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FACE RECOG�ITIO� USI�G �EURAL �ETWORKS O� FIELD 

PROGRAMMABLE GATE ARRAY 

 

ABSTRACT 

 

     Biometric is a science of digital technology which is used to identify people based 

on unique physical or biological characteristics. There are several biometric 

technologies such as fingerprint, face, iris and speech recognition. The feature 

extraction techniques play important role for biometric recognition system design.   

  

     Recently, the Field Programmable Gate Arrays (FPGAs) have been commonly 

used in several applications such as digital signal processing, biometric recognition, 

medical imaging aerospace and defense systems, computer vision. Basically, FPGAs 

are the programmable logic devices. Each function of logic block can be organized 

by user. FPGAs are preffered in a variety of applications.  

 

In this thesis, a face recognition system which is implemented on FPGA has been 

introduced. The principle component analysis (PCA) has been used for feature 

extraction and recognition has been accomplished by artificial neural network 

(ANN). 

 

Since the training of the artificial neural network is a long process using only one 

processor on FPGA, a hierarchical classification with multiple processor approach 

has been followed. Thus, 47.2% system speedup has been obtained for a recognition 

rate of 93.9%.   

 

Keywords : Face recognition, Neural network, Multiprocessor system, FPGA (Field 

Programmable Gate Arrays), PCA (Principle Component Analysis). 
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SAHADA PROGRAMLA�ABĐLE� KAPI DĐZĐLERĐ�DE YAPAY SĐ�ĐR 

AĞLARI ĐLE YÜZ TA�IMA 

 

ÖZ 

 

     Biyometrik, kendine özgü fiziksel veya biyolojik niteliklerine dayalı olarak 

insanların kimliğini tespit etmek için kullanılan dijital teknolojiden faydalanma 

bilimidir. Çok sayıda biyometrik teknoloji geliştirilmiştir. Parmak izi, yüz, iris ve ses 

tanıma en yaygın kullanılan biyometrik teknolojilerdir. Özellik çıkarma metotları, 

biyometrik sistem tasarımında önemli bir rol oynamaktadır. 

 

     SPDK (Sahada Programlanabilir Kapı Dizileri)  içeren uygulamalar, sayısal işaret 

işleme, biyometrik tanıma, medikal görüntü işleme, uzay ve savunma sistemleri, 

bilgisayar görüntüsü alanlarında kullanılmaktadır. SPKD programlanabilir mantık 

elemanlarıdır. Her bir mantık bloğunun işlevi kullanıcı tarafından 

düzenlenebilmektedir. SPDK çok sayıda uygulamada tercih edilmektedir.  

 

     Bu tezde SPDK üzerinde gerçekleştirilen yüz tanıma işlemi tanıtılmıştır. Öznitelik 

çıkarma işlemi için temel bileşen analizi (TBA) kullanılmıştır ve tanıma işlemi yapay 

sinir ağı (YSA) tarafından gerçekleştirilmiştir. 

 

     SPKD (Sahada Programlanabilir Kapı Dizileri) üzerinde bir işlemci kullanılarak, 

yapay sinir ağının eğitilmesi uzun süren bir işlemdir. Bu nedenle, hiyerarşik 

sınıflama yöntemi kullanılarak çok işlemcili sistem geliştirilmiştir. Böylelikle, %93.9 

tanıma oranı için sistemin %47.2 daha hızlı çalışması sağlanmıştır. 

 

Anahtar Sözcükler : Yüz tanıma, Yapay sinir ağı, Çok işlemcili sistem, Sahada 

Programlanabilir Kapı Dizileri (SPKD), Temel Bileşen Analizi (TBA). 
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CHAPTER O�E 

I�TRODUCTIO� 

  

1.1 General Overview to Biometric Systems 

 

     Biometric is a science of digital technology which is used to identify people based 

on unique physical or biological characteristics. A number of biometric technologies 

have been developed such as fingerprint, face, iris and speech. Feature extraction 

techniques play important role for biometric recognition system design.   

 

     A biometric system is essentially a pattern recognition system that operates by 

acquiring biometric data from an individual, extracting a feature set from the 

acquired data, and comparing this feature set against the template set in the database 

(A. K. Jain, A. Ross, & S. Prabhakar, 2004). Depending on the application, a 

biometric system may be called either in verification system or identification system:  

 

•    In the verification mode, the system validates a person’s identity by comparing 

the captured biometric data with her own biometric template(s) stored system 

database. In such a system, an individual who desires to be recognized claims an 

identity, usually via a PIN (Personal Identification Number), a user name, a smart 

card, etc., and the system conducts a one-to-one comparison to determine whether 

the claim is true or not (e.g., “Does this biometric data belong to Bob?”). Identity 

verification is typically used for positive recognition, where the aim is to prevent 

multiple people from using the same identity (J. L. Wayman, 2001). 

 

•    In the identification mode, the system recognizes an individual by searching the 

templates of all the users in the database for a match. Therefore, the system conducts 

a one-to-many comparison to establish an individual’s identity (or fails if the subject 

is not enrolled in the system database) without the subject having to claim an identity 

(e.g., “Whose biometric data is this”). Identification is a critical component in 

negative recognition applications where the system establishes whether the person is 
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who she (implicitly or explicitly) denies to be. The purpose of negative recognition is 

to prevent a single person from using multiple identities (J. L. Wayman, 2001). 

 

      The block diagrams of a verification system and an identification system are 

shown in Figure 1.1. 

  
Figure 1.1 Block diagrams of enrollment, verification and identification tasks are shown    

using the four main modules of biometric system (A. K. Jain, A. Ross, & S. Prabhakar, 

2004). 

 

1.2 History of Face Recognition Systems 

 

     The intuitive way to do face recognition is to look at the major features of the face 

and compare these feature with the same features on the other faces. The first 

attempts to do this began in the 1960’s with semi-automated system. During 1964 

and 1965, Bledsoe, along with Helen Chan and Charles Bisson, worked on using the 

computer to recognize human faces (W. W. Bledsoe, 1966a, & 1966b; W. W. 



3 
 

 

Bledsoe, & H. Chan, 1965). Marks were made on photographs to locate the major 

features, it used features such as eyes, ears, noses, and mouths. Distances and ratios 

were computed from these marks to a common reference point and compared to 

reference data. 

 

     In the early 1970's Goldstein, Harmon and Lesk used 21 subjective markers such  

as hair color and lip thickness to create a face recognition system. (A. J. Goldstein, L. 

D. Harmon, & B. Lesk, 1971). This proved even harder to automate due to the 

subjective nature of many of the measurements still made completely by hand. 

 

A more automated approach to recognition began with Fisher and Elschlagerb just 

a few years after the Goldstein paper. This approach measured the features above 

using templates of features of different pieces of the face and them mapped them all 

onto a global template. After continued research it was found that these features do 

not contain enough unique data to represent an adult face. Another approach is the 

Connectionist approach, which seeks to classify the human face using a com-bination 

of both range of gestures and a set of identifying markers. This is usually 

implemented using 2-dimensional pattern recognition and neural net principles. Most 

of the time this approach requires a huge number of training faces to achieve decent 

accuracy; for that reason it has yet to be implemented on a large scale (M. Escarra, 

M. Robinson, J. Krueger, & D. Kochelek, 2004) . 

 

The first fully automated system to be developed utilized very general pattern 

recognition. It compared faces to a generic face model of expected features and 

created a series of patterns for an image relative to this model. This approach is 

mainly statistical and relies on histograms and the grayscale value. Kirby and 

Sirovich pioneered the eigenface approach in 1988 at Brown University (M. Escarra, 

M. Robinson, J. Krueger, & D. Kochelek, 2004) . This was considered a milestone in 

face recognition, because their approach is showed that less than one hundred values 

were required to accurately code a suitably aligned and normalized face image (L. 

Sirovich & M. Kirby, 1987). 
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     In 1991, Turk and Pentland discovered that the residual error coud be used to detect 

face in images while using the eigenfaces technique. A discovery was enabled reliable 

real-time automated face recognition systems. Although the approach was somewhat 

constrained by environmental factors, it nonetheless created significant interest in 

furthering development of automated face recognition technologies (M. A. Turk & A. P. 

Pentland, 1991). 

 

     Since then, many different approaches have been developed for face recognition 

over the years such as Neural Network, Dynamic Link Architectures (DLA), Gabor 

Wavelet Transform, Elastic Bunch Graph, Hidden Markov Models. In 2010, M. 

Agarwal, N. Jain, H.  Agrawal and M. Kumar worked on face recognition using 

principle component analysis (PCA), eigenface and neural network. This approach 

presents a methodology for face recognition based on information theory approach of 

coding and decoding the face image. Proposed methodology is connection of two 

stages: Feature extraction using principle component analysis and recognition using 

the feed forward back propagation Neural Network. The algorithm has been tested 

400 images (40 classes). A recognition score for test lot is calculated by considering 

almost all the variants of feature extraction. The proposed methods were tested on 

Olivetti and Oracle Research Laboratory (ORL) face database. Test results gave a 

recognition rate of 97.018% (M. Agarwal, N. Jain, H.  Agrawal, & M. Kumar, 2010).   

 

     Increasing of face recognition systems bring about hardware solutions such as 

application specific integrated circuit (ASIC) designs and field programmable gate 

arrays (FPGA). One of the first publications implementing FPGA as a hardware is 

released by T. Nakano, T. Morie and A. Iwata in 2003. The face/object recognition 

system using coarse region segmentation and flexible template matching was 

presented and the resistive-fuse network circuit was implemented in an FPGA by a 

pixel serial approach, and coarse region segmentation of real images with 64×64 

pixels at the video rate was achieved. The flexible template matching using dynamic 

link architecture was performed in the PC system. Figure 1.2 shows this 

implementation (T. Nakano, T. Morie, & A. Iwata, 2003). 

 



5 
 

 

 
Figure 1.2 The face/object recognition system  (T. Nakano, T. Morie, & A. Iwata, 2003).  

 

1.3 General Overview to Multiprocessor and FPGA Systems 

  

     Advances in Field-Programmable Gate Array (FPGA) technologies have led to 

programmable devices with greater density, speed and functionality. It is possible to 

implement a highly complex System-on-Programmable-Chip (SoPC) using on-chip 

FPGA resources (e.g., DSP blocks, PLLs, RAM blocks, etc.) and vendor-provided 

intellectual property (IP) cores. Furthermore, it is possible to build Multiprocessor on 

a Programmable Chip ( MPoPC ) systems, where the number of softcore processors 

that can be used in a MPoPC system is only limited by device resources (A. Hung, 

W. Bishop, & A. Kennings, 2005). 

 

     There are several multiprocessor system designs which are implemented to 

increase performance of systems (C. Y. Tseng & Y.C. Chen, 2008). In study of C. Y. 

Tseng and Y.C. Chen, the performance of one, two, three, and four processors 

systems have been observed by running the benchmark program to measure the 

speedup. At the beginning, they run benchmark program to one processor system and 

test its execution time. Then, distribute their benchmark program for two, three, and 

four processors system independently. The speedup of two benchmark programs is 
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shown in Figure 1.3. The figure shows that the slope of these two lines becomes 

gradually small (C. Y. Tseng & Y.C. Chen, 2008). 

 

                

              Figure 1.3 The speedup of two benchmarks (C. Y. Tseng & Y.C. Chen, 2008). 

 

     In VAR experiment, the one processor system as the standard system is made. 

Execution time of system is about 99.78 seconds. When VAR benchmark runs on 

two processors system, system spends 70.75 seconds. The speedup for two 

processors system is 1.41. When program runs in three and four processors system, 

system spends 58.26 and 54.95 seconds. Their speedups are 1.71 and 1.82 (C. Y. 

Tseng & Y.C. Chen, 2008).  

 

     In Array experiment result, the execution time for one processor system is 63.01 

seconds, execution time for two processors is 43.6 seconds, execution time for three 

processors is 34.32 seconds and execution time for four processors is 29.27 seconds. 

The speedups are 1, 1.445, 1.836, and 2.152 (C. Y. Tseng & Y.C. Chen, 2008).  

 

     According to an another study, A. Tumeo, F. Regazzoni, G. Palermo, F. Ferrandi, 

and D. Sciuto presented the design of a reliable face recognition system implemented 

on Field Programmable Gate Array (FPGA). The proposed implementation uses the 

concept of multiprocessor architecture, paralel software and dynamic reconfiguration 

to satisfy the requirement of a reliable system. The target multiprocessor architecture 

is extended to support the dynamic reconfiguration of the processing unit to provide 

reliability to processors fault. The experimental results show that, due to the 
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multiprocessor architecture, the parallel face recognition algorithm can achieve a 

speed up of 63% with respect to the sequential version (A. Tumeo, F. Regazzoni, G. 

Palermo, F. Ferrandi, & D. Sciuto, 2010). 

 

1.4 Aim of the Thesis 

 

     The aim of the thesis is to improve a previously implemented face recognition 

system running on Field Programmable Gate Array (FPGA). The proposed system 

rely on artificial neural networks for recognition while the previous system use 

Euclidian distance comparison. Furthermore, in order to have a faster training 

hierarchical classification with multiple processors approach has been followed. 

   

The database of face images are stored in the host computer. Then, images are 

resized to increase calculation speed and combined in one database matrix and PCA 

features are extracted in MATLAB. This database matrix are sent to FPGA via serial 

port using RS-232 protocol. The neural network  is trained  with these features. Feed 

forward backpropagation algorithm is used as a neural network learning algorithm. 

Neural network system consist of 3 layers which are input layer, hidden layer and 

output layer. Input layer includes 10 neurons, hidden layer includes 5 neurons and 

output layer includes 1 neuron. 

 

Since the training phase takes too long when only a single processor is used, a 

multiprocessor system with two processor is designed to reduce the training time. 

The speed of the multiprocessor system is approximately doubled. 

 

Upon completion of training phase, the feature vector of test image is extracted by 

PCA and sent to the FPGA in order to find the owner of the image by neural 

network. 

 

1.5 Outline of Thesis  

 

     This thesis is composed of seven chapters including the Introduction. Chapter 2 

reviews face recognition processes, feature extraction methods and Principle 
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Component Analysis (PCA). Chapter 3 defines ANN; describe its properties and the 

algorithm which is used in this project. In Chapter 4, programmable logic device is 

introduced with the device that is used throughout project. In Chapter 5 design of 

multiprocessor system has been considered. Chapter 6 summarizes the face 

recognition system using field programmable gate array (FPGA) and explains the 

operation. The experiments and final results are also presented in this chapter. The 

last chapter of the thesis, Chapter 7, includes conclusions, advantages and 

disadvantages of the system, cost analysis, troubleshooting and future works. The 

algorithm of whole system is in the Appendix part of the thesis.  
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CHAPTER TWO 

FACE RECOG�ITIO�  

 

2.1 Face Recognition System 

 

     Face recognition systems automatically identfy or verify a person from images or 

videos. Face recognition systems can be operated in the following two modes: 

 

• Face Verification: 

 

      A one to one comparison of a captured biometric with a stored template to verify 

that the individual is who he claims to be. It can be done conjuction with a smart 

card, username or ID number. The operation of verification system is shown in 

Figure 2.1. 

 

             
         Figure 2.1 Face verification system (E. Dilcan, 2010). 

 

• Face Identification: 

 

      A one to many comparison of the captured biometric against a biometric database 

in attempt to identify an unknown individual. The identification only succeeds in 

identifying the individual if the comparison of the biometric sample to a template in 

the database falls within a previously set threshold. The operation of identification 

system is shown in Figure 2.2. 

9 
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 Figure 2.2 Face identification system (E. Dilcan, 2010). 

 

2.2 Face Recognition Processing 

 

     Face recognition is a visual pattern recognition problem. A face recognition 

system generally consist of four main parts as shown in Figure 2.3: detection, 

alignment, feature extraction and matching. 

 

 
      Figure 2.3 Face recognition processing flow scheme (S. Z. Li & A. K. Jain, 2004). 

 

Face detection segments the face areas from the background. In the case of video, 

the detected faces may need to be tracked using a face tracking component. Face 

alignment is aimed at achieving more accurate localization and at normalizing faces 

thereby whereas face detection provides coarse estimates of the location and scale of 

each detected face. Facial components, such as eyes, nose, and mouth and facial 

outline, are located; based on the location points, the input face image is normalized 

with respect to geometrical properties, such as size and pose, using geometrical 

transforms or morphing. The face is usually further normalized with respect to 

photometrical properties such illumination and gray scale. After a face is normalized 

geometrically and photometrically, feature extraction is performed to provide 
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effective information that is useful for distinguishing between faces of different 

persons and stable with respect to the geometrical and photometrical variations. For 

face matching, the extracted feature vector of the input face is matched against those 

of enrolled faces in the database; it outputs the identity of the face when a match is 

found with sufficient confidence or indicates an unknown face otherwise (S. Z. Li & 

A. K. Jain, 2004). 

 

2.3 Face Recognition Techniques 

 

Face recognition is a very active research area specialising on how to recognize 

faces within images or videos. There are many algorithms to perform face 

recognition including: principal component analysis (PCA), independent component 

analysis (ICA), linear discriminant analysis (LDA), Elastic Bunch Graph Matching 

(EBGM) and neural networks with mathematical theories.  

 

2.3.1 Principal Component Analysis (PCA) 

 

     PCA algorithm is commonly used feature extraction technique for face 

recognition. Principle Component Analysis (PCA) is mathematical procedure that 

uses an orthogonal transformation to convert a set of observations of possibly 

correlated variables into a set of values of uncorrelated variables called principal 

components. The number of principal components is less than or equal to the number 

of original variables. This transformation is defined in such a way that the first 

principal component has as high a variance as possible (that is, accounts for as much 

of the variability in the data as possible), and each succeeding component in turn has 

the highest variance possible under the constraint that it be orthogonal to 

(uncorrelated with) the preceding components. Principal components are guaranteed 

to be independent only if the data set is jointly normally distributed. PCA is sensitive 

to the relative scaling of the original variables. 

 

PCA is a standard linear algebra technique and pioneered by Kirby and Sirovich 

in 1988. This technique is commonly referred to as the use of eigenfaces in face 
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recognition. PCA is used to reduce the dimension of the data by means of data 

compression basics. The reduction in dimensions removes the unuseful information 

and decomposes the face into orthogonal (or uncorrelated) components, which are 

also known as eigenfaces. 

 

An example of eigenfaces are shown Figure 2.4 (MIT Media Laboratory, 2002). 

Feature vectors are derived using eigenfaces. 

 

                 
                          Figure 2.4 An example of eigenfaces (MIT Media Laboratory, 2002). 

 

    Theory of PCA is described below: 

 

Let the training set of M face images be I1, I2, I3, … , IM. The average of the 

training set is, µ, 

                                                       
1

1 M

n

n

I
M

µ
=

= ∑                                                 (2-1)      

The difference of each image from the average is defined as; 

 

          i iIθ µ= −                                                    (2-2) 
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This set of very large vectors is then subject to PCA, which seeks a set of M 

orthonormal vectors, un, which are describing the distribution of whole data. The kth 

vector of this vector, 

 

2

1

1
( )

M
T

k k n

n

u
M

λ θ
=

= ∑                 (2-3) 

 

is a maximum subject to 

 

               
1,        if 

0,        otherwise
T

l k lk

l k
u u ζ

=
= = 


                         (2-4) 

 

The vectors uk are eigenvectors and the scalars λk are eigenvalues of the 

covariance matrix which is shown in the following,  

  

              1

1

  

M
T

n n

n

T

C
M

AA

θ θ
=

=

=

∑                                   (2-5) 

 

where C is the covariance matrix and A = [θ1, θ2,…, θM]. 

 

The matrix C, is �2 by �2, and determining the �2 eigenvectors and eigenvalues is 

an intractable task for typical image sizes, so a computationally feasible method to 

find these eigenvectors must be implemented. If the number of data points in the 

image space is less than the dimension of the space (M < �2), there is only M – 1, 

rather than �
2 meaningful eigenvectors (Turk & Pentland, 1991).  By using this 

approach the eigenvectors vi of AT
A is, 

 

     
T

i i iA A v vβ=                                                (2-6) 

 

multipliying both sides by A, 
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T

i i iA A A v A vβ=                                   (2-7) 

 

Eq. (2-7) shows that Avi are the eigenvectors of C = AA
T. By using this analysis, M x 

M matrix, L = AT
A is constructed. The L is, 

 

         
T

m n m nL θ θ=
                                             (2-8)   

 

and shows the M eigenvectors, vl, of L.These vectors are used to determine the linear 

combinations of the M training set face images to form the eigenfaces ul. 

 

                                        
1

,         1, 2, ...,
M

l lk k

k

u v l Mθ
=

= =∑
 
                       (2-9) 

 

     With this analysis the calculations are greatly reduced, from the order of the 

number of pixels in the images (�2) to order of the number of images in the training 

set (M) and in practice, the training set of face images will be relatively small and the 

calculations become quite managable (M. Turk & A. Pentland, 1991). 

 

2.3.2 Linear Discriminant Analysis (LDA) 

 

LDA is a statistical approach for classifying samples of unknown classes based on 

the training samples with known classes (D. Bolme, R. Beveridge, M. Teixeira, & B. 

Draper, 2003). LDA is the technique which aims to maximize variance across the 

users or formerly named between-classes, and minimize variance within the users 

which is also expressed within-class formerly. 

 

In the Figure 2.5, an example of six classes using LDA is shown (J. Lu, K. N. 

Plataniotis, & A. N. Venetsanopoulos, 2003). In this figure, each block represents a 

class. There are large variances between-classes, but the variance within-classes is 

very little. When dealing with high dimensinal face data, this technique faces the 

sample size problem that arises where there are a small number of avaliable training 
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samples compared to the dimensionality of the sample space (J. Lu, K. N. Plataniotis, 

& A. N. Venetsanopoulos, 2003).   

 

 
Figure 2.5 An example of six classes using LDA (J. Lu, K. N. Plataniotis, & A. N. Venetsanopoulos,   

2003). 

 

    Theory of LDA is described below: 

 

    All instances of the same person’s face as being in one class and the faces of 

different subjects as being in different class for all subjects in the training must be 

defined before computing LDA. LDA is a class specific method that represents data 

set make it useful for classification. Given a set of � imgaes {x1, x2, …, xn} where 

each image belongs to one of c classses {X1, X2,…, Xc}. LDA selects a linear 

tranformation matrix W that is the ratio of the between-class scatter and the with-in 

class scatter is maximized. 

 

  SB is the between-class scatter matrix which represents the scatter of the 

conditional mean vectors, µi’s; around the overall mean vector, µ. SB can be 

expressed by the following formula; 

 

1

( )( )
c

T

B i i i

i

S � µ µ µ µ
=

= − −∑             (2-10)         

 

where µi denotes the mean of image class Xi, µ denotes the mean of entire data set, �i 

denotes the number of images in class Xi. 
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     SW is the within-class scatter matrix which represents the average scatter of the 

sample vectors x of different class Ci around their respective mean µi;  

 

1

( )( )
k i

c
T

W k i k i

i x X

S x xµ µ
= ∈

= − −∑ ∑                                     (2-11) 

 

If the within-class scatter matrix SW is not singular, LDA finds an orthonormal matrix 

Wopt which maximizes the ratio of the determinant of the between-class scatter matrix 

to the determinant of the within-class scatter matrix. This matrix can be expressed by 

the following formula; 

 

                             

[ ]1 2arg max   ... 
T

B

opt mT

W

W S W
W w w w

W S W
= =           (2-12)          

 

The set of solution {wi | i = 1, 2, …, m} is that of generalized eigenvectors of SB and 

SW corresponding to the m largest eigenvalues {λi | i = 1, 2, ..., m}, which can be 

shown that as in following; 

 

                                      w h ere 1, 2 , ...,B i i W iS w S w i mλ= =                     (2-13) 

 

In face recognition applications, generally SW is singular, so to overcome this 

singularity, PCA algorithm is first used to reduce the vector dimensions. Combining 

PCA and LDA, first input image x projected into face space y, then projected into 

classification space z; 

 

            

    (only PCA)

   (only LDA)

   (PCA + LDA)

T

T

x

T

y

y x

z W x

z W y

θ=

=

=
                  (2-14) 
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2.3.3 Independent Component Analysis (ICA) 

 

ICA is another algorithm for face recognition. To better understand the concept, it 

is useful to compare ICA with PCA. PCA depends on the pairwise relationships 

between pixels, but ICA depends on the higher order relationships among pixels in 

the image database. So that, PCA can only represent second order interpixel 

relationships, or relationships that capture the amplitude spectrum of an imgage but 

not its phase spectrum. On the other hand, ICA use high order relationships between 

the pixels and ICA algorithms are capable of capturing the phase spectrum (M. S. 

Bartlett, J. R. Movellan, & T. J. Sejnowski, 2002). 

 

ICA algorithm relies on the infomax algorithm. It receives an n-dimensional 

random vector as input. PCA algorithm is used to reduce the size of random vector. 

The higher order relationships aren’t affected from dimensional reduction. Then, 

ICA algorithm finds the covariance matrix of the result and its factorized form is 

obtained. Then, some defined methods are performed to obtain the independent 

components that each face images in face space includes. These methods are 

whitening, rotation and normalization (Hyvarinen, 1999). 

 

     Theory of ICA is described below: 

 

     ICA of a random vector searches for a linear transformation which minimizes the 

statistical dependence between its components (P. Comon, 1994). Let, the image is 

represented by a random vector, X ∈ R�, where � is the dimensionality of the image 

space. The vector is formed by concatenating the rows or the coloumns of the image 

which may be normalized to have a unit norm and/or an equalized histogram (C. Liu 

& H. Wechsler, 1999). The covariance matrix of X can be expressed by using 

expectation operator, E(.), as in the following; 

 

                            { [ ( )][ ( )] }T

XC E X E X X E X= − −                          (2-15) 
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where CX ∈ R�x�. The ICA of X factorizes the covariance matrix into the following 

expression; 

 

               T

XC F F= ∆                                   (2-16) 

 

     where ∆ is diagonal real positive and F transforms the original data set X to new 

data set Z which are independent or the most independent possible data set. Z can be 

expressed as; 

 

                                                       X FZ=                                              (2-17) 

 

To find the transformation F, Comon developed an algorithm that consists of three 

operations: whitening, rotation and normalization (P. Comon, 1994). The whitening 

operation transforms a random vector X to U which has a unit covariance matrix and 

U can be expressed by the following formula; 

 

              1/ 2X A Uϕ=                        (2-18) 

 

where φ and A are derived by solving the following eigenvalue operation; 

 

          
T

XC Aϕ ϕ=                                                  (2-19) 

 

where φ = [φ1, φ2, …, φ�] is an orthonormal eigenvector matix and A = diag {λ1, λ2, 

…, λN} is a diagonal eigenvalue matrix of CX. After whitening operation, rotation 

operations performs source separation by minimizing the mutual information 

approximated using high order cumulants to derive independent components. Finally, 

the normalization operation derives unique independent components in terms of 

orientation, unit norm, and order of projections (P. Comon, 1994). 
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2.3.4 Bayesian Face Recognition Method 

 
     Bayesian Method propose a new technique for direct visual matching of images 

for the purposes of face recognition and image retrieval, using a probabilistic 

measure of similarity, based primarily on a Bayesian (MAP) analysis of image 

differences. The performance advantage of this probabilistic matching technique 

over Standard Euclidean nearest-neighbor eigenface matching was demonstrated 

using results from DARPA's 1996 FERET face recognition competition, in which 

this Bayesian matching alogrithm was found to be the top performer (B. 

Moghaddam, T. Jebara, & A. Pentland, 2000). 

 

     A Bayesian approach presents a probabilistic similarity measure based on the 

Bayesian belief that the image intensity differences, denoted by ∆ = �� − ��, are 

characteristic of typical variations in appearance of an individual. In particular, we 

define two classes of facial image variations: intrapersonal variations Ω� 

(corresponding, for example, to di!erent facial expressions of the same individual) 

and extrapersonal variations Ω�  (corresponding to variations between diwerent 

individuals). Our similarity measure is then expressed in terms of the probability. 

 

               S(��, ��)  = P(∆ϵΩ�) = P(Ω� |∆)                                   (2-20) 

 

     where P(Ω� |∆) is the a posteriori probability given by Bayes rule, using estimates 

of the likelihoods P(∆ϵΩ�)  and P(∆ϵΩ�). These likelihoods are derived from training 

data using an efficient subspace method for density estimation of high-dimensional 

data. 

 

     Given these likelihoods we can evaluate a similarity score S(��, ��)  between a pair 

of images directly in terms of the intrapersonal a posteriori probability as given by 

Bayes rule: 

 

                  S(��, ��)  =

(∆|��)
(��)


(∆|��)
(��)�
(∆|��)
(��)
                         (2-21) 
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     where the priors P(Ω) can be set to reflect specific operating conditions (e.g., 

number of test images vs. the size of the database) or other sources of a priori 

knowledge regarding the two images being matched. Note that this particular 

Bayesian formulation casts the standard face recognition task (essentially an M-ary 

classification problem for M individuals) into a binary pattern classification problem 

with Ω� and Ω�. This simpler problem is then solved using the maximum a posteriori 

(MAP) rule -- i.e, two images are determined to belong to the same individual if 

P(Ω�|∆) > P(Ω�|∆), or equivalently, if S(I�, I�)  > 
�
�
  (B. Moghaddam, T. Jebara, & A. 

Pentland, 2000). 

 

     Figure 2.6 shows an orthogonal decomposition of the vector space ℜ� into two 

mutually exclusive subspaces: the principal subspace F containing the first M 

principal components and its orthogonal complement F, which contains the residual 

of the expansion. 

 

 

 

Figure 2.6 (a) Decomposition of ℜ�into the principal subspace F and its orthogonal complement �� for 

a Gaussian density, (b) a typical eigenvalue spectrum and its division into the two orthogonal 

subspaces (B. Moghaddam, T. Jebara, & A. Pentland, 2000). 
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CHAPTER THREE 

ARTIFICIAL �EURAL �ETWORK 

 

3.1 Introduction 

 

     An Artificial Neural Network (ANN) is an information processing paradigm that 

is inspired by the biological nervous systems, such as the brain, process information. 

The key element of this paradigm is the novel structure of the information processing 

system. It is composed of a large number of highly interconnected processing 

elements (neurones) working in unison to solve specific problems. ANNs, like 

people, learn by example. An ANN is configured for a specific application, such as 

pattern recognition or data classification, through a learning process. Learning in 

biological systems involves adjustments to the synaptic connections that exist 

between the neurones. 

 

3.2 Biological �euron 

 

     In the human brain, a typical neuron collects signals from others through a host of 

fine structures called dendrites. The neuron sends out spikes of electrical activity 

through a long, thin stand known as an axon, which splits into thousands of branches. 

At the end of each branch, a structure called a synapse converts the activity from the 

axon into electrical effects that inhibit or excite activity from the axon into electrical 

effects that inhibit or excite activity in the connected neurones. When a neuron 

receives excitatory input that is sufficiently large compared with its inhibitory input, 

it sends a spike of electrical activity down its axon. Learning occurs by changing the 

effectiveness of the synapses so that the influence of one neuron on another changes. 

Biological neuron components, nucleus, cell body, dendrites, axon, synapse are 

shown in Figure 3.1. 

21 
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 Figure 3.1 (a) Components of a neuron (b) The synapse   

 

3.3 �eural �etwork Model 

 

3.3.1 Simple Single Unit  etwork 

 

      A simple artificial neural networks consists of five sections: inputs, weights, 

summation function, activation function and outputs as diagram is shown in Figure 

3.2.  

 

 
      Figure 3.2 Simple artificial neural network 

 

     Neural networks are models of biological neural structures. Neuron in Figure 3.2 

consists of multiple inputs and a single output. Each input is modified by a weight, 

which multiplies with the input value. The neuron will combine these weighted 

inputs and, with reference to a threshold value and activation function, use these to 

determine its output. 
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3.3.2 Multilayer Perceptron 

 

3.3.2.1 Introduction to Multilayer Perceptron 

 

     The network consisting of a set of sensory units (neurons) that constitute the input 

layer, one or more hidden layers of computation nodes, and an output layer of 

computation nodes. The input signal propagates through the network in a forward 

direction, on a layer-by-layer basis. These neural networks are commonly referred to 

as multilayer perceptrons (MLPs) (S. Haykin, 2001). A multilayer perceptron 

consists of minimum three sections: input layer, hidden layer and output layer as 

shown in Figure 3.3. 

     

 
                Figure 3.3 Multilayer perceptron 

 

 
3.3.2.2 Backpropagation Algorithm 

 
     Error back-propagation learning consists of two passes through the different 

layers of the network: a forward pass and a backward pass. In the forward pass, an 

activity pattern (input vector) is applied to the sensory nodes of the network, and its 

effect propagates through the network layer by layer. Finally, a set of outputs is 

produced as the actual response of the network. During the forward pass the synaptic 

weights of the networks are all fixed. During the backward pass, on the other hand, 

the synaptic weights are all adjusted in accordance with an error correction rule. 
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Specifically, the actual response of the network is subtracted from a desired (target) 

response to produce an error signal. This error signal is then propagated backward 

through the network, against the direction of synaptic connections-hence the name 

“error back-propagation”. The synaptic weights are adjusted to make actual response 

of the network move closer to the desired response in a statistical sense. The error 

back propagation algorithm is also referred to in the literature as the back-

propagation algorithm (S. Haykin, 2001). 

 

The backpropagation learning algorithm can be divided into two phases: 

propagation and weight update. 

 

• Propagation: 

 

     Each propagation involves the following steps: 

� Forward propagation of a training pattern's input through the neural network 

in order to generate the propagation's output activations. 

� Back propagation of the propagation's output activations through the neural 

network using the training pattern's target in order to generate the deltas of all 

output and hidden neurons. 

 

• Weight update 

 

     For each weight-synapse: 

� Multiply its output delta and input activation to get the gradient of the weight. 

� Bring the weight in the opposite direction of the gradient by subtracting a 

ratio of it from the weight 

 

     This ratio influences the speed and quality of learning; it is called the learning 

rate. The sign of the gradient of a weight indicates where the error is increasing, this 

is why the weight must be updated in the opposite direction. 
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3.3.2.3 Theory of Backpropagation Algorithm 

  
     The error signal at the output of neuron j at time step n (��� training example) is 

defined by; 

               � (�) = ! (�) − " (�)                                             (3-1) 
 
     ! (�) is desired response for neuron j. Since all neurons have instantaneous error 

energy, the instantaneous total energy is computed as summing all the neurons in the 

output layer; 

 

                          ξ(n) = 
�
�

∑ � 
�

 $% (�)                 (3-2) 

 
 
where set C includes all neurons in the output layer. When there are N total number 

of examples the average squared error energy will be; 

 

   &'( = 
�
�

∑ ξ(n)�
+$�                                                  (3-3) 

 

     For a given training set &'( represents the cost function, as a measure of learning 

performance. The objective of learning is to minimize the cost function, when the 

cost function approaches zero, the network will be able to detect and classify all the 

inputs similar to the training set correctly. 

 

     The backpropagation algorithm applies a correction of ∆, -(n), which is 

proportional to the partial derivative of error to the synaptic weight and can be 

written according to the chain rule; 

   

                        
.ξ(/)

.012(/)
 = 

.ξ(/)
.31(/)

.31(/)

.41(/)
 
.41(/)

.(1(/)
 

.(1(/)

.01(/)
                 (3-4) 

 

And with some differentiation with respect to error, output and the sum function, this 

equation is minimized to; 
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.ξ(/)

.012(/)
 = −� (�)5 

6(7 (�)) " (n)                            (3-5) 

 

The correction applied to the synaptic weight is defined by the modified delta rule as; 

 

            ∆, -(n) = −η
.ξ(/)

.012(/)
                                  (3-6) 

 

Where η is the learning rate parameter and minus sign accounts for gradient descent 

(a direction) in weight space. Finally the correction is; 

 

                                              ∆, -(n) = η8 (�) " (n)                                      (3-7) 

 

Where the local gradient 8 (�) is defined as; 

   

             8 (�) = � (�)5 
6(7 (�))                 (3-8) 

  

     In the application of backpropagation algorithm, two passes are processed. 

 

     In the forward pass the weights remain unchanged through the network and output 

is calculated by neuron by neuron basis. 

 

                                                " (�) = 5 (7 (�))                                     (3-9) 

 

Where 7 (�) is the induced local field of neuron and computed as; 

    

              7 (�)  = ∑ , -(n)" (n)9
-$:                                           (3-10) 

 

Where , -(n) is the synaptic weight connecting neuron i to neuron j at time n and 

" (n) is the input to the neuron j.If neuron j is the first layer then the input is the 

general input of the network, if it is in a hidden layer then its input is the output of 
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the previous layer and calculations are done in a standart way. But what the ;�� 

neuron is in the output layer it is compared to the desired response then the backward 

pass accurs. 

  

     The backward pass starts output layer by passing the error signals leftward 

through the network, layer by layer and recursively computing local gradient for each 

neuron. For a neuron in the output layer, the local gradient δ is simply the error 

signal of that neuron multiplied by the first derivative of its nonlinearity. 

  

     Hyperbolic tangent function is commonly used form of sigmoidal non-linearity is 

the hyperbolic tangent function, which in its most general form is defined by;  

 

           5 (7 (�))  =  atanh(b7 (�)) ,        (a,b) > 0                          (3-11) 

 

where a and b are constants. Its derivative with respect to 7 (�) is given by; 

 

                                       5 
6(7 (�)) = absecℎ�(b7 (�))                                       (3-12) 

    

For a neuron j located in the output layer, the local gradient is; 

 

                                          8 (�) = � (�)5 
6(7 (�))                                              (3-13) 

 

For a neuron j in a hidden layer, we have; 

 

                                  8 (�) = 5 
6(7 (�))∑ 8=(�),= (n) =                                    (3-14) 

 

We may calculate the local gradient 8  without requiring explicit knowledge of the 

activation function. 
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3.3.3 Learning in  eural  etwork 

 

     In neural network processing, several effecting factors is considered for a greater 

performance and a good generalization over the data. These factors are; 

 

� Input Data Selection 

� Preprocessing 

� Cross-Validation 

� Number of Hidden Neurons 

� Initializing Weights 

� Type of Activation Function 

 

3.3.3.1 Input Data Selection 

 

     The performance of a neural network is dependent on the quality and relevance of 

its data. It is very important to choose appropriate input data for create a successful 

neural network system. In this thesis, Principle Component Analysis (PCA) results 

are used as input data of neural network. Principle Component Analysis (PCA) is 

applied to the face database to obtain input data. The dimension of the input vector is 

10. These features are principal components of data which have the largest variance. 

 

3.3.3.2 Preprocessing - Postprocessing 

 

     Neural network training can be made more efficient if you perform certain 

preprocessing steps on the network inputs and targets. The normalization step is 

applied to both the input vectors and the target vectors in the data set and all data 

scaled in a range from -1 to 1. In this way, the network output always falls into a 

normalized range . The network output can then be reverse transformed back into the 

units of the original target data when the network is put to use in the field. 
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3.3.3.3 Cross-validation  

 

     The data are split into two parts. The models are trained in the training data set 

and they are tested in the production (test) data set. By applying cross-validation, the 

over fitting problem is avoided and a good generalization is achieved. 

 
     In this thesis, Cross-validation is applied to generalize the results. %70 of data 

randomly selected from a database is used for training and %30 of data randomly 

selected from a database is used for testing. This process is repeated 20 times for the 

generalization of the results. The neural network results are evaluated by calculating 

the mean of these results. 

 

3.3.3.4 �umber of Hidden �eurons  

 

      The number of hidden units governs the expressive power and complexity of the 

network. Increasing the number of hidden units does not mean better performance 

when considering neural learning. Finding the appropriate number of hidden units is 

an ad-hoc process that is not exactly solved in neural processing. In this study, 5 

hidden neurons are used in the hidden layer. 

 

3.3.3.5 Initializing Weights 

 

     The starting point of the network is also one of the most important pre-conditions 

in the learning process of the neural network that is not also yet solved. In the error 

surface, you have to start in a point that will take you to the global minima. 

            
      Figure 3.4 Error surface 
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     There may be several local minima that will make the network not be able to 

generalize well or as desired. For this purpose, the initialization of the weights plays 

a crucial role in the network performance. You cannot initialize the weights to 0 

otherwise learning cannot take place. In setting the weights, we choose weights 

randomly from a single distribution to help ensure uniform learning and have the 

network to generalize well. 

 

3.3.3.6 Activation Functions 

 

� Sigmoid Function: 

 

      This is the most widely used activation function in NN. Sigmoid function gives 

continues results to the inputs. Results are not discreet. This function is suitable for 

the problems which sensitive evaluation should be applied. Result of the sigmoid 

function is between 0 and 1. 

 

Sigmoid function is; 

 

                                                 f(x) = 
�

��3>?(@AB)                                 (3-15) 

 

where C is gradient, x is input and b is the bias. 

 

� Gaussian Function: 

 

      Gaussian function provides easier to prediction of the behaviour of the net when 

the input patterns differ strongly from all teaching patterns. 

Gaussian function as activation function is; 

 

                            f(x) = 
�

D�EF
�

>(@>G)H

H?H                                      (3-16)       
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where C is gradient, x is input and µ is the learning rate. 

 

� Unit Step Function: 

 

If input is greater than 0, output is 1, otherwise output is 0. This function can be 

used for simple problems. This function is not useful for complex problems. 

 

Unit step function is;   

 

                    f(x) = 0 if x<0                                               (3-17) 

           f(x) = 1 if x≥0                                               (3-18) 

 

� Hyperbolic Tangent: 

 

Difference of that function from others, that function returns results    between -1 

and 1. Hyperbolic tangent activation function is used in this study.  

      

     Hyperbolic Tangent function is; 

 

        f(x) = (1-�I�J)/( 1+�I�J)                                  (3-19) 
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CHAPTER FOUR 

FIELD PROGRAMMABLE GATE ARRAYS 

 

4.1 Introduction to Field Programmable Gate Arrays (FPGA) 

 

     A Field-programmable Gate Array (FPGA) is an integrated circuit designed to 

be configured by the customer or designer after manufacturing, hence "field-

programmable". The FPGA configuration is generally specified using a hardware 

description language (HDL), similar to that used for an application-specific 

integrated circuit (ASIC). FPGAs can be used to implement any logical function 

that an ASIC could perform.  

 

      FPGAs contain programmable logic components called "logic blocks", and a 

hierarchy of reconfigurable interconnects that allow the blocks to be "wired 

together"—somewhat like many (changeable) logic gates that can be inter-wired in 

(many) different configurations. Logic blocks can be configured to perform 

complex combinational functions, or merely simple logic gates like AND and 

XOR. In most FPGAs, the logic blocks also include memory elements, which may 

be simple flip-flops or more complete blocks of memory.  

 

     The FPGA industry sprouted from programmable read-only memory (PROM) 

and programmable logic devices (PLDs). PROMs and PLDs both had the option of 

being programmed in batches in a factory or in the field (field programmable), 

however programmable logic was hard-wired between logic gates. 

      

     In the late 1980s the Naval Surface Warfare Department funded an experiment 

proposed by Steve Casselman to develop a computer that would implement 600,000 

reprogrammable gates. Casselman was successful and a patent related to the system 

was issued in 1992.  

      

32 
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     Some of the industry’s foundational concepts and technologies for 

programmable logic arrays, gates, and logic blocks are founded in patents awarded 

to David W. Page and LuVerne R. Peterson in 1985. 

      

     Xilinx Co-Founders, Ross Freeman and Bernard Vonderschmitt, invented the 

first commercially viable field programmable gate array in 1985 – the XC2064. 

The XC2064 had programmable gates and programmable interconnects between 

gates, the beginnings of a new technology and market. The XC2064 boasted a 

mere 64 configurable logic blocks (CLBs), with two 3-input lookup tables (LUTs). 

 

     The 1990s were an explosive period of time for FPGAs, both in sophistication 

and the volume of production. In the early 1990s, FPGAs were primarily used in 

telecommunications and networking. By the end of the decade, FPGAs found their 

way into consumer, automotive, and industrial applications. 

 

4.2 FPGA Architecture 

 

     FPGAs consist of an array of programmable logic blocks of potentially 

different types, including general logic, memory and multiplier blocks, surrounded 

by a programmable routing fabric that allows blocks to be programmably 

interconnected. The array is surrounded by programmable input/output block, 

labeled I/O in the Figure 4.1, that connect the chip to the outside world (I. Kuon, 

R. Tessier, & J. Rose, 2007).  
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          Figure 4.1 Basic FPGA Structure (I. Kuon, R. Tessier, & J. Rose, 2007).  

 

     There are two types of FPGAs: SRAM-based programmable FPGA and One time 

programmable FPGA. The most commonly used design is SRAM-based design. The 

advantage of this design is reprogramming ability. But, SRAM-based FPGA needs 

reprogramming everytime when it’s powered up. So, most of the designs use a serial 

PROM for storing programming data.   

 

4.2.1 Logic Element (LE) 

 

     The smallest unit of logic in the Cyclone II architecture is the Logic Element 

(LE). LE provides advanced features with efficient logic utilization.  

 

Each LE features: 

 

- A four-input look-up table (LUT), which is a function generator that 

    can implement any function of four variables, 
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- A programmable register 

- A register chain  and a carry chain connection 

- The ability to drive all types of interconnects: local, row, column, 

     register chain, and direct link interconnects 

- Support for register feedback 

- Support for register packing (Cyclone II Handbook, Altera Corp., 2007). 

 

The Cyclone II LE operates in one of the following modes: 

 

• Normal mode 

• Arithmetic mode 

 

     The normal mode is suitable for general logic applications and combinational 

functions. In normal mode, four data inputs from the LAB local interconnect are 

inputs to a four-input LUT. The arithmetic mode is ideal for implementing adders, 

counters, accumulators, and comparators. An LE in arithmetic mode implements a 2-

bit full adder and basic carry chain. 

 

        Figure 4.2 Cyclone II logic element (Cyclone II Handbook, Altera Corp., 2007). 
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4.2.2 Logic Array Block (LAB) 

 

Each LAB consists of the following: 

 

- 16 LEs 

- LAB control signals 

- LE carry chains 

- Register chains 

- Local interconnect 

 

The local interconnect transfers signals between LEs in the same LAB. Register 

chain connections transfer the output of one LE’s register to the adjacent LE’s 

register within an LAB (Cyclone II Handbook, Altera Corp., 2007). Figure 4.3 shows 

Cyclone II LAB architecture. 

 

 

     Figure 4.3 Cyclone II LAB architecture (Cyclone II Handbook, Altera Corp., 2007). 
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4.3 FPGA Configuration 

 

     FPGAs can be programed in several ways such as schematic design entry, 

using hardware description languages (HDLs) and using high-level languages. 

These methods are described in the following sections. 

 

4.3.1 Schematic Design Entry 

 

Schematic design entry is the lowest level of FPGA configuration. Schematic 

design includes standard logic gates, multiplexers, I/O buffers, storage elements and 

macros for device specific functions such as adders or plls. The macros can be 

constructed from primitive logic elements to further use in large circuit designs. 

 

Schematic design entry is the least popular method of describing hardware, 

because when the complexity of the circuit increases, it is difficult to follow 

connection nodes in the schematic (E. Dilcan, 2010). 

 

 

  Figure 4.4 An example by using schematic design entry (E. Dilcan, 2010). 

 

4.3.2 Hardware Description Languages 

  

        HDLs are standard text-based expressions of the spatial and temporal 

structure and behaviour of electronic systems. Like concurrent programming 

languages, HDL syntax and semantics includes explicit notations for expressing 

concurrency. However, in contrast to most software programming languages, 

HDLs also include an explicit notion of time, which is a primary attribute of 
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hardware. Languages whose only characteristic is to express circuit connectivity 

between a hierarchy of blocks are properly classified as netlist languages used on 

electric computer-aided design (CAD). 

 

VHDL stands for VHSIC Hardware description language where VHSIC stands for 

very high speed integrated circuit. VHDL was originally develop by the US 

Department of Defense and released in 1985. 

 

Verilog HDL development started in Gateway Design Automation Inc. in 1985. 

Cadence Design Systems purchase Gateway Design Automation in 1990. With this 

purchase, Verilog is started to use in public and very popular in industry from this 

date. 

 

library ieee; 
use ieee.std_logic_1164.ALL; 
use ieee.std_logic_unsigned.ALL; 

 
entity halfadder is  
   port (in_A           : in  std_logic; 
         in_B           : in  std_logic; 
         sum            : out std_logic; -- sum out from A+B 
         carry          : out std_logic  -- carry out from A+B 

        ); 
end halfadder; 

 

architecture rtl of halfadder is 
 

begin  

 
   sum <= (in_A XOR in_B); 
   carry <=  in_A AND in_B;    
 

end rtl; 

 

 Figure 4.5 Half adder implementation by using VHDL. 
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module halfadder(in_A,in_B,sum,carry); 

 
input in_A; 
input in_B; 
output sum; 
output carry; 

 
   assign sum = in_A ^ in_B; 
   assign carry = in_A & in_B; 

 
endmodule 

 

 Figure 4.6 Half adder implementation by using Verilog HDL. 

 

4.3.3 High-Level Languages 

 

Using high-level programming languages for FPGA design is the increasing 

interest in the industry. The custom language such as C or phyton is compiled to 

generate a Verilog HDL or VHDL circuit description. SystemC, Celoxia’s DK 

Design suite and MyHDL are an example of high-level languages (E. Dilcan, 2010). 

 

Half adder implementation by using VHDL, Verilog HDL and SystemC is shown 

in Figure 4.5, Figure 4.6 and Figure 4.7 respectively. 

 

#include “systemc.h” 

SC_MODULE(half_adder) { 

  sc_in<bool>a, b; 

  sc_out<bool>sum, carry; 

  void proc_half_adder(); 

  SC_CTOR(half_adder) { 

    SC_METHOD (proc_half_adder); 

    sensitive << a << b; 

  } 

}; 

 

void half_adder::proc_half_adder() { 

  sum = a ^ b; 

  carry = a & b; 

} 
 

 Figure 4.7 Half adder implementation by using SystemC. 
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4.4 DE2-70 Development Kit 

 

     The DE2-70 board is produced by Terasic Technologies. The general features of 

this device and a board photo is taken from Altera DE2-70 Development and 

Education Board User Manual (Version 1.08, Terasic Technologies, 2009). 

 

The following hardware is provided on the DE2-70 board: 

 

- Altera Cyclone® II 2C70 FPGA device 

- Altera Serial Configuration device - EPCS16 

- USB Blaster (on board) for programming and user API control; both JTAG and 

Active Serial (AS) programming modes are supported 

- 2-Mbyte SSRAM 

- Two 32-Mbyte SDRAM 

- 8-Mbyte Flash memory 

- SD Card socket 

- 4 pushbutton switches 

- 18 toggle switches 

- 18 red user LEDs 

- 9 green user LEDs 

- 50-MHz oscillator and 28.63-MHz oscillator for clock sources 

- 24-bit CD-quality audio CODEC with line-in, line-out, and microphone-in jacks 

- VGA DAC (10-bit high-speed triple DACs) with VGA-out connector 

- 2 TV Decoder (NTSC/PAL/SECAM) and TV-in connector 

- 10/100 Ethernet Controller with a connector 

- USB Host/Slave Controller with USB type A and type B connectors 

- RS-232 transceiver and 9-pin connector 

- PS/2 mouse/keyboard connector 

- IrDA transceiver 

- 1 SMA connector 

- Two 40-pin Expansion Headers with diode protection 

 



41 
 

 

The Device Features of Cyclone II 2C70 FPGA: 

 

- 68,416 Logic Elements 

- 250 M4K RAM Block 

- 1,152,000 total RAM bits 

- 150 embedded multipliers 

- 4 PLLs 

- 622 user I/O pins 

- FineLine BGA 896-pin package 

 

 
     Figure 4.8 DE2-70 board top view. 
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CHAPTER FIVE 

MULTIPROCESSOR SYSTEMS 

 

5.1 Introduction to Multiprocessor Systems 

 

     Any system which incorporates two or more microprocessors working together to 

perform a task is commonly referred to as a multiprocessor system. Multiprocessor 

systems possess the benefit of increased performance, but nearly always at the price 

of significantly increased system complexity. For this reason, the use of 

multiprocessor systems has historically been limited to workstation and high-end PC 

computing using a complex method of load-sharing often referred to as symmetric 

multi processing (SMP). While the overhead of SMP is typically too high for most 

embedded systems, the idea of using multiple processors to perform different tasks 

and functions on different processors in embedded applications (asymmetrical) is 

showing increased interest. FPGAs provide an ideal platform for developing 

asymmetric embedded multiprocessor systems since the hardware can easily be 

modified (Creating Multiprocessor Nios II Systems Tutorial, Altera, 2005). 

 

5.2 Hardware Design 

 

     In this section, the hardware design methodologies, autonomous and non-

autonomous systems will be described. Hardware mutex core and shared system 

resources will be mentioned briefly.  

 

5.2.1 Autonomous Multiprocessor 

 

     Autonomous multiprocessor systems contain multiple processors, these 

processors are completely autonomous and do not communicate with the others, 

much as if they were completely separate systems. Systems of this type are typically 

less complicated and pose fewer challenges, since the system’s processors are 

incapable of interfering with each other’s operation by design. Figure 5.1 shows a 
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block diagram of two autonomous processors in a multiprocessor system (Creating 

Multiprocessor Nios II Systems Tutorial, Altera, 2005). 

                 

    Figure 5.1 Autonomous Multiprocessor System (Creating  

    Multiprocessor Nios II Systems Tutorial, Altera, 2005). 

 

5.2.2  on-Autonomous Multiprocessor 

 

     In this type of system, resources can be shared among processors. It is very useful to 

adopt resource-sharing mechanism in multiprocessor architectures, but it should be 

noticed the time which resource will be shared and how to cooperate each other among 

different processors while sharing the resources. Figure 5.2 shows a block diagram of a 

multiprocessor which includes two processors and the two processors share a single 

memory component (Y. C. Chen & C. Y. Tseng, 2008). 
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              Figure 5.2 Multiprocessor System with Shared Resource (Creating  

              Multiprocessor Nios II Systems Tutorial, Altera, 2005). 

 

 

5.2.3 The Shared System Resources 

 

5.2.3.1 Shared Memory 

  

     The most common type of shared resource in multiprocessor systems is memory. 

Shared memory can be used for anything from a simple flag whose purpose is to 

communicate status between processors, to complex data structures that are 

collectively computed by many processors simultaneously. 

 

     If a memory component is to contain the program memory for more than one 

processor, each processor sharing the memory is required to use a separate area for 

code execution. The processors cannot share the same area of memory for program 

space. Each processor must have its own unique .text, .rodata, .rwdata, heap, and 

stack sections. 
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     If a memory component is to be shared for data purposes, its slave port needs to 

be connected to the data masters of the processors that are sharing the memory. 

Sharing data memory between multiple processors can be trickier than sharing 

instruction memory due to the fact that data memory can be written to as well as 

read. If one processor is writing to a particular area of shared data memory at the 

same time another processor is reading or writing to that area, data corruption will 

likely occur, causing application errors at the very least, and possibly a system crash. 

The processors sharing memory need a mechanism to inform one another when they 

are using a shared resource, so the other processors do not interfere (Creating 

Multiprocessor Nios II Systems Tutorial, Altera, 2005). 

 

5.2.3.2 Shared Bus 

 

The design of system bus plays a very important role for designing the 

architecture of System-on-a-Chip (SoC), especially while designing a multiprocessor 

system in a single chip. However, it will cause poor performance if we connect high-

speed systems bus to low-speed peripherals during system designing period. To 

make data access more stable and faster, some processors will analyze the data you 

transfer and choose an appropriate system bus for data transmission (Y. C. Chen & C. 

Y. Tseng, 2008). 

 

5.2.3.3 Shared Peripherals 

 

The most important issue of shared peripherals in multiprocessor system is the 

management mechanism for interrupt handling. If a peripheral is allowed to interrupt 

all the processors that share it, there is no reliable way to make sure which processor 

will respond first and handle the interrupt. In this case, some multiprocessor systems 

share the same input peripheral have the problem of deciding which processor to 

process the data that the input peripheral send. It can be imaged that there is also a 

need to have a mechanism to protect the shared peripheral without causing errors. 

The tool chain Altera Corporation offers provides a Mutex Core which can be used 
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to protect the processors to mutually access the shared resources (Y. C. Chen & C. Y. 

Tseng, 2008). 

 

5.2.4 Hardware Mutex Core 

  

     Multiprocessor environments can use the mutex core with Avalon interface to 

coordinate accesses to a shared resource. The mutex core provides a protocol to 

ensure mutually exclusive ownership of a shared resource. The mutex core provides 

a hardware-based atomic test-and-set operation, allowing software in a 

multiprocessor environment to determine which processor owns the mutex 

(Embedded Peripherals IP User Guide, Altera, 2010). 

 

     The mutex core acts as a shared resource, providing an atomic “test and set” 

operation in which a processor may test if the mutex is available and if so, acquire it 

in a single operation. When the processor is finished using the shared resource 

associated with the mutex, the processor releases the mutex. At this point, another 

processor may acquire the mutex and use the shared resource. Without the mutex, 

this kind of function would normally require two separate “test” and “set” 

instructions between which, another processor could also test for availability and 

succeed. This situation would leave two processors both thinking they successfully 

acquired mutually exclusive access to the shared resource when clearly they did not 

(Creating Multiprocessor Nios II Systems Tutorial, Altera, 2005).  

 

5.3 Software Design 

 

     Running software on multiprocessor systems is much the same as for single-

processor systems, but requires the consideration of a few additional aspects. 

 

5.3.1 Program Memory 

 

     When creating multiprocessor systems, you may want to run the software for 

more than one processor out of the same physical memory device. Software for each 
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processor must be located in its own unique region of memory, but those regions are 

allowed to occupy the same physical memory device. For instance, imagine a two-

processor system where both processors run out of SDRAM. The software for the 

first processor requires 128 Kbytes of program memory, and the software for the 

second processor requires 64Kbytes. The first processor could use the region 

between 0x0 and 0x1FFFF in SDRAM as its program space, and the second 

processor could use the region between 0x20000 and 0x2FFFF (Altera, 

Multiprocessor Tutorial). 

 

     Nios II and SOPC Builder provide a simple scheme of memory partitioning that 

allows multiple processors to run their software out of different regions of the same 

physical memory. The partitioning scheme uses the exception address for each 

processor, which is set in SOPC Builder, to determine the region of memory from 

which each processor will be allowed to run its software. Although the Nios II is 

ultimately responsible for the linking of the processors’ software and determining 

where the software will reside in memory, Nios II looks at the exception addresses 

that were set for each processor in SOPC Builder to calculate where the different 

code sections will be linked. The Nios II provides each processor its own section 

within memory from which it can run its software. If the software for two different 

processors is linked to the same physical memory, then the exception address of each 

processor is used to determine the base address of the region which that processor’s 

software can occupy. The end address of the region is determined by the next 

exception address found in that physical memory, or the end of that physical 

memory, whichever comes first (Creating Multiprocessor Nios II Systems Tutorial, 

Altera, 2005). 

 

     For any single or multiprocessor system, there are five primary code sections 

that need to be linked to fixed addresses in memory for each processor. These 

sections are:  

� .text — the actual executable code 

� .rodata — any constant data used in the execution of the code 

� .rwdata — where read/write variables and pointers are stored 
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� heap — where dynamically allocated memory is located 

� stack — where function call parameters and other temporary data is 

stored  

 

These sections are shown in Figure 5.3 for a memory map of how these sections are 

typically linked in memory for a single processor Nios II system. 

 

             
          Figure 5.3 Single Processor Code Linked in Memory Map (Creating  

          Multiprocessor Nios II Systems Tutorial, Altera, 2005). 

 

     In a multiprocessor system, it may be desirable to use a single memory to store all 

the code sections for each processor. In this case, the exception address set for each 

processor in SOPC Builder is used to define the boundaries between where one 

processor’s code sections end and where the next processor’s code sections begin. 

For instance, imagine a system where SDRAM occupies the address range 0x0 – 

0xFFFFF and processors A, B and C each need 64 Kbytes of SDRAM to run their 

software. By using SOPC Builder to set their exception addresses 64 Kbytes apart in 

SDRAM. Partitioning of SDRAM is shown in Figure 5.4 for a memory map showing 
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how the SDRAM will be partitioned in this example system (Creating 

Multiprocessor Nios II Systems Tutorial, Altera, 2005). 

 

  

 

         Figure 5.4 Partitioning of SDRAM Memory Map for Three Processors (Creating  

         Multiprocessor Nios II Systems Tutorial, Altera, 2005). 

 

      Note that the lower six bits of the exception address are always set to 0x20. 

Offset 0x0 is where Nios II must run its reset code, so the exception address must be 

placed elsewhere. The offset of 0x20 is chosen because it corresponds to one 

instruction cache line. The 0x20 bytes of reset code initializes the instruction cache, 

and then branches around the exception section to the system startup code. Care must 
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be taken when partitioning a physical memory to contain the code sections of 

multiple processors. There are no safeguards in SOPC Builder or Nios II that 

guarantee you have provided enough code space for each processor’s stack and heap 

in the partition. If inadequate code space is allotted in memory, the stack and heap 

may overflow and corrupt the processor’s code execution (Creating Multiprocessor 

Nios II Systems Tutorial, Altera, 2005). 

 

5.3.2 Boot Adresses 

 

     In multiprocessor systems, each processor must boot from its own piece of 

memory. More than one processor may not boot from the same bit of executable 

code at the same address in the same non-volatile memory. Boot memory can also be 

partitioned, much like program memory can, but the notion of sections and linking is 

not a concern as boot code typically just copies the real program code to where it has 

been linked in RAM, and then branches to the program code. To boot multiple 

processors out of separate regions with the same non-volatile memory device, simply 

set each processor’s reset address to the location from where you wish to boot that 

processor. Be sure you leave enough space between boot addresses to hold the 

intended boot payload (Creating Multiprocessor Nios II Systems Tutorial, Altera, 

2005). Flash device memory map is shown in Figure 5.5 for a memory map of one 

physical flash device from which three processors can boot. 



51 
 

 

 

         Figure 5.5 Flash Device Memory Map with Three Processors Booting  

                       (Creating Multiprocessor Nios II Systems Tutorial, Altera, 2005). 
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CHAPTER SIX 

FPGA-BASED FACE RECOG�ITIO� SYSTEM DESIG� 

 

     In this chapter, the implemented face recognition system will be described in 

detail. After, general overview of the face recognition system discussed in section 

6.1, the results of a single-processor system will be assessed in section 6.2. The 

results of multi-processor system will be given in section 6.3. Finally, face 

recognition system performance will be evaluated in section 6.4. 

 

6.1 Implementation of Face Recognition System Design on DE2-70 

 

     The face recognition system consists of several hardware and software parts. 

This section demonstrates the fundamental aspects of the system. 

              

6.1.1 General Overview of Face Recognition System   

 

     In this study, the face recognition processes can be divided into two phases, 

processes implemented on Host PC and processes implemented on FPGA. 

Processes implemented on Host PC are; 

� Collecting database face images 

� Image resizing 

� Principle Component Analysis (PCA) 

� Send database to FPGA  

Block diagram of Host PC processes are shown in Figure 6.1. 
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       Figure 6.1 Block diagram of Host PC processes 

 

Processes implemented on FPGA are; 

� Recieve database from Host PC 

� Normalization 

� Neural network training 

� Neural network testing 

Block diagram of FPGA processes is shown figure 6.2. 
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   Figure 6.2 Block diagram of FPGA processes 

 

     ORL Database is used for this implementation of face recognition system. 

There are 40 people and 10 images for each person in this database. In this study, 

60 images of 6 different person are used. The size of the images in this database is 

112x92. Process on FPGA takes a long time because of large size of images. So 

there is a need to reduce the size of the images. In order to reduce the 

computational burden, the windowing method is applied. A window whose size is 

3x3, is applied to the new images. Since the size of resized images is 40x40, 

13x13 matrix is created for each image by windowing and mean processes. 

Windowing is applied to all images in the database. The row number of the feature 

matrix is M x N. Each image is represented by a 13x13 matrix so row number of 

the feature matrix is 169. Since 60 face images are used for database creation, the 

size of feature matrix is 169x60. 

 

     The most important step for neural network is feature extraction process. 

Principle Component Analaysis (PCA) algorithm is used for feature extraction 

process. Reducing size of data is provided by applying PCA to created feature 

matrix and independent variables are obtained. Eigenvectors are created by 
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applying PCA to feature matrix. Ten eigenvectors with largest variance are chosen 

to be given neural network for each image. It has been observed that, 10 

eigenvalues are sufficient for proper training of neural network. Since image 

database has 60 images and 10 datas are obtained by PCA, finally 60x10 feature 

matrix is created. Randomly selected %70 of this feature matrix is used for 

training and %30 of this feature matrix is used for testing. This data is sent to 

FPGA by Universal Asynchronous Receiver/Transmitter (UART). The source 

code of HOST PC processes is in the Appendix with the folder name of 

“6_1_1_Database_PCA_Windowing_Matlab”.   

 

     Code on FPGA consist of two part; training and testing. Training part begins to 

run after sending data are received by FPGA via UART. When data are sent from 

Host PC, code running on FPGA jumps to UART interrupt function and 

eigenvectors are saved in this UART interrupt function. Some preprocessing 

operations are applied to saved data. Normalization process is applied to this data 

to generate more correct results and to obtain code running faster. As a result of 

normalization process, elements of feature matrix are distributed between -1 and 1. 

Normalized data are given to neural network to be trained. Neural network 

algortihm is Feed Forward Backpropagation Algorithm. Neural network consists 

of 3 layers; input layer, hidden layer and output layer. Owing to the fact that 10 

largest variance of data are chosen from PCA, input layer has 10 neurons. Hidden 

layer has 5 neurons and output layer has 1 neuron. The target vector is prepared to 

train the network to find out the person. Neural network training need to be 

repeated 2500 times to reach to desired learning rate. Neural network training is 

completed after 2500 epochs and neural network system is ready for testing.  

 

     Testing part starts to run after testing datas are sent from Host PC to FPGA via 

UART. Sent data are saved for testing in UART interrupt function. Normalization 

process is applied to testing data and data are scaled between -1 and 1. Owner of 

the images are identified by given normalized data to trained neural network. 
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6.1.2 Programs Used in the Project 

 

     In order to develop face recognition system the following programs have been 

used for preprocessing steps and FPGA programing: 

  

• Matlab 

• Quartus 

• SOPC Builder 

• Nios II 

 

� Matlab: 

     Matlab (matrix laboratory) is a numerical computing environment and 

fourth-generation programming language. Developed by MathWorks, 

MATLAB allows matrix manipulations, plotting of functions and data, 

implementation of algorithms, creation of user interfaces, and interfacing with 

programs written in other languages, including C, C++, and Fortran.  

       

� Quartus: 

     The Altera Quartus II design software provides a complete, multiplatform 

design environment that easily adapts to your specific design needs. It is a 

comprehensive environment for system-on-a-programmable-chip (SOPC) design. 

The Quartus II software includes solutions for all phases of FPGA design 

(Introduction to the Quartus II Software, Altera, 2010). 

 

� SOPC Builder: 

     SOPC Builder is a powerful system development tool. SOPC Builder 

enables you to define and generate a complete system-on-a-programmable-chip 

(SOPC) in much less time than using traditional, manual integration methods. 

SOPC Builder is included as part of the Quartus II software (SOPC Builder 

User Guide, Altera, 2010). 
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� Nios II 

     Nios II is a 32-bit embedded-processor architecture designed specifically for 

the Altera family of FPGAs. Nios II incorporates many enhancements over the 

original Nios architecture, making it more suitable for a wider range of 

embedded computing applications, from DSP to system-control. The Nios II 

software development environment is called The Nios II integrated 

development environment (IDE). The Nios II IDE is based on the GNU C/C++ 

compiler and the Eclipse IDE, and provides a familiar and established 

environment for software development (Nios II Processor Reference 

Handbook, Altera, 2007).  

 

6.1.3 Implementation Steps of Face Recognition System 

 

6.1.3.1 Creating Database 

 

ORL Database is used for this implementation of face recognition system. It 

contains a set of face images. There are 10 different images of each of 40 distinct 

subjects. For some subjects, the images are taken at different times, varying the 

lighting, facial details such as open/closed eyes, smiling/not smiling, glasses/no 

glasses etc. All the images have a dark homogeneous background with the subjects in 

an upright, frontal position. The size of each image is 92x112 pixels, with 256 grey 

levels per pixel. Figure 6.3 shows some example images from this database. 
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Figure 6.3 Some examples from ORL Database 

 

In this study, 60 images of 6 different person are used and size of images is 

reduced. 

 

6.1.3.2 Resizing Images 

 

     Size of the face image in ORL Database is 112x92. Firstly, the input image is 

taken from ORL image database. Then imresize, that is also one of the functions of 

MATLAB image processing toolbox, is used to resize the images. Figure 6.4.a 

shows the input image, Figure 6.4.b shows the resized image from 112x92 to 

40x40. Note that, the process that is shown in Figure 6.4 is applied to all images 

sequentially on the database. 
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 Figure 6.4(a) An original face image (b) the resized form of the face image  

 

     In order to reduce the computational burden, the windowing method is applied. 

After resizing the images, a window whose size is 3x3, is applied to the new images. 

The mean of each window become an element of the feature matrix. Since the size of 

resized images is 40x40, 13x13 matrix is created for each image by windowing and 

mean processes. Windowing is applied to all images in the database. The row 

number of the feature matrix is M x N. Each image is represented by a 13x13 matrix 

so row number of the feature matrix is 169. Figure 6.5 shows the new form of 

database images after windowing the whole image and taking the mean of the 

resultant windows. 
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  Figure 6.5 A face image after calculating mean of each window 

 

6.1.3.3 Applying Principle Component Analysis (PCA) 

 

The most important step for neural network is feature extraction process. 

Principle Component Analaysis (PCA) algorithm is used for feature extraction 

process.  Images that are used for database are resized from 112x92 to 40x40. 

Since the size of resized images is 40x40, 13x13 matrix is created for each image 

by windowing and mean processes. Each image in the database are transformed 

into vectors and placed one column of new population matrix. For example, first 

image in the database is converted to a vector of 169x1, then this vector is put to 

first column of population matrix. This process is continued for all images. By 

processing for 60 images (6 people and 10 images for each people), population 

matrix is created with size of 169x60. This population matrix, X, is used for 
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creating the basis function. First, covariance of X is computed then eigenvalues 

and eigenfaces are found. By sorting eigenvalues in descending order, eigenface 

vector or face space vector, A, is computed. The size of A is 169x169. Next step is 

to project population matrix, X, to face space by multiplying the face space vector, 

A. To reduce the computation time, only the first 10 eigenvalues are used. 

Selecting 10 datas are enough for neural network training. Since image database 

has 60 images and 10 datas are obtained by PCA, finally 60x10 feature matrix is 

created. 

 

6.1.3.4 Sending Database to FPGA 

 

UART is the part of computer hardware that translates data between parallel 

and serial forms. Today, UARTs are commonly included in microcontrollers and 

they are commonly used in conjunction with other communication standards such 

as EIA RS-232. 

 

There are two main environment in the project, MATLAB and FPGA. UART 

provides the asynchronous communication between them. Communication in 

MATLAB is done by the help of MATLAB serial communication toolbox functions. 

Basically, four functions run sequentially in MATLAB. They are serial function to 

construct a serial port object associated with an existing port, fopen to connect the 

serial port object to FPGA, fwrite to write the feature matrix and other data to FPGA 

which is already connected to defined serial port object and fclose to disconnect the 

serial port object from FPGA. Baud rate is 9600 bits/second. A serial port object is 

defined in MATLAB to communicate with FPGA. Next, it is opened by fopen. If 

data transmission is required, fwrite is used. Also, if data reception is required, fread 

is used over the opened serial port object. 
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6.1.3.5 Receiving Database from Host PC 

 

     UART implementation in FPGA works to receive the data due to interrupts. 

When an interrupt is created to receive any data, interrupt service routine is called 

and data receive process starts. To use UART, two header files must be included: 

“altera_avalon_uart.h” that includes the UART device drivers and 

“altera_avalon_uart_regs.h” that includes the pre-defined status and control registers 

of UART. UART module is defined as a routine that serves when the serial port 

interrupt occurs. Note that, UART_BASE is the start address of UART. When system 

is generated in SOPC Builder, this address is added to table in “system.h” file. In this 

service routine first the status register is controlled. If the receiver ready flag 

(ALTERA_ AVALO�_ UART_CO�TROL_RRDY_MSK) is set, UART is ready to 

receive data. RxHeadData shows the buffer assigned for the database. Receiving 

bytes and storing them to RxHeadData is continued until all of the database elements 

are sent. If the pointer of the buffer shows the exact number with database, the new 

received bytes are interpreted as the elements of test array and stored in RxTest. This 

approach is followed since the database and test features are sent respectively from 

MATLAB. 

 

6.1.3.6 �ormalization 

 

Method of data normalization is a simple linear scaling of data. Data must be 

scaled into the range used by the input neurons in the neural network. This is 

typically the range of -1 to 1 or zero to 1. A linear scaling requires that the 

minimum and maximum values associated with the facts for a single data input be 

found. Let's call these values K9-+ and K9'J, respectively. The input range 

required for the network must also be determined. Let's assume that the input 

range is from �9-+ to �9'J. The formula for transforming each data value D to an 

input value I is: 

 

              I = �9-+ + (�9'J− �9-+) * (D − K9-+)/(K9'J− K9-+)                    (6.1) 
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K9-+ and K9'J must be computed on an input-by-input basis. This method of 

normalization will scale input data into the appropriate range but will not increase 

its uniformity. 

     

6.1.3.7 Training �eural �etwork 

 

     Neural network algortihm is Feed Forward Backpropagation Algorithm. Neural 

network consists of 3 layers; input layer, hidden layer and output layer. Input layer 

has 10 neurons, hidden layer has 5 neurons and output layer has 1 neuron. Figure 

6.6 shows block diagram of neural network structure. 
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             Figure 6.6 Block diagram of neural network structure.  
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     Firstly, Inputs of neurons in hidden layer need to calculate to train neural 

network. Therefore, initial weights are assigned randomly. Inputs of neurons are; 

 

                    7 (�)  = ∑ , -(n)" (n)9
-$:                                        (6.2) 

 

Where 7 (�) is the induced local field of neuron and m is the total number of inputs 

applied to neuron j, , -(n) is the synaptic weight connecting neuron i to neuron j at 

time n and " (n) is the input to the neuron j. If neuron j is the first layer then the 

input is the general input of the network, if it is in a hidden layer then its input is the 

output of the previous layer and calculations are done in a standart way. But what the 

;�� neuron is in the output layer it is compared to the desired response then the 

backward pass accurs. 

 

     In the forward pass the weights remain unchanged through the network and 

output is calculated by neuron by neuron basis. Function signal " (n) appering at 

the output of neuron j at iteration n is; 

                                                 " (�) = 5 (7 (�))                                     (6-3) 

 

     Activation function is used to calculate output of neuron. This activation 

function is hyperbolic tangent function. Hyperbolic tangent function is; 

 

                    5 (7 (�))  =  atanh(b7 (�)) ,        (a,b) > 0                           (6-4) 

 

     After output neuron is obtained, this output is compared with desired output 

value and system error is calculated. The error signal at the output is defined by; 

 

                                 � (�) = ! (�) − " (�)                                           (6.5) 
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     If number of output neuron has more than 1 neuron, error is; 

 

                                                 ξ(n) = 
�
�

∑ � 
�

 $% (�)             (6-6) 

 

     All processes are repeated number of patterns times. Error is calculated for all 

patterns as follows; 

   &'( = 
�
�

∑ ξ(n)�
+$�                                                 (6-7) 

 

     According to calculated error, system weights are reconfigured. All processes 

mentioned above are repeated until error reach to the desired value. After 2500 

epochs, sistem reaches to desired value and the error is approximately 0,045. 

 

6.1.3.8 Testing �eural �etwork 

 

Testing images are taken from image database. Images that are used for testing 

are resized from 112x92 to 40x40. After by windowing and mean processes a 

13x13 matrix is created for each image. Principle Component Analysis (PCA) is 

applied to testing data. 10 eigenvalues from PCA are used for testing. This data is 

sent to FPGA by UART.  

 

     Sent data are received by FPGA via UART. Then, testing phase begins. Sent 

data are saved for testing in UART interrupt function. Normalization process is 

applied to test data and data are scaled between -1 and 1. The owner of the images 

are identified by given 10 eigenvalues to trained neural network. The output of 

neural network system is calculated by processing feature vector with trained 

weights as described in section 6.1.3.7. In the training phase, indices are assigned 

as a target values as follows ; 

 

•  1 to 10 images in the database: target value is 1 

• 11 to 20 images in the database: target value is 2 
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• 21 to 30 images in the database: target value is 3 

• 31 to 40 images in the database: target value is 4 

• 41 to 50 images in the database: target value is 5 

• 51 to 60 images in the database: target value is 6 

 

     In the testing phase, therefore, values need to be obtained vary between 1 and 

6. If output value of network doesn't exceed the threshold value, owner of the 

image is identified. If output value of network exceeds the threshold value, owner 

of the image is not identified. 

 

6.2 Single Processor Face Recognition System  

 

     6.2.1 Hardware Design 

 

     Altera SOPC Builder is a tool of Quartus II software that is used for system on 

programmable chip (SOPC) designs. By using this tool, FPGA chip can be 

programmed as a CPU and the other system components are integrated to system 

design easily. The design of the system starts with adding the design components. 

These components are; 

• Nios II CPU 

• Phase Locked Loop (PLL) 

• JTAG UART 

• Interval Timer 

• 64 Mbyte SDRAM Controllers 

• 4 Mbyte Flash Memory 

• UART 
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     There are 3 types of configurable Nios II CPU for Alera FPGAs. These are 

Nios II/f which is an optimized for the highest performance, Nios II/e which is an 

optimized for smallest size and Nios II/s which is balanced for performance and 

size. Nios II/f is selected for the system in this thesis. 

      

     External clock source that is provided by the crystal on the development kit is 

50 MHz. The SDRAM on the DE2-70 operates at 85 MHz. In order to provide all 

components with same clock, three clocks are generated from the external 50 MHz 

clock by using Altera ALTPLL MegaWizard. 

 

     JTAG UART is used for serial configuration. JTAG UART core provides host 

access via JTAG pins on the FPGA. For time-based operations such as configuring 

watchdog timer or resetting the system in a pre-determined time are realized by 

interval timer block of SOPC Builder. 

 

     SDRAM Controllers, sdram_0 and sdram_1, are configured. Data width is set 

to 16 bits and address widths are created by using 13 rows and 9 columns. The 

sizes of sdram_0 and sdram_1 are 32 MBytes (256 MBits) and totally 64 MBytes 

of SDRAM memory. 

    

     Flash memory is placed on behind of Avalon memory mapped tristate slave in 

SOPC Builder. 4 MBytes of flash memory by setting address width to 22 and data 

width to 8 is created in the system. 

 

     UART module allows communication between MATLAB and FPGA. 9600 

baud rate is used for communication. 

 

     SOPC Builder screen at the end of configuration is shown in Figure 6.7. 
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 Figure 6.7 SOPC Builder screen at the end of configuration. 

 

     After configuring all components, reset addresses and exception addresses are 

arranged from SOPC Builder settings. Cpu settings are shown in Figure 6.8 

 

 

 Figure 6.8 Cpu settings in processor configuration 

 



69 
 

 

     The system is generated after configuring all components by using “Generate” 

button of SOPC Builder. After generating the system without any error, pins that 

are used on the board must be assigned. The hardware design of this system is 

completed with pin assignments. Figure 6.9 shows the pin assignments. 

 

 

 Figure 6.9 Pin assignments of system. 

 

6.2.2 Software Design 

      

     Nios II IDE is the environment of configuring FPGA by writing a high level 

language, C/C++. This tool has some useful features such as adding hardware and 

software breakpoints that are used for debugging the configuration software. 

      

     The images are received from MATLAB after resizing operation. UART core 

that is added to system during SOPC Builder design, listens to serial port and 

receive/transmit informations. Code on FPGA starts to run after sending data are 

recieved by FPGA via UART. When data are sent from Host PC, code running on 

FPGA branches to void uart_isr(void* context,alt_u32 id) interrupt function and 

eigenvectors are saved in this UART interrupt function. Some preprocessing 
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operations are applied to saved datas. Normalization process is applied to this 

datas in the void  �ormalization(void) function. Datas distributed between -1 and 1 

are obtained as a result of this function. Normalized datas are given to neural 

network. Firstly, Initial weights must be assigned to start training. void 

Initial_Weights(void) function is used for this process. For training of neural 

network, there are 3 main functions. void Calculate_�et(void) calculates the 

current network output. According to the calculated error in the Calculate_�et(), 

weight outputs are reconfigured in the void Weight_Changes_HO(void) and 

weight inputs are reconfigured in the void Weight_Changes_IH(void). Testing part 

begins to run after testing datas are sent from Host PC to FPGA via UART. Sent 

datas are saved for testing in the void Create_TestDatabase(void) function. 

Normalization process is applied to testing datas and datas are scaled between -1 

and 1 in the void  �ormalization_Test(void) function. Owner of the images are 

identified by given normalized datas to trained neural network. These results are 

displayed in the void Display_TestResults(void). Flow diagram of all this process 

is shown in Figure 6.10. The source code of single processor face receognition 

system is in the Appendix with the folder name of 

“6_2_2_Single_Processor_Face_Recognition_System_C_Code”. 
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                                         Figure 6.10 Flow diagram of single processor system  

 
 
     In order to select the train and the test samples, the cross-validation algorithm is 

implemented in MATLAB by using crossvalind function from Bioinformatics 

Toolbox of MATLAB. The output of the algorithm is a matrix and each row 

represents the images and each column represents the number of test subsystem. 

The elements of the cross-validation matrix are 0’s and 1’s. 1’s show that the 

corresponding image must be selected for training and similarly 0’s show that the 

corresponding image must be selected as test image. 20 test subsystems are created 
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by using cross-validation technique. The source code of cross-validation is in the 

Appendix with the folder name of “6_2_2_Cross_Validation_Matlab”. 

 

     Using cross-validation matrix, all processes in flow diagram are repeated 20 times 

for the generalization of the results. The neural network recognition rate is evaluated 

by calculating the mean of these results. 

            

     Time of all this processes, number of processor, epoch number, time of system, 

system error and recognition rate are given in the Table 6.1. 

 
Table 6.1 Results of single processor system 
 

Number of 
Processor 

Epoch 
Number 

Time of System 
Training 

System Error 
(RMS Error) 

Recognition 
Rate 

1 CPU         2500 49 min. 10 sec.       0.045         95.3% 

 
 
     The results indicate that although the recognition rate is acceptable, the process is 

slower. In the next section, the multiprocessor approach will be introduced to speed 

up the system.  

 
6.3 Multiprocessor Face Recognition System  

 

 6.3.1 Hardware Design 

 
           Multi-processor system consists of the following elements; 
 

• Nios II CPU1 

• Nios II CPU2 

• The Hardware Mutex Core 

• On-Chip Memory 

• Phase Locked Loop (PLL) 

• JTAG UART 

• Interval Timer 
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• 64 Mbyte SDRAM Controllers 

• 4 Mbyte Flash Memory 

• UART 

 
        
     All components except hardware mutex core are mentioned in section 6.2.1.We 

are building a multiprocessor system that shares a data memory between processors, 

so it is essential that a hardware mutex component be included to enable protection 

of that memory from data corruption. Multiprocessor environments can use the 

mutex core with Avalon interface to coordinate accesses to a shared resource. The 

mutex core provides a protocol to ensure mutually exclusive ownership of a shared 

resource. The mutex core provides a hardware-based atomic test and set operation, 

allowing software in a multiprocessor environment to determine which processor 

owns the mutex. 

 

     Most important step for multiprocessor system design is to connect instruction 

and data masters. All the resources that are shared between processors in the system 

need to be connected using SOPC Builder’s connection matrix. Using the connection 

matrix, sdram and sdram1 are connected to the instruction and data masters for each 

processor, allowing two processors to access sdram and sdram1. All the connection 

dots for the sdram and sdram1 should be solid black.  

 
     ext_ram_bus is connected to the instruction and data masters for each processor, 

allowing two processors to access external RAM and flash memory. All the 

connection dots for ext_ram_bus should be solid black.  

 

     message_buffer_mutex is connected to the data masters for two processors and 

two instruction masters are disconnected, allowing two processors to access 

message_buffer_mutex. 

 
     message_buffer_ram is connected to the data masters for two processors and two 

instruction masters are disconnected, allowing all three processors to access that 
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memory only as data memory. SOPC Builder screen at the end of configuration is 

shown in Figure 6.11. 

 

 
 
  Figure 6.11 All components of multiprocessor system  

 
     After configuring all components, reset addresses and exception addresses are 

arranged from SOPC Builder settings. Cpu1 and Cpu2 settings are shown in 

Figure 6.12 and 6.13. 

 

 
 Figure 6.12 Cpu1 settings in processor configuration 
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 Figure 6.13 Cpu2 settings in processor configuration 

 
6.3.2 Software Design 

 
     To obtain faster system, multiprocessor system is designed. Thus, training time is 

reduced. Code on FPGA described in the section 6.2.2 need to be designed in 

accordance with 2 processors system. Hence, an approach different from sequential 

system of classical processors should be developed and the system should be run in 

parallel. 

 

     In the single processor system, the processor recognizes the images of six 

different people means a classification problem with 6 classes. In the multiprocessor 

system, tasks should be assigned to each processor in the system and these tasks 

should reduce the burden of processing. For this purpose, instead of classifying 6 

classes at once, each processor makes a sub-classification between the predefined 

classes. Burden of each processor of multiprocessor system is provided to be less 

than burden of processor of single processor system. Which classes will be assigned 

to processors is determined by using hierarchical classification/clustering approach. 

Its purpose is to train similar classes in the same processor.  
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6.3.2.1 Hierarchical Clustering 

 

     Hierarchical clustering groups data over a variety of scales by creating a cluster 

tree or dendrogram. The tree is not a single set of clusters, but rather a multilevel 

hierarchy, where clusters at one level are joined as clusters at the next level. This 

allows you to decide the level or scale of clustering that is most appropriate for your 

application. Results of hierarchical clustering are given Figure 6.14. 

                               
         Figure 6.14 Results of hierarchical clustering 

 

     In the figure, the numbers along the horizontal axis represent the indices of the 

classes. Vertical axis indicates the distance between the classes. The link 

representing the cluster containing classes 2 and 3 has a height of 42. The link 

representing the cluster that groups class 1 together with classes 2 and 3 (which are 

already clustered as object 7) has a height of 58. Cluster that groups class 4 together 

with classes 2, 3 and 1 (which are already clustered as object 8) has a height of 63. 

Classes 5 and 6 (which are already clustered as object 10)  has a height of 70. Cluster 

that groups class 5 and 6 (which are already clustered as object 10) together with 

classes 2, 3, 1 and 4 (which are already clustered as object 9) has a height of 72. 

 

     According to hierarchical classification results summarized in Figure 6.14, 

since 1st, 2nd and 3rd classes are closer to each other in the feature space, they are 
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given to Cpu1, and 4th, 5th and 6th classes are given to Cpu2. The source code of 

hierarchical classification is in the Appendix with the folder name of 

“6_3_2_1_Hierarchical_Classification_Matlab”. 

  

6.3.2.2 Multiprocessor System Software 

 

     Code on FPGA is described in the section 6.2.2. Multiprocessor system need to 

be designed in accordance with 2 processors system. Therefore, the system should 

be run in parallel. Flow diagram of multiprocessor system is shown in Figure 6.15. 
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      Figure 6.15 Flow diagram of multiprocessor system  
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      Code on FPGA begins to run after data are recieved by FPGA via UART. When 

data are sent from Host PC, the code running on FPGA jumps to void uart_isr(void* 

context,alt_u32 id) interrupt function in the cpu1 and classes are saved in this UART 

interrupt function to the shared memory. Thus, 2 processors can access to saved data. 

Cpu1 can access to datas of 1, 2 and 3 classes and Cpu2 can access to data of 4, 5 

and 6 classes. Normalization process is applied to all classes in the void  

�ormalization(void) function in the cpu1. Initial weights must be assigned to start 

training for each processor. void Initial_Weights(void) function is used for this 

process. Initial weights for 1, 2 and 3 classes are generated in the cpu1 and initial 

weights for 4, 5 and 6 classes are generated in cpu2. For training of neural network, 

void Calculate_�et(void), void Weight_Changes_HO(void) and void 

Weight_Changes_IH(void) functions are run for each processor. These functions are 

repeated until error reach to the desired value. After training part is completed, 

testing part begins to run and testing data of all classes are sent from Host PC to 

FPGA via UART. Sent data are saved for testing in the void 

Create_TestDatabase(void) function in the cpu1. Normalization process is applied to 

test data of all classes in the void  �ormalization_Test(void) function. Owner of the 

images of all classes are identified by given test data of all classes to calculated 

weights in the processors. Test data are given to both of the networks trained in cpu1 

and cpu2. Each cpu produces its output individually. The distance of each outcome to 

the target values are calculated. Two distances are compared and the result of 

processor which has smaller distance is the result of multiprocessor system. Due to 

reducing error, epoch number is increased to 10000. These results are displayed in 

the void Display_TestResults(void). The source code of multiprocessor face 

receognition system is in the Appendix with the folder name of 

“6_3_2_2_Multiprocessor_Face_Recognition_System_C_Code”.  

 

     Using cross-validation, all processes in the flow diagram in the Figure 6.15 are 

repeated 20 times for the generalization of the results. The neural network 

recognition rate is evaluated by calculating the mean of these results. 
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     Time of all this processes, number of processor, epoch number, time of system, 

system error and recognition rate are given in the Table 6.2.  

Table 6.2 Results of multiprocessor system 

Number of 
Processor 

Epoch 
Number 

Time of System 
Training 

System Error 
(RMS Error) 

Recognition 
Rate 

2 CPU 10000 1hour 43 min. 45 sec. CPU1 - 0.020 
CPU2 - 0.021 

        93.9% 

 
 

6.4 General Overview of Face Recognition System Performance 

 

     In a previous MSc study completed by E.Dilcan and Gökhan Çetin (E. Dilcan & 

G. Çetin, 2010), a face recognition system using principle component analysis (PCA) 

and Euclidean Distance has been implemented on FPGA. The 10 face images of 5 

people have been taken for creating the database. %70 of database is used for 

training and %30 of database is used for testing. According to this study, recognition 

rate is 93.3%.   

 

     In this study, the previous study has been improved by implementing recognition 

task by artificial neural network. The obtained improved recognition rate is 95.3% 

using multilayer feed forward backpropagation network with one hidden layer of 5 

neurons.  

 

     Moreover, a multiprocessor system is designed to speed up the system. 

Multiprocessor system is 47.2% faster than single processor system as 

multiprocessor system compares to the single processor system. The final 

multiprocessor recognition rate is 93.9%. The recognition results of different 

approaches are summarized in the Table 6.3. 

 
Table 6.3 Results of different face recognition approaches 

Face Recognition Approach Recognition Rate 

PCA + Euclidean Distance 93.3% 

PCA + Neural Network + 1 CPU 95.3% 

PCA + Neural Network + 2 CPU 93.9% 
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     The time efficiency and recognition performances of single processor and 

multiprocessor systems are compared in the Table 6.4. In the multiprocessor system, 

epoch number is selected 10000, due to reducing error. The distance of each outcome 

to the target values are calculated for each processor. Two distance are compared and 

the result of processor which has smaller distance is the result of multiprocessor 

system. But rarely, wrong result is decided as a result of the comparison. Hence, 

recognition rate of multiprocessor system is less than recognition rate of single 

processor system, because of comparison error.  

 

Table 6.4 Results of single processor system and multiprocessor system 

Number of 
Processor 

Epoch 
Number 

Time of System 
Training 

System Error 
(RMS Error) 

Recognition 
Rate 

1 CPU 10000 3 hour 16 min. 10 sec. CPU1 - 0.020 95.3% 
2 CPU 

 
10000 1 hour 43 min. 45 sec. CPU1 - 0.020 

CPU2 - 0.021 
93.9% 

 
 

     To complete face recognition processes in less time, a multiprocessor system with 

two processors is designed. It is observed that multiprocessor system is 47.2% faster 

than single processor system. Time of system training increases with increasing 

epoch number. But system error do not change significantly. According to epoch 

number, time of single processor and multiprocessor systems are compared in the 

Table 6.5. 

 

Table 6.5 Time of single processor system and multiprocessor system 

Epoch Number Number of Processor Time of System Training 

 
2500 

                 1 CPU                                   49 min. 10 sec. 

                 2 CPU                                   25 min. 50 sec. 

 
5000 

                 1 CPU                              1 hour 36 min. 35 sec. 

                 2 CPU                                   50 min. 55 sec.   

 
10000 

                 1 CPU                              3 hour 16 min. 10 sec. 

                 2 CPU                              1 hour 43 min. 45 sec. 
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CHAPTER SEVE� 

CO�CLUSIO�S 

 

7.1 Summary of the Project 

 

     Biometrics is the method of recognizing a person based on a physiological or 

behavioral characteristics. Biometric technologies are becoming the foundation of an 

extensive array of highly secure identification and personal verification solutions. In 

this thesis, face recognition system was implemented. 

      

     The face recognition system acquires images from face database; the images were 

preprocessed to reduce size of images. Then PCA was applied as a feature extraction 

method and the neural network was trained with these features. In this study, 

multilayer perceptron network was used with one hidden network. The feed forward 

backpropagation algorithm was used to train neural network. In the recognition 

phase, the same preprocessing and feature extraction steps were repeated. Finally, the 

features were sent to the trained neural network to find the owner of the image.  

      

      In the first implementation, all face recognition processes were run on single 

processor system. The general performance of the system was calculated after 

generating 20 subsystems by using cross-validation technique. For this 

implementation, recognition rate of the face recognition system was 95.3%. To 

complete face recognition processes in less time, a multiprocessor system with two 

processors was designed. It was observed that multiprocessor system was 47.2% 

faster than single processor system. According to multiprocessor system, recognition 

rate of the face recognition system was 93.9%.   

 

7.2 Advantages – Disadvantages 

 

     Field Programmable Gate Array (FPGA) is offering design flexibility and high 

performance system integration. FPGA is providing cost and power reductions, while 

increasing performance and functionality. DE2-70 development kit is used in this 

82 
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thesis. DE2-70 is used for implementing face recognition system by using high level 

language. Face recognition program is written by C/C++ via Nios II IDE. Using 

FPGA development kit brings some advantages such as learning simulation and 

compilation of the projects on Quartus II, adding components to FPGA via SOPC 

Builder tool and learning parallel configuration of a system by designing 

multiprocessor system. 

      

     Since the neural network recognition is used in this project, the system is 

improved with the generalization property of the neural networks. Thus, the system 

has a better recognition performance. Also, because of the multiprocessor 

implementation, the system is trained faster.   

      

      Disadvantage of system hadware is the cost of the FPGA development board and 

the use of host computer. For the integration of the system into real life, the system 

should be fully implemented on FPGA chip. 

 

7.3 Troubleshooting 

 

     Face recognition system is designed by using one processor and two processors. 

System with more than two processors cannot be design on this development board 

because of hardware limitations. For both cpu1 and cpu2, if sdram is selected for 

Program memory, Read-only data memory, Read/write data memory, Heap memory, 

and Stack memory in the library property settings, the time consumption of the 

system cannot be reduce because of memory density. When sdram is selected for 

cpu1 and sdram1 is selected for cpu2, reduction is obtained. Therefore, owing to 

presence of 2 sdram on FPGA, face recognition system which contains maximum 

two processors is experimented. 

 

7.4 Cost Analysis 

 

      DE2–70 development kit is purchased with a cost of $400. The DE2–70 package 

includes DE2-70 board and other tools like USB cable for FPGA programming and 
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control, CD-ROMs containing Altera’s Quartus® II Web Edition and the Nios® II 

Embedded Design Suit Evaluation Edition software. 

 

7.5 Future Work 

 

      For future work, a portable face recognition system can be developed by adding 

camera for image capture. The preprocessing and feature extraction stages can be 

implemented on FPGA. The results of system can be displayed on screen via VGA 

out connector on FPGA. The number of processors for face recognition system can 

be increased and 4 or 8 processors can be experimented to increase speed of system. 
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APPE�DIX 

 

An “Appendix CD” is prepared which contains all MATLAB files, VHDL files 

and Nios II system designs that are used in this thesis. The folder names are 

dedicated to section numbers to reach source codes easily. Source code availability is 

mentioned in each section. As a remember, the content of “Appendix CD” is also 

given in the following with section name and corresponding folder name in the 

“Appendix CD”; 

 

Section 6.1.1 General Overview of Face Recognition System 

     6_1_1_Database_PCA_Windowing_Matlab      

 
Section 6.2.2 Software Design 

     6_2_2_Single_Processor_Face_Recognition_System_C_Code 

 

Section 6.2.2 Software Design 

     6_2_2_Cross_Validation_Matlab 

 

Section 6.3.2.1 Hierarchical Clustering 

     6_3_2_1_Hierarchical_Classification_Matlab 

 

Section 6.3.2.2 Multiprocessor System Software 

     6_3_2_2_Multiprocessor_Face_Recognition_System_C_Code 

 

  


