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EXPERIMENTAL STUDY OF SEDIMENT TRANSPORT AND 

NUMERICAL SOLUTION WITH FINITE VOLUME METHOD 

 
ABSTRACT 

 

     Because of simplicity and reasonable results that can be obtained by one 

dimensional solution, the use of these predictions are increasing. In this thesis, one 

dimensional solution for sediment transport equations by finite volume method is 

proposed. Depending to the sensitive of the solution, sediment transport equations 

solved by implicit and explicit schemes. In this research, both kinematic wave and 

the dynamic wave models are investigated. Moreover both the equilibrium and non-

equilibrium form of solutions are investigated. Finally the model is verified by the 

laboratory research. The results are generally simulated well.  

 

 

 

Keywords : Sediment transport, 1-D model, Finite volume method, Kinematic wave 

model, Dynamic wave model, Equilibrium, Non-equilibrium. 
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KATI MADDE TAŞNIMININ DENEYSEL ARAŞTIRILMASI VE SONLU 

HACİMLER YÖNTEMİYLE ÇÖZÜMÜ 

 
ÖZ 

 

Bir boyutlu yöntemler basitlik ve yeterli derecede doğru sonuçlar elde 

edebilmelerinden dolayı çok sayıda araştırmacı tarafından kullanılmaktadırlar. Bu tez 

kapsamında katı madde taşınımını sonlu hacimler yöntemiyle bir boyutlu olarak 

çözümü yapılmıştır. Çözümün hassasiyetine bağlı olarak katı madde taşınımının 

denklemleri explicit ve implicit yaklaşımlarla incelenmiştir. Bu araştırma, kinematik 

ve dinamik dalga yöntemlerı üzerinde yapılmıştır. Artı olarak çözümler dengede ve 

dengede olmayan durumlar için de incelenmiştir. Son olarak üretilmiş modeler 

labraturda yapılan deneysel çalışmaların sonuçları ile karşılaştırılmıştır. Modellerin 

sonuçu ile laburatuar sonuçları genelde büyük derecede uyum sağlamıştır.      

 

 

 

Anahtar sözcükler :Katı madde taşınımı, Bir boyutlu, Sonlu hacimler yöntemi, 

Kinematik dalga yöntemi, Dinamik dalga yöntemi, Dengede, Dengesiz. 
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CHAPTER ONE 

INTRODUCTION 

 

     Human beings are trying to understand and control the rules of rivers, back to 

ancient time. According to historical research, approximately six thousand years ago, 

Chinese constructed dams along the Yellow River. Nearly at the same time the 

structure of flood control and irrigation systems were began in Mesopotamia. 

Approximately ten centuries later Egyptians started to make same buildings on Nile 

River.  

 

A sediment particle is a material that formed by physical and chemical influence 

of nature phenomena like sun, water and etc. The size and shape of these particles are 

various. From large boulders to colloidal in size and from rounded to angular in 

shape. They also vary in specific gravity and mineral composition. These particles 

can be transported by difference ways like wind and water. When transport done by 

water, it is called fluvial or marine sediment transport. 

 

Motion of particles can be shown in three models. 1. Rolling and/or sliding 

2.Saltating or hopping 3.Suspended particle motions. All of them depend to the 

strength of flow. 

 

 

        Figure 1.1. Different modes of sediment transport. (Singh,2005) 
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     To achieve the most efficiency in reservoir design, it is very important to predict 

the sediment deposition, and to adjust the storage level and reservoir operation in 

accordance with the results of prediction. 

 

Because the influence of acceleration in longitude direction is stronger than 

latitude and depth of flow directions, for simplification, channel or river in one 

dimension can be assumed. 

 

     Because of some special features of one dimensional numerical methods like 

efficiency and simplicity, these models have been widely used in design and 

calculation works.  

 

     The aim of this thesis is develop one dimensional numerical method for both of 

equilibrium and non equilibrium situation by finite volume method in order to 

predict the sediment transport in channels and rivers.   
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CHAPTER TWO 

LITERATURE REVIEW 

 

     One of the hardest and complicated phenomena in the nature is to understand of 

river flow and motion of sediment particles. In order to overcome this problem, many 

of scientists investigate it in rivers or laboratory conditions. These are really helpful 

to understand the concept of subject and useful to present the experimental relations, 

but need to spend a lot of time and money and use advanced of equipments. Because 

of these reasons and for finding more suitable predictions, the mathematical methods 

have been developed. Depending to the conditions; one, two or three dimensional 

methods can be used. 

 

     One-dimensional (1-D) models can be used in short- and long-term simulations of 

flow and sediment transport processes in rivers, reservoirs, and estuaries. Two-

dimensional (2-D) and three-dimensional (3-D) models can be used to predict more 

complex morphodynamic processes that need more details like complex flow 

conditions in curved and braided channels and around river training works, piers of 

bridges, spur-dikes, and water intake structures. Scientists try to develop different 

kind of numerical methods that can solve the continuity and momentum equations of 

mass together. These equations are usually solved in three ways: 1. Kinematic wave 

model 2.Diffusion wave model and 3.Dynamic wave model. Most of researchers 

tried to solve the governing relations in equilibrium conditions. Moreover most of 

them apply the finite difference method in order to predict flow conditions and 

sediment transport phenomenon. 

     

     Fuladipanah et al. (2010) developed a new one dimensional fully coupled 

numerical model for calculating flow and suspended load. Their models are 

appropriate for sandy rivers in unsteady flow conditions. For discretization of 

equations the implicit finite difference method is used and the Reynolds Transport 

Theory is used to convert system analysis to control volume analysis. For calibration 

and validation of the model, they used measured flow and suspended load data from 

a reach between Ahwaz and Mollasani stations, Karoon River, Iran.  
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     Fang et al. (2008) used the Preissmann implicit four-point finite difference 

method for the discretization of the Saint-Venant equations and the discretized 

equations, solved  with using the pentadiagonal matrix  algorithm. For the calibration 

of the model, they used the data that measured from the Yantan Reservoir on the 

Hongshui River and the Sanmenxia Reservoir on the Yellow River. According to the 

report, comparison of the calculated water level and river bed deformation with field 

measurements showed predictions of flow, sediment transport, bed changes, and bed-

material sorting in various situations, with reasonable accuracy and reliability. 

 

     Bombar (2006) under her PhD thesis studied the experimental and theoretical 

sediment transport process. She analyzed the inception motion and the bed load 

transport rate under unsteady flow conditions. Bor (2008) in her Msc. thesis 

investigated the numerical modeling of unsteady and non-equilibrium sediment 

transport in rivers. 

 

      Tayfur and Singh (2006) developed a mathematical model, based on the 

kinematic wave theory that predict the evolution and movement of bed profiles in 

alluvial channels under the equilibrium conditions. In order to discretization the 

equations, the explicit finite difference method was used. To test the model, flume 

and field data was used. One year later, they improved the model, for non-

equilibrium conditions. 

 

     Paquier (1998) solved the Saint Venant equations by the finite difference method. 

They used the second-order Godunov-type explicit scheme. 

 

     de Vries (1965) used the explicit finite difference scheme to simulation water and 

bed level changes in one dimensional. 

     

     Many of investigators tried to simulate the flow and sediment movement with 

other numerical methods. Some of these researches are given below. 

 

     Rahuel et al. (1989), Cui et al. (1996), Kassem and Chaudhry (1998), Cao and 
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Egiashira (1999), Capart (2000), Cao et al. (2001), Capart and Young (2002), Di 

Cristo et al. (2002) and Kebapcıoğlu (2009) are the researchers that studied the 

unsteady flow models in recent years with numerical methods. Most of these 

researchers used the finite difference method for their simulations. Cunge et al. (1980) 

introduced the unsteady model equations derived from the Saint-Venant hypotheses 

to simulate river flood wave propagation.  

 

     Recently, the new numerical methods like the Transfer Matrix and Differential 

Quadrature Methods are applied in solution of St. Venant equations. Daneshfaraz  

and Kaya (2008) used the Transfer Matrix Method in solution of wave propagation in 

open channels. Kaya and Arısoy (2010) examined the long wave propagation in open 

channel flow by using DQM. In other research, in the continue of these studies Kaya 

et al. (2010) and Kaya et al. (2011) are investigated the flood propagation in rivers.  

 

Seo et al. (2009) studied the one dimensional advection and diffusion equations 

to analyze the suspended sediment transport and finite element method employed as 

a solving technique .They applied the Galerkin Method. 

 

     Wu and Wang (2008) solved the one-dimensional explicit finite-volume model 

for sediment transport with transient flows over movable beds. 

      

     Van Niekerk et al. (1992), developed a model to simulate erosion and deposition 

in a relatively straight, non-bifurcating alluvial channel. In this model, the individual 

size-density fractions of bed material were considered.  

 

     Cunge et al. (1980) developed one dimensional model, for prediction of alluvial 

hydraulics.  Chang (1982) presented a model for erodible channels. 

     

     Han (1980) provided a method for non-equilibrium transport of non-uniform 

suspended load. Wang et al. (2008), developed method for the one dimensional non-

equilibrium sediment transport equations  
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     Many unsteady models have also been developed and applied for estuaries and 

other geographical features.  

 

     Armanini and di Silvio (1988), and Bell and Sutherland (1983), provided 

unsteady models for movable bed channels. 

 

     Rahuel et al. (1989) developed and tested a new computational methodology for 

the fully coupled simulation of unsteady water and sediment movement in alluvial 

rivers. In their methodology, the non-uniform bed load transport was studied, and 

sorting and armoring effects were considered. In another research, Kaya and Gokmen 

(2011) examined the bed load transport equations by using Differential Quadrature 

Method. 

 

      Wu et al. (2004) and Wu (2004) used Rahuel‟s model in order to calculate the 

non-equilibrium transport of non-uniform total load under unsteady flow conditions 

in channels with hydraulic structures.  

 

     Aydöner (2010) investigated the bed forms during the sediment transport process 

under M.Sc.Thesis. Bombar et al. (2010) investigated the bed load transport 

experimentally and numerically. 

 

     Many of researchers like Lu (2001) and Leupi and Altinakar (2005) tried to 

simulate flow and sediment movement in two or three dimensions. Many of them 

developed software to predict flow and sediment transports under different situations.  

One dimensional models were generally designed for non-cohesive sediment 

transport with the capacities to simulate simple processes of cohesive sediment 

transport. These models include HEC-6 (U.S. Army Corps of Engineers, 1993), 

GSTARS2.1, and GSTARS3 (Yang and Simoes, 2002) and GSTAR-1D (Yang et al., 

2005). EFDC1D (Hamrick 2001) is a 1D sediment transport model that includes 

settling, deposition and resuspension of multiple size classes of sediments.   
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CHAPTER THREE 

SEDIMENT PARTICLES IN FLOW 

 

3.1 Properties of Water and Sediment Particles 

 

3.1.1 Water Density 

 

     Density of water f  can be defined as the ratio of mass of water per unit volume. 

In the international unit (SI) system it is 1,000 3.kg m  at 4oC .  

f

m

V
                                                                                                                    (3.1) 

 

where, m is mass (M) and V is volume ( 3L ) 

 

     Various relationships between water density and temperature could be found in 

Table 3.1. 

 

Table 3.1Relation between density and viscosity of water and temperature (Wu,2007) 

Temperature 

(C) 

Density (
3.kg m

) Dynamic viscosity 

(
2. .N s m

) 

Kinematic viscosity 

(
2 1.m s ) 

0 1000 1.79
310  1.79

-610  

5 1000 1.51
310  1.51

-610  

10 1000 1.31
310  1.31

-610  

15 999 1.14
310  1.14

-610  

20 998 1.00
310  1.00

-610  

25 997 8.91
410  8.94

-710  

30 996 7.79
410  8.00

-710  

35 994 7.20
410  7.25

-710  

40 992 6.53
410  6.58

-710  
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3.1.2 Specific Weight of Water 

 

     The specific weight of water f  defined as the ratio of weight of water per unit 

volume, often in 3.N m . 

 

     The relationship between specific weight and water density is 

.f f g                                                                                                            (3.2) 

 

where, g is the gravitational acceleration ( 2.LT  ) and equals about 9.81 m· 2s , f  is 

specific weight of water ( 2 2. .M L T  ), f  is density of water ( 3.M L ) 

 

3.1.3 Water Viscosity  

 

     The dynamic viscosity of water,   is defined as the constant of ratio of the shear 

stress, τ , to the deformation, du/dy , as follows: 

.
du

dy
                                                                                                           (3.3) 

 

where,  , is the dynamic viscosity ( 1 1. .M L T  ),
du

dy
is the gradient of velocity ( 1T  ), 

and τ is the shear stress ( 1 2. .M L T  ) 

 

     The kinematical viscosity ( 2 1.L T  ) ν, is the ratio of the dynamic viscosity to the 

density: 

     





                                                                                                                  (3.4) 

 

     In common temperatures water viscosity depends on molecular interactions. By 

increasing temperatures, cohesion decreases and on water viscosity decreases (Table 

3.1). Also the kinematical viscosity can be calculated by (Wu, 2007) 

     2 3 6 2 1(1.785 0.0584 0.00116 0.0000102 ) 10 ( . )v T T T m s                  .        (3.5) 
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where T  is the temperature in degrees of Celsius. 

 

     For a fluid-sediment mixture the kinematical viscosity coefficient can be 

expressed as 

     m
m

m





                                                                                                              (3.6) 

 

where m  is the dynamic viscosity coefficient in fluid-sediment mixture( 1 1. .M L T  ), 

m  is the density of fluid-sediment mixture ( (1 ) .f sC C    ) ( 3.M L ), C is the 

concentration of sediment ( /( )s s fV V V ), and sV  and fV  are the volume of sediment and 

water. 

 

3.1.4 Sediment Density 

 

     Sediment density s  is defined as proportion of the mass of sediment per unit 

volume. ( 3.M L ). The density of a mixture of sediment is near to that of quartz. The 

density of quartz particles is about 2,650 3.kg m  so it can be assumed this value as a 

sediment density for natural rivers. Density of sediment depends on the material of 

sediment but it is not influenced by change of temperature.  

 

3.1.5 Sediment Specific Weight  

 

     The specific weight of sediment s  is defined by the weight of sediment per unit 

volume, ( 3.N m ). It is related to the sediment density by: 

     .s s g                                                                                                              (3.7) 

 

     where, s  is specific weight of sediment particles ( 2 2. .M L T  ), s  is density of 

sediment particles ( 3.M L ) 

 

     The specific weight of submerged sediment particle can be defined by 
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Archimedes principle. According to this rule, the specific weight of submerged 

sediment is equal to difference of the specific weights of sediment and water s f   . 

 

3.1.6 Specific Gravity of Sediment Particles 

 

     The proportion of specific weight of sediment to specific weight of water at a 

standard reference temperature that is generally equal to 4oC  is called specific 

gravity of sediment. The specific gravity of quartz particles is: 

      2.65s s

f f

G
 

 
                                                                                            (3.8) 

 

3.1.7 Size of Sediment Particles 

 

     Generally the word of sediment is used for Gravel, Sand, Silt or Clay. Different 

ways are available to measure the size of sediment particles. Measurements with 

rulers, optical methods, photographic methods or sieving are some of them. 

 

     Sediment particle size may be represented by nominal diameter, sieve diameter, 

and fall diameter. The nominal diameter, d, is given by: 

3
6 sV

d


                                                                                                             (3.9) 

 

     where, d is the nominal diameter (mm), sV  is the volume of the sediment particle. 

 

     The sieve diameter defined as the length of opening parts of sieve which just 

particles with smaller length can pass. For naturally sediment particles that in the 

range between 0.2 to 20 mm, the sieve diameter can be consider as 0.9 times of the 

nominal diameter on the average. 

 

     The standard fall diameter is the diameter of a sphere that has a specific gravity of 

2.65 and has the same terminal settling velocity as the given particle in quiescent, 

distilled water at a temperature of 24oC  (Wu, 2007). 



11 

 

 

     The classification of sediment particles that generally used in river engineering is 

given in Table 3.2. 

 

Table3.2 Sediment grad scale (Wu,2007) 

Class Size range(mm) Class Size range(mm) 

Very Large boulders 4.000-2.000 Coarse sand 1-0.5 

Large boulders 2.000-1.000 Medium sand 0.5-0.25 

Medium boulders 1.000-5.00 Fine sand 0.25-0.125 

Small boulders 500-250 Very fine sand 0.125-0.062 

Large cobbles 250-130 Coarse sit 0.062-0.031 

Small cobbles 130-64 Medium sit 0.031-0.016 

Very coarse gravel 64-32 Fine sit 0.016-0.008 

Coarse gravel 32-16 Very fine sit 0.008-0.004 

Medium gravel 16-8 Coarse clay 0.004-0.002 

Fine gravel 8-4 Medium clay 0.002-0.001 

Very fine gravel 4-2 Fine clay 0.001-0.0005 

Very coarse sand 2-1 Very fine clay 0.0005-0.00024 

 

3.1.8 Shape 

 

     Generally Corey shape factor is used for comparing between the shape of 

sediment particles. This factor can be expressed as: 

     
.

c
SF

a b
                                                                                                           (3.10) 

 

where, a is the length along longest axis perpendicular to other two axes, b is the 

length along intermediate axis perpendicular to other two axes, c is the length along 

short axis perpendicular to other two axes.  

 

    This equation can not take into account the distribution of the surface area and the 

volume of the particle. For example, the shape factor of a sphere that has a same 

length for diameter with cube length, is equal ( SF =1). To overcome this 

shortcoming another shape factor given as: 



12 

 

 

     
*

s

n

d
SF SF

d
                                                                                                      (3.11) 

 

where *SF  is the shape factor, 
sd  is the diameter of a shape having the same surface 

area as that of the particle, nd  is the diameter of a shape having the same volume as 

that of the particle. 

 

3.2 Settling of Sediment Particles 

 

3.2.1 General Considerations 

 

     Settling or fall velocity is a mean velocity on that refers to fall down velocity of 

sediment particles in motionless water. It is depends to density, shape and volume of 

the particle and the viscosity and density of the fluid. A sediment particle can be 

affected by gravity, buoyant force and drag force throughout settling process. Its 

submerged weight that could be defined as difference between the gravity and 

buoyant forces, is expressed as: 

     3

1( ). . .s sW g a d                                                                                           (3.12) 

 

where d is the size of sediment particle, 3

1a d  is equal to the volume of the sediment 

particle, 1a  is the value of π/6 for a spherical particle. Because of considering low 

concentration (a single particle) it must be attention that ρ is actually given as the 

pure water density f . 

 

     The drag force is the result of the tangential shear stress exerted by the fluid (skin 

drag) and the pressure difference (form drag) on the particle, (Wu, 2007). 

It can be given in the general form as:  

     
2

2

2. . . .
2

s
d dF C a d


                                                                                           (3.13) 

 

where, dC  is the Drag coefficient, s  is the settling velocity, 2

2a d  is the projected 
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area of the particle on the plane normal to the direction of settling, 
2a  is the value of 

4


 for a spherical particle. 

 

     In the terminal level of settling drag force should be equal to the submerged 

weight. So,  

     
1

1 2

2

2
( )s

s

d

a
gd

a C

 





                                                                                     (3.14)  

 

3.2.2 Settling Velocity of Sediment Particles 

 

     Settling velocity for sediment particles with irregular shapes and rough surfaces 

are different in comparison with spherical particles. Many of researchers studied in 

this field and tried to developed experimental formula whose some are summarized. 

 

     3.2.2.1 Rouse Approch (1938) 

 

     Reynolds number really influences in drage coefficent of a sphere particles. For 

particles with Reynolds number greater then 2, the particle fall velocity is determined 

experimentally. Rouse (1938) suggested that for most natural sands, that shape factor 

is 0.7 and for  ds=0.2mm, the value of 0.024 m/s can be used. 

 

     3.2.2.2 Rubey (1933)     

 

     Rubey (1933), suggested the following relation for the settling velocity of natural 

sediment particles: 

     ( 1). .s
s F g d





                                                                                           (3.15) 

 

where F = 0.79 for particles larger than 1 mm settling in water with temperatures 

between 10 and 25oC . For smaller grain sizes, F is determined by: 
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1 12 2

2 2

3 3

2 36 36
[ ] [ ]
3

. ( 1) . ( 1)s s

v v
F

g d g d
 

 

  

 

                                                         (3.16) 

 

     3.2.2.3 Zhang (1961) 

 

     Zhang (1961), considered sediment particles drag force in the transition region 

between laminar and turbulent as: 

     2 2

1 2. . . . . .d s sF C v d C d                                                                                 (3.17) 

 

where 1C  and 2C  are coefficients.  

 

     By using many laboratory data, Zhang suggested relations for the settling velocity 

of naturally worn sediment particles: 

     2(13.95 ) 1.09( 1). . 13.95s
s

v v
g d

d d





                                                      (3.18) 

 

     The Zhang formula can be used in a wide range of sediment sizes from laminar to 

turbulent settling regions. 

 

     3.2.2.4 Van Rijn (1984b) 

 

     Van Rijn (1984b) suggested the following set of equations for settling velocity by 

using Stokes law equation. For sediment particles smaller than 0.1 mm 

      
21

18

s
s

d
g

v

 





                                                                                         (3.19) 

 

     Using the Zanke (1977) formula for particles from 0.1 to 1 mm: 

     

1/ 2
3

2
10 1 0.01( 1) 1s

s

v gd

d v






   
     

  

                                                           (3.20) 
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     and for particles larger that 1 mm: 

     

1/ 2

1.1 ( 1)s
s gd






 
  

 
                                                                                      (3.21) 

 

     The general form of these equations can be expressed as: 

     
1 1

( )

n

n n
d

e

M
C N

R

 
  
 

                                                                                          (3.22) 

 

     In Table 3.3 the list of values that are given by different investigators for these 

coefficients for naturally worn sediment particles, could be found. 

 

Table3.3 Values of M, N and n (Wu, 2007) 

Author M N N 

Rubey(1933) 

Zhang(1961) 

Zanke(1977) 

Raudkivi(1990) 

Julien(1995) 

Cheng(1997) 

24 

34 

24 

32 

24 

32 

2.1 

1.2 

1.1 

1.2 

1.5 

1 

1 

1 

1 

1 

1 

1.5 

 

     In order to determine the settling velocity of naturally worn sediment particles 

Cheng (1997) suggested the following relation: 

     2 1.5

*( 25 1.2 5)s

v
D

d
                                                                                    (3.23) 

 

where *D  can be calculated as 

    2 1/3

* [( / 1) / ]sD d g v                                                                                    (3.24) 

 

     In above equations that are used for determining settling velocity of sediment 

particles, the Corey shape factor is usually about 0.7. Many of researchers like 

Krumbein (1942), Corey (1949), had experimentally studied the influence of shape 

of particles on the settling velocity. According to these studies, the Subcommittee on 
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Sedimentation of the U.S. Interagency Committee on Water Resources (1957) 

proposed a series of curves. By this curves, with paying attention to particle size, 

Corey shape factor, and water temperature, presented the settling velocity of 

sediment particles can be determined (Figure 3.1). 

 

    Figure 3.1 Relation of fall velocity with particle size, shape factor, and temperature (U.S. 

Interagency Committee, 1957). 

 

     Because of interpolations that must be used in order to found the solution, this 

graphical relation is not practical. With considering the influence of size, density, 

shape factor, and roundness factor of sediment particles, Dietrich (1982) suggested 

an empirical formula that can determine the settling velocity of sediment from 

laminar to turbulent settling regions. Because of a need to use the roundness factor 

that is rarely measured these relations are inconvenient. 

 

     Jimenez and Madsen (2003) tried to simplify the use of this relation, but it is still 

hard to use it. Wu and Wang (2006),  with drived field data that measured by  

Krumbein (1942), Corey (1949), Wilde (1952), Schulz et al. (1954), and 

Romanovskii (1972), calibrated the coefficients „M’, „N’, and „nin Equation (3.22) as:  

    
0.65

53.5 PS
M e


          

2.5
5.65 PS

N e


             0.7 0.9 Pn S                              (3.25) 
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where SP is the Corey shape factor that can be defined by
P

c
S

ab
 . 

     

      The comparison between measured drag coefficients and those calculated using 

equation (3.22) with coefficients determined by Equation (3.25) can be found in 

Figure 3.2. Because in Figure 3.2, the data is in reach of Re > 3, for range of Re < 3 

they used the data sets of Zegzhda, Arkhangel‟skii, and Sarkisyan compiled by 

Cheng (1997). In three sets of study naturally worn sediment particles were used so 

their Corey shape factors can be assumed as 0.7. The relationship between „ dC and 

„ eR can be seen in Figure 3.3. 

 

 

    Figure 3.2 Drag coefficient as function of Reynolds number and particle shape 

(Wu and Wang.2006). 
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              Figure 3.3 Drag coefficient as function of Reynolds number for naturally worn sediment  

particles ( 0.7pS   ) (Wu and Wang, 2006). 

 

     Substituting Equation (3.22) into Equation (3.14), the general equation for settling 

velocity can be expressed as: (Wu and Wang, 2006) 

 

     
1

3

*2

1 4 1
[ ( ) ]

4 3 2

nv n
s

d

M N
D

M M
                                                                          (3.26) 

 

     The size of sediment (d) in Equation (3.26) should be the nominal diameter (m), 

and value of drag coefficient dC  can be found in Figure 3.2 

 

3.3 Inception Movement 

 

3.3.1 Incipient Motion of Sediment Particles 

 

     The effecting forces on the non-cohesive sediment particles are drag forces ( DF ), 

lift forces ( LF ) and the submerged weight sW  (Figure 3.4). 
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                      Figure 3.4 Forces on a sediment particle on bed.(Wu, 2007). 

 

     With increasing the strength of water, sediment particles on the bed load begin to 

move. This phenomenon is called as incipient motion. The inception of sediment 

particles can be classified into three parts: rolling, sliding, and saltating. 

 

     The balance of force for a sediment particle in rolling case at incipient motion can 

be expressed as: 

     -k1 dWs + k2 dFD + k3dFL =0                                                                                (3.27) 

 

where 1k d , 2k d  , and 3k d  are the distances from the lines of action of forces sW , DF , 

and LF to the point of pivot. 

 

     and the influence of drag and lift forces on the sediment particles can be 

determined by     

     
2

2

2
2

b
D D

u
F C a d                                                                                                (3.28) 

 

     
2

2

3
2

b
L L

u
F C a d                                                                                                 (3.29) 

 

where bu  is the effect of velocity of bottom on the sediment particles. 2

2a d  and 2

3a d  
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are the projected areas of the particle on the planes normal to the flow direction and 

the vertical direction, respectively and DC  and LC  are the drag and lift coefficients, 

related to particle shape, position on the bed. 

 

     Substitute the Equations (3.12), (3.28), and (3.29), into Equation (3.27), critical 

bottom velocity for sediment incipient motion can be written as: 

     1/ 21 1

2 2 3 3

2
( )s

bc

D L

k a
u gd

k a C k a C

 




 


                                                              (3.30) 

 

3.3.2 Incipient Motion of a Group of Sediment Particles 

 

     There are two approaches in order to estimate the incipient motion of group of 

sediment particles: stochastic and deterministic approaches. 

 

     The stochastic approach considers the sediment incipient motion as a random 

phenomenon due to the stochastic properties of turbulent flow and sediment transport. 

This approach usually does not adopt a threshold value of sediment transport rate as 

the criterion at which the sediment particles start moving. The pioneer using the 

stochastic approach for sediment transport is Einstein (1942, 1950), (Wu, 2007). 

 

     The deterministic approach can introduce a certain value for inception motion of 

sediment particles. In this approach, the assumption that the value of bed-load 

transport rate is zero, is meaningless. With various studies, investigators found that 

even when the power of flow is much weaker than the critical condition that 

proposed by Shields (1936), there are still some moving on sediment particles. 

Kramer (1935) defined three types for movement of bed load material: 1.weak 

movement that only a few part of fine materials can move on the bottom. 2. Medium 

movement that particles with mean diameter start the motion and 3. General 

movement that all the mixture is in movement. By the way, this classification is only 

qualitative and difficult to use. For this reason, in order to determine the incipient 

motion of sediment particles, several low levels of bed load transport rate were 

defined. For example Waterways Experiment Station, U.S. Army Corps of Engineers, 
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suggested
3 1 1

* 14 minbq cm m 
, and * /( ) 0.000317b s sq dw 

 by Han and He (1984). 

Yalin (1972), also suggested a quantitative criterion related to the number of particles 

moving on the bed. 

 

     Because of interactions among different size of classes in a mixture of non-

uniform sediment particles the threshold criterion for incipient motion is more 

complex. 

 

     Parker et al. (1982), proposed the following relations in order to determine the 

incipient motion of non-uniform sediment particles on gravel beds:  

     
*

*

0.5

( )
1

0.002
( )

s
b k

k

bk f f

q

W
ghS hS








                                                                           (3.31) 

 

where *

kW  is a dimensionless bed-load transport rate, *b kq  is the volumetric transport 

rate per unit width for the k
th

 size class of bed load, bk  is the fraction by weight of 

the k th size class in bed material, h is the flow depth, and fS  is the energy slope. 

 

3.3.3 Incipient Movement for Uniform Sediment Particles 

 

     Power-law distribution of velocity is 

     1/1
( ) mm z

u U
m h


                                                                                               (3.32) 

 

     Using Equation (3.32) and Equation (3.30), the critical average velocity for 

sediment motion can be written as:    

     1/ 2 1/( ) ( ) ms
c

h
U k gd

d

 




                                                                                 (3.33) 

 

where cU  is the averaged of critical velocity over the cross-section ( 1.m s ), and K is 

the experimental coefficient . For example, Shamov (1959), used m = 6 and K = 1.14, 
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while Zhang (1961), used m = 7 and K = 1.34. Paying attention to similarity of 

Equations (3.14), and (3.33) the following formula for the critical mean velocity can 

be obtained. 

     
* *

*

0.66 2.5 /[log( / ) 0.06]      1.2 / 70

2.05                                                / 70

c

s

U d v U d vU

U d v

   
 


                             (3.34) 

 

where *U  is the bed shear velocity. 

 

     In order to write critical shear stress,  logarithmic distribution of velocity can be 

used 

    *5.75 log(30.2 )s

s

zx
u U

k
                                                                                      (3.35) 

 

     The critical shear stress is 

     1 1

2

2 2 3 3

2 1

( ) [5.75log(30.2 / ]

c

s D L d s s

k a

d k a C k a C z x k



 


 
                                       (3.36) 

 

where c  is the critical shear stress for incipient movement of sediment particles, dz  

is the height at which the bottom velocity acts on the particle, sk  is the height of bed 

roughness, and sx  is a correction factor that depends to the Reynolds number 

roughness * /sk U v  in general situations and a value of 1 can be used.  

 

     Parameters of DC , LC , and sx in Equation (3.36), are functions of flow conditions. 

So Equation (3.36) can be rewritten as 

     *( / )
( )

c

s

f U d v
d



 



                                                                                       (3.37) 

 

     This equation is suggested by Shields (1936). 
( )

c

s d



 
 is a dimensionless 

parameter that is called as the critical Shields number and the symbol of this 

parameter is c . Many of investigators tried to modify Shields curve using wide 
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range of data. One of these modifications done by Chien and Wan, can be found in 

Figure 3.5. 

 

 

                  Figure 3.5 Shields curve modified by Chien and Wan (1983). (Wu, 2009). 

 

     Note that in Figure 3.5, the relation between c  and *eR  is not explicit, therefore 

in order to obtain the critical shear stress for a given sediment size, iteration must be 

done. Instead of Figure 3.5 in order to obtain relation between c  and the non-

dimensional particle size  
1/3

2

* / 1 /sD d g v     , Equation  (3.38), that 

suggested by (Wu and Wang, 1999) can be used. 

     

0.44

* *

0.55

* *

0.27

* *

0.19

* *

0.30

* *

*

0.126             1.5

0.131             1.5 10

0.685             10 20

( ) 0.0173            20 40

0.0115            40 150

0.052                     150

c

s

D D

D D

D D

d D D

D D

D



 









 

 


  

 



 
 
 
 
 
 
 
 
 
  

                                               (3.38) 

 

where c  and d are in 2.N m  and m, respectively. 

 

3.3.4 Incipient Movement for Non- uniform Sediment Particles 

 

     Various size of non-uniform sediment particles in the bed load influence each 

other continuously. Generally coarse particles are more effected with water flow 
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instead of fine particles. Fine particles mostly hide between coarse ones. For this 

reason, considering the influence of these phenomena on non-uniform sediment 

transport is really important. Most of the researchers tried to suggest the correction 

factors for existing formulas in uniform sediment incipient motion and sediment 

transports.  

 

     3.3.4.1 Qin Equation (1980) 

 

     In order to determine the incipient motion of non-uniform sediment particles, Qin 

(1980) introduced the following equation. 

     1/ 6

90

0.786( ) (1 2.5 )s m
ck k

k

dh
U gd m

d d

 




                                                     (3.39) 

 

where ckU  is the critical average velocity for the incipient movement of the size of 

sediment particles in class k  ( 1.m s ), kd  is the diameter for the sediment particles in 

size class k(m), md  is the arithmetic mean diameter of bed material (m), and m refers 

to the compactness for the bed material in non-uniform condition: 

     
0.6                                                    2

0.76059 0.68014 /( +2.2353)     2

d

d d

m


 

 
  

  
                                            (3.40) 

where 60

10

d

d

d
  .  

 

     In order to determine the incipient motion of non-uniform sediment particles, 

many researchers like Egiazaroff (1965), Ashida and Michiue (1971), Hayashi et al. 

(1980), and Parker et al.(1982) proposed correction factors as functions of the non-

dimensional sediment size k

m

d

d
or 

50

kd

d
.  
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      3.3.4.2 Methods of Egiazaroff (1965) 

 

     The Egiazaroff formula can be written as  

 

2

)19log(

19log
























m

kc

ck

d

d
                                                                                       (3.41) 

 

where 
[( ) ]

ck
ck

s kd



 
 


, with ck  refers to the critical shear stress for the incipient 

movement of sediment particle kd  in bed material; and c is the critical Shields 

number that corresponding to dm. Egiazaroff suggested 0.06for the value of c  , but 

Misri et al. (1984) modified this value and suggested it in the range of 0.023–0.0303 

(Wu, 2007). 

 

       3.3.4.3 Ashida and Michiue (1971) 

 

       Ashida and Michiue (1971) suggested the modified form of Egiazaroff formula 

as: 

     

2[ 19 / log(19 / )]              / 0.4

/                                          / 0.4

k m k mck

m k k m

hog d d d d

d d d d

   
  

   
                                     (3.42) 

 

      3.3.4.4 Hayashi et al. (1980) 

 

      Hayashi et al. (1980) suggested a similar relation as: 

     

2[ 8 / log(8 / )]         / 1

/                                 / 1

k m k mck

m k k m

hog d d d d

d d d d
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 3.3.4.5 Parker et al. (1982) 

 

      Parker et al. (1982) suggested the following: 

50

50

( ) mk
ck c

d

d

                                                                                                     (3.44) 

 

where 50c  is the critical Shields number by consider the medium size of sediment 

particles 
50d , and m is an empirical coefficient in the range of 0.5–1.0. 

 

     3.3.4.6 Method of Wu et al (2000b) 

 

     The influence of drag and lift forces on sediment particles depends on three 

situations on the bed. Its position can be defined by apparent height which is defined 

between difference of top level of this sediment particle and upstream ones. This 

difference can be shown with e . If e  is positive it means that particle is in 

exposed state. If it was negative it means that particle is in hidden station. In nature, 

distribution of sediment particles on bed is random. So e  is a random 

variable .With assumption that e  has a uniform probability distribution function can 

be written as: 

     

1
        

                   

j e k

k j

d d
d df

o otherwise


   

 



                                                                     (3.45) 

 

where jd  is the diameter of the particle in upstream hand and kd  is the diameter of 

sediment particle. Illustration of mixture of sediment particles on the bed can be 

found in Figure (3.6). 
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                               Figure 3.6 View of distribution of sediment particles. (Wu, 2007). 

 

     The probabilities of particles kd  that are hidden with upstream particles jd  is 

     ,

j

hk j bj

k j

d
P P

d d



                                                                                               (3.46) 

 

     The probabilities of particles kd  that are exposed with upstream particle jd  is 

     ,
k

ek j bj

k j

d
P P

d d



                                                                                               (3.47) 

 

where bjP  is the probability of sediment particles jd staying in front of particles kd . 

 

     In order to find total hidden and exposed probabilities, hkP  and ekP , of particles 

kd ,above equations over all size of classes must be accumulated. 
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N
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d
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1

N
k
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d
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d d
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

                                                                                             (3.49) 

 

where N is the total number of particle size classes in the non-uniform sediment 

mixture. 
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     According to probability rules the sum of 
hkP  and 

ekP  must be equal to one. Whit 

uniform distribution of sediment particles, the hidden and exposed probabilities are 

equal, so 0.5hk ekP P  . But in a non-uniform sediment mixture the governing 

station for coarse particles is hk ekP P  and for fine particles is hk ekP P . 

 

     By using the hidden and exposed probabilities, Wu et al. (2000) introduced hiding 

and exposure correction factor as:  

     ( ) mek
k

hk

P

P
                                                                                                         (3.50) 

 

where m is an empirical parameter.  

 

     The criterion for sediment incipient motion proposed by Shields (1936) is then 

modified as: 

     ( )
( )

mck ek
c

s k hk

P

d P



 

 


                                                                                     (3.51) 

 

where 0.03c   and 0.6m  , which are found by laboratory and field measurements. 

 

3.3.5 Incipient Motion of Sediment Particles on Slopes 

 

     On a sloped bed or bank the incipient motion of a sediment particle is influenced 

by the component of gravity along the slope. 

 

     Brooks (1963) suggested a method to determine c : 

     
2 2

2

2

sin sin sin cos
cos

tan tan

c s s

c r r

    


  
                                                       (3.52) 

 

where   is the angel of slope with positive values for down slope beds, s  is the 

angle between the flow direction and the horizontal line, and r  is the repose angle. 
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     In order to determine the critical shear stress c  for the incipient motion of 

sediment on a sloped bed, Van Rijn (1989) also proposed this equation: 

     1 2c ck k                                                                                                           (3.53) 

 

where 1k  is the correction factor for the streamwise-sloped bed (in the flow 

direction), determined by 1 sin( ) / sinr L rk     ; and 2k  is the correction factor for 

the sideward-sloped bed (normal to the flow direction), determined 

by 2 2

2 cos 1 tan / tanT T rk     . Here, L  and T  are the slope angles in the flow 

and sideward directions, respectively. 

 

3.4 Roughness of Movable Bed  

 

3.4.1 Bed forms 

 

     Bed forms in alluvial rivers are closely related to flow conditions. As the flow 

strength increases, a stationary flat bed may evolve to sand ripples, sand dunes, 

moving plane bed, anti-dunes, and chutes/pools (Richardson and Simons, 1967; 

Zhang et al., 1989). Various form of bed changes can be found in figure 3.7 

 

    Figure 3.7 Bed forms in alluvial rivers (Zhang et al., 1989).  
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      The stationary flat bed, ripples, and dunes are mostly seen in lower flow, but 

moving plane bed, anti-dunes, and chutes/pools are usually happened in upper flow. 

Generally Anti-dunes and chutes/pools can happen in laboratory flumes but it is hard 

to face with it in nature.  

 

3.4.2 Division of Grain and Form Resistances 

 

     The shear stress can be divided into two parts: 1 the grain (skin or frictional) shear 

stress '

b ,2. the bed forms (such as sand ripples and dunes) shear stress ''

b : 

     ' ''

b b b                                                                                                          (3.54) 

 

The bed shear stress is generally determined by 

     b b fR S                                                                                                         (3.55) 

 

where bR  is the hydraulic radius of the channel bed. 

 

     Einstein (1942) proposed to divide shear stresses into two parts: grain roughness 

and form roughness, depending on hydraulic radius 

    ' '

b b fR S                  '' ''

b b fR S                                                                          (3.56) 

 

     Considering Manning equations and in a equal velocity  

     

2 1

3 2
b fR S

U
n

      

'2 1

3 2

'

b fR S
U

n
            

''2 1

3 2

''

b fR S
U

n
                                                     (3.57) 

 

     this relation between n, 'n  and ''n  can be found. 

    
3'

' 2( )b b

n
R R

n
  and 

3''
'' 2( )b b

n
R R

n
                                                                          (3.58) 

 

where U  is the average flow velocity, n is the Manning roughness coefficient of 

channel bed flow velocity, n is the Manning roughness coefficient of channel bed, 
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and 'n  and ''n  are the Manning coefficients of grain and form roughness. 

 

     Accordingly, the following relations for the grain and shear stresses can be 

written. 

     
'

' 3/ 2( )b b

n

n
          

''
'' 3/ 2( )b b

n

n
                                                                          (3.59) 

 

     The grain roughness coefficient can be determined by different methods. Some of 

these relations are: 

     

1

6
'

21.5

d
n         (Strickler, 1923)                                                                          (3.60) 

 

    

1

6
' 90

26

d
n          (Meyer-Peter and Mueller, 1948)                                               (3.61) 

 

     

1

6
' 65

24

d
n           20 (Li and Liu, 1963; Wu and Wang, 1999)                             (3.62) 

 

     where the unit of sediment size is m and unit of 'n  is 
0.33

s

m
. 

     Substituting Equation (3.59) into Equation (3.50): 

     
3 3 3

' ''2 2 2( ) ( )n n n                                                                                                 (3.63) 

 

     In another approach, Engelund (1966) proposed that bed shear stress according to 

the energy slope can be divided and calculate the grain and form shear stresses can 

be calculated as: 

     
' '

b b fR S                 
'' ''

b b fR S                                                                          (3.64) 

 

     where 
'

fS  is the part of the energy slope for the grain roughness and
''

fS  is the part 

of the energy slope for the form roughness. 



32 

 

 

     According to Manning‟s equation:  

     

2/3 1/ 2

b fR S
U

n
  ,

'2/3 (1/ 2)

'

b fR S
U

n
 ,  

''2/3 (1/ 2)

''

b fR S
U

n
                                                  (3.65) 

 

Finally, the relation between fS , '

fS  and ''

fS  can be written as: 

     
'

' 2( )f f

n
S S

n
         , 

''
'' 2( )f f

n
S S

n
                                                                       (3.66) 

      

     Substitute Equation (3.66) into Equation (3.64) and with many manipulation and 

using Equations (3.55) and (3.54) the following equation can be obtained as: 

     2 ' 2 '' 2( ) ( )n n n                                                                                                  (3.67) 

 

     With paying attention can be found that Einstein‟s and Engelund‟s methods given 

the same relation for the Chezy coefficient: 

     
2 ' 2 '' 2

1 1 1

( ) ( )h h hC C C
                                                                                            (3.68) 

 

where hC  is the total Chezy coefficient; and '

hC  and 
''

hC  are the fractional Chezy 

coefficients for the grain and form roughness. 

 

3.4.3 Relations of Movable Bed Roughness 

 

     In order to determine roughness coefficient of a movable bed level many of 

scientist suggested relations to determine the grain and form resistances separately, 

and some of them computed total roughness coefficient in a movable bed directly. 

Van Rijn (1984c) and Karim (1995) suggested empirical equation to predict the 

height of bed forms and then the roughness coefficient on a movable bed. 

 

 

 

 



33 

 

 

3.4.3.1 Van Rijn Relation (1984) 

 

     Van Rijn (1984), suggested the following relations for the sand-dune height:  

     0.3 0.5500.11( ) (1 )(25 )Td
e T

h h


                                                                       (3.69) 

 

where T is the non-dimensional excess bed shear stress or the transport stage number, 

defined as  

     
'

2*

*

( ) 1
cr

U
T

U
                                                                                                     (3.70) 

 

'

*U  is the effective bed shear velocity related to grain roughness, determined by 

     

0.5

2

* '

g

h

U
U

C
                                                                                                           (3.71) 

 

where 

     )
4

log(18
90

'

d

h
Ch                                                                                                  (3.72) 

 

      *crU  is the critical bed shear velocity for incipient movement of sediment 

particles, can be found in Shields diagram; and 50d  and 90d  are the characteristic 

diameters of sediment particles in bed level. 

 

The relation above is expressed in curves of Figure (3.8) too. 
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                    Figure 3.8 Relation of sand-dune height (van Rijn, 1984c). 

     

 In van Rijn‟s method, in order to calculate the length of sand dunes 7.3d h   can be 

use, and the grain roughness can be found by 903d  ,moreover the form roughness can 

be found by   25 /
1.1 1 de

 
  . So the effective bed roughness can be determined by  

 )1(1.13
25

90
dedks




                                                                             (3.73) 

 

     Therefore, the Chezy coefficient can be calculated by 

     
12

18log( )b
h

s

R
C

k
                                                                                               (3.74) 

 

where bR can be computed using Vanoni and Brooks(1957) method. 

 

3.4.3.2 Karim Equation (1995) 

 

     In order to compute the Manning roughness coefficient on a movable bed Karim 

(1995) suggested following relations 

     0.126 0.465

500.037 (1.2 8.92 )n d
h


                                                                          (3.75) 
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where dimension of Manning coefficient is 
0.33

s

m
, and unit of 

50d  is meter. In this 

relation h is the hydraulic depth that can be calculated by dividing the flow area to 

water surface width. 

 

For the value of *

s

U


 in the range of (0.15-3.64), amount of   can be computed by 

following relations 

     2 3 4* * * *0.04 0.294( ) 0.00316( ) 0.0319( ) 0.00272( )
s s s s

U U U U

h    


                (3.76) 

 

where s  is the settling velocity of sediment particles with size 50d . The graphic 

relation between 
h

  and *

s

U


can be found in Figure (3.9). 

 

                         Figure 3.9 Relative roughness height as function of *

s

U


 (Karim, 1995). 
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3.4.3.3 Wu-Wang Equation (1999) 

 

      Generally, for a movable bed, the Manning roughness coefficient can be related 

to the bed sediment size d by 

     
1/ 6

n

d
n

A
                                                                                                              (3.77) 

 

where nA  is a roughness parameter that depends to particle shape, flow conditions, 

bed forms, etc. 

 

     In a movable bed with sand waves, the influence of bed forms on nA  must be 

considerd .Li and Liu (1963), suggested the following relations for rivers. 

 

     

3

2

2

3

20( )              1 2.13

3.9( )             2.13

c c

n

c c

U U

U U
A

U U

U U


 


 
 



                                                              (3.78) 

 

     Wu and Wang (1999), proposed the relation between 0.5 0.33/( )nA g Fr  and '

50/b c   

in Figure (3.10) in order to improve equation (3.78). 

 

              Figure 3.10 Relation between 
0.5 0.33/( )nA g Fr  and 

'

50/b c   (Wu and Wang. 1999). 
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     The values of 0.5 0.33/( )nA g Fr  decreases, and then, increases as '

50/b c   increases. 

Physically, this trend represents the fact that sand ripples and dunes are formed first, 

and then, washed away gradually. (Wu,2007) 

 

     In the range of (1-55) for value of '

50/b c   this curve can be formulated as: 

     

'
1.25

50

'0.5 0.33
0.33

50

8[1 0.0235( ) ]

( )

b

n c

b

c

A

g Fr











                                                                      (3.79) 

 

where Fr  is the Froude number. 

 

     In order to calculate the critical shear stress the Shields curve modified by Chien 

and Wan (1983) can be used, 'n  can be determined by ' 1/ 6

50 / 20n d  and for value of 

b and '

b  (3.55) and (3.59) relations can be used. 

 

     The bed hydraulic radius can be calculated by following relation: 

     

2
1 0.055

b

h
R

h

B





                                                                                              (3.80) 

 

     That is suggested by Williams (1970), where B is the channel width. 

 

3.5 Bed-load Transport 

 

     Many of investigators, considering the field data and laboratory studies tried to 

develop various experimental formulas to determine bed-load transport in nature. 

Therefore, they used different approaches. Many of them divided sediment transport 

in two parts: Bed load sediment transport and suspended sediment transport. But 

another group tried to predict total of sediment transport together. 
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3.5.1 Computation of Total Sediment Transport in River 

 

     Many of researchers like Duboys (1879), Schoklitsch (1930), Meyer-Peter and 

Mueller (1948), Bagnold (1966, 1973), Dou (1964), Graf (1971), Yalin (1972), 

Engelund and Fredsøe (1976), and van Rijn (1984a) tried to proposed equations to 

predict total sediment transport . 

 

     3.5.1.1 Relation of Meyer, Peter, and Mueller (1948) 

 

     Meyer, Peter and Mueller (1948), suggested the following relation in order to 

express the bed-load transport rate  

     3 3/ 2

b* s 50 * *q =8. .g.d ( )cr                                                                                (3.81) 

 

where *bq  is the bed-load transport rate that defined by weight per unit time and width 

( / .N m s ), s  is the specific weight of sediment particles , 50d  is the bed material size where 

50% of the material is finer in mm,   is the relative specific gravity and, *  and 

*cr are the dimensionless shear stress and dimensionless critical bed shear stresses. 

 

       can be calculated as:  

     
( )s 




                                                                                                         (3.82) 

 

where s  and   are the specific weights of sediment and water. It must be noted that 

  is a dimensionless parameter. 

 

Bed shear stress can be obtain from 

2

*
*

. .

u

g ds
 


                                                                                                       (3.83) 

 

where ds  is the diameter of sediment particle that can be use 50d of mixture of 
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sediment particles and 
*u  is critical shear velocity that is defined as 

0
* . . fu g R S




   

 

where 0  is the shear stress,   is the density of water, g  is the gravity acceleration, 

R is the hydraulic radius and fS  is the friction slope. They suggested value of critical 

dimensionless bed shear stress as * 0.047cr  .   

 

     Many of researchers tried to improve this relation. 

           

     Note that in relations below, values of *  calculated by equation (3.83). 

 

      3.5.1.2 Relation of Ashida and Michue (1972) 

 

     Ashida and Michue (1972), give the following equation: 

     3

b* s 50 * * * *q =17. .g.d ( )( )cr cr                                                                (3.84) 

 

     They suggested the value of cr*  as 0.05. 

 

     3.5.1.3 Relation of Fernandez Luque and van Beek (1976) 

 

     Fernandez Luque and van Beek (1976), suggested: 

     
3 3/ 2

b* s 50 * *q =5.7. .g.d ( )cr                                                                             (3.85) 

 

     They proposed a value between ranges of * 0.037 0.0445cr     
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  3.5.1.4 Relation of Engelund and Fredsøe (1976) 

     3

b* s 50 * * * *q =18.74. .g.d ( )( 0.7 )cr cr                                                      (3.86) 

 

     They proposed the value of critical shear stress as * 0.05cr  .  

 

     3.5.1.5 Relation of Parker (1979) 

     

4.5
3 * *

b* s 50 3

*

( )
q =11.2. .g.d cr 





                                                                                  (3.87) 

 

     where * 0.03cr  . 

 

     3.5.1.6 Relation of Wong (2003) 

 

      Wong (2003), suggested this formula  

     3 1.6

b* s 50 * *q =4.93. .g.d ( )cr                                                                           (3.88) 

 

He proposed * 0.047cr   for equation above. 

   

3.5.1.7 Relation of Wong and Parker(2006) 

     
3 1.5

b* s 50 * *q =3.97. .g.d ( )cr                                                                                        (3.89) 

 

where * 0.0495cr  . 

 

3.5.1.8 Relation of Tayfur and Singh(2006) 

 

     Tayfur and Singh (2006), proposed the following relations to predict sediment 

transports in alluvial channels. 

     * s

max

. 1b s

z
q pv z

z


 
  

 
                                                                                       (3.90)  
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where p  is the porosity of sediment layer, sv
 is the velocity of sediment particles as 

concentration approaches zero(L/s), z  refers to thickness of bed layer and maxz
 is the 

maximum thickness of bed layer.  

 

     In order to determine the value of velocity of sediment particles, researchers 

suggested different relations. For example, Kalinske (1947) suggested the fallowing 

relations. 

     ( )s cv b u u                                                                                                       (3.91)  

  

where b  is a constant coefficient that is near to unit, cu  is the critical fall velocity at 

incipient motion, sv  is the sudden velocity of sediment particles and u  is the sudden 

velocity of fluid . 

 

     As an another approach, the value of velocity of sediment particles sv
 as 

0.01 /m s  can be selected. 

 

     3.5.1.8 Bagnold Relation(1966, 1973) 

 

     Bagnold (1966, 1973), suggested bed-load transport formula as below 

     

*

* *
*

*

0.37
5.75 log( )

(1 )
tan

s

s b c d
b

s

h
U

U U U n
q

U U


 

  




 


                                  (3.92) 

 

where bsq  is the bed-load transport rate that defined by weight per unit time and 

width ( / .N m s ), tan α is the friction coefficient of about 0.63, d is the sediment size 

(m), dn  is the average height of acting force during a saltation and b  is the bed 

shear stress (Wu, 2007). 

     

 The value of n  can be computed by 
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0.6

*

*

1.4
c

U
n

U

 
  

 
                                                                                                (3.93) 

 

     Equation (3.93) makes a relation between sediment transport and steam power.  

     

      3.5.1.9 Dou Relation(1964) 

 

     Dou (1964), proposed the following equation  

     '

* 0 ( )s
b b c

s s

U
q k U U

g




  
 


                                                                          (3.94) 

 

where unit of *bq  in this relation is mass per unit time per width ( / .kg m s ), '

cU is the 

critical average velocity for sediment particles to cease motion, and 0k is an empirical 

coefficient . amount of 0 0.01k   for sand can be used. 

 

     3.5.1.10 Yalin Relation(1972) 

 

     Yalin (1972), by paying attention to bed-load velocity and weight suggested the 

following relation: 

     *

*

1
0.635 1 ln(1 )b

s

q
s as

dU as

 
   

 
                                                                     (3.95) 

 

where *bq  is the bed-load transport rate that defined by weight per unit time and 

width ( 1 1. .N m s  ). 

 

     The value of s  can be calculated by  

     c

c

s





                                                                                                       (3.96) 

 

     The value of a  can be determined by  
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     0.42.45 ( )c

s

a



                                                                                              (3.97) 

 

where   is the Shields number.   

 

3.5.2 Fractional Transport Rate of Bed Load 

 

     Many of investigators like Einstein (1950), Ashida and Michiue (1972), Parker et 

al.(1982), Misri et al. (1984), Samaga et al. (1986a), etc. studied about fractional 

transport rate of non-uniform sediments and suggested several methods and formulas 

about it. Some of these methods and relations are introduced below. 

 

     3.5.2.1 Einstein Relation (1942, 1950) 

 

     Einstein (1942, 1950), considered the probability of sediment transport due to the 

fluctuation of turbulent flow and established sediment transport functions based on 

fluid mechanics and probability theory. (Wu, 2007) .Einstein bed-load function is 

graphically given in Figure 3.11 and expressed as 

     
22*

2*

1

*7
1

*7

43.51
1

1 43.5

k

k

t k

k

e dt













 

                                                                      (3.98) 

 

where vales of *k , *k  ,  ,   , x , x , X  and   can be determined by 

     *
*

3

1

b k
k

s
bk s k

q

P gd





 
 
 

 

                                                                                  (3.99) 

 

     
2

* 2
( )k b

x

Y





                                                                                                (3.100) 

 

     
'

( )s k

f

d

R S

 




                                                                                                  (3.101) 
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     log10.6                                                                                                       (3.102) 

 

     
10.6

log( )x

s

X
 


                                                                                              (3.103) 

 

     s
s

s

k


                                                                                                             (3.104) 

     

0.77                     1.8

1.39               1.8

s
s

s

X

X







 

 
  



                                                                 (3.105) 

 

     
'

*

11.6v

U
                                                                                                           (3.106) 

 

where *b kq  is the bed-load transport rate of size class k  by weight per unit time and 

width( / .N m s ), Y  and b  are the pressure and hiding correction factors for non-

uniform sediment,  'R  is the hydraulic radius due to grain roughness, that can be 

calculated by using Einstein‟s movable bed roughness method. In order to determine 

the value of apparent roughness of bed surface ( s ), the amount of sk  is 65d  and 

vale of s  can be computed by Equation (3.36), where   is the laminar sub-layer 

thickness.
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   Figure 3.11 Einstein‟s (1950) bed-load function compared with uniform sediment data. (Wu, 

2007). 

 

     3.5.2.2Parker et al. Relation (1982) 

 

     Parker et al. (1982), developed a gravel transport equation that can be found in 

Figure 3.12. The basic concept of this relation is equal mobility of sediment particles. 

The dimensionless bed load transport rate that proposed by Parker *

kW  is defined in 

Equation (3.31) and the dimensionless shear stress k  is  

     
*( )

1

f

k
s

k rk

hS

d











                                                                                             (3.107) 

 

where 

     * 500.0875rk

k

d

d
                                                                                                (3.108) 
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                        Figure 3.12 Gravel transport function of Parker et al. (1982).(Wu, 2007) 

 

     By considering equal mobility for all grain size, only value of 50d  is used to 

characterize the bed-load transport rate as 

      

2

50 50 50

*

4.5

50

50

0.0025exp[14.2( 1) 9.28( 1)            0.95 1.65
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

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

 
 



        (3.109) 

 

where 50  is the dimensionless shear stress with paying attention to sub-pavement 

size 50d . 

 

      3.5.2.3 Hsu and Holly’s Relation (1992) 

 

     Hsu and Holly (1992), in order to calculate whole of sediment transport rate, 

initially compute the size of transported sediment distribution. The amount of each 

size of carried sediment depends to two things. Firstly the govern hydraulic condition, 
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and secondly, the availability of that size of sediment particles on bed surface. With 

assumption that the Gaussian probability distribution is the govern probability 

distribution, the mobility of size of  class k  can be determined by 

     
2

, 2

1

1
exp( )

22
ck

mo k

U

U

x
P dx

 





                                                                        (3.110) 

 

where U  is the mean velocity of flow;   is the standard deviation of the normalized 

fluctuating velocity that can be calculated by ' /U U ,but usually can use  a value of  

0.2 for it. ckU  is the incipient velocity of size class k that can be computed by Qin 

relation (3.39) that modified by recalibrating the coefficient 0.786 as 1.5. 

 

     The proportion of size of class k  in the transported material can be written by 

     
0,

max

,

min

m k bk

k d

mo k bk

d

P P
P

P P




                                                                                              (3.111) 

 

where bkP  is the ratio of size class k  on the bed surface. 

 

     Finally, in order to calculate the total bed-load transport rate can be used the 

modified form of Shamov equation 

     3 1/ 4

* min12.5 ( )( ) ( )mt
b mt c

ct

dU
q d U U

U h
                                                           (3.112) 

 

where mtd  is the mean size, ctU  is the mean incipient velocity, *bq  is defined by total 

transport rate of bed load per width o unit channel( 1 1. .kg m s  ) and mincU  is the 

incipient velocity of the smallest size class ( 1.m s ). 

     

     3.5.2.4 Ranga Raju et.al Relation (1996) 

 

     In order to calculate the fractional transport rate of non-uniform bed load Ranga 

Raju and his co-workers (Misri et al., 1984; Samaga et al., 1986a; Patel and Ranga 
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Raju, 1996) reformed the uniform bed-load equation that suggested by Paintal (1971). 

Patel and Ranga Raju revised hiding-exposure correction factor that proposed by 

Misri et al. (1984). 

     *

3( 1)

b k
bk

s
bk s k

q

P gd





 



                                                                                 (3.113) 

 

     '

eff b b                                                                                                           (3.114) 

 

where bk is the dimensionless bed-load transport rate, eff is the effective shear 

stress and b  is the hiding-exposure correction factor b . 

 

     The values of '

b , '

bR  and 'n  are 

     ' '

b b fR S     ,
3'

' 2
1/ 2

( )b

f

Un
R

S
    ,

1

6
' 65

24

d
n                                                               (3.115) 

 

     b  for the effective shear stress determined by 

     ' 0.75144
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1                                           0.38

0.7092log 1.293          0.05 0.38
m

M
C
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
 

  
                                       (3.119) 

 

where c  is the critical shear stress for the arithmetic mean size md , and M is the 

Kramer uniformity coefficient. 
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            Figure 3.13 Fractional bed-load function (Patel and Ranga Raju, 1996). 

 

     3.5.2.5 Wu et al. Relation (2000) 

 

     In order to calculate the fractional transport rate of non-uniform bed load Wu et al. 

(2000), suggested the following relation and graphically curve in Figure 3.14 

     

2.2
3

2
'

0.0053 ( ) 1b
bk

ck

n

n





 
   

 
                                                                         (3.120) 

 

where 3

* / ( / 1)bk b k bk s kq P gd    
 

, *b kq  is by volume per unit time and width 

2 1m s  , ' 1/ 6

50 / 20n d , and n is the Manning roughness coefficient of channel bed.  
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                  Figure 3.14 Relation of fractional bed-load transport rate (Wu et al., 2000b). 

 

3.6 Suspended-load Transport 

 

3.6.1 Concentration of Suspended Load on Near Bed  

 

     Many of investigators like Einstein, van Rijn, and Zyserman-Fredsøe etc. 

suggested formulas for predict concentration of single or multi size of suspended 

load in near bed level. 

 

     3.6.1.1 Einstein Relation (1950)  

 

     Einstein (1950), set the reference level of suspended-load concentration at two 

grain diameters above the channel bed and related the near-bed concentration of 

suspended load to the bed-load transport rate *b kq  as follows(Wu, 2007) 

     *
* '

*

1

11.6

b k
b k

q
c

U
                                                                                                 (3.121) 
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where *b kc  is the concentration at the reference level δ for the k  th size of sediment 

particles (by weight per unit volume), and '

*U  is the friction velocity on skin level. 

 

         3.6.1.2 Van Rijn Relation 

 

     Van Rijn (1984), suggested the following relation. 

     
1.5

50
* 0.3

*

0.015b

d T
c

D
                                                                                             (3.122) 

 

where   is the reference level at the equivalent roughness height sk , *bc  is the 

volumetric concentration of suspended load at the reference level, values of T  can be 

calculated by Van Rijn  relations(3.69) and *D  can be determined by 

0.5 1.5 2.1 0.3

* 50 *0.053(( ) / ) ( / )b sq g d T D     

  

      3.6.1.3 Zyserman-Fredsøe Relation (1994) 

 

     Zyserman and Fredsøe (1994), set the reference level at two grain diameters 

above the bed and determined the near-bed volumetric concentration of suspended 

load as: (Wu, 2007) 

     
' 1.75

* ' 1.75

0.331( 0.045)

1 0.72( 0.045)
bc

 


  
                                                                            (3.123) 

 

where  
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
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 
  

                                                                                             (3.124) 
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3.6.2 Suspended-load Transport Rate 

 

      3.6.2.1 Einstein Relation (1950) 

 

     In order to compute the suspended-load transport rate Einstein (1950), suggested a 

method that use integration of product of local sediment concentration kc  and flow 

velocity u over the suspended-load zone from   ( 2d ) to h : 

     *

h

s k kq c udz


                                                                                                     (3.125) 

 

where *s kq  is the transport rate of suspended load in the k th size class. 

 

     With considering the govern of Rouse distribution to the concentration of 

sediment ( 1s  ) and the logarithmic distribution of flow velocity in Equation (3.35) 

(substitute *U  by '

*U ) yields 
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     With substitute Equation (3.115) into Equation (3.120) can be found that  
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2.303log( )*s k b k k k

s

h
q q I I

 
  

 
                                                           (3.130) 

 

    Consequently *t kq  is  

     * * *t k b k s kq q q                                                                                                  (3.131) 

 

    3.6.2.2 Bagnold Relation (1966) 

 

     Bagnold (1966), relation is 

     
2

* 0.01 s b
s

s s

U
q

 

  



                                                                                     (3.132) 

 

where *sq  is the suspended-load transport rate ( 1 1. .N m s  ) 

 

  3.6.2.3 Zhang Relation (1961) 

 

      Zhang (1961), with considering the concept of the energy balance of sediment-

laden flow, suggested the following relation as: 

     
3 3

1.5 1.15

*

1 1
( ) 1 ( )

20 45s s

U U
C

gR gR 

 
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 
                                                          (3.133) 

 

     Also can be found the graphic model of this relation in Figure (3.15) which show 

the relation between suspended-load transport capacity *C  and parameter 3 / sU gR .  
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                      Figure 3.15 Relation of *C  and 
3

( )s

U
gR

 (Zhang, 1961). 

 

     3.6. 2.4 Wu et al. Relation (2000) 

 

  With considering concept of stream power that suggested by Bagnold‟s (1966) and 

by using laboratory data that measured by Samaga et al. (1986) and two sets of field 

data that evaluate in Yampa and Yellow Rivers Wu (2000b) suggested the following 

relation  
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where *s kq  is the suspended-load transport rate ( 2 1.m s ).   

      

      In addition can be used the curve of Figure (3.16).instead of relation above.  
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              Figure 3.16 Relation of fractional suspended-load transport rate (Wu et al., 2000b). 

 

3.7 Bed and Suspended Load Transport 

 

3.7.1 Total Transported Material 

 

     3.7.1.1 Laursen Relation (1958) 

 

      In order to predict the total average concentration of material that transported by 

flow, with considering the size of sediment particles Laursen (1958) suggested the 

following relation.  

     
7 '
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k b
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where *tC is the concentration of sediment by weight per unit volume; kP  is ratio of 

sediment size k between sediment particles in bed surface level; N is the all kind of 
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sediment classes size; 
ck  is the critical shear stress for the incipient motion of size 

classes 
kd , that can be determined by the Shields diagram; and '

b  can be computed 

by 

     
2

' 1/350( )
58

b

dU

h


                                                                                               (3.137) 

 

     The function *( / )sf U   can find in curves of Figure (3.17) 

 

             Figure 3.17 Function  * / sf U   in the Laursen (1958) relation. (Wu, 2007) 

 

     3.7.1.2 Engelund-Hansen Relation (1967) 

 

     Engelund and Hansen (1967), suggested the following relation to calculate 

sediment transport. 
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 3.7.1.3 Yang Relation (1973, 1984) 

 

     Yang (1973, 1984), calculated the suspended and bed load transport for the unit 

stream power as follows 

     *log log
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 
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where M and N are coefficients and calculated by  
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For gravel 2 10mm d mm   

     

*

*

6.681 0.633 og 4.816 og

2.784 0.305 og 0.282 og

s

s

s

s

d U
M l l

v

d U
N l l

v









  

  

                                                     (3.141) 

 

where *tC  is the concentration of sediment in parts per million (ppm) by weight. 

 

     3.7.1.4 Ackers-White Relation (1973) 

 

     The transport of coarse sediments, which are mainly in bed load, is attributed to 

the Stream power corresponding to the grain shear stress, '

bU , while the transport of 

fine Sediments, which are mainly in suspended load, is related to the turbulence 

intensity and in turn the total stream power, bU .(Wu, 2007)  

 

     With considering the concept that explained above Ackers and White (1973) 

proposed a mobility factor of sediment transport: 
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where *tC  is the concentration of sediment particles by weight,   and m  are 

empirical coefficients, n is the transition exponent, and cA may be interpreted as the 

critical value of grF  for sediment incipient motion. Coefficients , cA , m , and n  

were proportional with the dimensionless grain diameter 

 
1/3

2

* / 1sD d g v     , as listed in Table (3.4) 

 

Table 3.4 Coefficients of the Ackers-White equation 

 
* 60D   *1 60D   

n  0.0  
*1.00 0.56log D  

cA  0.17  1/ 2

*0.23 0.14D   

m  1.50  1

*9.66 1.34D   

  0.025   
2

* *log 3.53 2.86log logD D      

 

3.7.2 Fractional Transport Rate of Suspended and Bed Load 

 

     3.7.2.1 Modified Ackers-White Relation 

 

     Day (1980) and Proffitt and Sutherland (1983), modified the Ackers-White (1973) 

relations to determine the fractional suspended and bed load transport rate: 
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     With *t kC  refers to concentration of sediment by weight of size class k , and k  

the hiding and exposure correction factor. Day‟s correction factor is 
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where Ad  is the reference diameter and calculated by 
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     and Proffitt and Sutherland suggested the following correction factor 
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where ud  is the reference diameter used by Proffitt and Sutherland (1983). 
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     3.7.2.2 SEDTRA Module (Garbrecht et al., 1995) 

 

     Garbrecht et al.(1995), proposed the SEDTRA module. This module use three 

equations to compute the fractional sediment transport rates: the Laursen (1958) 

relation for classes of size from 0.01 to 0.25 mm, the Yang (1973) relation for classes 

of size from 0.25 to 2.0 mm, and the Meyer-Peter-Mueller (1948) relation for classes 

of size from 2.0 to 50.0 mm. The total sediment concentration can be determined by 

     
* *t k t k

k

C P C                                                                                                  (3.150) 

 

where kP  is the fraction of the k  th, the size of class of sediment in bed load surface, 

usually set as the suspended and bed load gradation. 

 

     The hiding and exposure effect in non-uniform bed load can be computed by 
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where x is an empirical parameter that can be calculated by 1.7 / mx B , md  is the 

mean diameter of bed load; and mB  can be calculated by 
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where cd  and fd  refers to diameters of coarse and fine modes, and mP  is the ratio of 

the sediment mixture contained in the two modes. 

 

     The mixture names for Wilcock and Southard‟s (1988) data refer to the standard 

deviation of bed material, and those for Kuhnle‟s (1993) data refer to the percentage 

of gravel in bed material, SG25 for the mixture with 25% gravel and 75% sand (Wu, 

2007). 

 

     Note that this module may not be suitable in the case of low sediment transport, 
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because the situation that they used in order to calculate incipient motion of sediment 

particles are difference.  

 

Table(3.5) lists the values of x that introduced by Kuhnle et al. (1996). 

Mixture name Reference ( )md mm  Mixture type 
mB  x 

SG10(lab.) Kulnle(1993) 0.616 Bimodal 2.49 0.7 

SG25(lab.) Kulnle(1993) 0.927 Bimodal 2.60 0.7 

SG45(lab.) Kulnle(1993) 1.454 Bimodal 2.73 0.6 

1/ 2 (lab.) Wilcock & S.(1988)  1.82 Unimodal 0.67 1 

  (lab.) Wilcock & S.(1988) 1.85 Unimodal 0.37 1 

Goodwin 

Creek 

Kulnle(1993) 1.189 Bimodal 3.10 0.5 

 

     3.7.2.2 Karim Relation (1998) 

 

     Karim (1998), in order to predict the fractional transport rate of suspended and 

bed load suggested the following relation 
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where unit of *t kq  is 2 1.m s ; akP  is the real fraction of suspended and bed load, 

depends to the      volumetric fraction of suspended and bed load, bkP , by 
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     and k  is the correction factor of hiding and exposure: 
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where 
1C  and 2C  are 
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where 50s  is the settling velocity for 50d . 
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CHAPTER FOUR 

GOVERNING EQUATIONS OF SEDIMENT TRANSPORT 

 

4.1 The Saint Venant Equations (SVE): 

 

4.1.1 Main Assumptions and Derivation 

 

     The Navier-Stocks Equations are basic relations which can be used in investigate 

the treat of flow. Because in the most channels the length of horizontal scale is much 

larger than vertical ones, so using the shallow water equations can be sufficient. The 

main idea of this chapter is to present the one-dimensional continuity and momentum 

equations that are usually referred to as the Saint Venant equations. 

 

4.1.2 Basic Hypothesis for the SVE 

 

     The main concepts and assumptions of unsteady flow, formalized in the Navier-

Stokes equations. 

 

     The governing equations of unsteady flow condition in open channel can be 

described by de Saint Venant equations. In order to define the flow condition in 

unsteady condition must be compute two flow variables, such as the flow depth and 

velocity or the flow depth and the rate of flow. The Saint Venant defined cantinuity 

and momentom equations with many assumptions. 

  

     ●the streamlines do not have sharp curves, so that the pressure distribution is 

hydrostatic. 

 

     ●As the channel bottom slope is small, the measured lateral and vertical velocity 

are approximately same, so the lateral velocity and acceleration component can be 

neglected. 

 

     ●No lateral, secondary circulation occurs. The flow velocity distribution is 
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uniform over any channel cross section. 

 

     ●The channel is prismatic with the same cross section and slope thorough out the 

distance. 

 

     ●The head losses in unsteady flow can be simulated by using the steady – state 

resistance laws, so Chezy and Manning equations can be used also in unsteady flow 

model. Water has uniform density and flow is generally sub-critical (Chaudhry, 

1993). 

 

4.1.3 The derivation of the Continuity Equation 

 

     The law of conservation of mass, states that in a closed system the mass of 

substances will not exchange, without paying attention what kind of processes are 

acting inside the system. 

 

 

                                Figure 4.1 View of continuity equations of mass 

 

     Whit refer to law of conservation of mass and with assuming that there is no 

lateral inflow or outflow, then 
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x


  


                                                                                                  (4.1) 

 

where, Q is the discharge at the section, x is the position of the section measured 

from the upstream end. 

 

      The volume of mass of water in control volume with consider a time steps 

between section 1 and 2 can be shown as  

     .
h

b x
t





                                                                                                                (4.2) 

 

where b is the width of volume. 

 

     With substitute Equation (4-2) into Equation (4-1), can be rewritten as 

     . 0
Q h

x b x
x t

 
   

 
                                                                                            (4.3) 

 

     Now with divided Equation (4-3) to width of channel can be rewritten as 

     
.

0
h u h

x x
x t

 
   

 
                                                                                             (4.4) 

 

     Finally with some simplification can be write continuity equation as 

     . . 0
u h h

h u
x x t

  
  

  
                                                                                           (4.5) 

 

where, h is the depth of flow at the section, u  is the mean velocity at the section, t is 

the time. 

 

4.1.4 The Derivation of the Dynamic or Momentum Equation. 

 

     According to Newton‟s second law the acceleration of an object is directly 

proportional to the net force acting on it, and inversely proportional to its mass. By 

applying this rule to control volume of channel in Figure 4.1 can be written as: 
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     Force= Mass. Acceleration 

     
du

F A x
dt

                                                                                                        (4.6) 

 

     [ ]
u u

F A x u
x t


 

  
 

                                                                                          (4.7) 

 

     The external forces which cause this acceleration in the simplest case are three: 

Change in static pressure that shown as 
H

x




 , Frictional resistance of channel walls 

and bed that shown as F and Gravity force (the weight) that shown as g .The sum 

of these forces is  

                                                             (4.8) 

 

where,   is the bed slope (measured positive as the bed rises from downstream 

to up) 

If the bed slope is smaller then 6 ( o6  ) then   cos 0   and 0 sin S    

 

     Whit some manipulation about static pressure changes and frictional resistance 

can be written 

     . . .
H h

g A
x x


 

 
 

                                                                                                 (4.9) 

     

      . . . fF g A S                                                                                                     (4.10) 

 

where, fS  is lose of energy per unit length of channel per unit weight of fluid. 

 

With substitute (4-8), (4-9) and (4-10) equations in (4-7) can be shown that 

     0. . [ . ] . . . . . . . . . . . .f

u u h
A x u g A x g A S x g A S x

x t x
   

  
        

  
                     (4.11) 

 

Whit some rearranging, consequently can be write dynamic or momentum equation. 
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0. . ( )f

h u u
g u g S S

x x t

  
   

  
                                                                              (4.12) 

 

4.2 Governing Equations 

 

      The bed profile evolution and movement in alluvial channels can be represented, 

as shown in Figure 4.2, as a system involving two layers: water flow layer and 

movable bed layer. The water flow layer may contain suspended sediment. The 

movable bed layer consists of water and sediment particles and therefore has porosity. 

There may be an exchange of sediment between the two layers, depending upon the 

flow transport capacity and sediment rate in suspension. (Tayfur and Singh, 2006). 

                   

                            

                                 Figure 4.2. Schematic representation of two layer              

systems (Tayfur and Singh, 2007) 
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     With considering the concentration of suspended and bed load and flux of flow 

into sediment porosity the equation of conservation of mass for water in a wide 

rectangular channel with constant width can rearrange as(Tayfur and Singh, 2007): 

(1 ) (1 )
lw

h c hu c z
p q

t x t

    
  

  
                                                                       (4.13) 
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                                                                       (4.14.a) 
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)1(                                                                     (4.15) 

 

where h is the flow height (L), u is the velocity of flow (L/T), c is the volumetric 

concentration of sediment in suspension ( 3 3/L L ), p is the porosity of   sediment in 

bed level( 3 3/L L ), z is the movable bed layer elevation (L), lwq  is the lateral water 

flux ( /L T ), bsq  is the sediment flux in the movable bed layer ( 2 /L T ), lsusq  is the 

lateral suspended sediment ( /L T ), lbedq  is the lateral bed load sediment ( /L T ), s  

is the sediment mass density (M/L3), zE  is the entrainment rate ( 2/ /M L T ), and cD  

is the deposition rate ( 2/ /M L T ). 

 

     Note that the equations that refer to conservation of mass write two form: 

equilibrium ( zc ED   ) (4.15) and non-equilibrium ( c zD E ) (4.14.a and b) form. In 

non-equilibrium case when ( z cE D ) there is entrainment from the bed layer, that 

cause to decrease bed load but increase the concentration of suspended load 

sediments.  In the opposite of this situation ( z cE D ) can be seen the gathering in 

bed load and reducing in suspended load of sediments. 

 

     In order to compute the values of zE  and cD  Yang (1996) proposed the following 
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relations  

      
k

z c crE T       
 

                                                                               (4.16) 

 

     0whS                                                                                                             (4.17) 

 

      cr s w sd                                                                                                  (4.18) 

 

where   is the coefficient of transfer rate (1/L), cT  is the flow transport capacity 

( / /M L T ),   is the soil erodibility coefficient,   is the shear stress ( 2/M L ),k an 

exponent,  a constant , w  and s  is the specific weight of water and sediment 

( 3/M L ), sd   is the sediment particle diameter (L). 

 

     The value of deposition rate cD can be determined by  

      c s ss sD q huc                                                                                       (4.19) 

 

where ssq is the unit of suspended sediment discharge (M/L/T). 

 

     Easily can be seen that when z cE D , with adding of Equations (4.14) and (4.15) 

can be found equilibrium form of these equations. 

 

     In laboratory flume that used in study, there is no lateral of sediment or flow 

influence, so lwq  and lsq  are equal to zero. 

 

     Note that there are five unknown in continuity equations of sediment and water (h, 

u, c, z, and bsq ).  Therefore we need three aide equations to solve set of equations 

above. 

 

     Instead of third equation can be use Momentum equation. With considering the 

flux of flow into sediment porosity can be rearrange Equation (4.12) as follow. 
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                                                               (4.20) 

 

where g is the gravitational acceleration ( 2/L T ), 0S is the bed slope and fS  is the 

friction slope. 

 

     The forth equation obtains from suspended sediment concentration that 

represented by Velikanov (1954) 

     3 1c u h                                                                                                            (4.21) 

 

     In equation above the value of   can be substitute form relations below 

     
fgv


                                                                                                              (4.22) 

 

where fv is the average fall velocity of sediments (L/T) and   is the coefficient of 

sediment transport capacity. ( 40.756 10   ) 

 

      As a last one must be represent relations for bsq . This symbol represents a 

relation for the sediment flux in the movable bed layer. There are various empirical 

equations that given by investigators .Some of them represent in here. 

 

     Note that in solution with Kinematic wave model instead of velocity u  should be 

used the following relations  

     1u h                                                                                                             (4.23) 

 

     
0.5

z fC S                                                                                                            (4.24) 

  

where 1.5   
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CHAPTER FIVE 

EXPERIMENTAL INSTRUMENTS 

 

     Experimental investigations carried out in a rectangular channel with 18.6 m 

length and 80 cm width. The walls in the right and left hand of channel made from 

Plexiglas with 75 cm high. The slope of channel could be changed in the ranges of 

0.001 to 0.01 from horizontal. The water is circulated continuously. The volume of 

the water supply reservoir (main tank) is 27 m
3
. The general view of experimental set 

up is shown in Figure 5.1.a and Figure 5.1.b. (Bombar, 2009). 

 

 

   Figure 5.1(a and b) The general view of the experimental set-up. ( Bombar, 2009) 

 

     In this system used a kind of pump (figure 5.2 a) with maximum 100 lit/s capacity 

that connected with pump rotational speed control unit(figure 5.2 b). By using the 

pump rotational speed control unit we can program the system for hydrograph 

generation and control the flow rate. 
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       Figure 5.2 (a) Pump that used in this study, (b) pump rotational speed control unit  

( Bombar,   2009). 

 

          In the end of the channel there is a tail gate(figure 5.3)  that uses for control the 

depth of water. For collecting the bed load that coming from channel there are set of 

baskets that located at the downstream part of the flume. 

 

                            Figure 5.3 tail gate. ( Bombar, 2009) 

 

5.1 Instrument 

 

5.1.1 Baskets 

 

     In the end of channel set up a movable part that can move by human force. In 

order to measure the suspended and bed load sediments that come from the flume, 



73 

 

 

get baskets on this movable part and change it in fixed time distance.  View of 

baskets and movable system can be found in Figure 5.4 (a and b) ( Bombar, 2009). 

 

 

      Figure 5.4 (a). Place of baskets on platform, (b) basket on movable set. ( Bombar, 2009) 

 

5.1.2 Ultrasonic Velocity Profiler (UVP)  

 

The general view of UVP are given in figures 5.5(a) and 5.5(b). 

 

Figure 5.5 (a and b) Ultrasonic Velocity Profiler (UVP)  ( Bombar, 2009). 

      

     The velocities are measured by using UVP given in figure 5.6.a (manufactured by 

Met-Flow SA). The velocity profile along the ultrasonic beam axis is measured by 

detecting the doppler shift frequency. The measurement principle is as follows; the 

UVP DUO transducer transmits a short emission of ultrasound, which travels along 

the measurement axis, and then switches over to receiving. When the ultrasound 

pulse hits a small particle in the liquid, part of the ultrasound energy scatters on the 

particle and echoes back. The echo reaches the transducer after a time delay. If the 
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scattering particle is moving with a non-zero velocity component into the acoustic 

axis of the transducer, doppler shift of echoed frequency takes place, and received 

signal frequency becomes „doppler-shifted‟. By using the time delay and doppler 

shift frequency, it is then possible to calculate both position and velocity of a particle 

on the measuring axis, i.e. velocity profile over the measuring axis, as depicted in 

figure 5.6.b (Met-Flow, 2002). 

 

 

    Figure 5.6(a) Ultrasonic Velocity Profiler (UVP), (b) UVP working system. ( Bombar, 2009) 

 

      During the study for measurement of velocity used two UVP sensor in the begin 

of the channel. These sensors established in the fix part of bed profiles in first 3 

meters. 

 

5.1.3 Level Meter  

 

     The IMP+ level monitoring system (Pulsar Process Measurement Limited) is a 

highly developed ultrasonic level measurement system which provides noncontacting 

level measurement for a wide variety of applications in both liquids and solids 

(figure 5.7). It operates on the principle of timing the echo received from a measured 

pulse of sound transmitted in air and utilizes echo extraction technology. IMP 3 

madel has a range from 0.15m to 3.00m. The otput voltage 4-20mA is transmitted by 

a RS232 connection to the data recorder. Whilst in the Run Mode, the 4 digit LCD 

can display the current level reading in mm ( Bombar, 2009). 
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        Figure 5.7 Level meter. ( Bombar, 2009). 

 

5.1.4 Flow Meter 

 

     The OPTIFLUX 1000 (manufactured by Krohne) is an electromagnetic flow 

sensor which works according to the Faraday Law and is mounted on the pipe before 

the entrance of the channel (figure 5.8). It can measure both the steady and unsteady 

flow rates with a precision of 0.01 l/s. The measured data is sent to the data recorder, 

with 6 channels ( Bombar, 2009).                                 

 

 

                   Figure 5.8 Flow meter ( Bombar, 2009). 

 

 5.1.5 Data Recorder 

 

     The data from the flow-meter and level-meter is recorded and stored by the data 

recorder as shown in figure 5.9. The data recorder has 6 channels which can acquire 

the data with a frequency of 1s. The data is both displayed on the screen and stored 

simultaneously and can be transferred to the computer by the help of the CF card 
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after the experiments (Bombar, 2009). 

 

 

                         Figure 5.9 Data recorder (Bombar, 2009). 

 

5.1.6 Ultaralab ULS 

 

                  Figure 5.10 Ultaralab ULS. 

 

     ULS (figure 5.10) is an instrument that use for measurement of distance in 

laboratory. The benefit of using this instrument is obviously clear: particularly in 

small-scale experimental set-ups, it is imperative to avoid any mechanical 

intervention that may affect the experiment, but at the same time, parameters must be 
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measured and evaluated.                                 

 

     General Acoustics ULS ultrasound sensors permit distance measurement from 30 

mm to 3.4 m and, thanks to high-resolution propagation time measurement, measure 

with sub-millimeters resolution. 

 

     The ULTRALAB® ULS sends out an acoustic pulse via the ultrasound sensor. The 

ultrasound pulse emitted is reflected on the measurement object and is received back 

as an echo. A key aspect when it comes to measuring distances is the time required 

for the transmitted pulse to cover the distance to the respective measurement object 

and back. This sound propagation time is measured by the ULTRALAB® ULS with 

high resolution. 

 

     The measured propagation times are averaged. A tolerance band (expectation 

range) is set around the average propagation time. Only measurement values that lie 

within the expectation range are admitted for further calculation of the measurement 

value. The average value is modified according to changes in distance.                                 

 

     The measured distance is converted to a voltage signal (0-10V) proportional to the 

distance. The sound propagation time and the measured distance obtained from it 

will depend to a certain extent on the following environmental conditions: air 

temperature, humidity, air pressure, air currents. 

 

5.1.7 Laser Meter 

 

     In studies, for measurement of sediment elevation codes Bosch DLE 70 laser 

meter (figure 5.11.a) used. The measuring rang of this equipment is (0.05 – 70) 

meters. This is the smallest laser-meter in the world and it can be measure with 1.5 

mm accuracy in a compact unit.  

 

Before begin to research, the level of sediment in bed made smooth and used laser 

meter for measure this level. After finished the research for finding final deformation 
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of bed profiles, again should be used this instrument to get the last form of level 

codes. In order to use this equipment easily and rapidly set a moveable system that 

could be found in Figure 5.11.b.    

 

 

                Figure 5.11 (a) General view of Laser meter, (b) moveable set of Laser meter.  

      

5.1.8 The Property of Bed Load Sediments 

 

     In this study in order to simulate the nature condition as more as possible used a 

composed of uniform graded material with 4.350 d  mm (Table1). The average 

grain size distribution is given in Figure 5.12. The sort of material is quarts.  

 

     Investigators in order to calculate the channel bottom roughness, generally use 

two equations. These relations are given below. 

 

     Chezy Relations  

     
.

Q
Cz

A R S
                                                                                                       (5.1) 

     Manning relations 

     
2/3.A R S

n
Q

                                                                                                       (5.2) 
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Table 1.Analysis of sample of sediment    

Size of sediment 

particles (mm) 

Weight (gr) Percent in weight Cumulative 

percentage 

6.5 0 0 100.00 

6.3 50.21 2.87 97.13 

4.75 360.83 20.61 76.52 

3.35 498.50 28.48 48.04 

2.36 98.93 5.65 42.39 

1.7 18.14 1.04 41.35 

1.18 2.69 0.15 41.20 

0.85 4.72 0.27  40.93 

0.6 200.60 11.46 29.47 

0.425 458.75 26.21 3.26 

0.3 54.33 3.10 0.15 

0.25 2.71 0.15 0 
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           Figure 5.12 Distribution of bed material. 

 

where Q  is flow rate ( 3 /m s ), A  is area ( 2m ), R  is hydraulic radius that can be 

found by proportional of area to wetted cross, S is energy slope, Cz is Chezy 

coefficient and n is Manning coefficient.   
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     In this research applied Chezy coefficient. Note that this value is depend to flow 

rate and depth of flow. So in unsteady flow it would be changed. In order to find the 

correct value of Chezy coefficient, this value calculated for the minimum and 

maximum points of all of hydrographs. The biggest difference found in third 

hydrograph, so used these values in model to see the influence of Chezy coefficient 

in models prediction. The percentage of difference graph is given in Figure below. 
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Figure 5.13 Difference of bed load predication for the max. and min. Chezy coefficient in 

percent for the third hydrograph .  

          

    It can be seen that, differences are not really important. Finally, the value of Chezy 

coefficient selected as 27.3 that is the average value of all of hydrographs. 

 

5.2 Experimental Procedure 

 

     First of all, the bed materials should be mixed to get homogeneous sediments and 

after that with using a mobile system that shown if Figure 5.14 make a smooth 

surface of sediments in vertical and stream-wise direction. 

 

     Before to start the experiments, with using the Laser-meter, should be measured 

the elevation of initial bed profiles that help to compare changes of geometry 

between before and after passing the flow. 
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              Figure 5.14 System to make a fix bed level. ( Bombar, 2009) 

   

     At the beginning of the study, flow rate increases slowly to the basic value which 

is below the sediment inception threshold condition in order to not disturb the 

sediments and instrument that placed in channel start to measurement. While demand 

hydrograph begin to pass the channel length, the shape of bottom level begin to 

change. 

 

     For collect the bed loads that carry out with flow rate, baskets that located at the 

downstream part of the flume used. 

 

     Finally after past the hydrograph, with using the Laser-meter measure the final 

bed profile code that is useful for compare between before and after bottom changes. 
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CHAPTER SIX 

FINITE VOLUME METHOD 

 

6.1. Introduction 

 

     The finite volume method is a method for representing and evaluating partial 

differential equations in the form of algebraic equations (LeVeque, 2002; Toro, 

1999). 

 

     Finite Volume method is one of the finite family methods used frequently in 

recent years.  

 

     The most important advantage of Finite Volume Method is its ability to 

conservative of quantities such as mass, momentum, energy, and species in solution. 

The Finite volume approach guarantees local conservation of a fluid property for 

each control volume (Versteeg & Malalasekera, 1995). So, FVM is the useful  

method for computing flow problems. 

 

6.2. Finite Volume Method for One Dimensional Equations 

  

     Consider of a property    in a one-dimensional domain shown in Figure (6.1). 

 

             Figure 6.1 View of 1D Control volume notation. (Versteeg  & Malalasekera, 1995) 

 

     Solution with finite volume method consists of three stages.   
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Step 1: Grid generation. 

     The first step of the solution with finite volume method consists of dividing the 

domain into discrete control volumes. Number of nodal points are placed in space 

between A and B. The boundaries of control volumes are placed between these nodal 

points so each node is surrounded by a control volume. Generally, these control 

volumes are set up near the edge of the domain in such away that the real physical 

boundaries adapt to the control volume boundaries.  

 

     Consider the value of P as a nodal point that should be calculated. In a one-

dimensional geometry the neighborhood nodal points called as east and west nodal 

points and for identify these points can be used E and W symbols. In order to show 

distance between P and E nodal points, can be used PEx and as a same way for 

distance between P and W , can be use WPx symbols. The west side face of control 

volume is refer to w and the east side control volumes face refer to e . Similarly the 

distances between face w and point P and between P and face e  are denoted by 

wpx and pex respectively. The view of this system can be found in Figure (6.2). 

 

 

                  Figure 6.2 View of one Control volume. (Versteeg & Malalasekera, 1995) 

 

Step 2. Discretisation. 

     The key step of the finite volume method is the integration of the governing 

equation (or equations) over a control volume to yield a discretised equation as its 

wex x   

W E 
e 

w P 

WPx  PEx  

wPx  
Pex  
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nodal point P (Versteeg & Malalasekera, 1995). Maybe the most interesting property 

of the finite volume method is that the discretised equation has an exactly physical 

concept.  

 

           For constitute a suitable form of discretisation equation, the values of 

diffusion coefficient   and the gradient /d dx  at east e  and west w  are required. 

In order to calculate gradients at the control volume faces an approach of distribution 

of properties between nodal points is used. Maybe in point of simplicity and 

visibility way for calculating interface values and the gradients the linear 

approximations are better then others .In this part introduce some of simple and 

useful linear ways: 1.Central scheme. 2. Upwind scheme.  

 

6.2.1. Central Scheme 

 

     In the central method a uniform grid linearly interpolated values for e  and w  

are given by  

     
2

W P
w

 
                                                                                                     (6.1.a) 

 

     
2

E P
e

 
                                                                                                     (6.1.b) 

 

     and the diffusive flux terms are evaluated as:  

     ( ) ( )E P
e e e

PE

d
A A

dx x

 




                                                                                      (6.2) 

 

     ( ) ( )P W
w w w

WP

d
A A

dx x

 




                                                                                    (6.3) 

 

where eA  and wA  are the face areas of the control volumes. 
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6.2.2. Upwind Scheme 

 

     One of the most important restrictions about central difference scheme is its 

incapability to identify flow direction. In central method the values of property   at 

the west cell faces is always influenced by both neighbor nodal points (
P and W ) as 

a same weights. In a case of flow diffusion from west to east, this assumption is 

unsuitable because the influence of node W  in the west cell face is much stronger 

than node P . 

 

     The upwind differencing or donor cell differencing scheme can solve this problem 

with paying attention to the effect of flow direction when determining to the value at 

the cell face. The value of   at a cell is taken to be equal to the value at the upstream 

node. In Figure (6.3) can be found a view of upwind method. 

 

                Figure 6.3 View of upwind scheme. (Versteeg & Malalasekera, 1995) 

 

     When the flow is in the positive direction (from west to east) with applying 

upwind method for  can be written as: 

     w W   And e P  .                                                                                           (6.4) 
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Step 3: Solution of equations. 

     In the end of all in order to solve a problem discretised form, must be applied for 

each of the nodal points. In order to see the effect of boundary conditions, the general 

discretised form for control volumes that are neighbor with domain boundaries must 

be modified.  

 

     Consequently the collection of these linear algebraic equations should be solved 

to obtain the distribution of the property   at nodal points. 

 

6.3 Solution of Sediment Transport Equations with Finite Volume Method 

 

     In order to shown better, use the following form for Equations (4.13), (4.15) and 

(4.20). 

     t xW F S                                                                                                           (6.5) 

where 

(1 )

(1 )

h c pz

W hc p z

u

  
 

  
 
  

 

2

(1 )

1
( )

2

bs

hu c

F huc q

u g h z

 
 
 

  
 

  
 

  

0

0

( )

S

g So Sf

 
 


 
  

 . 

 

     With integration of Equation (6.5) can be seen that 

     . . .
t t t t t t

CV t CV t CV t

W F
dt dV dt dV Sdt dV

t x

   
  

                                   (6.6) 

 

      If the values of P at Figure (6.2) at a node are assumed to govern over the whole 

control volume, the left hand side of Equation (6.5) can be written as  

     ( )

t t

o

p p

CV t

W
dt dV W W V

t

 
   

 
                                                                         (6.7) 

  

     In equation above superscript 0 refers to value of unknown at time t, but values of 

unknown at time t t  are not superscripted. With insert relation (6.7) into Equation 

(6.6) and with integration of F order to location ( x ) can be rearrange Equation (6.6) 

as follows 
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      ( ) . . . .o

p p e e w wW W V A F A F t S t V                                                           (6.8) 

 

where eA  and wA  are the face areas of the control volumes, V is the volume of 

control volume which is written as eA x  and wA x  where x  called as the width of 

the control volume. 

 

     In order to solve the right hand side of this equation, should be make an 

assumption about the value of unknowns in point p with respect to time. Depending 

on the way of solution can be select these values at time t  or time t t  or 

combination of these at time t  and t t . The general form of unknowns with 

respect to weighting parameter   can be written between 0 and 1 

     0(1 )

t t

T p p p

t

I W dt W W t 


                                                                        (6.9) 

 

Hence 

Table 6.1 Value of   in different schemes 

  0 1/ 2  1 

TI  0

pW t   01

2
p pW W t   pW t  

 

     With paying attention to Equation (6.9) can rearrange Equation (6.8) as follow 

        0 0 0 0( ) (1 ) . . . . . .o

p p e e w w e e w wW W V A F A F t A F A F t S t V                  
  (6.10) 

 

     Note that by selecting  as zeros only use values of unknowns at old time level t ; 

this scheme called as explicit method. When   selected in the range of zero and one 

( 0 1  ) the values of unknown at the new time level are used; the resulting 

schemes are called implicit method. The extreme case of 1   is termed fully 

implicit method and the name of scheme that used 1/ 2   is Crank-Nicolson 

scheme.  
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6.3.1 Explicit Scheme 

 

     Substituting the value of   as zero in Equation (6.10) is given the explicit 

solution. 

      0 0 0 0( ) . . . .o

p p e e w wW W V A F A F t S t V                                                         (6.11) 

 

     Note that by select the value of   as zero, the value of unknowns at old time level 

can be used.    

         

    6.3.2 Crank-Nicolson Scheme  

 

     Whit substitute the value of   as 1/2 in Equation (6.10) Crank-Nicolson scheme 

would be found.  

     
 

 

0 0 0 0( ) (1/ 2) . .

(1/ 2) . . . .

o

p p e e w w

e e w w

W W V A F A F t

A F A F t S t V

       
 

       

                                                 (6.12) 

     

6.3.3 The Fully Implicit Scheme  

 

     With selecting the value of   as one, can be obtained the fully implicit scheme. In 

this scheme the new time step ( t t ) value of unknowns should be used in both 

side of equation. In order to obtain a solution with this scheme a system of algebraic 

equations must be solved at each time level. The solution procedure begins with 

using given initial field of unknowns with paying attention to selected time step t . 

In the next level the new find value for F and W substitute in 0F and oW  and 

procedure is repeated to progress the solution by a further time step. 

 

     Since the accuracy of the implicit scheme is only first order in time, small time 

steps are needed to insure the accuracy of results. The implicit method is 

recommended for general purpose transient calculations because of its robustness 

and unconditional stability (Versteeg & Malalasekera, 1995). 
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     In this study in order to determine the values of F , applied upwind scheme. The 

Figure of upwind scheme can be seen in Figure 6.3. 

 

     With applying upwind method in Equation (6.10) with considering fully implicit 

method can be written   

      ( ) . . . .o

p p P P W WW W V A F A F t S t V                                                      (6.13) 

 

6.4 Equilibrium 

 

6.4.1 Kinematic Wave Model 

 

     In the solution of one dimensional equations for equilibrium sediment transport 

processes in unsteady flow conditions there are the six following unknowns: 

h: depth of flow, u: velocity of water, z: sediment thickness , c: the volumetric 

concentration of sediment in suspension, *bq
: flux of sediment particles and Sf: 

frictional slope.  

 

      In kinematic wave model the required six equations are: 

 

     ●Continuity equations of water (Eq. 4.13) (to find h and z). 

 

     ●Continuity equations of sediment (Eq. 4.15 ) (to find h and z). 

 

     ●(4.23-4.24)  relations (to find velocity of water). 

 

     ●Velikanov equation (Eq. 4.21) (to find volumetric concentration of sediment in 

suspension). 

 

     ●Engelund and Fredsøe relation (Eq. 3.86 divided by γs to find flux of sediment 

particles). 

 

     ●Momentum equation which is written as (Sf=S0). 
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     6.4.1.1 Explicit Scheme 

 

     Continuity equation of water is 
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      Continuity equation of sediment is 
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             (6.15) 

 

where 
3.m   , 

4.n   . 

 

     6.4.1.2 Fully Implicit Scheme 

 

     Continuity equation of water is 
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                                                   (6.16) 

 

     Continuity equation of sediment is 

     

1.5 3 3

p

0 0 0 0
1.5

. . +(1-p ).a.z ( ( ( ) ) ( ( ) )) ( ).( )
2 2 2 2

( ).( ) 2 0
2 2

+
2 . .( ) -(1-p ).a.

2 2

W PP E P E P P
P

W P P W

E W E W

h hh h h h qbs qbs
m a h n n

h h qbs qbs
s

h h z z
s m a

  
   

 
 


 

                               (6.17) 
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where 
3.m   , 

4.n   . 

 

6.4.2 Dynamic Wave Model 

 

     In dynamic wave model the first five equations are the same. Only the last 

equation is substituted by the momentum equation in general form (4.20). 

 

     6.4.2.1 Explicit Scheme 

 

     The momentum equation is 
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                                                       (6.18) 

 

Continuity equation of water is 
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     Continuity equation of sediment is 

     
3 0 0

3
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                                 (6.20) 

 

where .dA h x  ,a=dA/dt and k is a coefficient that depend to the solution. The value 

of k in fully implicit scheme is equal to 1 and in crank-Nicolson scheme is equal to 

1/2. In other equations the value of k is the same. 

 

6.5 Non Equilibrium 

 

     In this case the continuity equation of sediment must be modified. Instead of (Eq. 

4.15), two equations (Eqs. 4.14.a and b) are used with two unknowns which are 
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entrainment rate zE  and deposition rate 
cD . 

 

     Gessler (1965) suggested a value of 0.047 for   for most flow conditions. The 

value of transfer rate can be calculated in flumes by σ = 1/(7h), where h is flow depth, 

parameter   has a range of 0.0 – 1.0 and exponent k has a range of 1.0 – 2.5 in 

literature (Foster 1982, Tayfur 2002, Yange 1996). This study applied value of k as 1 

and value of   as 0.001. 

 

6.5.1 Kinematic Wave Model 

 

     6.5.1.1 Explicit Scheme 

 

     Continuity equation of water is 
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                                                    (6.21) 

 

     Conservation of mass for suspended sediment in the water flow layer: 
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                                      (6.22) 

 

     Conservation of mass for bed sediment in the movable bed layer: 
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 6.5.1.2 Fully Implicit Scheme 

 

     Continuity equation of water is 
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                                                      (6.24) 

 

      Conservation of mass for suspended sediment in the water flow layer: 
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     Conservation of mass for bed sediment in the movable bed layer: 
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 6.5.2 Dynamic Wave Model 

 

     6.5.2.1 Explicit Scheme 

 

     Continuity equation of water is 
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                                             (6.27) 

 

     Conservation of mass for suspended sediment in the water flow layer: 
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     Conservation of mass for bed sediment in the movable bed layer: 
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     The momentum equation is  
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                                                          (6.30) 

 

     It must be noted that instead of value of bed profile z in time t in point P used 

average of values of east E and west W point (LAX scheme).  

 

   The important mater is that must be attention in working with numerical solution 

about stability conditions. In order to satisfy this condition Courant – Friedrichs – 

Lewy (CFL) condition can be used. 

     
 

1n

u gh t
C

x

 
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
                                                                                                      (6.31) 

 

where nC  is Courant number, u is velocity of flow (
1.m s ), g  is gravity acceleration (

2.m s ) 

and h refers to depth of flow ( m ).  
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CHAPTER SEVEN 

TEST OF MODELS 

 

7.1. Introduction 

 

     This study is realized in the scope of the research project TUBİTAK (109M637) 

titled “Experimental and theoretical investigation of two dimensional sediment 

transport resulting from flood wave propagation in open channels; determination of 

local scours at bridges abutments and around interior piers due to this motion-design 

and tests of counter-measures”. Numerous experiments are carried out by using the 

experimental system designed and built in hydraulics laboratory (Güney et al., 2011a, 

Güney et al. 2011b).  

 

     The numerical results are compared with these experimental findings obtained by 

generating the following six input hydrographs. 
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          Figure 7.1 Inflow hydrograph 1. 
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Hydrograph-2
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             Figure 7.2 Inflow hydrograph 2. 
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                 Figure 7.3 Inflow hydrograph 3. 
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             Figure 7.4 Inflow hydrograph 4. 
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Hydrograph-5
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           Figure 7.5 Inflow hydrograph 5. 

 

Hydrograph-6
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            Figure 7.6 Inflow hydrograph 6. 

 

     Note that the unit of time is second and the unit of flow rate (Q) is liter per second. 

Before begin to pass the hydrographs made a smooth surface of sediments in vertical 

and stream-wise direction. The elevation of this bed level measured in longitude and 

latitude directions. But because the aim of this thesis is developed a one dimensional 

models, the average value of bed level elevations in latitude directions used. One and 

two dimensional forms of bed can be found profiles in Figures below. 
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             Figure 7.7 Average of initial view of one dimensional bed profile  
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         Figure 7.8 view of Initial two dimensional bed profile  

 

     Now in this part initially will be given the measurement values of bed profiles for 

hydrographs and after that the bed profile comparison between results of models and 

measurements in one dimensional are given. 
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          Figure 7.9 View of 2 dimensional bed profile after passing the flow for Hydrograph 1. 
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        Figure 7.10 View of 2 dimensional bed profile after passing the flow for Hydrograph 2. 
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         Figure 7.11 View of 2 dimensional bed profile after passing the flow for Hydrograph 3. 
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        Figure 7.12 View of 2 dimensional bed profile after passing the flow for Hydrograph 4. 
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        Figure 7.13 View of 2 dimensional bed profile after passing the flow for Hydrograph 5. 

3.00

4.00

5.00

6.00

7.00

8.00

9.00

10.00

11.00

12.00

13.00

14.00

15.00

16.00

17.00

0.8

0.4

40

50

60

70

80

Y (m)

X (m)

70-80

60-70

50-60

40-50

z(mm)

 

          Figure 7.14 View of 2 dimensional bed profile after passing the flow for Hydrograph 6. 
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Note that first three meters of channel is fixed bed. In this research in order to 

understand the influence of sediment flux relations ( bsq ), three empirical relations 

that suggested by difference investigators, applied. The comparison of results 

between these relations (Luque and Van Beek 1976,Wong and Parker 2006, 

Engelund and Fredsøe 1976), shown there is not really important difference in 

simulation of bed profiles, but between these relations Engelund and Fredsøe (1976) 

relation‟s yield the best results in predict of sediment flux. The results of these 

comparisons are given in Figures below.   
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Figure 7.15 Comparison of bed profiles by difference relations in Eq, Ex, Kwm, Hydrograph 1. 
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   Figure 7.16 Comparison of bed profiles by difference relations in Eq, Ex, Kwm Hydrograph 2.  
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Figure 7.17 Comparison of bed profiles by difference relations in Eq, Ex, Kwm, Hydrograph 3. 
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     Figure 7.18 Comparison of bed profiles by difference relations in Eq, Ex, Kwm Hydrograph 6. 
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 Figure 7.19 Comparison of bed profiles by difference relations in Eq, Ex, Dwm, Hydrograph 1. 
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 Figure 7.20 Comparison of bed profiles by difference relations in Eq, Ex, Dwm, Hydrograph 2. 
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 Figure 7.21 Comparison of bed profiles by difference relations in Eq, Ex, Dwm, Hydrograph 3. 
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  Figure 7.22 Comparison of bed profiles by difference relations in Eq, Ex, Dwm, Hydrograph 6. 
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    Some incompatibilities exist between the experimental findings and numerical 

results due to the selected empirical relations and the different approaches used in 

numerical solutions. The hydrograph durations and the peak discharge values also 

affect this phenomenon. 

 

     Views of sediment flux for example hydrographs are given in figure 7.23 to 7.30.       
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   Figure 7.23 Comparison of sediment weights in Eq.,Ex., Kinematic wave model, Hydrograph 1. 
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     Figure 7.24 Comparison of sediment weights in Eq.,Ex., Kinematic wave model, Hydrograph 2. 
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   Figure 7.25 Comparison of sediment weights in Eq.,Ex., Kinematic wave model, Hydrograph 3. 
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  Figure 7.26 Comparison of sediment weights in Eq.,Ex., Kinematic wave model, Hydrograph 6. 
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    Figure 7.27 Comparison of sediment weights in Eq.,Ex., Dynamic wave model, Hydrograph 1. 
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   Figure 7.28 Comparison of sediment weights in Eq.,Ex., Dynamic wave model, Hydrograph 2. 
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    Figure 7.29 Comparison of sediment weights in Eq.,Ex., Dynamic wave model, Hydrograph 3. 
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   Figure 7.30 Comparison of sediment weights in Eq.,Ex., Dynamic wave model, Hydrograph 6.    
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     Three empirical relations are used to calculate the sediment flux. The calculated 

value is smaller compared to the measured one (hydrograph 6). In this case the 

relation proposed by Luque and van Beek is more suitable. When all hydrographs are 

considered together the relation of Engelund and Fredsoe seems to be the most 

compatible. 

 

7.2 Comparison of Kinematic Wave Models 

     

     In different sections (5m, 8m, 11m, 13.5m, 15m and 17m.) for the six 

hygrographs h values depending on time are given in Figures 7.31 – 7.66 for the 

kinematic wave models. z values after carried out hydrographs at the last time are 

given in Figure 7.67 - 7.72. 
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   Figure 7.31 View of comparison between measurement and predict flow depth in 5.m –Hyd. 1 
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Figure 7.32 View of comparison between measurement and predict flow depth in 8.m –Hyd. 1 
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  Figure 7.33 View of comparison between measurement and predict flow depth in 11.m –Hyd. 1 
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Figure 7.34 View of comparison between measurement and predict flow depth in 13.5.m –Hyd. 1 
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Figure 7.35 View of comparison between measurement and predict flow depth in 15.m –Hyd 1 
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  Figure 7.36 View of comparison between measurement and predict flow depth in17.m –Hyd 1 
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  Figure 7.37 View of comparison between measurement and predict flow depth in 5.m –Hyd.2 
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  Figure 7.38 View of comparison between measurement and predict flow depth in 8.m –Hyd. 2 
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   Figure 7.39 View of comparison between measurement and predict flow depth in 11.m –Hyd. 2 
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   Figure 7.40 View of comparison between measurement and predict flow depth in 13.5.m –Hyd. 2 
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   Figure 7.41 View of comparison between measurement and predict flow depth in 15.m –Hyd.2 



111 

 

 

17m

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

600 700 800 900 1000 1100 1200 1300

Time(s)

H(m) Measurement

Explicit

Implicit

Non Equilibrium-Explicit

Non Equilibrium-Implicit

 

   Figure 7.42 View of comparison between measurement and predict flow depth in 17.m –Hyd. 2 
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   Figure 7.43 View of comparison between measurement and predict flow depth in 5.m –Hyd.3 
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   Figure 7.44 View of comparison between measurement and predict flow depth in 8.m –Hyd. 3 
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  Figure 7.45 View of comparison between measurement and predict flow depth in 11.m –Hyd. 3 
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   Figure 7.46 View of comparison between measurement and predict flow depth in 13.5.m –Hyd.3 
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   Figure 7.47 View of comparison between measurement and predict flow depth in 15.m –Hyd. 3 
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    Figure 7.48 View of comparison between measurement and predict flow depth in 17.m –Hyd. 3 
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   Figure 7.49 View of comparison between measurement and predict flow depth in 5.m –Hyd. 4 
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  Figure 7.50 View of comparison between measurement and predict flow depth in 8.m –Hyd. 4 
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   Figure 7.51 View of  comparison between measurement and predict flow depth in 11.m –Hyd. 4 
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  Figure 7.52 View of  comparison between measurement and predict flow depth in 13.5.m –Hyd. 4 
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   Figure 7.53 View of comparison between measurement and predict flow depth in 15.m –Hyd. 4 
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   Figure 7.54 View of comparison between measurement and predict flow depth in 17.m –Hyd. 4 
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    Figure 7.55 View of comparison between measurement and predict flow depth in 5.m –Hyd 5 
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   Figure 7.56 View of comparison between measurement and predict flow depth in 8.m –Hyd 5 
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  Figure 7.57 View of comparison between measurement and predict flow depth in 11.m –Hyd 5 
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  Figure 7.58 View of comparison between measurement and predict flow depth in 13.5.m –Hyd 5 
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  Figure 7.59 View of comparison between measurement and predict flow depth in 15.m –Hyd 5 
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   Figure 7.60 View of comparison between measurement and predict flow depth in 17.m –Hyd. 5 
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   Figure 7.61 View of comparison between measurement and predict flow depth in 5.m –Hyd. 6 
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   Figure 7.62 View of comparison between measurement and predict flow depth in 8.m –Hyd. 6 
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  Figure 7.63 View of comparison between measurement and predict flow depth in 11.m –Hyd. 6 
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 Figure 7.64 View of comparison between measurement and predict flow depth in 13.5.m –Hyd. 6 
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  Figure 7.65 View of comparison between measurement and predict flow depth in 15.m –Hyd. 6 
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  Figure 7.66 View of comparison between measurements and predict flow depth in 17.m –Hyd. 6 
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   Figure 7.67 View of comparison between measurements and model predicts for bed profiles in hyd1.      
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Figure 7.68 View of comparison between measurements and model predicts for bed profiles in hyd. 2. 
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Figure 7.69 View of comparison between measurements and model predicts for bed profiles in hyd. 3. 
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Figure 7.70 View of comparison between measurements and model predicts for bed profiles in hyd. 4. 
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Figure7.71 View of comparison between measurements and model predicts for bed profiles in hyd. 5. 
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Figure7.72 View of comparison between measurements and model predicts for bed profiles in hyd. 6. 

 

     In the kinematic wave model, the experimental water depth results are in accord 

with those obtained from the numerical solution. The difference between 

experimental and theoretical bed elevation values are in order of a grain size. 

Therefore the compatibility is acceptable. 

 

7.3 Comparison of Dynamic Wave Models 

 

     For the dynamic wave models, in different sections (5m, 8m, 11m, 13.5m, 15m 

and 17m.) for the six hygrographs h values depending on time are given in Figures 

7.73 – 7.108. z values after carried out hydrographs at the last time are given in 

Figure 7.109 - 7.114. 
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     Figure 7.73 View of comparison between measurement and flow depth prediction in 5.m –Hydr.1 
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    Figure 7.74 View of comparison between measurement and flow depth prediction in 8.m –Hyd. 1 
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     Figure 7.75 View of comparison between measurement and flow depth prediction in 11.m –Hyd. 1 
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   Figure 7.76 View of comparison between measurement and flow depth prediction in 13.5.m –Hyd. 1 
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   Figure 7.77 View of comparison between measurement and flow depth prediction in 15.m –Hyd. 1 
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     Figure 7.78 View of comparison between measurement and flow depth prediction in 17.m –Hyd.1 
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  Figure 7.79 View of comparison between measurement and flow depth prediction in 5.m –Hyd.2 
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    Figure 7.80 View of comparison between measurement and flow depth prediction in 8.m –Hyd. 2 

11m

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

600 700 800 900 1000 1100 1200 1300

Time(s)

H(m)
Measurement

Dynamic explicit

Equilibrium
Dynamic explicit non-

Equilibrium

 

   Figure 7.81 View of comparison between measurement and flow depth prediction in 11.m –Hyd.2 
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  Figure 7.82 View of comparison between measurement and flow depth prediction in 13.5.m –Hyd.2 
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   Figure 7.83 View of comparison between measurement and flow depth prediction in 15.m –Hyd. 2 
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   Figure 7.84 View of comparison between measurement and flow depth prediction in 17.m –Hyd. 2 
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Figure 7.85 View of comparison between measurement and flow depth prediction in 5.m –Hyd. 3 
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  Figure 7.86 View of comparison between measurement and flow depth prediction in 8.m –Hyd. 3 
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  Figure 7.87 View of comparison between measurement and flow depth prediction in 11.m –Hyd. 3 
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  Figure 7.88 View of comparison between measurement and flow depth prediction in 13.5.m –Hyd. 3 
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  Figure 7.89 View of comparison between measurement and flow depth prediction in 15.m –Hyd.3 
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Figure 7.90 View of comparison between measurement and flow depth prediction in 17.m –Hyd. 3 
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   Figure 7.91 View of comparison between measurement and flow depth prediction in 5.m –Hyd. 4 



128 

 

 

8m

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

600 650 700 750 800 850 900 950 1000 1050

Time(s)

H(m)
Measurement

Dynamic explicit

Equilibrium
Dynamic explicit non-

Equilibrium

 

      Figure 7.92 View of comparison between measurement and flow depth prediction in 8.m –Hyd. 4 
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  Figure 7.93 View of comparison between measurement and flow depth prediction in 11.m –Hyd. 4 
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  Figure 7.94 View of comparison between measurement and flow depth prediction in 13.5.m –Hyd. 4 
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 Figure 7.95 View of comparison between measurement and flow depth prediction in 15.m –Hyd. 4 
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    Figure 7.96 View of comparison between measurement and flow depth prediction in 17.m –Hyd.4 

5m

0

0.02

0.04

0.06

0.08

0.1

0.12

600 700 800 900 1000 1100 1200 1300

Time(s)

H(m)
Measurement

Dynamic explicit

Equilibrium
Dynamic explicit non-

Equilibrium

 

     Figure 7.97 View of comparison between measurement and flow depth prediction in 5.m –Hyd. 5 
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Figure 7.98 View of comparison between measurement and flow depth prediction in 8.m –Hyd. 5 
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   Figure 7.99 View of comparison between measurement and flow depth prediction in 11.m –Hyd. 5 
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Figure 7.100 View of comparison between measurement and flow depth prediction in 13.5.m –Hyd. 5 
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  Figure 7.101 View of comparison between measurement and flow depth prediction in 15.m –Hyd. 5 
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     Figure 7.102 View of comparison between measurement and flow depth prediction in 17.m –Hyd 5 

5m

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

600 700 800 900 1000 1100 1200 1300

Time(s)

H(m)
Measurement

Dynamic explicit

Equilibrium
Dynamic explicit non-

Equilibrium

 

   Figure 7.103 View of comparison between measurement and flow depth prediction in 5.m –Hyd. 6 
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    Figure 7.104 View of comparison between measurement and flow depth prediction in 8.m –Hyd.6 
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   Figure 7.105 View of comparison between measurement and flow depth prediction in 11.m –Hyd. 6 
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 Figure 7.106 View of comparison between measurement and flow depth prediction in 13.5.m –Hyd. 6 
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 Figure 7.107 View of comparison between measurement and flow depth prediction in 15.m –Hyd. 6 
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  Figure 7.108 View of comparison between measurement and flow depth prediction in 17.m –Hyd.6 
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Figure 7.109 View of comparison between measurements and model predicts for bed profiles in hyd.1 
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Figure 7.110 View of comparison between measurements and model predicts for bed profiles in hyd.2. 
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Figure 7.111 View of comparison between measurements and model predicts for bed profiles in hyd.3 
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Figure 7.112 View of comparison between measurements and model predicts for bed profiles in hyd.4. 
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Figure 7.113 View of comparison between measurements and model predicts for bed profiles in hyd.5 
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Figure 7.114 View of comparison between measurements and model predicts for bed profiles in hyd.6. 

 

     In dynamic wave model, as in the case of kinematic wave model, the computed 

water depth values are in accord with the measured ones. The difference between 

experimental and theoretical bed elevation values are in order of a grain size. 

Therefore the compatibility is acceptable in dynamic wave model too. 
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CHAPTER EIGHT 

CONCLUSIONS 

 

     In this study kinematic and dynamic wave models are used in the one dimensional 

unsteady sediment transport by using the finite volume method. Equilibrium and 

nonequilibrium cases are taken into consideration. Explicit and implicit approaches 

are introduced. The numerical results are compared with the experimental findings. 

The compatibility between experimental and numerical results is acceptable. 

      The relation of Engelund and Fredsoe seems to be the most compatible to 

calculate the sediment flux, except for small discharges for which the relation 

proposed by Luque and Van beek is more suitable. The empirical relations need to be 

used with some attention since they are obtained from the experiments realized in 

particular conditions.  

     In this study, the numerical results are compared with those obtained from the 

experiments performed in the laboratory. It will be also very beneficial to  compare 

them with field measurements. The use of two or three dimensional equations should 

be attempted in order to get a better compatibility between experimental and 

theoretical results. 

 

 

 

 

 

 

 

 

 

 

 

 

136 



137 

 

 

REFERENCES 

 

Aydöner, E. (2010). Theoretical and experimental study of changes in channels 

bottoms due to sediment transport. Thesis of Master of Science., DEU, Izmir. 

 

Ashida, K., & Michiue M. (1972). Study on hydraulic resistence and bedload 

transport rate in alluvial streams. Transactions, Japon Society of civil 

Engineerin ,206,59-69 

 

Balayn P., Paquier A., & Lapuszek M. (2003). 1-D Sediment transport model : 

representation of mixtures and calibration XXX IAHR Congress, Greece ,557-564 

 

Bombar, G. (2009). Experimental and Theoretical Study of Sediment Transport in     

Unsteady Flows, Thesis of PhD., DEU, Izmir. 

 

Bombar, G., Elçi, Ş.,  Tayfur, G., Güney, M.Ş., Bor, A.,(2011). Experimental and 

Numerical Investigation of Bedloas Transport Under Unsteady Flows. Jurnal of 

Hydraulic Engineering. doi:10.1061/(ASCE). 

 

Bor, A. (2008). Numerical modeling of unsteady and non-equilibrium sediment 

transport in rivers, Thesis of Master of Science., IYTE, Izmir. 

 

Cao R. X. (1979). Study on sediment transport capacity for sediment-laden flow with 

high silt concentration. Water Resource and Hydropower Engineering, No. 5, 55–

61  

 

Cao, Z., & Egiashira, S. (1999). Coupled Mathematical Modelling of Alluvial Rivers. 

Journal of Hydraulic Engineering 17(2), 71-85. 

 

Cao, Z., Day, R., & Egiashira, S. (2001). Coupled and Decoupled Numerical 

Modelling of Flow and Morphological Evolution in Alluvial Rivers. Journal of 

Hydraulic Engineering, ASCE 128(3), 306-321. 

  
 

137 



138 

 

 

Capart, H. (2000). Dam break induced geomorphic flows and the transition from 

solid to fluid like behavior across evolving interfaces. Thesis of PhD. Catholic 

University. 

 

Capart, H., & Young, D. L. (2002). Two Layer Shallow Water Computation of 

Torrential Geomorphic Flows. River Flow International Conference on Fluvial 

Hydraulics, Louvain-la-Neuve, Belgium, River flow 2002, 2- 1003. 

 

Chang, H. H. (1982). Mathematical Model for Erodible Channels. J. Hydraul. Div. 

Am.Soc. Civ. Eng. 108(5),678-689. 

 

Chaudhry, M. H. (1993). Open – Channel Flow. New Jersey: Prentice Hall, 

Englewood Cliffs, 07632. 

 

Chaudhry, M. H. (1996). Principles of flow of water. Chapter 2 in Handbook of 

Water Resources.(2.1-2.43) L.Mays (ed.). McGraw-Hill. 

 

Cunge, J. A., Holly, F. M., & Verwey, A. (1980). Practical Aspects of computational 

River Hydraulics. Pitman, USA. 

 

Daneshfaraz, R. & Kaya, B. (2008). Solution of the propagation of the waves in open 

channels by transfer matrix method, Ocean Engineering, 35(2008) 1075-1079. 

 

de Vries, M. (1965). Consideration About Non – Steady Bed Load Transport in Open 

Channels. XI Congress, Int Assoc. of Hydraul. Eng. and Res. St. Petersburg, 

Russia. 

 

di Cristo, C. , Leopardi, A., & Greco, M. (2002). A Bed-Load Transport Model for 

Non- Uniform Flows. River Flow International Conference on Fluvial 

Hydraulics, Louvain-laNeuve, Belgium. River flow 2002, 2- 859. 
 

 

 

 

 

 

 

 

 

Egiazaroff, I. V. (1965). Calculation of nonuniform sediment concentration, J. Hydr. 

Div.,ASCE, 91(HY4), 225–247. 



139 

 

 

Einstein, H. A. (1942). Formulas for the transportation of bed load, Trans., ASCE, 

    107, 561–573. 

 

Einstein, H. A. (1950). The bed-load function for sediment transportation in open 

channel flows,Technical Bulletin No. 1026, U.S. Department of Agriculture, Soil 

Conservation Service, Washington D.C., USA. 

 

Einstein, H. A., & Barbarossa, N. L. (1952). River channel roughness, Trans., ASCE, 

117, 1121–1132. 

 

Einstein, H. A., & Chien, N. (1954). Second approximation to the solution of the 

suspendedload theory, MRD Series Report No. 3, Univ. of California and 

Missouri River Division, U.S. Corps of Engineers, Omaha, Nebr., USA. 

 

Einstein, H. A., & Chien, N. (1955). Effects of heavy sediment concentration near 

the bed on velocity and sediment distribution, MRD Series Report No. 8, Univ. of 

California and Missouri River Division, U.S. Corps of Engineers, Omaha, Nebr., 

USA. 

 

Engelund, F., & J. Fredsoe. (1976). A sediment transport model for straight alluvial 

channels, Nordic Hydrology, 7, pp 293-306. 

 

Fang, H., Chen, M., & Chen, Q. (2008). One-dimensional numerical simulation of 

non-uniform sediment transport under unsteady flows, International Journal of 

Sediment Research ,23 (4), 316-328 

 

Fuladipanah, M., Musavi-Jahromi, S. H., Shafai-Bajestan, M., & Khosrojerdi, A. 

(2010).One dimensional flow and sediment transport fully coupled model 

applicable to sandy river streams. World applied science journal, 9(4),427-433. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



140 

 

 

Güney, M.Ş., Bombar, G., Aksoy, A.Ö. (2011). Effect of coarse surface development 

on the bed load transport of bimodal sediment under under unsteady flow 

conditions. Jurnal of Hydraulic Enginnering (under review). 

 

Güney, M.Ş., Bombar, G., Aksoy, A.Ö. (2011). Investigation of the effect of 

unsteadiness on the transport of bimodal sediments. Jurnal of Hydrology. (under 

review). 

 

Han Q. W. (1980). A study on the non-equilibrium transportation of suspended load. 

Proc., Tthe First International Symposium on River Sedimentation, Beijing, 

China. 

 

Karim, F. (1995). Bed configuration and hydraulic resistance in alluvial-channel 

flows, J. Hydraulic Eng., ASCE, 121(1), 15–25. 

 

Kassem, A. & Chaudhry, M. H. (1998). Comparison of Coupled and Semicoupled 

Numerical Models for Alluvial Channels. Journal of Hydraulic Engineering, 

ASCE 124(8), 794-802. 

 

Kaya, B. & Arısoy, Y. (2010). Differential Quadrature Method for Linear Long 

Wave Propagation in Open Channels, Wave Propagation in Materials for 

Modern Applications, Andrey Petrin, ISBN 978-953-7619-65-7,Published by 

Intech, Vukovar, Crotia,(2010), p.253-266.  

 

Kaya, B., Arısoy, Y. & Ülke, A.( 2010). Differential Quadrature Method (DQM) For 

Numerical Solution of The Diffusion Wave Model. Journal of Flood Engineering. 

Vol.1 No.2. 

 

Kaya, B., & Tayfur, G. (2011). Differential Quadrature Method For Solving Bed 

Load Sediment Transport. International Balkans Conference on Challenges of 

Civil Engineering, 19-21 May 2011, EPOKA University, Tirana, Albania.  

 



141 

 

 

Kaya, B., Ülke, A. & Kazezyilmaz-Alhan, C. M. (2011).  Differential Quadrature 

Method in Open Channel Flows: Aksu River, Turkey, Journal of Hydrologic 

Engineering. (minor revision). 

 

Kebapcıoğlu, E. (2009). Experimental and theoretical study of unsteady flows in 

open channels with different bed slopes.  Thesis of Master of Science., DEU, 

Izmir. 

 

Kuhnle, R. A. (1993). Fluvial transport of sand and gravel mixtures with bimodal 

size distributions, Sedimentary Geology, 85, 17–24. 

 

Laser Distance Measurer, Bosch DLE 70.(2011) Laser Distance Measurer Users 

Guide. 

 

Leupi, C., &  Altinakar., M. S. (2005). 3D Finite Element Modeling of Free-Surface 

Flows with Efficient k  Turbulence Model and Non-hydrostatic Pressure, 

Springer, LNCS 3516,33-40 

 

Met-flow. (2002).UVP Monitor Model UVP-DUO with software Version 3,User‟s 

Guide,Lausanne, Switzerland 

 

Meyer-Peter, E., & Müller, R. (1948). Formulas for bed load transport, International 

Association of Hydraulic Research. IAHR. Stockholm, Sweden, 39-64. 

 

Misri, R. L., Ranga Raju, K. G., & Garde, R. J. (1984). Bed load transport of coarse 

nonuniform sediments, J. Hydraulic Eng., ASCE, 110(3), 312–328. 

 

Patel, P. L., & Ranga Raju, K. G. (1996). Fractionwise calculation of bed load 

transport,J. Hydr. Res., IAHR, 34(3), 363–379. 

 

 

 



142 

 

 

Papanicolaou. A. N., Bdour, A., & Wicklein, E. (2004). One-dimensional 

hydrodynamic / sediment transport model applicable to steep mountain streams, 

Journal of Hydraulic Research Vol. 00, No. 0 , 1–19. 

 

Pe n a, E., Fe, J., Puertas,J., &  Sanchez-Tembleque, F. (2002). A 2D numerical 

model using finite volume method for sediment transport in rivers, River Flow 

2002, Proceedings of the International Conference on Fluvial Hydraulics.6 pages. 

 

Qin, Y. Y. (1980). Incipient motion of nonuniform sediment. J. Sediment Res., No. 1 

(in Chinese). 

 

Rahuel, J. L., & Holly, F. M. (1989). Modeling of River Bed Evolution for Bed Load 

Sediment Mixtures. Journal of Hydraulic Engineering, ASCE 115(11), 1521-

1542. 

 

Rahuel J. L. , Holly Chollet J. P. Belleudy P. J., & Yang G. (1989). Modeling of 

riverbed evolution for bedload sediment mixtures. Journal of Hydraulic 

Engineering, ASCE, Vol. 115, No. 11, 1521–1542. 

 

Rubey, W. (1933). Settling velocities of gravel, sand and silt particles, Amer. J. Sci., 

225, 325–338. 

 

Seo, I. W. ,Jun, I., & Choi, H.S. (2009). One-dimensional finite element model for 

suspended sediment transport analysis. World City Water Forum.ss-p24,3107-

3112. 

 

Sleigh. P. A., & Goodwill. M. (2000). The St Venant Equations, School of Civil 

Engineering, University of Leeds, 18 page. 

 

Tayfur, G., & Singh,P. (2006). Kinematic wave model of bed profiles in alluvial 

channels. Water Resources Research, W06414,1-13. 

 

 



143 

 

 

Tayfur,G., & Singh, P. (2007). Kinematic wave model for transient bed profiles in 

alluvial channels under nonequilibrium conditions. Water Resources Research, 

W12412,1-11. 

 

Van Rijn, C. (1993).Principles of sediment transport in rivers,esturies and coastal 

seas.( 1th ed.) Netherland:Aqua publications. 

 

Van Niekerk, A., Vogel, K. R., Slingerland, R. L. and Bridge, J. S. (1992). „Routing 

of heterogeneous sediments over movable bed: Model development‟, J. 

Hydraulic Eng., ASCE, 118(2), 246–262. 

 

Versteeg, H. K., & Malalasekera, W. (1995). An introduction to computational fluid 

dynamics the finite volue method (1th ed.).New york:Longman scientific & 

technical. 

 

Wang, D., Yang, G., & Wang, M. (2008). Improved method for non-equilibrium 

sediment transport equations with confluence, Proceedings of 16th IAHR-APD 

Congress and 3rd Symposium of IAHR-ISHS, 883-888 

 

Wilcock, P. R., & Southard, J. B. (1988). Experimental study of incipient motion in 

mixed-size sediment, Water Resources Res., 24(7), 1137–1151. 

 

Wu,W. (2007). .Computational River Dynamics (1th ed.). Netherland: Taylor & 

Francis e-Library.     

 

Wu, W., & S. Y. WANG, S. (2008). One-dimensional explicit finite-volume model 

for sediment transport with transient flows over movable beds. Journal of 

Hydraulic Research, 46(1),87- 98. 

 

Wu, W., & Yang, G. (2001). One-dimensional sediment numerical model and its 

application, us-china workship on advanced computational modeling in 

hydroscience & engineering ,1-11     



144 

 

 

Wu W. (2004). Depth-averaged 2-D numerical modeling of unsteady flow and non-

uniform sediment transport in open channels. Journal of Hydraulic Engineering, 

ASCE, Vol. 130, No. 10, 1013–1024. 

 

Wu W., Vieira D. A., & Wang S. S. Y. (2004). One-dimensional numerical model 

for non-uniform sediment transport under unsteady flows in channel networks. 

Journal of Hydraulic Engineering, ASCE, Vol. 130, No. 9, 914–923. 

 

Wu, W., & Wang, S.S.Y. (1999). Movable bed roughness in alluvial rivers, J. 

Hydraulic Eng., ASCE, 125(12), 1309–1312. 

 

Zhang, R. J. (1961) River Dynamics, Industry Press, Beijing, China (in Chinese). 

 

Zhang, R. J., Xie, J. H., Wang, M. F., & Huang, J. T. (1989). Dynamics of River 

Sedimentation,Water and Power Press, Beijing, China (in Chinese). 

 

Zhang,  R. J. (1961). River Dynamics, Industry Press, Beijing, China (in Chinese). 

 

Yongjun L. (2001). 2D Numerical simulation of water flow and sediment transport 

for sandy and gravel shoal reaches in the downstream of tag,Us-China workshop 

on advanced computaitional modelling in hydroscience and engineering ,Oxford, 

Mississippi, USA. 


	Thesis0
	Thesis3

