matching

(EBGM) and neural networks with mathematical theories.

2.3.1 Principal Component Analysis (PCA)

 PCA algorithm is commonly used feature extraction technique for face

recognition. Principle Component Analysis (PCA) is mathematical procedure that

uses an orthogonal transformation to convert a set of observations of possibly

correlated variables into a set of values of uncorrelated variables called principal

components. The number of principal components is less than or equal to the number

of original variables. This transformation is defined in such a way that the first

principal component has as high a variance as possible (that is, accounts for as much

of the variability in the data as possible), and each succeeding component in turn has

the highest variance possible under the constraint that it be orthogonal to

(uncorrelated with) the preceding components. Principal components are guaranteed

to be independent only if the data set is jointly normally distributed. PCA is sensitive

to the relative scaling of the original variables.

PCA is a standard linear algebra technique and pioneered by Kirby and Sirovich

in 1988. This technique is commonly referred to as the use of eigenfaces in face

12

recognition. PCA is used to reduce the dimension of the data by means of data

compression basics. The reduction in dimensions removes the unuseful information

and decomposes the face into orthogonal (or uncorrelated) components, which are

also known as eigenfaces.

An example of eigenfaces are shown Figure 2.4 (MIT Media Laboratory, 2002).

Feature vectors are derived using eigenfaces.

 Figure 2.4 An example of eigenfaces (MIT Media Laboratory, 2002).

 Theory of PCA is described below:

Let the training set of M face images be I1, I2, I3, … , IM. The average of the

training set is, µ,

1

1 M

n

n

I
M

µ
=

= ∑ (2-1)

The difference of each image from the average is defined as;

 i iIθ µ= − (2-2)

13

This set of very large vectors is then subject to PCA, which seeks a set of M

orthonormal vectors, un, which are describing the distribution of whole data. The kth

vector of this vector,

2

1

1
()

M
T

k k n

n

u
M

λ θ
=

= ∑ (2-3)

is a maximum subject to

1, if

0, otherwise
T

l k lk

l k
u u ζ

=
= = 


 (2-4)

The vectors uk are eigenvectors and the scalars λk are eigenvalues of the

covariance matrix which is shown in the following,

 1

1

M
T

n n

n

T

C
M

AA

θ θ
=

=

=

∑ (2-5)

where C is the covariance matrix and A = [θ1, θ2,…, θM].

The matrix C, is �2 by �2, and determining the �2 eigenvectors and eigenvalues is

an intractable task for typical image sizes, so a computationally feasible method to

find these eigenvectors must be implemented. If the number of data points in the

image space is less than the dimension of the space (M < �2), there is only M – 1,

rather than �
2 meaningful eigenvectors (Turk & Pentland, 1991). By using this

approach the eigenvectors vi of AT
A is,

T

i i iA A v vβ= (2-6)

multipliying both sides by A,

14

T

i i iA A A v A vβ= (2-7)

Eq. (2-7) shows that Avi are the eigenvectors of C = AA
T. By using this analysis, M x

M matrix, L = AT
A is constructed. The L is,

T

m n m nL θ θ=
 (2-8)

and shows the M eigenvectors, vl, of L.These vectors are used to determine the linear

combinations of the M training set face images to form the eigenfaces ul.

1

, 1, 2, ...,
M

l lk k

k

u v l Mθ
=

= =∑

 (2-9)

 With this analysis the calculations are greatly reduced, from the order of the

number of pixels in the images (�2) to order of the number of images in the training

set (M) and in practice, the training set of face images will be relatively small and the

calculations become quite managable (M. Turk & A. Pentland, 1991).

2.3.2 Linear Discriminant Analysis (LDA)

LDA is a statistical approach for classifying samples of unknown classes based on

the training samples with known classes (D. Bolme, R. Beveridge, M. Teixeira, & B.

Draper, 2003). LDA is the technique which aims to maximize variance across the

users or formerly named between-classes, and minimize variance within the users

which is also expressed within-class formerly.

In the Figure 2.5, an example of six classes using LDA is shown (J. Lu, K. N.

Plataniotis, & A. N. Venetsanopoulos, 2003). In this figure, each block represents a

class. There are large variances between-classes, but the variance within-classes is

very little. When dealing with high dimensinal face data, this technique faces the

sample size problem that arises where there are a small number of avaliable training

15

samples compared to the dimensionality of the sample space (J. Lu, K. N. Plataniotis,

& A. N. Venetsanopoulos, 2003).

Figure 2.5 An example of six classes using LDA (J. Lu, K. N. Plataniotis, & A. N. Venetsanopoulos,

2003).

 Theory of LDA is described below:

 All instances of the same person’s face as being in one class and the faces of

different subjects as being in different class for all subjects in the training must be

defined before computing LDA. LDA is a class specific method that represents data

set make it useful for classification. Given a set of � imgaes {x1, x2, …, xn} where

each image belongs to one of c classses {X1, X2,…, Xc}. LDA selects a linear

tranformation matrix W that is the ratio of the between-class scatter and the with-in

class scatter is maximized.

 SB is the between-class scatter matrix which represents the scatter of the

conditional mean vectors, µi’s; around the overall mean vector, µ. SB can be

expressed by the following formula;

1

()()
c

T

B i i i

i

S � µ µ µ µ
=

= − −∑ (2-10)

where µi denotes the mean of image class Xi, µ denotes the mean of entire data set, �i

denotes the number of images in class Xi.

16

 SW is the within-class scatter matrix which represents the average scatter of the

sample vectors x of different class Ci around their respective mean µi;

1

()()
k i

c
T

W k i k i

i x X

S x xµ µ
= ∈

= − −∑ ∑ (2-11)

If the within-class scatter matrix SW is not singular, LDA finds an orthonormal matrix

Wopt which maximizes the ratio of the determinant of the between-class scatter matrix

to the determinant of the within-class scatter matrix. This matrix can be expressed by

the following formula;

[]1 2arg max ...
T

B

opt mT

W

W S W
W w w w

W S W
= = (2-12)

The set of solution {wi | i = 1, 2, …, m} is that of generalized eigenvectors of SB and

SW corresponding to the m largest eigenvalues {λi | i = 1, 2, ..., m}, which can be

shown that as in following;

 w h ere 1, 2 , ...,B i i W iS w S w i mλ= = (2-13)

In face recognition applications, generally SW is singular, so to overcome this

singularity, PCA algorithm is first used to reduce the vector dimensions. Combining

PCA and LDA, first input image x projected into face space y, then projected into

classification space z;

 (only PCA)

 (only LDA)

 (PCA + LDA)

T

T

x

T

y

y x

z W x

z W y

θ=

=

=
 (2-14)

17

2.3.3 Independent Component Analysis (ICA)

ICA is another algorithm for face recognition. To better understand the concept, it

is useful to compare ICA with PCA. PCA depends on the pairwise relationships

between pixels, but ICA depends on the higher order relationships among pixels in

the image database. So that, PCA can only represent second order interpixel

relationships, or relationships that capture the amplitude spectrum of an imgage but

not its phase spectrum. On the other hand, ICA use high order relationships between

the pixels and ICA algorithms are capable of capturing the phase spectrum (M. S.

Bartlett, J. R. Movellan, & T. J. Sejnowski, 2002).

ICA algorithm relies on the infomax algorithm. It receives an n-dimensional

random vector as input. PCA algorithm is used to reduce the size of random vector.

The higher order relationships aren’t affected from dimensional reduction. Then,

ICA algorithm finds the covariance matrix of the result and its factorized form is

obtained. Then, some defined methods are performed to obtain the independent

components that each face images in face space includes. These methods are

whitening, rotation and normalization (Hyvarinen, 1999).

 Theory of ICA is described below:

 ICA of a random vector searches for a linear transformation which minimizes the

statistical dependence between its components (P. Comon, 1994). Let, the image is

represented by a random vector, X ∈ R�, where � is the dimensionality of the image

space. The vector is formed by concatenating the rows or the coloumns of the image

which may be normalized to have a unit norm and/or an equalized histogram (C. Liu

& H. Wechsler, 1999). The covariance matrix of X can be expressed by using

expectation operator, E(.), as in the following;

 { [()][()] }T

XC E X E X X E X= − − (2-15)

18

where CX ∈ R�x�. The ICA of X factorizes the covariance matrix into the following

expression;

 T

XC F F= ∆ (2-16)

 where ∆ is diagonal real positive and F transforms the original data set X to new

data set Z which are independent or the most independent possible data set. Z can be

expressed as;

 X FZ= (2-17)

To find the transformation F, Comon developed an algorithm that consists of three

operations: whitening, rotation and normalization (P. Comon, 1994). The whitening

operation transforms a random vector X to U which has a unit covariance matrix and

U can be expressed by the following formula;

 1/ 2X A Uϕ= (2-18)

where φ and A are derived by solving the following eigenvalue operation;

T

XC Aϕ ϕ= (2-19)

where φ = [φ1, φ2, …, φ�] is an orthonormal eigenvector matix and A = diag {λ1, λ2,

…, λN} is a diagonal eigenvalue matrix of CX. After whitening operation, rotation

operations performs source separation by minimizing the mutual information

approximated using high order cumulants to derive independent components. Finally,

the normalization operation derives unique independent components in terms of

orientation, unit norm, and order of projections (P. Comon, 1994).

19

2.3.4 Bayesian Face Recognition Method

 Bayesian Method propose a new technique for direct visual matching of images

for the purposes of face recognition and image retrieval, using a probabilistic

measure of similarity, based primarily on a Bayesian (MAP) analysis of image

differences. The performance advantage of this probabilistic matching technique

over Standard Euclidean nearest-neighbor eigenface matching was demonstrated

using results from DARPA's 1996 FERET face recognition competition, in which

this Bayesian matching alogrithm was found to be the top performer (B.

Moghaddam, T. Jebara, & A. Pentland, 2000).

 A Bayesian approach presents a probabilistic similarity measure based on the

Bayesian belief that the image intensity differences, denoted by ∆ = �� − ��, are

characteristic of typical variations in appearance of an individual. In particular, we

define two classes of facial image variations: intrapersonal variations Ω�

(corresponding, for example, to di!erent facial expressions of the same individual)

and extrapersonal variations Ω� (corresponding to variations between diwerent

individuals). Our similarity measure is then expressed in terms of the probability.

 S(��, ��) = P(∆ϵΩ�) = P(Ω� |∆) (2-20)

 where P(Ω� |∆) is the a posteriori probability given by Bayes rule, using estimates

of the likelihoods P(∆ϵΩ�) and P(∆ϵΩ�). These likelihoods are derived from training

data using an efficient subspace method for density estimation of high-dimensional

data.

 Given these likelihoods we can evaluate a similarity score S(��, ��) between a pair

of images directly in terms of the intrapersonal a posteriori probability as given by

Bayes rule:

 S(��, ��) =

(∆|��)
(��)

(∆|��)
(��)�
(∆|��)
(��)
 (2-21)

20

 where the priors P(Ω) can be set to reflect specific operating conditions (e.g.,

number of test images vs. the size of the database) or other sources of a priori

knowledge regarding the two images being matched. Note that this particular

Bayesian formulation casts the standard face recognition task (essentially an M-ary

classification problem for M individuals) into a binary pattern classification problem

with Ω� and Ω�. This simpler problem is then solved using the maximum a posteriori

(MAP) rule -- i.e, two images are determined to belong to the same individual if

P(Ω�|∆) > P(Ω�|∆), or equivalently, if S(I�, I�) >
�
�
 (B. Moghaddam, T. Jebara, & A.

Pentland, 2000).

 Figure 2.6 shows an orthogonal decomposition of the vector space ℜ� into two

mutually exclusive subspaces: the principal subspace F containing the first M

principal components and its orthogonal complement F, which contains the residual

of the expansion.

Figure 2.6 (a) Decomposition of ℜ�into the principal subspace F and its orthogonal complement �� for

a Gaussian density, (b) a typical eigenvalue spectrum and its division into the two orthogonal

subspaces (B. Moghaddam, T. Jebara, & A. Pentland, 2000).

21

CHAPTER THREE

ARTIFICIAL �EURAL �ETWORK

3.1 Introduction

 An Artificial Neural Network (ANN) is an information processing paradigm that

is inspired by the biological nervous systems, such as the brain, process information.

The key element of this paradigm is the novel structure of the information processing

system. It is composed of a large number of highly interconnected processing

elements (neurones) working in unison to solve specific problems. ANNs, like

people, learn by example. An ANN is configured for a specific application, such as

pattern recognition or data classification, through a learning process. Learning in

biological systems involves adjustments to the synaptic connections that exist

between the neurones.

3.2 Biological �euron

 In the human brain, a typical neuron collects signals from others through a host of

fine structures called dendrites. The neuron sends out spikes of electrical activity

through a long, thin stand known as an axon, which splits into thousands of branches.

At the end of each branch, a structure called a synapse converts the activity from the

axon into electrical effects that inhibit or excite activity from the axon into electrical

effects that inhibit or excite activity in the connected neurones. When a neuron

receives excitatory input that is sufficiently large compared with its inhibitory input,

it sends a spike of electrical activity down its axon. Learning occurs by changing the

effectiveness of the synapses so that the influence of one neuron on another changes.

Biological neuron components, nucleus, cell body, dendrites, axon, synapse are

shown in Figure 3.1.

21

22

 Figure 3.1 (a) Components of a neuron (b) The synapse

3.3 �eural �etwork Model

3.3.1 Simple Single Unit etwork

 A simple artificial neural networks consists of five sections: inputs, weights,

summation function, activation function and outputs as diagram is shown in Figure

3.2.

 Figure 3.2 Simple artificial neural network

 Neural networks are models of biological neural structures. Neuron in Figure 3.2

consists of multiple inputs and a single output. Each input is modified by a weight,

which multiplies with the input value. The neuron will combine these weighted

inputs and, with reference to a threshold value and activation function, use these to

determine its output.

23

3.3.2 Multilayer Perceptron

3.3.2.1 Introduction to Multilayer Perceptron

 The network consisting of a set of sensory units (neurons) that constitute the input

layer, one or more hidden layers of computation nodes, and an output layer of

computation nodes. The input signal propagates through the network in a forward

direction, on a layer-by-layer basis. These neural networks are commonly referred to

as multilayer perceptrons (MLPs) (S. Haykin, 2001). A multilayer perceptron

consists of minimum three sections: input layer, hidden layer and output layer as

shown in Figure 3.3.

 Figure 3.3 Multilayer perceptron

3.3.2.2 Backpropagation Algorithm

 Error back-propagation learning consists of two passes through the different

layers of the network: a forward pass and a backward pass. In the forward pass, an

activity pattern (input vector) is applied to the sensory nodes of the network, and its

effect propagates through the network layer by layer. Finally, a set of outputs is

produced as the actual response of the network. During the forward pass the synaptic

weights of the networks are all fixed. During the backward pass, on the other hand,

the synaptic weights are all adjusted in accordance with an error correction rule.

24

Specifically, the actual response of the network is subtracted from a desired (target)

response to produce an error signal. This error signal is then propagated backward

through the network, against the direction of synaptic connections-hence the name

“error back-propagation”. The synaptic weights are adjusted to make actual response

of the network move closer to the desired response in a statistical sense. The error

back propagation algorithm is also referred to in the literature as the back-

propagation algorithm (S. Haykin, 2001).

The backpropagation learning algorithm can be divided into two phases:

propagation and weight update.

• Propagation:

 Each propagation involves the following steps:

� Forward propagation of a training pattern's input through the neural network

in order to generate the propagation's output activations.

� Back propagation of the propagation's output activations through the neural

network using the training pattern's target in order to generate the deltas of all

output and hidden neurons.

• Weight update

 For each weight-synapse:

� Multiply its output delta and input activation to get the gradient of the weight.

� Bring the weight in the opposite direction of the gradient by subtracting a

ratio of it from the weight

 This ratio influences the speed and quality of learning; it is called the learning

rate. The sign of the gradient of a weight indicates where the error is increasing, this

is why the weight must be updated in the opposite direction.

25

3.3.2.3 Theory of Backpropagation Algorithm

 The error signal at the output of neuron j at time step n (��� training example) is

defined by;

 � (�) = ! (�) − " (�) (3-1)

 ! (�) is desired response for neuron j. Since all neurons have instantaneous error

energy, the instantaneous total energy is computed as summing all the neurons in the

output layer;

 ξ(n) =
�
�

∑ �
�

 $% (�) (3-2)

where set C includes all neurons in the output layer. When there are N total number

of examples the average squared error energy will be;

 &'(=
�
�

∑ ξ(n)�
+$� (3-3)

 For a given training set &'(represents the cost function, as a measure of learning

performance. The objective of learning is to minimize the cost function, when the

cost function approaches zero, the network will be able to detect and classify all the

inputs similar to the training set correctly.

 The backpropagation algorithm applies a correction of ∆, -(n), which is

proportional to the partial derivative of error to the synaptic weight and can be

written according to the chain rule;

.ξ(/)

.012(/)
 =

.ξ(/)
.31(/)

.31(/)

.41(/)

.41(/)

.(1(/)

.(1(/)

.01(/)
 (3-4)

And with some differentiation with respect to error, output and the sum function, this

equation is minimized to;

26

.ξ(/)

.012(/)
 = −� (�)5

6(7 (�)) " (n) (3-5)

The correction applied to the synaptic weight is defined by the modified delta rule as;

 ∆, -(n) = −η
.ξ(/)

.012(/)
 (3-6)

Where η is the learning rate parameter and minus sign accounts for gradient descent

(a direction) in weight space. Finally the correction is;

 ∆, -(n) = η8 (�) " (n) (3-7)

Where the local gradient 8 (�) is defined as;

 8 (�) = � (�)5
6(7 (�)) (3-8)

 In the application of backpropagation algorithm, two passes are processed.

 In the forward pass the weights remain unchanged through the network and output

is calculated by neuron by neuron basis.

 " (�) = 5 (7 (�)) (3-9)

Where 7 (�) is the induced local field of neuron and computed as;

 7 (�) = ∑ , -(n)" (n)9
-$: (3-10)

Where , -(n) is the synaptic weight connecting neuron i to neuron j at time n and

" (n) is the input to the neuron j.If neuron j is the first layer then the input is the

general input of the network, if it is in a hidden layer then its input is the output of

27

the previous layer and calculations are done in a standart way. But what the ;��

neuron is in the output layer it is compared to the desired response then the backward

pass accurs.

 The backward pass starts output layer by passing the error signals leftward

through the network, layer by layer and recursively computing local gradient for each

neuron. For a neuron in the output layer, the local gradient δ is simply the error

signal of that neuron multiplied by the first derivative of its nonlinearity.

 Hyperbolic tangent function is commonly used form of sigmoidal non-linearity is

the hyperbolic tangent function, which in its most general form is defined by;

 5 (7 (�)) = atanh(b7 (�)) , (a,b) > 0 (3-11)

where a and b are constants. Its derivative with respect to 7 (�) is given by;

 5
6(7 (�)) = absecℎ�(b7 (�)) (3-12)

For a neuron j located in the output layer, the local gradient is;

 8 (�) = � (�)5
6(7 (�)) (3-13)

For a neuron j in a hidden layer, we have;

 8 (�) = 5
6(7 (�))∑ 8=(�),= (n) = (3-14)

We may calculate the local gradient 8 without requiring explicit knowledge of the

activation function.

28

3.3.3 Learning in eural etwork

 In neural network processing, several effecting factors is considered for a greater

performance and a good generalization over the data. These factors are;

� Input Data Selection

� Preprocessing

� Cross-Validation

� Number of Hidden Neurons

� Initializing Weights

� Type of Activation Function

3.3.3.1 Input Data Selection

 The performance of a neural network is dependent on the quality and relevance of

its data. It is very important to choose appropriate input data for create a successful

neural network system. In this thesis, Principle Component Analysis (PCA) results

are used as input data of neural network. Principle Component Analysis (PCA) is

applied to the face database to obtain input data. The dimension of the input vector is

10. These features are principal components of data which have the largest variance.

3.3.3.2 Preprocessing - Postprocessing

 Neural network training can be made more efficient if you perform certain

preprocessing steps on the network inputs and targets. The normalization step is

applied to both the input vectors and the target vectors in the data set and all data

scaled in a range from -1 to 1. In this way, the network output always falls into a

normalized range . The network output can then be reverse transformed back into the

units of the original target data when the network is put to use in the field.

29

3.3.3.3 Cross-validation

 The data are split into two parts. The models are trained in the training data set

and they are tested in the production (test) data set. By applying cross-validation, the

over fitting problem is avoided and a good generalization is achieved.

 In this thesis, Cross-validation is applied to generalize the results. %70 of data

randomly selected from a database is used for training and %30 of data randomly

selected from a database is used for testing. This process is repeated 20 times for the

generalization of the results. The neural network results are evaluated by calculating

the mean of these results.

3.3.3.4 �umber of Hidden �eurons

 The number of hidden units governs the expressive power and complexity of the

network. Increasing the number of hidden units does not mean better performance

when considering neural learning. Finding the appropriate number of hidden units is

an ad-hoc process that is not exactly solved in neural processing. In this study, 5

hidden neurons are used in the hidden layer.

3.3.3.5 Initializing Weights

 The starting point of the network is also one of the most important pre-conditions

in the learning process of the neural network that is not also yet solved. In the error

surface, you have to start in a point that will take you to the global minima.

 Figure 3.4 Error surface

30

 There may be several local minima that will make the network not be able to

generalize well or as desired. For this purpose, the initialization of the weights plays

a crucial role in the network performance. You cannot initialize the weights to 0

otherwise learning cannot take place. In setting the weights, we choose weights

randomly from a single distribution to help ensure uniform learning and have the

network to generalize well.

3.3.3.6 Activation Functions

� Sigmoid Function:

 This is the most widely used activation function in NN. Sigmoid function gives

continues results to the inputs. Results are not discreet. This function is suitable for

the problems which sensitive evaluation should be applied. Result of the sigmoid

function is between 0 and 1.

Sigmoid function is;

 f(x) =
�

��3>?(@AB) (3-15)

where C is gradient, x is input and b is the bias.

� Gaussian Function:

 Gaussian function provides easier to prediction of the behaviour of the net when

the input patterns differ strongly from all teaching patterns.

Gaussian function as activation function is;

 f(x) =
�

D�EF
�

>(@>G)H

H?H (3-16)

31

where C is gradient, x is input and µ is the learning rate.

� Unit Step Function:

If input is greater than 0, output is 1, otherwise output is 0. This function can be

used for simple problems. This function is not useful for complex problems.

Unit step function is;

 f(x) = 0 if x<0 (3-17)

 f(x) = 1 if x≥0 (3-18)

� Hyperbolic Tangent:

Difference of that function from others, that function returns results between -1

and 1. Hyperbolic tangent activation function is used in this study.

 Hyperbolic Tangent function is;

 f(x) = (1-�I�J)/(1+�I�J) (3-19)

32

CHAPTER FOUR

FIELD PROGRAMMABLE GATE ARRAYS

4.1 Introduction to Field Programmable Gate Arrays (FPGA)

 A Field-programmable Gate Array (FPGA) is an integrated circuit designed to

be configured by the customer or designer after manufacturing, hence "field-

programmable". The FPGA configuration is generally specified using a hardware

description language (HDL), similar to that used for an application-specific

integrated circuit (ASIC). FPGAs can be used to implement any logical function

that an ASIC could perform.

 FPGAs contain programmable logic components called "logic blocks", and a

hierarchy of reconfigurable interconnects that allow the blocks to be "wired

together"—somewhat like many (changeable) logic gates that can be inter-wired in

(many) different configurations. Logic blocks can be configured to perform

complex combinational functions, or merely simple logic gates like AND and

XOR. In most FPGAs, the logic blocks also include memory elements, which may

be simple flip-flops or more complete blocks of memory.

 The FPGA industry sprouted from programmable read-only memory (PROM)

and programmable logic devices (PLDs). PROMs and PLDs both had the option of

being programmed in batches in a factory or in the field (field programmable),

however programmable logic was hard-wired between logic gates.

 In the late 1980s the Naval Surface Warfare Department funded an experiment

proposed by Steve Casselman to develop a computer that would implement 600,000

reprogrammable gates. Casselman was successful and a patent related to the system

was issued in 1992.

32

33

 Some of the industry’s foundational concepts and technologies for

programmable logic arrays, gates, and logic blocks are founded in patents awarded

to David W. Page and LuVerne R. Peterson in 1985.

 Xilinx Co-Founders, Ross Freeman and Bernard Vonderschmitt, invented the

first commercially viable field programmable gate array in 1985 – the XC2064.

The XC2064 had programmable gates and programmable interconnects between

gates, the beginnings of a new technology and market. The XC2064 boasted a

mere 64 configurable logic blocks (CLBs), with two 3-input lookup tables (LUTs).

 The 1990s were an explosive period of time for FPGAs, both in sophistication

and the volume of production. In the early 1990s, FPGAs were primarily used in

telecommunications and networking. By the end of the decade, FPGAs found their

way into consumer, automotive, and industrial applications.

4.2 FPGA Architecture

 FPGAs consist of an array of programmable logic blocks of potentially

different types, including general logic, memory and multiplier blocks, surrounded

by a programmable routing fabric that allows blocks to be programmably

interconnected. The array is surrounded by programmable input/output block,

labeled I/O in the Figure 4.1, that connect the chip to the outside world (I. Kuon,

R. Tessier, & J. Rose, 2007).

34

 Figure 4.1 Basic FPGA Structure (I. Kuon, R. Tessier, & J. Rose, 2007).

 There are two types of FPGAs: SRAM-based programmable FPGA and One time

programmable FPGA. The most commonly used design is SRAM-based design. The

advantage of this design is reprogramming ability. But, SRAM-based FPGA needs

reprogramming everytime when it’s powered up. So, most of the designs use a serial

PROM for storing programming data.

4.2.1 Logic Element (LE)

 The smallest unit of logic in the Cyclone II architecture is the Logic Element

(LE). LE provides advanced features with efficient logic utilization.

Each LE features:

- A four-input look-up table (LUT), which is a function generator that

 can implement any function of four variables,

35

- A programmable register

- A register chain and a carry chain connection

- The ability to drive all types of interconnects: local, row, column,

 register chain, and direct link interconnects

- Support for register feedback

- Support for register packing (Cyclone II Handbook, Altera Corp., 2007).

The Cyclone II LE operates in one of the following modes:

• Normal mode

• Arithmetic mode

 The normal mode is suitable for general logic applications and combinational

functions. In normal mode, four data inputs from the LAB local interconnect are

inputs to a four-input LUT. The arithmetic mode is ideal for implementing adders,

counters, accumulators, and comparators. An LE in arithmetic mode implements a 2-

bit full adder and basic carry chain.

 Figure 4.2 Cyclone II logic element (Cyclone II Handbook, Altera Corp., 2007).

36

4.2.2 Logic Array Block (LAB)

Each LAB consists of the following:

- 16 LEs

- LAB control signals

- LE carry chains

- Register chains

- Local interconnect

The local interconnect transfers signals between LEs in the same LAB. Register

chain connections transfer the output of one LE’s register to the adjacent LE’s

register within an LAB (Cyclone II Handbook, Altera Corp., 2007). Figure 4.3 shows

Cyclone II LAB architecture.

 Figure 4.3 Cyclone II LAB architecture (Cyclone II Handbook, Altera Corp., 2007).

37

4.3 FPGA Configuration

 FPGAs can be programed in several ways such as schematic design entry,

using hardware description languages (HDLs) and using high-level languages.

These methods are described in the following sections.

4.3.1 Schematic Design Entry

Schematic design entry is the lowest level of FPGA configuration. Schematic

design includes standard logic gates, multiplexers, I/O buffers, storage elements and

macros for device specific functions such as adders or plls. The macros can be

constructed from primitive logic elements to further use in large circuit designs.

Schematic design entry is the least popular method of describing hardware,

because when the complexity of the circuit increases, it is difficult to follow

connection nodes in the schematic (E. Dilcan, 2010).

 Figure 4.4 An example by using schematic design entry (E. Dilcan, 2010).

4.3.2 Hardware Description Languages

 HDLs are standard text-based expressions of the spatial and temporal

structure and behaviour of electronic systems. Like concurrent programming

languages, HDL syntax and semantics includes explicit notations for expressing

concurrency. However, in contrast to most software programming languages,

HDLs also include an explicit notion of time, which is a primary attribute of

38

hardware. Languages whose only characteristic is to express circuit connectivity

between a hierarchy of blocks are properly classified as netlist languages used on

electric computer-aided design (CAD).

VHDL stands for VHSIC Hardware description language where VHSIC stands for

very high speed integrated circuit. VHDL was originally develop by the US

Department of Defense and released in 1985.

Verilog HDL development started in Gateway Design Automation Inc. in 1985.

Cadence Design Systems purchase Gateway Design Automation in 1990. With this

purchase, Verilog is started to use in public and very popular in industry from this

date.

library ieee;
use ieee.std_logic_1164.ALL;
use ieee.std_logic_unsigned.ALL;

entity halfadder is
 port (in_A : in std_logic;
 in_B : in std_logic;
 sum : out std_logic; -- sum out from A+B
 carry : out std_logic -- carry out from A+B

);
end halfadder;

architecture rtl of halfadder is

begin

 sum <= (in_A XOR in_B);
 carry <= in_A AND in_B;

end rtl;

 Figure 4.5 Half adder implementation by using VHDL.

39

module halfadder(in_A,in_B,sum,carry);

input in_A;
input in_B;
output sum;
output carry;

 assign sum = in_A ^ in_B;
 assign carry = in_A & in_B;

endmodule

 Figure 4.6 Half adder implementation by using Verilog HDL.

4.3.3 High-Level Languages

Using high-level programming languages for FPGA design is the increasing

interest in the industry. The custom language such as C or phyton is compiled to

generate a Verilog HDL or VHDL circuit description. SystemC, Celoxia’s DK

Design suite and MyHDL are an example of high-level languages (E. Dilcan, 2010).

Half adder implementation by using VHDL, Verilog HDL and SystemC is shown

in Figure 4.5, Figure 4.6 and Figure 4.7 respectively.

#include “systemc.h”

SC_MODULE(half_adder) {

 sc_in<bool>a, b;

 sc_out<bool>sum, carry;

 void proc_half_adder();

 SC_CTOR(half_adder) {

 SC_METHOD (proc_half_adder);

 sensitive << a << b;

 }

};

void half_adder::proc_half_adder() {

 sum = a ^ b;

 carry = a & b;

}

 Figure 4.7 Half adder implementation by using SystemC.

40

4.4 DE2-70 Development Kit

 The DE2-70 board is produced by Terasic Technologies. The general features of

this device and a board photo is taken from Altera DE2-70 Development and

Education Board User Manual (Version 1.08, Terasic Technologies, 2009).

The following hardware is provided on the DE2-70 board:

- Altera Cyclone® II 2C70 FPGA device

- Altera Serial Configuration device - EPCS16

- USB Blaster (on board) for programming and user API control; both JTAG and

Active Serial (AS) programming modes are supported

- 2-Mbyte SSRAM

- Two 32-Mbyte SDRAM

- 8-Mbyte Flash memory

- SD Card socket

- 4 pushbutton switches

- 18 toggle switches

- 18 red user LEDs

- 9 green user LEDs

- 50-MHz oscillator and 28.63-MHz oscillator for clock sources

- 24-bit CD-quality audio CODEC with line-in, line-out, and microphone-in jacks

- VGA DAC (10-bit high-speed triple DACs) with VGA-out connector

- 2 TV Decoder (NTSC/PAL/SECAM) and TV-in connector

- 10/100 Ethernet Controller with a connector

- USB Host/Slave Controller with USB type A and type B connectors

- RS-232 transceiver and 9-pin connector

- PS/2 mouse/keyboard connector

- IrDA transceiver

- 1 SMA connector

- Two 40-pin Expansion Headers with diode protection

41

The Device Features of Cyclone II 2C70 FPGA:

- 68,416 Logic Elements

- 250 M4K RAM Block

- 1,152,000 total RAM bits

- 150 embedded multipliers

- 4 PLLs

- 622 user I/O pins

- FineLine BGA 896-pin package

 Figure 4.8 DE2-70 board top view.

42

CHAPTER FIVE

MULTIPROCESSOR SYSTEMS

5.1 Introduction to Multiprocessor Systems

 Any system which incorporates two or more microprocessors working together to

perform a task is commonly referred to as a multiprocessor system. Multiprocessor

systems possess the benefit of increased performance, but nearly always at the price

of significantly increased system complexity. For this reason, the use of

multiprocessor systems has historically been limited to workstation and high-end PC

computing using a complex method of load-sharing often referred to as symmetric

multi processing (SMP). While the overhead of SMP is typically too high for most

embedded systems, the idea of using multiple processors to perform different tasks

and functions on different processors in embedded applications (asymmetrical) is

showing increased interest. FPGAs provide an ideal platform for developing

asymmetric embedded multiprocessor systems since the hardware can easily be

modified (Creating Multiprocessor Nios II Systems Tutorial, Altera, 2005).

5.2 Hardware Design

 In this section, the hardware design methodologies, autonomous and non-

autonomous systems will be described. Hardware mutex core and shared system

resources will be mentioned briefly.

5.2.1 Autonomous Multiprocessor

 Autonomous multiprocessor systems contain multiple processors, these

processors are completely autonomous and do not communicate with the others,

much as if they were completely separate systems. Systems of this type are typically

less complicated and pose fewer challenges, since the system’s processors are

incapable of interfering with each other’s operation by design. Figure 5.1 shows a

42

43

block diagram of two autonomous processors in a multiprocessor system (Creating

Multiprocessor Nios II Systems Tutorial, Altera, 2005).

 Figure 5.1 Autonomous Multiprocessor System (Creating

 Multiprocessor Nios II Systems Tutorial, Altera, 2005).

5.2.2 on-Autonomous Multiprocessor

 In this type of system, resources can be shared among processors. It is very useful to

adopt resource-sharing mechanism in multiprocessor architectures, but it should be

noticed the time which resource will be shared and how to cooperate each other among

different processors while sharing the resources. Figure 5.2 shows a block diagram of a

multiprocessor which includes two processors and the two processors share a single

memory component (Y. C. Chen & C. Y. Tseng, 2008).

44

 Figure 5.2 Multiprocessor System with Shared Resource (Creating

 Multiprocessor Nios II Systems Tutorial, Altera, 2005).

5.2.3 The Shared System Resources

5.2.3.1 Shared Memory

 The most common type of shared resource in multiprocessor systems is memory.

Shared memory can be used for anything from a simple flag whose purpose is to

communicate status between processors, to complex data structures that are

collectively computed by many processors simultaneously.

 If a memory component is to contain the program memory for more than one

processor, each processor sharing the memory is required to use a separate area for

code execution. The processors cannot share the same area of memory for program

space. Each processor must have its own unique .text, .rodata, .rwdata, heap, and

stack sections.

45

 If a memory component is to be shared for data purposes, its slave port needs to

be connected to the data masters of the processors that are sharing the memory.

Sharing data memory between multiple processors can be trickier than sharing

instruction memory due to the fact that data memory can be written to as well as

read. If one processor is writing to a particular area of shared data memory at the

same time another processor is reading or writing to that area, data corruption will

likely occur, causing application errors at the very least, and possibly a system crash.

The processors sharing memory need a mechanism to inform one another when they

are using a shared resource, so the other processors do not interfere (Creating

Multiprocessor Nios II Systems Tutorial, Altera, 2005).

5.2.3.2 Shared Bus

The design of system bus plays a very important role for designing the

architecture of System-on-a-Chip (SoC), especially while designing a multiprocessor

system in a single chip. However, it will cause poor performance if we connect high-

speed systems bus to low-speed peripherals during system designing period. To

make data access more stable and faster, some processors will analyze the data you

transfer and choose an appropriate system bus for data transmission (Y. C. Chen & C.

Y. Tseng, 2008).

5.2.3.3 Shared Peripherals

The most important issue of shared peripherals in multiprocessor system is the

management mechanism for interrupt handling. If a peripheral is allowed to interrupt

all the processors that share it, there is no reliable way to make sure which processor

will respond first and handle the interrupt. In this case, some multiprocessor systems

share the same input peripheral have the problem of deciding which processor to

process the data that the input peripheral send. It can be imaged that there is also a

need to have a mechanism to protect the shared peripheral without causing errors.

The tool chain Altera Corporation offers provides a Mutex Core which can be used

46

to protect the processors to mutually access the shared resources (Y. C. Chen & C. Y.

Tseng, 2008).

5.2.4 Hardware Mutex Core

 Multiprocessor environments can use the mutex core with Avalon interface to

coordinate accesses to a shared resource. The mutex core provides a protocol to

ensure mutually exclusive ownership of a shared resource. The mutex core provides

a hardware-based atomic test-and-set operation, allowing software in a

multiprocessor environment to determine which processor owns the mutex

(Embedded Peripherals IP User Guide, Altera, 2010).

 The mutex core acts as a shared resource, providing an atomic “test and set”

operation in which a processor may test if the mutex is available and if so, acquire it

in a single operation. When the processor is finished using the shared resource

associated with the mutex, the processor releases the mutex. At this point, another

processor may acquire the mutex and use the shared resource. Without the mutex,

this kind of function would normally require two separate “test” and “set”

instructions between which, another processor could also test for availability and

succeed. This situation would leave two processors both thinking they successfully

acquired mutually exclusive access to the shared resource when clearly they did not

(Creating Multiprocessor Nios II Systems Tutorial, Altera, 2005).

5.3 Software Design

 Running software on multiprocessor systems is much the same as for single-

processor systems, but requires the consideration of a few additional aspects.

5.3.1 Program Memory

 When creating multiprocessor systems, you may want to run the software for

more than one processor out of the same physical memory device. Software for each

47

processor must be located in its own unique region of memory, but those regions are

allowed to occupy the same physical memory device. For instance, imagine a two-

processor system where both processors run out of SDRAM. The software for the

first processor requires 128 Kbytes of program memory, and the software for the

second processor requires 64Kbytes. The first processor could use the region

between 0x0 and 0x1FFFF in SDRAM as its program space, and the second

processor could use the region between 0x20000 and 0x2FFFF (Altera,

Multiprocessor Tutorial).

 Nios II and SOPC Builder provide a simple scheme of memory partitioning that

allows multiple processors to run their software out of different regions of the same

physical memory. The partitioning scheme uses the exception address for each

processor, which is set in SOPC Builder, to determine the region of memory from

which each processor will be allowed to run its software. Although the Nios II is

ultimately responsible for the linking of the processors’ software and determining

where the software will reside in memory, Nios II looks at the exception addresses

that were set for each processor in SOPC Builder to calculate where the different

code sections will be linked. The Nios II provides each processor its own section

within memory from which it can run its software. If the software for two different

processors is linked to the same physical memory, then the exception address of each

processor is used to determine the base address of the region which that processor’s

software can occupy. The end address of the region is determined by the next

exception address found in that physical memory, or the end of that physical

memory, whichever comes first (Creating Multiprocessor Nios II Systems Tutorial,

Altera, 2005).

 For any single or multiprocessor system, there are five primary code sections

that need to be linked to fixed addresses in memory for each processor. These

sections are:

� .text — the actual executable code

� .rodata — any constant data used in the execution of the code

� .rwdata — where read/write variables and pointers are stored

48

� heap — where dynamically allocated memory is located

� stack — where function call parameters and other temporary data is

stored

These sections are shown in Figure 5.3 for a memory map of how these sections are

typically linked in memory for a single processor Nios II system.

 Figure 5.3 Single Processor Code Linked in Memory Map (Creating

 Multiprocessor Nios II Systems Tutorial, Altera, 2005).

 In a multiprocessor system, it may be desirable to use a single memory to store all

the code sections for each processor. In this case, the exception address set for each

processor in SOPC Builder is used to define the boundaries between where one

processor’s code sections end and where the next processor’s code sections begin.

For instance, imagine a system where SDRAM occupies the address range 0x0 –

0xFFFFF and processors A, B and C each need 64 Kbytes of SDRAM to run their

software. By using SOPC Builder to set their exception addresses 64 Kbytes apart in

SDRAM. Partitioning of SDRAM is shown in Figure 5.4 for a memory map showing

49

how the SDRAM will be partitioned in this example system (Creating

Multiprocessor Nios II Systems Tutorial, Altera, 2005).

 Figure 5.4 Partitioning of SDRAM Memory Map for Three Processors (Creating

 Multiprocessor Nios II Systems Tutorial, Altera, 2005).

 Note that the lower six bits of the exception address are always set to 0x20.

Offset 0x0 is where Nios II must run its reset code, so the exception address must be

placed elsewhere. The offset of 0x20 is chosen because it corresponds to one

instruction cache line. The 0x20 bytes of reset code initializes the instruction cache,

and then branches around the exception section to the system startup code. Care must

50

be taken when partitioning a physical memory to contain the code sections of

multiple processors. There are no safeguards in SOPC Builder or Nios II that

guarantee you have provided enough code space for each processor’s stack and heap

in the partition. If inadequate code space is allotted in memory, the stack and heap

may overflow and corrupt the processor’s code execution (Creating Multiprocessor

Nios II Systems Tutorial, Altera, 2005).

5.3.2 Boot Adresses

 In multiprocessor systems, each processor must boot from its own piece of

memory. More than one processor may not boot from the same bit of executable

code at the same address in the same non-volatile memory. Boot memory can also be

partitioned, much like program memory can, but the notion of sections and linking is

not a concern as boot code typically just copies the real program code to where it has

been linked in RAM, and then branches to the program code. To boot multiple

processors out of separate regions with the same non-volatile memory device, simply

set each processor’s reset address to the location from where you wish to boot that

processor. Be sure you leave enough space between boot addresses to hold the

intended boot payload (Creating Multiprocessor Nios II Systems Tutorial, Altera,

2005). Flash device memory map is shown in Figure 5.5 for a memory map of one

physical flash device from which three processors can boot.

51

 Figure 5.5 Flash Device Memory Map with Three Processors Booting

 (Creating Multiprocessor Nios II Systems Tutorial, Altera, 2005).

52

CHAPTER SIX

FPGA-BASED FACE RECOG�ITIO� SYSTEM DESIG�

 In this chapter, the implemented face recognition system will be described in

detail. After, general overview of the face recognition system discussed in section

6.1, the results of a single-processor system will be assessed in section 6.2. The

results of multi-processor system will be given in section 6.3. Finally, face

recognition system performance will be evaluated in section 6.4.

6.1 Implementation of Face Recognition System Design on DE2-70

 The face recognition system consists of several hardware and software parts.

This section demonstrates the fundamental aspects of the system.

6.1.1 General Overview of Face Recognition System

 In this study, the face recognition processes can be divided into two phases,

processes implemented on Host PC and processes implemented on FPGA.

Processes implemented on Host PC are;

� Collecting database face images

� Image resizing

� Principle Component Analysis (PCA)

� Send database to FPGA

Block diagram of Host PC processes are shown in Figure 6.1.

52

53

 Figure 6.1 Block diagram of Host PC processes

Processes implemented on FPGA are;

� Recieve database from Host PC

� Normalization

� Neural network training

� Neural network testing

Block diagram of FPGA processes is shown figure 6.2.

Host

PC

Collecting

Database Face

Images

Image

Resizing

Principle

Component

Analysis (PCA)

Send

Database

to FPGA

54

 Figure 6.2 Block diagram of FPGA processes

 ORL Database is used for this implementation of face recognition system.

There are 40 people and 10 images for each person in this database. In this study,

60 images of 6 different person are used. The size of the images in this database is

112x92. Process on FPGA takes a long time because of large size of images. So

there is a need to reduce the size of the images. In order to reduce the

computational burden, the windowing method is applied. A window whose size is

3x3, is applied to the new images. Since the size of resized images is 40x40,

13x13 matrix is created for each image by windowing and mean processes.

Windowing is applied to all images in the database. The row number of the feature

matrix is M x N. Each image is represented by a 13x13 matrix so row number of

the feature matrix is 169. Since 60 face images are used for database creation, the

size of feature matrix is 169x60.

 The most important step for neural network is feature extraction process.

Principle Component Analaysis (PCA) algorithm is used for feature extraction

process. Reducing size of data is provided by applying PCA to created feature

matrix and independent variables are obtained. Eigenvectors are created by

Field

Programmable

Gate Arrays

(FPGA)

Recieve

Database from

Host PC

Normalization

Neural Network

Training

Neural

Network

Testing

55

applying PCA to feature matrix. Ten eigenvectors with largest variance are chosen

to be given neural network for each image. It has been observed that, 10

eigenvalues are sufficient for proper training of neural network. Since image

database has 60 images and 10 datas are obtained by PCA, finally 60x10 feature

matrix is created. Randomly selected %70 of this feature matrix is used for

training and %30 of this feature matrix is used for testing. This data is sent to

FPGA by Universal Asynchronous Receiver/Transmitter (UART). The source

code of HOST PC processes is in the Appendix with the folder name of

“6_1_1_Database_PCA_Windowing_Matlab”.

 Code on FPGA consist of two part; training and testing. Training part begins to

run after sending data are received by FPGA via UART. When data are sent from

Host PC, code running on FPGA jumps to UART interrupt function and

eigenvectors are saved in this UART interrupt function. Some preprocessing

operations are applied to saved data. Normalization process is applied to this data

to generate more correct results and to obtain code running faster. As a result of

normalization process, elements of feature matrix are distributed between -1 and 1.

Normalized data are given to neural network to be trained. Neural network

algortihm is Feed Forward Backpropagation Algorithm. Neural network consists

of 3 layers; input layer, hidden layer and output layer. Owing to the fact that 10

largest variance of data are chosen from PCA, input layer has 10 neurons. Hidden

layer has 5 neurons and output layer has 1 neuron. The target vector is prepared to

train the network to find out the person. Neural network training need to be

repeated 2500 times to reach to desired learning rate. Neural network training is

completed after 2500 epochs and neural network system is ready for testing.

 Testing part starts to run after testing datas are sent from Host PC to FPGA via

UART. Sent data are saved for testing in UART interrupt function. Normalization

process is applied to testing data and data are scaled between -1 and 1. Owner of

the images are identified by given normalized data to trained neural network.

56

6.1.2 Programs Used in the Project

 In order to develop face recognition system the following programs have been

used for preprocessing steps and FPGA programing:

• Matlab

• Quartus

• SOPC Builder

• Nios II

� Matlab:

 Matlab (matrix laboratory) is a numerical computing environment and

fourth-generation programming language. Developed by MathWorks,

MATLAB allows matrix manipulations, plotting of functions and data,

implementation of algorithms, creation of user interfaces, and interfacing with

programs written in other languages, including C, C++, and Fortran.

� Quartus:

 The Altera Quartus II design software provides a complete, multiplatform

design environment that easily adapts to your specific design needs. It is a

comprehensive environment for system-on-a-programmable-chip (SOPC) design.

The Quartus II software includes solutions for all phases of FPGA design

(Introduction to the Quartus II Software, Altera, 2010).

� SOPC Builder:

 SOPC Builder is a powerful system development tool. SOPC Builder

enables you to define and generate a complete system-on-a-programmable-chip

(SOPC) in much less time than using traditional, manual integration methods.

SOPC Builder is included as part of the Quartus II software (SOPC Builder

User Guide, Altera, 2010).

57

� Nios II

 Nios II is a 32-bit embedded-processor architecture designed specifically for

the Altera family of FPGAs. Nios II incorporates many enhancements over the

original Nios architecture, making it more suitable for a wider range of

embedded computing applications, from DSP to system-control. The Nios II

software development environment is called The Nios II integrated

development environment (IDE). The Nios II IDE is based on the GNU C/C++

compiler and the Eclipse IDE, and provides a familiar and established

environment for software development (Nios II Processor Reference

Handbook, Altera, 2007).

6.1.3 Implementation Steps of Face Recognition System

6.1.3.1 Creating Database

ORL Database is used for this implementation of face recognition system. It

contains a set of face images. There are 10 different images of each of 40 distinct

subjects. For some subjects, the images are taken at different times, varying the

lighting, facial details such as open/closed eyes, smiling/not smiling, glasses/no

glasses etc. All the images have a dark homogeneous background with the subjects in

an upright, frontal position. The size of each image is 92x112 pixels, with 256 grey

levels per pixel. Figure 6.3 shows some example images from this database.

58

Figure 6.3 Some examples from ORL Database

In this study, 60 images of 6 different person are used and size of images is

reduced.

6.1.3.2 Resizing Images

 Size of the face image in ORL Database is 112x92. Firstly, the input image is

taken from ORL image database. Then imresize, that is also one of the functions of

MATLAB image processing toolbox, is used to resize the images. Figure 6.4.a

shows the input image, Figure 6.4.b shows the resized image from 112x92 to

40x40. Note that, the process that is shown in Figure 6.4 is applied to all images

sequentially on the database.

59

 Figure 6.4(a) An original face image (b) the resized form of the face image

 In order to reduce the computational burden, the windowing method is applied.

After resizing the images, a window whose size is 3x3, is applied to the new images.

The mean of each window become an element of the feature matrix. Since the size of

resized images is 40x40, 13x13 matrix is created for each image by windowing and

mean processes. Windowing is applied to all images in the database. The row

number of the feature matrix is M x N. Each image is represented by a 13x13 matrix

so row number of the feature matrix is 169. Figure 6.5 shows the new form of

database images after windowing the whole image and taking the mean of the

resultant windows.

60

 Figure 6.5 A face image after calculating mean of each window

6.1.3.3 Applying Principle Component Analysis (PCA)

The most important step for neural network is feature extraction process.

Principle Component Analaysis (PCA) algorithm is used for feature extraction

process. Images that are used for database are resized from 112x92 to 40x40.

Since the size of resized images is 40x40, 13x13 matrix is created for each image

by windowing and mean processes. Each image in the database are transformed

into vectors and placed one column of new population matrix. For example, first

image in the database is converted to a vector of 169x1, then this vector is put to

first column of population matrix. This process is continued for all images. By

processing for 60 images (6 people and 10 images for each people), population

matrix is created with size of 169x60. This population matrix, X, is used for

61

creating the basis function. First, covariance of X is computed then eigenvalues

and eigenfaces are found. By sorting eigenvalues in descending order, eigenface

vector or face space vector, A, is computed. The size of A is 169x169. Next step is

to project population matrix, X, to face space by multiplying the face space vector,

A. To reduce the computation time, only the first 10 eigenvalues are used.

Selecting 10 datas are enough for neural network training. Since image database

has 60 images and 10 datas are obtained by PCA, finally 60x10 feature matrix is

created.

6.1.3.4 Sending Database to FPGA

UART is the part of computer hardware that translates data between parallel

and serial forms. Today, UARTs are commonly included in microcontrollers and

they are commonly used in conjunction with other communication standards such

as EIA RS-232.

There are two main environment in the project, MATLAB and FPGA. UART

provides the asynchronous communication between them. Communication in

MATLAB is done by the help of MATLAB serial communication toolbox functions.

Basically, four functions run sequentially in MATLAB. They are serial function to

construct a serial port object associated with an existing port, fopen to connect the

serial port object to FPGA, fwrite to write the feature matrix and other data to FPGA

which is already connected to defined serial port object and fclose to disconnect the

serial port object from FPGA. Baud rate is 9600 bits/second. A serial port object is

defined in MATLAB to communicate with FPGA. Next, it is opened by fopen. If

data transmission is required, fwrite is used. Also, if data reception is required, fread

is used over the opened serial port object.

62

6.1.3.5 Receiving Database from Host PC

 UART implementation in FPGA works to receive the data due to interrupts.

When an interrupt is created to receive any data, interrupt service routine is called

and data receive process starts. To use UART, two header files must be included:

“altera_avalon_uart.h” that includes the UART device drivers and

“altera_avalon_uart_regs.h” that includes the pre-defined status and control registers

of UART. UART module is defined as a routine that serves when the serial port

interrupt occurs. Note that, UART_BASE is the start address of UART. When system

is generated in SOPC Builder, this address is added to table in “system.h” file. In this

service routine first the status register is controlled. If the receiver ready flag

(ALTERA_ AVALO�_ UART_CO�TROL_RRDY_MSK) is set, UART is ready to

receive data. RxHeadData shows the buffer assigned for the database. Receiving

bytes and storing them to RxHeadData is continued until all of the database elements

are sent. If the pointer of the buffer shows the exact number with database, the new

received bytes are interpreted as the elements of test array and stored in RxTest. This

approach is followed since the database and test features are sent respectively from

MATLAB.

6.1.3.6 �ormalization

Method of data normalization is a simple linear scaling of data. Data must be

scaled into the range used by the input neurons in the neural network. This is

typically the range of -1 to 1 or zero to 1. A linear scaling requires that the

minimum and maximum values associated with the facts for a single data input be

found. Let's call these values K9-+ and K9'J, respectively. The input range

required for the network must also be determined. Let's assume that the input

range is from �9-+ to �9'J. The formula for transforming each data value D to an

input value I is:

 I = �9-+ + (�9'J− �9-+) * (D − K9-+)/(K9'J− K9-+) (6.1)

63

K9-+ and K9'J must be computed on an input-by-input basis. This method of

normalization will scale input data into the appropriate range but will not increase

its uniformity.

6.1.3.7 Training �eural �etwork

 Neural network algortihm is Feed Forward Backpropagation Algorithm. Neural

network consists of 3 layers; input layer, hidden layer and output layer. Input layer

has 10 neurons, hidden layer has 5 neurons and output layer has 1 neuron. Figure

6.6 shows block diagram of neural network structure.

 ��

 ��

 �L

 �M

 �N

 �O

 �P

 �Q

 �R

 ��:

 Input Layer Hidden Layer Output Layer

 Figure 6.6 Block diagram of neural network structure.

 N1

N2

N3

N4

N5

 O1

Weights

Neurons

64

 Firstly, Inputs of neurons in hidden layer need to calculate to train neural

network. Therefore, initial weights are assigned randomly. Inputs of neurons are;

 7 (�) = ∑ , -(n)" (n)9
-$: (6.2)

Where 7 (�) is the induced local field of neuron and m is the total number of inputs

applied to neuron j, , -(n) is the synaptic weight connecting neuron i to neuron j at

time n and " (n) is the input to the neuron j. If neuron j is the first layer then the

input is the general input of the network, if it is in a hidden layer then its input is the

output of the previous layer and calculations are done in a standart way. But what the

;�� neuron is in the output layer it is compared to the desired response then the

backward pass accurs.

 In the forward pass the weights remain unchanged through the network and

output is calculated by neuron by neuron basis. Function signal " (n) appering at

the output of neuron j at iteration n is;

 " (�) = 5 (7 (�)) (6-3)

 Activation function is used to calculate output of neuron. This activation

function is hyperbolic tangent function. Hyperbolic tangent function is;

 5 (7 (�)) = atanh(b7 (�)) , (a,b) > 0 (6-4)

 After output neuron is obtained, this output is compared with desired output

value and system error is calculated. The error signal at the output is defined by;

 � (�) = ! (�) − " (�) (6.5)

65

 If number of output neuron has more than 1 neuron, error is;

 ξ(n) =
�
�

∑ �
�

 $% (�) (6-6)

 All processes are repeated number of patterns times. Error is calculated for all

patterns as follows;

 &'(=
�
�

∑ ξ(n)�
+$� (6-7)

 According to calculated error, system weights are reconfigured. All processes

mentioned above are repeated until error reach to the desired value. After 2500

epochs, sistem reaches to desired value and the error is approximately 0,045.

6.1.3.8 Testing �eural �etwork

Testing images are taken from image database. Images that are used for testing

are resized from 112x92 to 40x40. After by windowing and mean processes a

13x13 matrix is created for each image. Principle Component Analysis (PCA) is

applied to testing data. 10 eigenvalues from PCA are used for testing. This data is

sent to FPGA by UART.

 Sent data are received by FPGA via UART. Then, testing phase begins. Sent

data are saved for testing in UART interrupt function. Normalization process is

applied to test data and data are scaled between -1 and 1. The owner of the images

are identified by given 10 eigenvalues to trained neural network. The output of

neural network system is calculated by processing feature vector with trained

weights as described in section 6.1.3.7. In the training phase, indices are assigned

as a target values as follows ;

• 1 to 10 images in the database: target value is 1

• 11 to 20 images in the database: target value is 2

66

• 21 to 30 images in the database: target value is 3

• 31 to 40 images in the database: target value is 4

• 41 to 50 images in the database: target value is 5

• 51 to 60 images in the database: target value is 6

 In the testing phase, therefore, values need to be obtained vary between 1 and

6. If output value of network doesn't exceed the threshold value, owner of the

image is identified. If output value of network exceeds the threshold value, owner

of the image is not identified.

6.2 Single Processor Face Recognition System

 6.2.1 Hardware Design

 Altera SOPC Builder is a tool of Quartus II software that is used for system on

programmable chip (SOPC) designs. By using this tool, FPGA chip can be

programmed as a CPU and the other system components are integrated to system

design easily. The design of the system starts with adding the design components.

These components are;

• Nios II CPU

• Phase Locked Loop (PLL)

• JTAG UART

• Interval Timer

• 64 Mbyte SDRAM Controllers

• 4 Mbyte Flash Memory

• UART

67

 There are 3 types of configurable Nios II CPU for Alera FPGAs. These are

Nios II/f which is an optimized for the highest performance, Nios II/e which is an

optimized for smallest size and Nios II/s which is balanced for performance and

size. Nios II/f is selected for the system in this thesis.

 External clock source that is provided by the crystal on the development kit is

50 MHz. The SDRAM on the DE2-70 operates at 85 MHz. In order to provide all

components with same clock, three clocks are generated from the external 50 MHz

clock by using Altera ALTPLL MegaWizard.

 JTAG UART is used for serial configuration. JTAG UART core provides host

access via JTAG pins on the FPGA. For time-based operations such as configuring

watchdog timer or resetting the system in a pre-determined time are realized by

interval timer block of SOPC Builder.

 SDRAM Controllers, sdram_0 and sdram_1, are configured. Data width is set

to 16 bits and address widths are created by using 13 rows and 9 columns. The

sizes of sdram_0 and sdram_1 are 32 MBytes (256 MBits) and totally 64 MBytes

of SDRAM memory.

 Flash memory is placed on behind of Avalon memory mapped tristate slave in

SOPC Builder. 4 MBytes of flash memory by setting address width to 22 and data

width to 8 is created in the system.

 UART module allows communication between MATLAB and FPGA. 9600

baud rate is used for communication.

 SOPC Builder screen at the end of configuration is shown in Figure 6.7.

68

 Figure 6.7 SOPC Builder screen at the end of configuration.

 After configuring all components, reset addresses and exception addresses are

arranged from SOPC Builder settings. Cpu settings are shown in Figure 6.8

 Figure 6.8 Cpu settings in processor configuration

69

 The system is generated after configuring all components by using “Generate”

button of SOPC Builder. After generating the system without any error, pins that

are used on the board must be assigned. The hardware design of this system is

completed with pin assignments. Figure 6.9 shows the pin assignments.

 Figure 6.9 Pin assignments of system.

6.2.2 Software Design

 Nios II IDE is the environment of configuring FPGA by writing a high level

language, C/C++. This tool has some useful features such as adding hardware and

software breakpoints that are used for debugging the configuration software.

 The images are received from MATLAB after resizing operation. UART core

that is added to system during SOPC Builder design, listens to serial port and

receive/transmit informations. Code on FPGA starts to run after sending data are

recieved by FPGA via UART. When data are sent from Host PC, code running on

FPGA branches to void uart_isr(void* context,alt_u32 id) interrupt function and

eigenvectors are saved in this UART interrupt function. Some preprocessing

70

operations are applied to saved datas. Normalization process is applied to this

datas in the void �ormalization(void) function. Datas distributed between -1 and 1

are obtained as a result of this function. Normalized datas are given to neural

network. Firstly, Initial weights must be assigned to start training. void

Initial_Weights(void) function is used for this process. For training of neural

network, there are 3 main functions. void Calculate_�et(void) calculates the

current network output. According to the calculated error in the Calculate_�et(),

weight outputs are reconfigured in the void Weight_Changes_HO(void) and

weight inputs are reconfigured in the void Weight_Changes_IH(void). Testing part

begins to run after testing datas are sent from Host PC to FPGA via UART. Sent

datas are saved for testing in the void Create_TestDatabase(void) function.

Normalization process is applied to testing datas and datas are scaled between -1

and 1 in the void �ormalization_Test(void) function. Owner of the images are

identified by given normalized datas to trained neural network. These results are

displayed in the void Display_TestResults(void). Flow diagram of all this process

is shown in Figure 6.10. The source code of single processor face receognition

system is in the Appendix with the folder name of

“6_2_2_Single_Processor_Face_Recognition_System_C_Code”.

71

 Figure 6.10 Flow diagram of single processor system

 In order to select the train and the test samples, the cross-validation algorithm is

implemented in MATLAB by using crossvalind function from Bioinformatics

Toolbox of MATLAB. The output of the algorithm is a matrix and each row

represents the images and each column represents the number of test subsystem.

The elements of the cross-validation matrix are 0’s and 1’s. 1’s show that the

corresponding image must be selected for training and similarly 0’s show that the

corresponding image must be selected as test image. 20 test subsystems are created

 Create Database

 Assign Initial Weights

 Normalization

 Calculate Net

Configure Weights Output

Configure Weights Input

Epochs = 2500

 Create Test Database

 Normalization

 Display Test Results

1

0

72

by using cross-validation technique. The source code of cross-validation is in the

Appendix with the folder name of “6_2_2_Cross_Validation_Matlab”.

 Using cross-validation matrix, all processes in flow diagram are repeated 20 times

for the generalization of the results. The neural network recognition rate is evaluated

by calculating the mean of these results.

 Time of all this processes, number of processor, epoch number, time of system,

system error and recognition rate are given in the Table 6.1.

Table 6.1 Results of single processor system

Number of
Processor

Epoch
Number

Time of System
Training

System Error
(RMS Error)

Recognition
Rate

1 CPU 2500 49 min. 10 sec. 0.045 95.3%

 The results indicate that although the recognition rate is acceptable, the process is

slower. In the next section, the multiprocessor approach will be introduced to speed

up the system.

6.3 Multiprocessor Face Recognition System

 6.3.1 Hardware Design

 Multi-processor system consists of the following elements;

• Nios II CPU1

• Nios II CPU2

• The Hardware Mutex Core

• On-Chip Memory

• Phase Locked Loop (PLL)

• JTAG UART

• Interval Timer

73

• 64 Mbyte SDRAM Controllers

• 4 Mbyte Flash Memory

• UART

 All components except hardware mutex core are mentioned in section 6.2.1.We

are building a multiprocessor system that shares a data memory between processors,

so it is essential that a hardware mutex component be included to enable protection

of that memory from data corruption. Multiprocessor environments can use the

mutex core with Avalon interface to coordinate accesses to a shared resource. The

mutex core provides a protocol to ensure mutually exclusive ownership of a shared

resource. The mutex core provides a hardware-based atomic test and set operation,

allowing software in a multiprocessor environment to determine which processor

owns the mutex.

 Most important step for multiprocessor system design is to connect instruction

and data masters. All the resources that are shared between processors in the system

need to be connected using SOPC Builder’s connection matrix. Using the connection

matrix, sdram and sdram1 are connected to the instruction and data masters for each

processor, allowing two processors to access sdram and sdram1. All the connection

dots for the sdram and sdram1 should be solid black.

 ext_ram_bus is connected to the instruction and data masters for each processor,

allowing two processors to access external RAM and flash memory. All the

connection dots for ext_ram_bus should be solid black.

 message_buffer_mutex is connected to the data masters for two processors and

two instruction masters are disconnected, allowing two processors to access

message_buffer_mutex.

 message_buffer_ram is connected to the data masters for two processors and two

instruction masters are disconnected, allowing all three processors to access that

74

memory only as data memory. SOPC Builder screen at the end of configuration is

shown in Figure 6.11.

 Figure 6.11 All components of multiprocessor system

 After configuring all components, reset addresses and exception addresses are

arranged from SOPC Builder settings. Cpu1 and Cpu2 settings are shown in

Figure 6.12 and 6.13.

 Figure 6.12 Cpu1 settings in processor configuration

75

 Figure 6.13 Cpu2 settings in processor configuration

6.3.2 Software Design

 To obtain faster system, multiprocessor system is designed. Thus, training time is

reduced. Code on FPGA described in the section 6.2.2 need to be designed in

accordance with 2 processors system. Hence, an approach different from sequential

system of classical processors should be developed and the system should be run in

parallel.

 In the single processor system, the processor recognizes the images of six

different people means a classification problem with 6 classes. In the multiprocessor

system, tasks should be assigned to each processor in the system and these tasks

should reduce the burden of processing. For this purpose, instead of classifying 6

classes at once, each processor makes a sub-classification between the predefined

classes. Burden of each processor of multiprocessor system is provided to be less

than burden of processor of single processor system. Which classes will be assigned

to processors is determined by using hierarchical classification/clustering approach.

Its purpose is to train similar classes in the same processor.

76

6.3.2.1 Hierarchical Clustering

 Hierarchical clustering groups data over a variety of scales by creating a cluster

tree or dendrogram. The tree is not a single set of clusters, but rather a multilevel

hierarchy, where clusters at one level are joined as clusters at the next level. This

allows you to decide the level or scale of clustering that is most appropriate for your

application. Results of hierarchical clustering are given Figure 6.14.

 Figure 6.14 Results of hierarchical clustering

 In the figure, the numbers along the horizontal axis represent the indices of the

classes. Vertical axis indicates the distance between the classes. The link

representing the cluster containing classes 2 and 3 has a height of 42. The link

representing the cluster that groups class 1 together with classes 2 and 3 (which are

already clustered as object 7) has a height of 58. Cluster that groups class 4 together

with classes 2, 3 and 1 (which are already clustered as object 8) has a height of 63.

Classes 5 and 6 (which are already clustered as object 10) has a height of 70. Cluster

that groups class 5 and 6 (which are already clustered as object 10) together with

classes 2, 3, 1 and 4 (which are already clustered as object 9) has a height of 72.

 According to hierarchical classification results summarized in Figure 6.14,

since 1st, 2nd and 3rd classes are closer to each other in the feature space, they are

77

given to Cpu1, and 4th, 5th and 6th classes are given to Cpu2. The source code of

hierarchical classification is in the Appendix with the folder name of

“6_3_2_1_Hierarchical_Classification_Matlab”.

6.3.2.2 Multiprocessor System Software

 Code on FPGA is described in the section 6.2.2. Multiprocessor system need to

be designed in accordance with 2 processors system. Therefore, the system should

be run in parallel. Flow diagram of multiprocessor system is shown in Figure 6.15.

78

 Figure 6.15 Flow diagram of multiprocessor system

 Create Database

 Normalization

 Assign Initial Weights

 Calculate Net

Configure Weights Output

Configure Weights Input

Epochs=10000

 Create Test Database

 Normalization

 Display Test Results

1

0

CPU1
1,2 and 3
Classes

CPU2
4, 5 and 6
Classes

 Calculate Net

Configure Weights Output

Configure Weights Input

Epochs=10000

1

0

Is CPU2 finished?

1

0

 Assign Initial Weights

79

 Code on FPGA begins to run after data are recieved by FPGA via UART. When

data are sent from Host PC, the code running on FPGA jumps to void uart_isr(void*

context,alt_u32 id) interrupt function in the cpu1 and classes are saved in this UART

interrupt function to the shared memory. Thus, 2 processors can access to saved data.

Cpu1 can access to datas of 1, 2 and 3 classes and Cpu2 can access to data of 4, 5

and 6 classes. Normalization process is applied to all classes in the void

�ormalization(void) function in the cpu1. Initial weights must be assigned to start

training for each processor. void Initial_Weights(void) function is used for this

process. Initial weights for 1, 2 and 3 classes are generated in the cpu1 and initial

weights for 4, 5 and 6 classes are generated in cpu2. For training of neural network,

void Calculate_�et(void), void Weight_Changes_HO(void) and void

Weight_Changes_IH(void) functions are run for each processor. These functions are

repeated until error reach to the desired value. After training part is completed,

testing part begins to run and testing data of all classes are sent from Host PC to

FPGA via UART. Sent data are saved for testing in the void

Create_TestDatabase(void) function in the cpu1. Normalization process is applied to

test data of all classes in the void �ormalization_Test(void) function. Owner of the

images of all classes are identified by given test data of all classes to calculated

weights in the processors. Test data are given to both of the networks trained in cpu1

and cpu2. Each cpu produces its output individually. The distance of each outcome to

the target values are calculated. Two distances are compared and the result of

processor which has smaller distance is the result of multiprocessor system. Due to

reducing error, epoch number is increased to 10000. These results are displayed in

the void Display_TestResults(void). The source code of multiprocessor face

receognition system is in the Appendix with the folder name of

“6_3_2_2_Multiprocessor_Face_Recognition_System_C_Code”.

 Using cross-validation, all processes in the flow diagram in the Figure 6.15 are

repeated 20 times for the generalization of the results. The neural network

recognition rate is evaluated by calculating the mean of these results.

80

 Time of all this processes, number of processor, epoch number, time of system,

system error and recognition rate are given in the Table 6.2.

Table 6.2 Results of multiprocessor system

Number of
Processor

Epoch
Number

Time of System
Training

System Error
(RMS Error)

Recognition
Rate

2 CPU 10000 1hour 43 min. 45 sec. CPU1 - 0.020
CPU2 - 0.021

 93.9%

6.4 General Overview of Face Recognition System Performance

 In a previous MSc study completed by E.Dilcan and Gökhan Çetin (E. Dilcan &

G. Çetin, 2010), a face recognition system using principle component analysis (PCA)

and Euclidean Distance has been implemented on FPGA. The 10 face images of 5

people have been taken for creating the database. %70 of database is used for

training and %30 of database is used for testing. According to this study, recognition

rate is 93.3%.

 In this study, the previous study has been improved by implementing recognition

task by artificial neural network. The obtained improved recognition rate is 95.3%

using multilayer feed forward backpropagation network with one hidden layer of 5

neurons.

 Moreover, a multiprocessor system is designed to speed up the system.

Multiprocessor system is 47.2% faster than single processor system as

multiprocessor system compares to the single processor system. The final

multiprocessor recognition rate is 93.9%. The recognition results of different

approaches are summarized in the Table 6.3.

Table 6.3 Results of different face recognition approaches

Face Recognition Approach Recognition Rate

PCA + Euclidean Distance 93.3%

PCA + Neural Network + 1 CPU 95.3%

PCA + Neural Network + 2 CPU 93.9%

81

 The time efficiency and recognition performances of single processor and

multiprocessor systems are compared in the Table 6.4. In the multiprocessor system,

epoch number is selected 10000, due to reducing error. The distance of each outcome

to the target values are calculated for each processor. Two distance are compared and

the result of processor which has smaller distance is the result of multiprocessor

system. But rarely, wrong result is decided as a result of the comparison. Hence,

recognition rate of multiprocessor system is less than recognition rate of single

processor system, because of comparison error.

Table 6.4 Results of single processor system and multiprocessor system

Number of
Processor

Epoch
Number

Time of System
Training

System Error
(RMS Error)

Recognition
Rate

1 CPU 10000 3 hour 16 min. 10 sec. CPU1 - 0.020 95.3%
2 CPU

10000 1 hour 43 min. 45 sec. CPU1 - 0.020

CPU2 - 0.021
93.9%

 To complete face recognition processes in less time, a multiprocessor system with

two processors is designed. It is observed that multiprocessor system is 47.2% faster

than single processor system. Time of system training increases with increasing

epoch number. But system error do not change significantly. According to epoch

number, time of single processor and multiprocessor systems are compared in the

Table 6.5.

Table 6.5 Time of single processor system and multiprocessor system

Epoch Number Number of Processor Time of System Training

2500

 1 CPU 49 min. 10 sec.

 2 CPU 25 min. 50 sec.

5000

 1 CPU 1 hour 36 min. 35 sec.

 2 CPU 50 min. 55 sec.

10000

 1 CPU 3 hour 16 min. 10 sec.

 2 CPU 1 hour 43 min. 45 sec.

82

CHAPTER SEVE�

CO�CLUSIO�S

7.1 Summary of the Project

 Biometrics is the method of recognizing a person based on a physiological or

behavioral characteristics. Biometric technologies are becoming the foundation of an

extensive array of highly secure identification and personal verification solutions. In

this thesis, face recognition system was implemented.

 The face recognition system acquires images from face database; the images were

preprocessed to reduce size of images. Then PCA was applied as a feature extraction

method and the neural network was trained with these features. In this study,

multilayer perceptron network was used with one hidden network. The feed forward

backpropagation algorithm was used to train neural network. In the recognition

phase, the same preprocessing and feature extraction steps were repeated. Finally, the

features were sent to the trained neural network to find the owner of the image.

 In the first implementation, all face recognition processes were run on single

processor system. The general performance of the system was calculated after

generating 20 subsystems by using cross-validation technique. For this

implementation, recognition rate of the face recognition system was 95.3%. To

complete face recognition processes in less time, a multiprocessor system with two

processors was designed. It was observed that multiprocessor system was 47.2%

faster than single processor system. According to multiprocessor system, recognition

rate of the face recognition system was 93.9%.

7.2 Advantages – Disadvantages

 Field Programmable Gate Array (FPGA) is offering design flexibility and high

performance system integration. FPGA is providing cost and power reductions, while

increasing performance and functionality. DE2-70 development kit is used in this

82

83

thesis. DE2-70 is used for implementing face recognition system by using high level

language. Face recognition program is written by C/C++ via Nios II IDE. Using

FPGA development kit brings some advantages such as learning simulation and

compilation of the projects on Quartus II, adding components to FPGA via SOPC

Builder tool and learning parallel configuration of a system by designing

multiprocessor system.

 Since the neural network recognition is used in this project, the system is

improved with the generalization property of the neural networks. Thus, the system

has a better recognition performance. Also, because of the multiprocessor

implementation, the system is trained faster.

 Disadvantage of system hadware is the cost of the FPGA development board and

the use of host computer. For the integration of the system into real life, the system

should be fully implemented on FPGA chip.

7.3 Troubleshooting

 Face recognition system is designed by using one processor and two processors.

System with more than two processors cannot be design on this development board

because of hardware limitations. For both cpu1 and cpu2, if sdram is selected for

Program memory, Read-only data memory, Read/write data memory, Heap memory,

and Stack memory in the library property settings, the time consumption of the

system cannot be reduce because of memory density. When sdram is selected for

cpu1 and sdram1 is selected for cpu2, reduction is obtained. Therefore, owing to

presence of 2 sdram on FPGA, face recognition system which contains maximum

two processors is experimented.

7.4 Cost Analysis

 DE2–70 development kit is purchased with a cost of $400. The DE2–70 package

includes DE2-70 board and other tools like USB cable for FPGA programming and

84

control, CD-ROMs containing Altera’s Quartus® II Web Edition and the Nios® II

Embedded Design Suit Evaluation Edition software.

7.5 Future Work

 For future work, a portable face recognition system can be developed by adding

camera for image capture. The preprocessing and feature extraction stages can be

implemented on FPGA. The results of system can be displayed on screen via VGA

out connector on FPGA. The number of processors for face recognition system can

be increased and 4 or 8 processors can be experimented to increase speed of system.

85

REFERE�CES

Agarwal M., Kumar M., Jain N., & Agrawal H. (2010). Face Recognition using Principle

Component Analysis, Eigenface and Neural Network. Signal Acquisition and

Processing, 310-314.

Altera (2005). Creating Multiprocessor �ios II Systems Tutorial, Altera Corporations.

Altera (2007). Cyclone II Handbook, Altera Corporations.

Altera (2010). Introduction to the Quartus II Software, Altera Corporations.

Altera (2007). �ios II Processor Reference Handbook, Altera Corporations.

Altera (2010). SOPC Builder User Guide, Altera Corporations.

Barlett M. S., Movellan J.R., & Sejnowski T. J. (2002). Face Recognition by Independent

Component Analysis, IEEE Trans. on �eural �etworks, 13, 6, �ovember 2002, 1450-

1464.

Bledsoe, W. W., & Chan, H. (1965). A Man-Machine Facial Recognition System-Some

Preliminary Results. Technical Report PRI 19A, Panoramic Research, Inc., Palo Alto,

California.

Bledsoe, W. W. (1966a). Man-Machine Facial Recognition: Report on a Large-Scale

Experiment. Technical Report PRI 22, Panoramic Research, Inc., Palo Alto, California.

Bledsoe, W. W. (1966b). Some Results on Multicategory Patten Recognition. Journal of

the Association for Computing Machinery 13 (2): 304-316.

Bolme D., Beveridge R., Teixeira M., & Draper B. (2003). The CSU Face Identification

Evaluation System: Its Purpose, Features and Structure. International Conference on

Vision Systems, April 1-3, Graz, Austria.

86

Comon P. (1994). Independent component analysis, a new concept? Signal Processing,

36: 287-314.

Dilcan E. (2010). Face and Fingerprint Recognition on Field Programmable Gate Array.

Dokuz Eylul University, Graduate School of Natural and Applied Sciences, Master

Thesis, November 2010.

Escarra M., Robinson M., Krueger J., & Kochelek D. (2004). American Psychological

Assocation Publication Manual: Results of Eigenface Detection Tests. Retrieved Dec,

2010 from http://cnx.org/content/m12536 /1.3/.

Gokhan Ç. (2010). Face and Speech Recognition on Field Programmable Gate Array.

Dokuz Eylul University, Graduate School of Natural and Applied Sciences, Master

Thesis, November 2010.

Goldstein A. J., Harmon L. D., & Lesk B. (1971). Identification of Human Faces. Proc.

IEEE, May 1971, 59, 5, 748-760.

Haykin S. (2001). �eural �etworks A Comprehensive Foundation, 2nd Editon, Ontario,

Canada.

Hung A., Bishop W., & Kennings A. (2005). Symmetric Multiprocessing on

Programmable Chips Made Easy. Proceeding of the Design, Automation and Test in

Europe Conference and Exhibition, 1530-1591/05.

Hyvarinen A. (1999). Survey on independent component analysis. �eural Computing

 Surveys 2 : (94-128). Helsinki University of Technology, Finland.

Jain A. K., Ross A., & Prabhakar S. (2004). An Introduction to Biometric Recognition.

IEEE Transactions on Circuits and Systems for Video Technology, Special Issue on

Image- and Video-Based Biometrics, 14, 1, January 2004.

Kuon I., Tessier R., & Rose J. (2007). FPGA Architecture: Survey and Challenges.

Foundations and Trends in Electronic Design Automation, 2, 2, 135-253, 2007.

87

Li S. Z., & Jain A. K. (2004). Handbook of Face Recognition, Springer.

Liu C. & Wechsler H. (1999). Comparative Assesment of Independent Component

Analysis (ICA) for Face Recognition. Second International Conference on Audio- and

Video- based Biometric Person Authentication, AVBPA’99, Washington D. C., USA,

March 22-24.

Lu J., Plataniotis K. N., & Venetsanopoluos A. N. (2003). Boosting Linear Discriminant

Analysis for Face Recognition. Proc. IEEE, September 2003, 1, 657-660.

MIT Media Laboratory Vision and Modeling Group (2002). Photobook/Eigenfaces Demo,

Massachusetts Institute of Technology.

Moghaddam B., Jebara T., & Pentland A. (2000). Bayesian Face Recognition. Pattern

Recognition, 33, 11, 1771-1782, �ovember, 2000.

Nakano T., Morie T., & Iwata A. (2003). A Face/Object Recognition System Using FPGA

Implementation of Coarse Region Segmentation, SICE Annual Conference in Fukui,

August 4-6. Fukui University, Japan.

Sirovich L., & Kirby M. (1987). A Low-Dimensional Procedure for the Characterization

of Human Faces. J. Optical Soc. Am. A, 1987, 4, 3, 519-524.

Terasic (2009). DE2-70 user manual Version 1.08, Terasic Technologies.

Tseng C. Y., & Chen Y. C. (2008). Design and Implementation of Multiprocessor System

on a Chip (MPSoC) on FPGA. Tatung University, Department of Computer Science

and Engineering, Thesis for Master of Science, July 2008.

Tumeo A., Regazzoni F., Palermo G., Ferrandi F., & Sciuto D. (2010). A Reconfigurable

Multiprocessor Architecture for a Reliable Face Recognition Implementation. Design,

Automation & Test in Europe Conference & Exhibition.

88

Turk. M. A., & Pentland A. P. (1991). Face Recognition Using Eigenfaces. Proc. IEEE,

1991, 586-591.

Wayman J. L. (2001). Fundamentals of Biometric Authentication Technologies.

International Journal of Image and Graphics, 1, 1, 93-113.

89

APPE�DIX

An “Appendix CD” is prepared which contains all MATLAB files, VHDL files

and Nios II system designs that are used in this thesis. The folder names are

dedicated to section numbers to reach source codes easily. Source code availability is

mentioned in each section. As a remember, the content of “Appendix CD” is also

given in the following with section name and corresponding folder name in the

“Appendix CD”;

Section 6.1.1 General Overview of Face Recognition System

 6_1_1_Database_PCA_Windowing_Matlab

Section 6.2.2 Software Design

 6_2_2_Single_Processor_Face_Recognition_System_C_Code

Section 6.2.2 Software Design

 6_2_2_Cross_Validation_Matlab

Section 6.3.2.1 Hierarchical Clustering

 6_3_2_1_Hierarchical_Classification_Matlab

Section 6.3.2.2 Multiprocessor System Software

 6_3_2_2_Multiprocessor_Face_Recognition_System_C_Code

