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INVESTIGATION OF FUZZY FUNCTIONS APPROACH AND ITS
POSSIBLE APPLICATIONS IN INDUSTRIAL ENGINEERING PROBLEMS

ABSTRACT

Fuzzy set theory was introduced by Zadeh in 1965 as an extension to classical set
theory. It has been a very important research subject for many researchers and has
led to new developments for many fields since it enables to handle uncertainties
successfully. One of these important developments is the fuzzy functions concept
which was introduced by Professor 1. Burhan Tiirksen and combines fuzzy sets and
fuzzy clustering concepts to provide an alternative solution approach to solve
problems in diverse domains. The novelty of fuzzy functions is based on the fuzzy
clustering concept and therefore based on fuzzy membership values. Fuzzy clustering
is one of the corner stone of the fuzzy functions since finding the best partition
constitutes the main problem in this approach. There are several fuzzy clustering
algorithms in the literature which can be used in generating fuzzy functions. In this
thesis Fuzzy c-Means (FCM) clustering algorithm is used in order to find out the

membership values.

One of the main motivations behind the development of the fuzzy functions approach
was to overcome some of the drawbacks of the fuzzy rule bases which are one of the

most frequently used fuzzy inference methods with many successful applications.

As a contribution to the existing studies about fuzzy functions, first time in the
present thesis we proposed to use genetic programming (GP) along with fuzzy
clustering as a new approach in generating fuzzy functions. We used many data sets
from the literature in order to present the application and the performance of our
approach. We also performed comparisons with the existing fuzzy function
generation methods like Least Square Estimation (LSE) in order to prove the validity
of our approach. Based on the computational results we illustrated that fuzzy
functions which are generated through genetic programming are very competitive

and effective in many problem settings.



Keywords: Fuzzy set theory, fuzzy rule bases (FRB), fuzzy clustering, fuzzy
functions (FF), least square estimation (LSE), support vector machines (SVM),

genetic programming (GP).



BULANIK FONKSIYON YAKLASIMININ ARASTIRILMASI VE
ENDUSTRiI MUHENDISLIGIi PROBLEMLERINDE OLASI
UYGULAMALARI

0z

Bulanik kiime teorisi, Zadeh tarafindan 1965°de klasik kiime teorisinin
genisletilmis bir sekli olarak ortaya atilmistir. Bulanik kiime teorisi birgok
arastirmaci i¢in ¢ok 6nemli bir arastirma konusu olmus ve belirsizliklerle basarili bir
sekilde bas etme olanagi sagladigi i¢in birgok alanda yeni gelismelere yol agmuistir.
Bu 6nemli gelismelerden biri de, Profesor I. Burhan Tiirksen tarafindan ortaya atilan
ve ¢esitli alanlardaki problemlerin ¢oziimiinde alternatif ¢6ziim yaklasimi saglamak
icin bulanik kiime ve bulanik kiimeleme kavramlarim1 kombine eden bulanik
fonksiyonlardir. En 1yi boliimlemeyi bulmak bulanik fonksiyonlar yaklagimin temel
problemini olusturdugundan dolayi, bulanik kiimeleme, bulanik fonksiyonlarin temel
taslarindan biridir. Literatiirde, bulanik fonksiyonlar1 tiretmede kullanilabilen gesitli
bulanik kiimeleme algoritmalar1 vardir. Bu calismada, tiyelik degerlerini bulmak i¢in

Fuzzy c-Means (FCM) kiimeleme algoritmasi kullanilmaktadir.

Bulanik fonksiyon yaklasiminin gelisiminin arkasindaki ana etkenlerden biri, pek
cok basarili uygulamasi olan ve en sik kullanilan bulanik ¢ikarsama yontemlerinden

biri olan bulanik kural tabanlarinin bazi dezavantajlarinin iistesinden gelmektir.

Bulanik fonksiyonlar ilgili var olan ¢aligmalara katki olarak, mevcut tezde ilk defa
yeni bir yontem olarak bulanik fonksiyonlarin olusturulmasinda, bulanik
kiimelemeyle birlikte genetik programlamanin (GP) kullanmasini  Onerdik.
Yaklagimimizin uygulanisini ve performansini gostermek ic¢in literatiirden bir¢ok
veri setini kullandik. Ayrica yaklasimimizin gegerliligini kanitlamak icin En Kiiciik
Kareler Yontemi (EKKY)gibi mevcut yontemler ile olusturulan bulanik
fonksiyonlart kullanarak karsilastirmalar yaptik. Sayisal sonuglara dayanarak,
genetik programlamayla olusturulan bulanik fonksiyonlarin birgok problem

kiimelerinde rekabetci ve etkili olduklarini 6rneklendirdik.

Vi



Anahtar sozciikler: Bulanik kiime teorisi, bulanik kural tabanlar1 (BKT), bulanik
kiimeleme, bulanik fonksiyonlar (BF), en kiigiik kareler yontemi (EKKY), destek
vektor makineleri (DVM), genetik programlama (GP).
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CHAPTER ONE
INTRODUCTION

1.1 Background

Uncertainty is an important part of the systems and almost all of the problems
encountered in real life stem from containing uncertainty. Therefore defining and
modeling the systems appropriately constitutes the basis of problems. This
uncertainty leads to subjectivity of the expressions which could be changed from
different points of view and limits measuring the performance of the systems. The
classical set theory ignores this uncertainty and defines the systems with sharp
boundaries such as true or false expressions. According to classical set theory an
element either is a member of a set or not. When it is thought the element belongs to
a set, it is represented with “1”, when it is thought the element does not belong to a
set, it is represented with “0” which could be liken to seeing the glass either empty or
full ignoring the water inside the glass. There is a sharp distinction between the
element and the set. But in real life elements are not classified with sharp boundaries
and the classical set theory of 0-1 cannot reflect the systems adequately. Because of
that classical set theory is not capable of explaining such vague systems precisely. In
order to eliminate such an important insufficiency, Prof. Dr. Lotfi Zadeh proposed
fuzzy set theory in 1965 and since than it has become a very important subject. In his
article (1965) he described this new concept as follows; “a fuzzy set is as a class of
objects with a continuum of grades of membership” (p. 338) and claimed that, an
element of a set can take values between 0 and 1 which represents the degree of
belongings of the element to a fuzzy set. Therefore it could be said that fuzzy set
theory describes the systems more accurately and gives better results when classical

set theory is not successful and sufficient.

Since Prof. Dr. Lotfi Zadeh introduced fuzzy set theory, thanks to enabling to
cope with data more sufficiently, it has been a very important way of analyzing and
modeling the systems. As it was expressed by Celikyilmaz (2005), “fuzzy logic (FL)
provides a means for modeling linguistic terms (i.e., fair, good, excellent) by



utilizing membership functions; and in turn provides a framework for Fuzzy System
Modeling” (p. 2).

After fuzzy logic theory has become widely known and itsimportance has been
understood, it has formed the basis of many well-known and efficient researches.
One of them is fuzzy rule bases concept which is originally proposed by Zadeh
(1973) and then studied and developed by many of researchers. Many researchers
such as Mamdani (1974) and Takagi & Sugeno (1985) have made important
contributions depending on the encountered problems in the course of application.

Fuzzy rule bases concept is one of the most known fuzzy inference methods and
could be defined as a system thatis composed of a set of rules which describe the
relationships between inputs and outputs with linguistic variables. The ability of
fuzzy rule bases to model complex systems and developing rules that make intuitive
sense are some of the important advantages of fuzzy rule bases. But despite the
widespread use of fuzzy rule bases, enabling to model complex systems easily and
successful applications, fuzzy rule bases still have some important drawbacks that
obstruct to define systems easily and correctly when the systems are being larger
besides fuzzy rule bases require expert knowledge. All these aforementioned subjects
and more detailed information concerning the fuzzy rule bases could be found out in
chapter 2.

Fuzzy functions concept, which wasproposed by Professor I. Burhan Tiirksen in
order to overcome all aforementioned deficiencies of fuzzy rule bases such as
dependence on expert knowledge and complexity of required operators during the
modeling and analyzing phase, forms the basis of this study. Fuzzy functions concept
could be defined as a combination of functions and fuzzy sets that offers a more
objective way of analyzing the systems. In the literature “fuzzy functions” term has
been used in order to describe many different concepts. Among them, the most
widely used is the one which represents the membership functions. One of the
examples of other definitions is mathematical definition of fuzzy functions that is
proposed by Professor Mustafa Demirci (1999, 2000 and 2001). The implied



meaning of fuzzy functions suggested by Demirci is different from fuzzy functions
concept that is proposed by Professor I. Burhan Tiirksen. However it would not be
wrong to say that fuzzy functions term used by Demirci underlines the mathematical

basis of Tiirksen’s fuzzy functions concept.

In their studies, Celikyilmaz and Tiirksen (2007a, 2007b, 2008a and 2008b) have
applied fuzzy functions to many dataset from the literature and have shown that this

proposed approach gives more efficient results in comparison to fuzzy rule bases.

“Fuzzy Functions” are multi-variable crisp valued functions. The prominent
feature of these functions f (X, i) are that they use the degree of membership u, of
each object to the specified fuzzy set as an additional attribute just as the rest of
the input variables, X. In a sense, the gradations (membership values) become the
predictors. This type of “Fuzzy Functions” emerged from the idea of representing
each unique fuzzy rule in terms of functions (Celikyilmaz and Tiirksen, 2009b,p.
35).

According to Tiirksen’s approach membership values and some of their
transformations such as exponential and logarithmic transformations are added as
new variables to the original datasets. As it could be understood from here,
membership values are the keystones of fuzzy functions. In the literature many
different methods have been proposed for the purpose of finding membership values
and for thepresent study fuzzy c-means (FCM) clustering algorithm is taken as a
basis in order to obtain membership values. As Rezaee, Lelieveldt and Reiber (1998)
defined, “The objective of most clustering methods is to provide useful information
by grouping (unlabeled) data in clusters; within each cluster the data exhibits
similarity” (p. 237). As stated by Rezaee et al. (1998) similarity is very important and
constitutes the basis of fuzzy clustering. Therefore many methods have been

proposed in order to measure the validity of fuzzy clustering algorithms.

In chapter 6, for the implementation phase of fuzzy functions, three different ways
are followed. After membership values of datasets which are taken from UCI



learning machine repository have been found, first of all, only these membership
values are added to the original input variables as new predictors. Then respectively
four and two different transformations of these membership values are added as new
variables to original input variables. But before fuzzy functions with LSE is applied
to these datasets, an artificial dataset is generated and Tiirksen’s proposed algorithm
Is explained via this artificial dataset step by step in chapter 4. Then in the next
chapter genetic programming concept which is the main focus of this study and
forms the basis of fuzzy functions with genetic programming is introduced and the

algorithm is explained with the generated artificial dataset.

1.2 The Main Scope of the Study

Based on Tiirksen’s fuzzy functions approach, the proposed model of fuzzy
functions with genetic programming (GP) forms the basis of this study. The purpose
in using genetic programming is to search whether using the proposed model is

increasing the performance of fuzzy functions or not.

Langdon, Poli, McPhee and Koza (2008) defined genetic programming (GP) as an
evolutionary computation (EC) technique that automatically solves problems
without having to tell the computer explicitly how to do it. At the most abstract
level GP is a systematic, domain-independent method for getting computers to
automatically solve problems starting from a high-level statement of what needs
to be done (p. 927).

Genetic programming is an efficient technique on its own, and gives competitive
results compared to other techniques. In the literature, there are many studies that
combine the genetic programming with other techniques. From this point of view,
assuming that using genetic programming with fuzzy functions may improve the
performance of fuzzy functions, just as in the case of the application of fuzzy
functions with LSE, the same three methods are followed for fuzzy functions with
GP and the same datasets and transformations are used for all methods. Moreover the



same artificial dataset is used in order to explain the algorithm of the proposed model
of fuzzy functions with GP.

After the algorithm of the proposed model is explained step by step with an
artificial dataset, the proposed model is applied to all datasets and then the results of
fuzzy functions with GP and the results of fuzzy functions with LSE are compared.
With the intention of being able to compare in itself R-squarevalues of training,
validation and testing data are calculated for fuzzy functions with LSE. However in
order to be able to compare fuzzy functions with LSE and fuzzy functions with GP,
R-square values are calculated for also whole datasets without separating into
training or testing data. Afterwards based on these R-square values, the validity of

the proposed model is discussed.

1.3 The Structure of The Thesis

The present thesis consists of seven chapters and organized as follows. In chapter
1, a brief introduction is made on the course of the study. In chapter 2, the
fundamental theory of fuzzy rule bases; mostly used types of fuzzy rule bases and
their main drawbacks are explained in detail. Fuzzy clustering concept which
constitutes the basis of the fuzzy functions; type of fuzzy clustering algorithms and
most widely used clustering validity indexes that provide to determine best possible
fuzzy partition are presented in chapter 3. In chapter 4, outlines of fuzzy functions
concept and fuzzy functions with Least Square Estimation (LSE) is explained step by
step with an artificial dataset. After fuzzy functions concept is overviewed, the
proposed method of fuzzy functions with genetic programming approach is discussed
and the algorithm is explained with the same artificial dataset in chapter 5. In chapter
6, the datasets taken from UCI Machine Learning Repository are evaluated with
“fuzzy functions with LSE” and “fuzzy functions with genetic programming”.
Finally the study is ended with chapter 7 in which a brief summary of the study is

provided, conclusions are reviewed and potential future researches are stated.



CHAPTER TWO
A BRIEF OVERVIEW OF FUZZY RULE BASES

2.1 Introduction

A system can be described as a collection of elements which have relationships
with each other and aiming at a common purpose. As much as modeling the systems
always has been an important subject for researches, defining these systems
appropriately has also become an important part of the problems and constitutes
prerequisite step to able to modeling the systems. However systems often contain
linguistic expressions and are stated with linguistic variables which in other words
mean subjectivity. Therefore modeling the systems that composed of linguistic
variables is quite difficult and the classical inference systems are not sufficient for
these systems and do not reflect the accurate results. The notion of fuzzy system

deals with such these problems.

Palit and Popovic (2005) stated that “Fuzzy systems are unique in the sense that
they can simultaneously process numerical data and linguistic knowledge” (p. 146).
As it was expressed by Palit and Popovic, thanks to that fuzzy systems allows both
processing numerical and linguistic variables, modeling the systems realistically
become easier. This advantage has provided fuzzy systems to be widespread in a
short time and to be used successfully for various purposes such as for prediction,

modeling and classification.

After Zadeh introduced fuzzy set theory in 1965 and then its advantages were
discovered, many researches on fuzzy sets have been made. In the literature many
studies have been proposed on fuzzy sets. Between them the most commonly known
and applied fuzzy inference system is fuzzy rule bases system which is also
originally introduced by Zadeh in 1973 and then developed by many researchers.

In his study, Zadeh (1973) described the difference of his proposed approach from
the conventional quantitative techniques of system analysis. As it was expressed by
Zadeh (1973), the proposed approach has three main distinguishing features: “1) use



of so-called "linguistic" variables in place of or in addition to numerical variables; 2)
characterization of simple relations between variables by fuzzy conditional
statements; and 3) characterization of complex relations by fuzzy algorithms”(p. 28).
More information could be found in his study which is called “Outline of a new

approach to the analysis of complex systems and decision processes”.

In the following section fuzzy rule bases concept is reviewed and then detail

information on most commonly known and used types of fuzzy rule bases is given.

2.2 Fuzzy Rule Bases

In their study Cordon, Herrera, Hoffmann and Magdalena (2001) described fuzzy
rule bases as follows; “FRBS is a rule-based system where fuzzy logic (FL) is used
as a tool for representing different forms of knowledge about the problem at hand, as
well as for modeling the interactions and relationships that exist between its

variables” (p.1).

Fuzzy rule bases concept is one of the most known fuzzy inference method and
could be defined as a system thatis composed of a set of rules which describe the
relationships between inputs and outputs with linguistic variables. Due to consisting
of a set of if-then rules fuzzy rule bases are generally known as IF-THEN rules and
in a general structure of fuzzy rule base, IF part represents the antecedent part and
THEN part represents the consequent part of a system. Explaining mathematically,
the general form of a fuzzy rule base is, IF antecedent propositions THEN

consequent proposition. The general representation is shown as follows;

If X1is Al and; X2 is A2,theny is B, (2.1)

Due to fuzzy rule bases composed of linguistic variables such as IF, THEN rules
and do not contain any mathematical values, while fuzzy rule bases are handled
researchers could be confronted with some important problems which are explained

in details in the following parts.



As it can be seen in the Figure 2.1, a typical fuzzy interface system is composed
of a few elements. Rule bases block represents the IF-THEN rules and the database
block defines the membership functions of fuzzy sets. Fuzzification interface is the
process where the crisp values are transformed into fuzzy values. In order to get a
crisp solution, contrary to fuzzification interface, in defuzzification interface
obtained fuzzy values are transferred into crisp values. And the decision making unit

block represents that all these processes are done by the decision making unit.

As it is mentioned above, fuzzy rule bases are composed of a set of operators that
provide to convert crisp variables into fuzzy variables and also fuzzy variables into
crisp variables. Therefore the identification of right operators and variables and their
proper use are very important for modeling systems ideally. Because of that in order
to improve the efficiency of the systems, many studies have been made and still
many researchers study for the correct identification of systems.

Knowledge base

Rule
base

Database

INPUT v v OUTPUT
|:“> Fuzzification Defuzzification :>
interface Interface
Crisp _l F Crisp

Decision making unit
Fuzzy Fuzzy

v

Figure 2.1 A typical fuzzy inference system (Moallem, Mousavi and Monadjemi, 2011)

Fuzzy rule base system was firstly applied by Mamdani (1974). With his
studyMamdani applied fuzzy rule bases to a simple dynamic plant - a model steam
engine and Mamdani’s study showed that fuzzy rule base inference systems could be

applied to such these areas easily and successfully.



Tsoi and Gao (1999) used fuzzy rule bases system to control injection velocity for
thermoplastics injection molding and based on the results of the experiments, in their
study they indicated that “the fuzzy logic-based controller works well with different
molds, materials, barrel temperatures, and injection velocity profiles, indicating that
the fuzzy logic controller has superior performance over the conventional PID
controller in response speed, set-point tracking ability, noise rejection, and

robustness” (p. 3).

As it was mentioned by Leondes (1998) in his study, fuzzy rule bases have an
extensive range of application areas. Some example studies on fuzzy rule bases are

as follows:

e Tsoi and Gao (1999) used fuzzy rule bases in order to control injection
velocity for thermoplastics injection molding which is widely using and

important in plastic processing.

e Traffic signal control is one of the oldest applications of fuzzy logic theory
and in the study of “general fuzzy rule base for isolated traffic signal control-
rule formulation” Niittymaki (2001) used fuzzy rule bases for traffic signal

control.

e Surmann and Selenschtschikow (2002) appliedgenetic fuzzy rule base
learning algorithm to some datasets taken from machine learning repository
in order to compare the results with other approaches.

e Chang and Chen (2009) used fuzzy rule bases and fuzzy clustering techniques
in order to predict the temperature based on the data set of the daily average

temperature and the data set of the daily average cloud density.

e Based on Mamdani fuzzy rule base system, Sivarao, Brevern, El-Tayeb and
Vengkatesh (2009) developed a Matlab GUI in order to predict surface

roughness in laser machining.



e Kaur and Kaur (2012) both applied Mamdani and Takagi-Sugeno fuzzy rule

base for air conditioning system and compared the results.

e Moallem et al. (2011) proposed a novel fuzzy rule base system and applied
this proposed fuzzy rule based system for pose, size, and position

independent face detection in color images.

e Kamyab and Bahrololoum (2012) used TSK fuzzy rule based system with
bacterial foraging optimization algorithm (BFOA) in order to simulate the

foraging behavior.

e In their study which was named as “a genetic fuzzy-rule-based classifier for
land cover classification from hyperspectral imagery” Stavrakoudis, Galidaki,
Gitas, and Theocharis (2012) used fuzzy rule bases for land cover

classification by combining genetic programming.

From this point of view the wide range of application areas of fuzzy rule bases
can be seen clearly. In the following section most commonly known types of fuzzy
rule bases are introduced. Some of the most commonly used fuzzy rule bases are
Zadeh’ fuzzy rule base, Takagi-Sugeno (TSK) fuzzy rule base, Mamdani’s rule base
and Mizumoto’s fuzzy rule base system. Detailed information on the fundamental
theory of these fuzzy rule bases and the difference between them are explained

briefly in the next section.
2.2.1 Zadeh’s Fuzzy Rule Base Structure

“Zadeh first introduced the Fuzzy Modus Ponens known as Generalized Modus
Ponens (GMP) and defined a methodology known as Compositional Rule of

Inference (CRI), which is used to infer fuzzy consequents. Generally, GMP is shown
as follows”(Celikyilmaz, 2005, p. 21);
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Premisel: A - B
Premise2: A (2.2)

Deduction: B*

Where A and A’ are fuzzy sets corresponding to linguistic values of linguistic
variables defined on the universe of discourse of antecedent variable x with
membership functions u,(x): x € X — [0,1] and B and B* are linguistic values of
linguistic variable defined on the universe of discourse of the consequent variable
y with membership functions, ug(y): y € Y - [0,1]. — denotes the implication
relation operator and each premise is a relation and denoted as R;:A —

B,i:1, ..., number of relations (Celikyillmaz, 2005, p. 21).

The above mentioned equations could be also indicated as in equation (2.3) where

“0” represents the composition operator and “—” represents the implication operator.
B*=A0(4A - B) (2.3)

Another and common representation of Zadeh’s (1965) fuzzy rule base structure

is formulated as follows (Celikyilmaz and Tiirksen, 2009b, p. 36):

Cc nv
R:ALSO IFANli(xj € insrAl-j)THENy € YisrB; (2.4)

i=1 ]
e ¢ is the number of rules,
o X

]
number of input variables, X; is the domain of x;

represents the jth input variable and j=1,..,nv, nv represents the

e A;; is the linguistic label associated with input variable x; in rule i with

i J
membership function p,;; (x;): X; — [0,1]

e y isthe output variable of each rule, Y is the domain of y,

e B; is the linguistic label associated with the output variable in the ith rule

with the membership function g, (y):Y — [0, 1]
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e AND is the logical connective that aggregate the membership values of input
variables for a given observation,

e THEN (-) is the logical implication connective,

e ALSO is the logical connective used to aggregate model outputs of fuzzy
rules,

e ‘isr’is introduced by Zadeh and it represents the definition or assignment is

not crisp, it is fuzzy.

Zadeh’s fuzzy rule base has become fundamental for further works and led to
development of new methods, depending on the encountered problems and
shortcomings. Thereinafter, some basic and well known fuzzy inference methods are

going to be introduced briefly.
2.2.2 Mamdani’s Fuzzy Rule Base Structure

Mamdani’s fuzzy inference method is one of the most widely used fuzzy
inference method. By taking Zadeh’s study as a base, Mamdani introduced the
concept of fuzzy logic control. In his study Mamdani (1974) used fuzzy rule bases in
order to control a steam engine and boiler combination by using a set of linguistic

rules supplied from experienced human operators.

The format of his fuzzy rules is as follows; “If; x; is A;and x,is A,and... and x,,is
A, then y is B, where A4, A4,, ...,A,and B are fuzzy sets. The consequence of
implication is a fuzzy set”(Leondes, 1998, p. 63). The mathematical notation and the
general structure of Mamdani’s fuzzy rule base are respectively given in equation 2.5

and in Figure 2.2.

Cc nv
R : ALSO 11?1_4ND1 (x; € X;isA;; )THENYy; is b; (2.5)
i=11 j=
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Figure 2.2 Takagi-Sugeno fuzzy rule base (Ponce-Cruz and Ramirez-Figueroa, 2010)

Mamdani type fuzzy rule based systems provide a highly flexible means to
formulate knowledge, but although Mamdani fuzzy rule based systems possess
several advantages, still they have some drawbacks. As it mentioned in the study of
Cordon (2011) one of the main pitfalls of Mamdani’s fuzzy rule base is the lack of
accuracy when complex and high-dimensional systems are modeled and this is
stemmed from the inflexibility of the linguistic variables, which imposes hard

restrictions to the fuzzy rule structure.

Cordon, Herrera and Zwir (2001) also stated the deficiency of Mamdani fuzzy
rule base as follows: “The lack of accuracy of Mamdani type models is due to some
problems related to the linguistic rule structure considered, which is a consequence

of the inflexibility of the concept of linguistic variables” (p. 63).
2.2.3 Mizumoto Fuzzy Rule Base Structure

Mizumoto fuzzy rule base differs from Zadeh’s fuzzy rule base, with its
consequence part, it could be said that, it is a simplified version of Zadeh rule base.

In Mizumoto rule base, instead of a fuzzy set scalarB;, each consequence of rules

represented with a scalarb;. Mizumoto fuzzy rule base is represented as follows;

13



C nv
R:ALSO IFANq (x; € X;isrA;; )THENy; = b, (2.6)
i=11L j=

In the equation AND, THEN, ALSO are connectives, c represents the number of

rules.
2.2.4 Takagi-Sugeno-Kang (TSK) Fuzzy Rule Base Structure

Takagi and Sugeno modified the consequence of Mamdani rule base structure and
applied their proposed rule base to parking control of a model car. The format of
their fuzzy rules is; If ; x4 is A; and x;, is A, and... and x,, is A, then y = (ag +

axq + -+ apXxy).

As stated by Kaur and Kaur (2012) in their study, contrary to Mamdani fuzzy rule
bases TSK fuzzy rule base is computationally more efficient and gives better results
with optimization and adaptive techniques which enables to model the data more

appropriately.

Kaur and Kaur (2012) explain the difference between Mamdani and TSK fuzzy
rule base as follows; “Mamdani-type FIS and Sugeno-type FIS is the way the crisp
output is generated from the fuzzy inputs. While Mamdani-type FIS uses the
technique of defuzzification of a fuzzy output, Sugeno-type FIS uses weighted
average to compute the crisp output” (p. 323).

As it could be seen from the Figure 2.3 the difference between Takagi-Sugeno and

Mamdani fuzzy rule bases is that, the outputs of the rule bases are not defined by

membership functions; they are defined with non-fuzzy analytical functions.
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As Mizumoto rule base structure, TSK is differ from Zadeh’s rule bases with its

consequent part. Consequent part of TSK fuzzy rule base structure is expressed with

a function of input variables. Fuzzy rule base structure of TSK can be given as

follows;

c nv
R : ALSO IFANDl (x; € X;isrA;; )THENy; = a;x" + b,

i=11 J

e q; and b; are regression line coefficients associated with ith rule,

e y,; is the model output of ith rule,

(2.7)

e THEN is the connective, which weights y; for each rule by using

corresponding degree of firing of a given observation in order to find the

model output from each rule,

e ALSO is the connective, which takes the weighted average of the model

output of each rule in order aggregate the model outputs of fuzzy rules

(Celikyilmaz and Tiirksen, 2009b, p. 39).
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2.3 Advantages and Disadvantages of Fuzzy Rule Bases

Despite the wide range of application areas, fuzzy rule bases still have some
disadvantages. Constructing a rule base is generally difficult and time consuming
besides the need of expert knowledge, due to containing linguistic variables and need
to know the system very well. Another substantial disadvantage of fuzzy rule bases is
the increasing number of parameters and therefore the increasing complexity of
fuzzy rule bases while the systems are being larger. If the system that is going to be
studied has a large number of parameters, it will be so hard to build up an inference
system and decide which parameters are going to be used such as t-norms, co-
norms.In their study Siary and Guely (1998) also mentioned some basic
disadvantages of fuzzy rule bases when the knowledge does not exist and parameters

take time and no consistent methodology exist.

In order to increase the efficiency of fuzzy rule-based systems with multiple
variables, it is necessary to reduce bigger fuzzy rule bases into smaller fuzzy rule
bases while keeping the essential fuzzy rules in the rule bases. However, reducing
fuzzy rule bases will cause sparse fuzzy rule bases which contain blank areas
uncovered by fuzzy rules in the universe of discourse while conventional fuzzy
inference methods only can handle complete fuzzy rule bases (Chang and Chen,
2009, p. 3444).

In order to eliminate these deficiencies, by integrating fuzzy rule bases with other
techniques such as genetic algorithms, neural networks and etc. many different
approaches are proposed. Based on the fuzzy rule base systems and its
disadvantages, one of these proposed approaches is fuzzy functions approach which
is suggested by Tirksen and combines Least Square Estimation (LSE) with fuzzy

membership values.
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2.4 Conclusion

As it could be understood from all aforementioned expressions, fuzzy rule bases
have a great importance and have provided great convenience after they have been
proposed by Zadeh (1973) and then have become widely known. Fuzzy rule base
system applied to a variety of fields successfully and provided to be able to obtain
very good results. But despite their all benefits, they have many substantial
limitations. Tiirksen and Celikyilmaz have proposed fuzzy functions concept in order

to eliminate these insufficiencies.

The fundamental theory of Tiirksen’s fuzzy functions concept is explained in
chapter 4, after the theory of fuzzy clustering, which forms the cornerstone of fuzzy
functions, and the basic types of clustering algorithms are reviewed in the next
chapter.
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CHAPTER THREE
A BRIEF OVERVIEW OF FUZZY CLUSTERING AND CLUSTER
VALIDITY MEASURES

3.1 Introduction

Clustering could be defined as dividing predefined data elements into a number of
subgroups according to their similarities or dissimilarities. In other words a data set
Is split into different groups where each element of a group shows a degree of
closeness and similarity. For grouping into classes, different measures are used
according to the data and the aim of clustering. Palit and Popovic (2005) expressed
that “clusters are usually defined as groups of objects mutually more similar within
the same groups than with the members of other clusters, whereby the term
‘similarity’ should be understood as mathematical similarity, measured in some well-

defined sense” (p. 174).

The objective of most clustering methods is to provide useful information by
grouping (unlabeled) data in clusters; within each cluster the data exhibits
similarity. Similarity is defined by a distance measure, and global objective
functional or regional graph-theoretic criteria are optimized to find the optimal
partitions of data. The partitions generated by a clustering approach define for all

data elements to which class (cluster) they belong (Rezaee et al., 1998, p. 237).

Clustering has been a very important way of data analysis and has been subjected
to many researches. In order to improve the efficiency of existing clustering
algorithms, researchers are studying on new approaches which integrate clustering

algorithms with different methodologies.

In the following sections, some well-known clustering methods and their basic

properties are going to be introduced and compared with each other.
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3.2 Basic Types of Clustering Algorithms

Clustering methods have been widely applied in various areas such as taxonomy,
geology, business, engineering systems, medicine and image processing etc. The
objective of clustering is to find the data structure and also partition the data set
into groups with similar individuals. These clustering methods may be heuristic,
hierarchical and objective-function-based etc. (Yang, Hwang and Chen, 2004, p.
301).

To classify clustering algorithms, in a general manner, clustering could be divided
c-partitions of data as hard (or crisp) and soft (or fuzzy) clustering as Ross (2004)
classified in his study. In the next sections, hard clustering, fuzzy c-means clustering

and Gustafson-Kessel clustering algorithms are introduced briefly.

3.2.1 Hard Clustering

In classical set theory, when elements are grouped, they are split into clusters
according to whether they belong to a cluster or not. If an element belongs to a
cluster it is represented with “1” if it doesnot belong to a cluster it is represented with
“0”. Furthermore an element can be a member of only one cluster, cannot be a
member of a different cluster at the same time. In the literature this is called as hard

clustering.

A hard partition can be considered as a group of subsets formulated in terms of
classical sets. The objective of hard clustering is to partition the given data set;

X = {x4, x3, ..., x,, } into c clusters.

Let we define a family of {4;, i = 1,..,c}as a hard partition of X, the following

forms apply to these partitions:
C

UAi=X 2<c<n (3.1)
i=1
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The above equations that the elements of the U partition matrix must satisfy the

following conditions:

i €{0,1}, 1<i<c¢gl<k<n (3.5)
C
zﬂik=1, 1<k<n (3.6)
i=1

n
OSZuik <n, 1<i<c(3.7)
k=1

The discrete nature of hard partitioning causes difficulties with algorithms based
on analytic functionals, since these functional are not differentiable. Clustering
algorithms may use an objective function to measure the desirability of partitions.
Nonlinear optimization algorithms are used to search for local optima of the
objective function. The concept of fuzzy partition is essential for cluster analysis,
and consequently also for the identification techniques based on fuzzy clustering
(Palit and Popovic, 2005, p. 175).
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3.2.2 Fuzzy C- Means Clustering Algorithm

Contrary to hard clustering, in fuzzy clustering data elements do not have to
belong only one cluster. Each element can belong to a cluster with different
membership degrees and these membership degrees indicate the strength of
relationship between the element and cluster.

Bezdek, Ehrlich and Full (1984) explained the fuzz clustering as follows; the key
to Zadeh's idea is to represent the similarity a point shares with each cluster with a
function (termed the membership function) whose values (called memberships)
are between zero and one. Each sample will have a membership in every cluster;
memberships close to unity signify a high degree of similarity between the sample
and a cluster while memberships close to zero imply little similarity between the
sample and that cluster (p. 191).

Fuzzy c-means clustering algorithm has proposed by Bezdek (1981) and this
algorithm gives a c-partition of a dataset. According to this algorithm, each sample in
the dataset represented with membership function which ranges between zero and
one and the sum of the memberships for each sample must be unity. After Bezdek
has proposed fuzzy c-means clustering algorithm, it has been one of the most popular
clustering algorithm and paved the way for the developments of new methods. In the

literature there are many different variations of fuzzy c-means algorithm.

The FCM algorithm tries to divide the elements of a dataset X = {xy,...,x,} into
fuzzy clusters according to the some given criterions. Given a finite set of data, the
algorithm returns a list of ¢ cluster centersC = {cy,...,c.} and a partition matrix U =
w,; €[01], i=1,...,n, j=1, ...,c where each element u;; tells the degree to
which element x; belongs to clusterc;. Same as hard clustering FCM algorithm aims

to minimize an objective function.

In fuzzy clustering the membership value of the kth data in the ithcluster

represented as in the following notation:
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i = pa, () € [0,1] (3.8)

In fuzzy c-means (FCM) algorithm the equation below must be satisfied,

Cc
Zuik =1 forall k=1.2,..,n (3.9
i=1

As in crisp classification, there can be no empty classes and there can be no class
that contains all the data points. This qualification is manifested in the following

expression:

c
0< Z Uik <1 (3.10)
i=1

Fuzzy c-means is based on minimization of the objective function, which is

shown below (Dulyakarn and Rangsansei, 2001);

n c
@) =D Y WX —ViIE 1<m <311
1

j=1i=

The “m” value is the degree of fuzziness and is greater than 1, u; is the
membership values which represents the degree of belongingness of X;to cluster i, V;
represents the cluster center and ||x|| is any norm expressed the similarity between

any measured data and the center.

For FCM algorithm, fuzzy partition is carried out through an iterative

optimization of with the update of membership u;; and the cluster centers V;by;

uy = ———— (3.12)
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_ =17 (3.13)

FCM algorithm is iterated until the equation below is supplied. In the equation ¢ is
a termination criterion between 0 and 1.

max;; |ul’7 - Af]”| <¢ (3.14)

As it mentioned before, fuzzy c-means clustering algorithm is one of the most
know and used soft clustering algorithm. It has a diverse of application areas and
many researchers have applied fuzzy c-means clustering algorithm successfully
(Chaira, 2012; Kim, Kim, Ho and Chu, 2011; Kuo, Shih and Lee, 2004). Kuo, et al.
(2004) used fuzzy c-means clustering algorithm for the automatic recognition of
fabric weave patterns. Also in another study Kim et al. (2011) applied fuzzy c-means

clustering method to cluster tropical cyclone tracks.

In the literature there are many different kinds of clustering methods. Some
example studies on fuzzy c-means clustering and its improved versions are as

follows:

e (Celikyilmaz and Tiirksen (2008a) proposed a new clustering algorithm which

combines the standard fuzzy clustering and regression methods.

e One of the improved versions of FCM algorithm “DifFUZZY: A fuzzy
clustering algorithm for complex data sets” clustering method proposed by
Cominetti et al. (2010). Cominetti et al. indicated that their clustering method
is applicable to a larger class of clustering problems and can handle complex,

nonlinear geometric structures in comparison to FCM clustering algorithm.

e Chaira (2012) also proposed a new approach based on fuzzy c-means to

cluster pathological cell images by using different color models.
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e Parker, Hall and Bezdek (2012) proposed new clustering algorithms which
are some different variations of fuzz c-means clustering algorithm and

proposed for the purpose of being able to cope with large datasets.

e Dagher (2012) proposed the complex fuzzy c-means algorithm (CFCM) and

concluded that CFCM algorithm gave better cluster partitions.

Other new methods also have been also proposed based on fuzzy c-means
clustering algorithm (Cannon, Dave and Bezdek, 1986; Hathaway and Bezdek,
2006).

FCM clustering algorithm has two important information; “c” the number of
clusters and m-the order of fuzziness. It is difficult to select suitable (c*, m*) pairs
because of the unsupervised behavior of FCM. There are many different validity
indexes for choosing the number of clusters and the order of fuzziness for fuzzy

clustering algorithms (Baskir and Tiirksen, 2013, p. 930).

In section 3.3, some of the commonly used validity indexes are introduced briefly.

3.2.3 Gustafson-Kessel Clustering Algorithm

Gustafson-Kessel clustering algorithm differs from the FCM clustering algorithm.
The FCM clustering algorithm is a cluster prototype with one center of gravity
location, while the Gustafson-Kessel clustering algorithm is a cluster prototype of
volume, each of which contains the relevant covariance matrix and center of
gravity location. Hence, each data set has a sub-clustering center of gravity
location and data set distribution information (Kuo , Jian, Wu and Peng, 2012, p.
580).

Hamed, Keshavarz, Dehghani and Pourghassem (2012) in their study indicated
that, ”the Gustafson-Kessel algorithm (GK) extended the standard fuzzy c-means
algorithm by employing an adaptive distance norm, in order to detect clusters with
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different geometrical shapes in one data set. Each cluster has its own norm-inducing
matrix” (p. 223).

In comparison to fuzzy c-means algorithm, GK clustering algorithm needs more
computation. In order to reduce calculations, the GK clustering can be performed

after obtaining results from fuzzy c-means algorithm.

The GK clustering is based on iterative optimization of an objective function of

the c-means type:

c N
J; UV MD = D ()" D (3.15)

i=1k=1

Given the data set P, choose the number of clusters1 < ¢ < N, degree of
fuzziness > 1 , the termination tolerance ¢ > 0 and the cluster volumes p;.
Initialize the partition matrix randomly, such that U® € M;..U = [uy,] € [0,1]*V is
fuzzy partition matrix of the data. The algorithm of GK clustering algorithm is
repeated for [ = 1, 2, ... as below (Hamed et al., 2012, p. 224).

Firstly cluster centers are calculated:

Noa-D
—1U.
to fk=ttie PRy oy (3.16)

O

Yy

Then cluster covariance matrix is calculated:

1-1)\™
§<V=1(ui(k )) (pk_vil)(pk_vil)T
>N, (u.(?_l))

Yy
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Selected identity matrix is added:

FE=0-y)F

1
+ ydetifFy) @1 (3.18)

Extract eigenvalues A;; and eigenvectors ¢;; from F;. Find A;,,,, = max;jA; and

set: A;j = Aimax /B Vj fOr Whichli;"% > [3. Reconstruct F; by;

F; = [$i1 - Ginldiag iy, oo, 2 [Bi1 o Pin ] (3.19)

Then the distance is calculated:
1
D4, = (0 — v |pi detFYF (o —v),  1<i<c1<k<N (3.20)

The partition matrix is updated:

ud = ! (3.21)
ik — 2/(m—-1) :
Zle(DikAi/DjkAi)

The production of the cluster centers and partition matrix is continued

until||[U® — u¢=D|| > . Otherwise GK algorithm is stopped.
3.3 Cluster Validity Measures

Validity measures are scalar indices that assess the goodness of the partition
obtained. Clustering algorithms generally aim at locating well-separated and
compact clusters. When the number of clusters is chosen equal to the number of
groups that are actually present in the data, it is expected that the clustering
algorithm will identify them correctly. When this is not the case,

misclassifications appear, and the clusters are not likely to be well-separated and
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compact. Hence, most cluster validity measures are open to interpretation and can

be formulated in different ways (Palit and Popovic, 2005, p. 181).

For fuzzy clustering, cluster validity is based on finding a fuzzy partition that fits
the all data appropriately. Therefore clustering validity always tries to find the best
fixes number of clusters. In the literature there are many different cluster validity
measures. But as Balasko, Abonyi and Feil (2005) indicated in their study, no
validation index is reliable only by itself. The optimal number of cluster should be
determined by synthesizing all available measures. Also in their study they stated
that less clusters are better for the optimal number of clusters.

Commonly used cluster validity indexes are represented below. Before
representing validity indexes, general parameters which are used in validity indexes
are introduced below.

e “c” is the number of cluster,

13 2

e “n”is the number of data vectors,

e “u” represents the membership values,

e “v;”is center points of ith cluster

e  “m”is degree of fuzziness,

e “n;” is the number of element in ith dimension,
e “c;” ith cluster

e ||c;|| number of element in ith cluster

e d(x,y) distance between two data element
e Partition coefficient (PC): It is defined by Bezdek, and measures the amount of

overlapping clusters. For partition index, the maximum value means the

optimum value.

P =13 S w2

i=1j=1

27



Classification entropy (CE):It measures the fuzziness of the cluster partition.

For classification entropy the minimum value is the optimum value.

1 c n
CE(c) = _EZEMU log(ﬂij) (3.23)

i=1j=1

Partition index (SC): is the ratio of the sum of compactness and separation of

the clusters. The lower value of partition index represents a better partition.

c

n \ym L . 2
SC(C):ZZ,-ﬂ(uL,) % = il (3.24)
i=1

n; Zizlllvk - vi”Z

Separation index (S): The separation index uses the minimum-distance

separation for partition validity. The minimum value gives the best partition.

S )2l — vl

S(e) = : ;
nming || —vi|

(3.25)

Xie and Beni’s index (XB): XB index quantifies the ratio of the total variation
within clusters and the separation of clusters. The minimum value gives the

optimum number of clusters.

I )™ % —

nmin | — v

S(c) = (3.26)

Dunn’s index (DI): The maximum value of Dunn index gives the optimum

number of clusters.
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Minyec,, yec, d(X,y) } (3.27)

DI(c) = min;e, minjECi;tj {
maxy Ec{maxx,y ECd (xr y)}

Davies—Bouldin index (DB): “This is probably one of the most used indices in
CVI comparison studies. It estimates the cohesion based on the distance from the
points in a cluster to its centroid and the separation based on the distance
between centroids” (Arbelaitz, Gurrutxaga, Muguerza, Perez and Perona, 2013,
p. 245).

The Davies-Bouldin Validation Indice (DB) represents the ratio of the total

within-cluster scatter to between-cluster separation. The scatter,S;, within the i th

cluster, is computed as (Sato, Suzuki and Mabuchi, 2007);

Si:

llc

1
i”;d(x, v) (3.28)

Where ¢; is the set of data points in the ith cluster, ||c;|| is the number of data
points in ith cluster and v; is the cluster center point of ith cluster. The centroid

distance, d;; is;

dy = ||lvi — v | (3.29)

Thus Davies-Bouldin index is defined as where i,j = 1, ..., c;

1 Si+S;
DB(c) = -/, max (3.30)

ij=i d;;

i=1

The minimum value of Davies-Bouldin index gives the optimum number of

clusters.
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e Kim Index (KI): In cluster validity index, the relative degree of sharing of two
fuzzy clusters is defined as the weighted sum of the relative degrees of sharing
for all data (Zhang and Qian, 2012).

Kim(c) = c—#(—l)z z [c X mini?iéqu (x]-),qu (x])) X h(x]-)] (3.31)

p#q j

Where h(x; ) = — X¢_; uF;(x;) log, wF;(x;), F, and F, are be two fuzzy
clusters belonging to a fuzzy partition (U,V) and c is the number of clusters. The

minimum value of Kim index, gives the best optimum number of clusters.

Arbelaitz et al. (2013) compared 30 cluster validity indexes in an experimental
setting. More information on cluster validity indexes could be found out in their

study.
3.4 Conclusion

As it was emphasized in previous sections, clustering concept is one of the
cornerstones of Tiirksen’s fuzzy functions approach. Clustering is also crucial in the
proposed “fuzzy functions with genetic programming” approach as it is based on the

Tiiksen’s fuzzy functions concept.

As it was emphasized before the novelty of Tiirkgen’s fuzzy functions approach is
that membership values and some of their user predefined transformations are added
as new variables to original input variables of the dataset. Therefore fuzzy clustering
forms an important part of fuzzy functions. For this reason in this chapter, the

concept of clustering and basic types of clustering algorithms areintroduced.

In order to find out membership values of the datasets, fuzzy c-means (FCM)
clustering algorithm ischosen to be used in the present study. To find out the optimal
number of clusters for the application phase of fuzzy functions with LSE and fuzzy

functions with GP, partition coefficient (PC), classification entropy (CE), partition
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index (SC), separation index (S), Xie and Beni’s index (XB),Dunn’s index (DI) and
alternative Dunn index (ADI) are used. These validity indexes are realized via fuzzy

clustering toolbox which is prepared by Balasko, Abonyi and Feil(2005) in Matlab.
In the next chapter, firstly fuzzy functions concept and its algorithm is introduced,

afterwards a small artificial data is generated and the algorithm is explained with this

dataset step by step for enabling a better understanding of the concepts.
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CHAPTER FOUR
FUZZY SYSTEM MODELING BY TURKSEN’S FUZZY FUNCTIONS
APPROACH

4. 1Introduction

In the literature, there have been many different definitions of “fuzzy functions”
concept. Probably the most known definition of “fuzzy functions” is the one which
represents the membership functions. Another implied meaning of fuzzy functions is
the mathematical definition which is coined by Demirci (1999). The fuzzy functions
term which used in this study was introduced by Tiirksen in 2004 and it is not same
with fuzzy function term used by Demirci (1999). However as also stated by
Celiky1lmaz and Tiirksen (2009a, 2009b) the fuzzy functions term used by Demirci

(1999) underlines the mathematical basis of Tiirksen’s fuzzy functions concept.

Fuzzy rule bases which are overviewed in the previous chapter were used
successfully for modeling many problems. Although its success in many problems,
fuzzy rule bases still have some difficulties. In fuzzy rule bases there are several
parameters to be identified such as “number of fuzzy rules”, “type of fuzzy
operators” that affect the performance of the fuzzy rule bases. In a sense this means
that fuzzy inference system which is based on fuzzy rule bases involves subjectivity
and requires expert knowledge. Many researchers have pointed out the difficulty of
fuzzy rule bases, when it is not easy to access the knowledge and the dimensions of
the system changes (Siary and Guely, 1998). It is clear that systems are generally
complex and this poses an obstacle for correct identification of the systems and
therefore modeling them properly. In this respect, applying fuzzy rule bases to real
problems can become more difficult. For this reason, Tiirksen in 2004 has proposed
fuzzy functions as an alternative to fuzzy rule bases. Fuzzy functions approach does
not require “expert knowledge” and fuzzy set operators such as “fuzzification”,

2 (13 2 (13

“difuzzification”, “t-norms”, “co-norms” etc. Therefore, these properties provide

fuzzy functions to be implemented more easily for several problem types.
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After Tiirksen’s introduction of fuzzy functions approach, Celikyillmaz and
Tiirksen (Celikyilmaz and Tiirksen, 2007a and 2007b; Tiirksen and Celikyilmaz,
2006;) have also made improvements by combining fuzzy functions with several

other soft computing techniques like metaheuristics.

4.2The Concept of Fuzzy Functions

Tiurksen (2012) described fuzzy functions concept as an approach where a
classical regression is enhanced by the introduction of membership values and
their transformations to improve the regression constant, and hence the
introduction of fuzzy functions in place of fuzzy rule bases where a fuzzy
clustering algorithm such as FCM or IFC is used to determine the number of such

fuzzy regressions required for an affective solution (p. 348).

As it was stated before in fuzzy functions approach, instead of representing a
system with IF-THEN rules or similar linguistic expressions, a system is represented
with fuzzy functions. In their excellent study Celikyllmaz and Tiirksen (2009b)
indicated that in fuzzy functions approach depending on the complexity of the
system, each vector could be represented with different methods such as least square

estimation (LSE) or support vector machines (SVM).

One can build models for various system structures as with the other fuzzy system
modeling tools by making use of fuzzy functions approach. The goal of the
general system modeling depends on the type of the system under study. If the
aim is to assign class labels to objects, such as in classification problems, the goal
of the system modeling is to reduce the number of misclassified cases. On the
other hand, if the problem involves estimation of a relationship between given
independent variables and the dependent variable by using functions, then the goal
of a system modeling is to find a representation function that can minimize the

prediction error (Celikyillmaz and Tiirksen 2009b, p. 106).
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The novel feature of fuzzy functions is that the membership values and some of
their proper transformations obtained from fuzzy clustering algorithms (i.e. fuzzy c-
means (FCM) clustering algorithm or Gustafson-Kessel clustering algorithm) can
also be added to the original data matrix in order to explain the relationship between
input and output values better. Tilirksen propound that, using membership values and
their transformations as additional variables will enable to identify the structure of

the given data more easily.

Celikyilmaz (2005)in her thesis, applied fuzzy functions with LSE and fuzzy
functions with SVM to two datasets and compared the results of both model.
Tiirksen and Celikyilmaz also used different methodologies with fuzzy functions and
other fuzzy inference methods and compared them in order to evaluate the
performance of fuzzy functions (Celikyilmaz and Tiirksen, 2008a, 2008b; Tiirksen
and Celikyilmaz, 2006). Also in his study, Tiirksen (2011) studied Type-1 Fuzzy
Functions (FF) and Improved Fuzzy Functions (IFF) in which improved fuzzy

clustering algorithm was used and results were compared.

Generally, modeling a system is composed of three phases; “training”,
“validation” and “testing” phases. Structure identification of the model constitutes
the training phase. General structure of the system and the parameters which
represent the system ideally are tried to be found out with training dataset. Training
dataset comprise a large part of the system. The modeling performance of the system
which is modeled according to parameters found out during the training algorithm is
trying to be measured with testing dataset. These processes are repeated several times

in order to calculate general performance of the system.
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Figure 4.1 General structure of fuzzy functions (Celikyilmaz and Tiirksen, 2009b)

4.2.1Type-1 Fuzzy Function Approach with Least Square Estimation (T1FF)

In the first step of the fuzzy functions approach, the data which is going to be
searched is firstly clustered into overlapping clusters. FCM clustering algorithm is
one of the most commonly used clustering technique and the degree of overlapping
clusters is represented with “m”. In order to obtain membership values that represent
the degree of belongingness to each cluster, fuzzy c-means (FCM) clustering
algorithm is decided to be used also in this study. Then the membership degrees of
the observations for each cluster have to be found out. As it can be understood
clearly, the membership values play a key role for fuzzy functions approach. Finding
the best descriptive membership degrees directly related to finding the most
appropriate number of clusters. In the next section more detailed information on the

structure identification of fuzzy functions and the inference mechanism is given.
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4.2.1.1 Structure Identification of Fuzzy Functions with LSE

Let Z(x,y) = {(x1,¥1), (x2,¥2), ..., (xn, ¥2)}, represents the input-output space,
where z(x, y,) © R™ ! denotes any data vector from training set and every data
point is composed of (nv+1) dimensions of input vectors,
xp = (X g oo Xpo) €ER™, k=1,..,n, a total of n vectors, and an output
Vi € R™(Celikyilmaz and Tirksen, 2009b, p. 114). Here Z represents the input-

output matrix. “nv” is the number of variables.

Before applying the fuzzy functions approach, some parameters are defined and
FCM algorithm is applied. In the FCM clustering algorithm, “i” is used to symbolize
“c” which represents the total number of clusters. “n” represents the number of data
vectors and “m” represents the degree of fuzziness which means “degree of
overlapping clusters” and it is greater than 1. To indicate the related matrixes, let
assume that there is a multi-input single output (MISO) dataset and X represents the

input matrix; the mathematical notation of input matrix is shown below;

X11%12 X1
X=1:

] (4.1)

xn,lxn,z xn,nv

Let Y represents the output matrix; the output matrix is shown as follows;

Ui € [0,1] represents the membership degrees of the kth data in cluster “i”. The

matrix of the membership degrees of all data for each cluster is shown as below;

HU11HM12.-U1c

; ] (4.3)

U = :
l’l‘n,ll’l‘n,z "'.un,c

36



“nm” is the dimension of augmented matrix (membership values and their
transformations) that is added to the original data matrix. To give an example, we
assume that there is a dataset composed of multi input single output and only
membership values are selected to be added. So nm is equal to 1 (nm=1) and the
new matrix is shown in equation 4.4. The abnormalities generated by the clustering

algorithms could be eliminated with an a-cut.

Hi1Xix1  ° Xixn Ug; > a—cut
@;(x, ;) € RVH = [ i ] 0<k<n (44)
HiiXgx1 " Xgxnv i=1,..,c

As it was mentioned before the novelty of the fuzzy functions is that membership
values and their transformations are added to the original data matrix as additional
dimensions. The final matrix which is composed of the original data, membership
values and some of their transformations is shown by equation 4.5;

Haiexpiluy ) (Uy, )P Xix2 0 Xixnw

P(x, 1) = (4.5)

Hn,iexpiliy ) (Hn, )P Xnx2 = Xnxnv

In fuzzy functions approach in order to explain the relationship between variables,
some kind of statistical methods such as least square estimation (LSE) or support
vector machines (SVM) can be used according to the complexity of the datasets. In
this study, fuzzy functions approach with least square estimation (LSE) is going to be

introduced and it is used for all example case studies.

Celikyilmaz and Tiirksen (2009b) have described the training algorithm for fuzzy

functions as follows;

Step 1: Firstly the parameters of the FCM clustering algorithm are decided;
e m>1.1 (degree of fuzziness),
e ¢>1 (the number of clusters),

e ¢ (atermination threshold).
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Step 2: Execute FCM clustering algorithm to find cluster centers v;(xy)of the
datasetZ(x, y).

2 -1

1<k <n dk] (Xy)

d l X
1gY<c Ui (xy) = \Z( a (xy) dkly =[G, yi) —vi W (4.6)

Step 3: Membership values are found out according to equation in (4.7);

2/m-1)\ 1

Cc d ;
W i (x) = E ( o) , wheredy; (x) = [lx — vl (4.7)
j=1

1<k<n dij (%)

Step 4: Membership values of each input data sample, w;;, their transformations and
identity matrix are augmented to the original input matrix as shown by equation (4.8)

‘C 2

for each cluster

1ﬂ1lexp (#11)(#1z)px1x1 " Xixnw
o, = Wi |@48)
1/‘11 iexpt (#n 1)(lln z)pxnxl " Xnxnw

Step 5: Regression coefficient parameters are calculated for each cluster “i” by

executing the equation (4.9).

Bi= (@ @) (¢,'Y) (4.9)
As it was stated in the algorithm above, firstly FCM clustering parameters; m, c,

and & are chosen. Then applying FCM clustering algorithm, membership values are

obtained. In step 4, membership values (u;;) and their transformations are

augmented into the original data matrix as new dimensions of the original dataset.
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In the algorithm as it wasdepicted above, the last step means that one regression
function f(®;,B;) is identified for each cluster. Original input matrix could be
mapped onto higher dimensions by using transformations of membership values. In
order to get more appropriate or accurate results, Celikyllmaz and Tiirksen (2009b)

proposed to use mathematical transformation of membership values such as (u;) 2,

™ exp(p), I — () / (i) -
4.2.1.2 Inference Mechanism of Fuzzy Functions with LSE (T1FF)

Let the validation data be represented with XV = {x{, x3, ..., x,4,} every kth
data vector contain input vectors of dimension of nv, X = (x{4, ..., X, ;) and an
output y € R. Here XV represents the input matrix of (ndv X nv), ndv is the
number of validation vectors, ¢ is the number of clusters, m is the degree of
fuzziness and i (i = 1, ..., ¢) is the cluster identifier. Same as in the validation data,
testing data is represented with Xtest = {xiest xfest xleSt} In every vector
(observation) contains a nv dimensional vector of X;** = (x{%", ..., x.5;) € R™
and an output variabley!est € R. Xt is the input matrix, nte is the number of

testing vectors.

The algorithm for the inference mechanism of fuzzy functions is described as
follows (Celikyilmaz and Tiirksen, 2009b);

Step 1: Membership values of each validation sample, x{, k = 1, ..., ndv are found

out by using the equation (4.10);

K / i=1,..,c,wheredy; = ||x{ —v;(x)|]| (4.10)

Step 2: Membership values of validation data, uy;, their transformations and identity

matrix are added to original validation data xV — ®;(x"|u}), in R+ space.
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1 exp(Ul )WL) x50 - X 1xnw

@' = (4.11)

1#5,1'exP(#Z,i)(Mf,i)vanxl xvnxnv
Step 3: Then by using equation (4.12)output values are calculated.
Vi = Pr,iBi (4.12)

Step 4: Finally single output value for validation data samples are calculated by
weighting inferred fuzzy output values from each cluster with their corresponding

membership values.

P L (4.13)
2 M

In the algorithm as stated above, firstly membership values according to fuzzy-c
means clustering (FCM) algorithm are calculated. Then these membership values and
their transformations (same as in training algorithm) are added to the original
validation data matrix as additional dimensions. Then (same as the training algorithm
with this new matrix) fuzzy functions are defined for each observation. Afterwards,
the predictedoutput values of the data vectors are found by multiplying coefficients
matrix which is found in the training algorithm and this new matrix. When this stage
is finished “c” numbers of output matrixes are found for each observation. Finally
for each data sample a single output value is found by using the equation (4.13),by

multiplying the output values with their corresponding membership values.
In order to enable much better understanding of the fuzzy functions approach a

hypothetical example with all necessary computational steps is shown in the next

sub-section.
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4.3An lllustrative Example for Fuzzy Functions with LSE

In order to ensure that the concept of Tiirksen’s fuzzy functions approach is
understood more easily, the algorithm is explained with a numerical example. For
this purpose a small artificial dataset is generated which is consisting of 3variables
and 10 observations. The dataset is represented in Table 4.1.

Table 4.1 Input and output variables of generated artificial dataset

Observations Variablel Variable2 Variable3 Outputs
1. observation 15.00 56.00 10.33 58.77
2. observation 14.30 55.00 12.43 58.93
3. observation 9.98 8.60 50.00 120.40
4. observation 9.56 7.90 51.20 122.00
5. observation 10.12 30.10 49.80 123.50
6. observation 11.00 29.90 50.44 120.18
7. observation 8.77 7.80 51.87 131.11
8. observation 23.80 86.50 45.87 75.00
9. observation 26.23 89.00 44.90 73.20
10. observation 24.76 85.40 43.12 76.00

Firstly the dataset is divided into two parts randomly in Matlab as training and
validation phases in order to implement fuzzy functions algorithm. Training data set
constitutes the seventy percent of all data and remained observations of the data
constitute the validation data which is thirty percent of all data. Thus there are 7
observations for training data and 3 observations for validation data. Training and
validation datasets which are randomly selected in Matlab are shown respectively in
Table 4.2 and Table 4.3.
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Table 4.2 Input and output variables of training dataset

Observations Variablel Variable2 Variable3 Outputs
2. observation 14.30 55.00 12.43 58.93
4. observation 9.56 7.90 51.20 122.00
6. observation 11.00 29.90 50.44 120.18
7. observation 8.77 7.80 51.87 131.11
8. observation 23.80 86.50 45.87 75.00
9. observation 26.23 89.00 44.90 73.20
10. observation 24.76 85.40 43.12 76.00

Table 4.3 Input and output variables of validation data

Observations Variablel Variable2  Variable3 Outputs
1. observation 15.00 56.00 10.33 58.77
3. observation 9.98 8.60 50.00 120.4
5. observation 10.12 30.10 49.80 123.5

After training and validation datasets are introduced, the algorithm is applied step

by step.

Step 1: Firstly “c” the optimum number of cluster should be found out and degree of
fuzziness should be decided. In order to find out the best partition “fuzzy clustering
toolbox” which was prepared in Matlab by Balasko, Abonyi and Feil (2005) is used.

For the artificial dataset the best partition is found as 3.

Step 2: In this step, according to the optimum number of cluster, the membership
valuesare found out for training and validation data with FCM algorithm. In Table
4.4 and Table 4.5 membership values of training and validation data are shown

respectively.
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Table 4.4 Membership values of training data

Membership Values of Training Data

Observations of Cluster 1 Cluster 2 Cluster 3
dataset i=1 i=2 i=3

2. observation 0.0003 0.0004 0.9994
4. observation 0.9759 0.0089 0.0152
6. observation 0.8662 0.0513 0.0824
7. observation 0.9748 0.0094 0.0158
8. observation 0.0005 0.9982 0.0013
9. observation 0.0011 0.9962 0.0027
10. observation 0.0009 0.9969 0.0022

Table 4.5 Membership values of validation data

Membership Values of Validation Data

Observations of Cluster 1 Cluster 2 Cluster 3
dataset i=1 i=2 i=3
1. observation 0.0007 0.0011 0.9982
3. observation 0.9791 0.0076 0.0132
5. observation 0.8614 0.0524 0.0861

Step 3: After the membership valuesare found out for training data, membership
valuesand their transformation such as exp(u), exp(u)?, 1/exp(u) and u * log(1 +
u) are added to original data matrix for each cluster. These transformations are
defined by user. For this numerical example only membership values are decided to

be added as new variables. The new augmented matrix is shown in Table 4.6.
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Table 4.6 Membership values and input variables of training data for cluster 1

M%rsgreeres?ip Variablel Variable2 Variable3
0.0003 14.30 55.00 12.43
" 0.9759 9.56 7.90 51.20
S 0.8662 11.00 29.90 50.44
; 0.9748 8.77 7.80 51.87
8 0.0005 23.80 86.50 45.87
0.0011 26.23 89.00 44.90
0.0009 24.76 85.40 43.12

Step 4: Regression coefficients are found out for each cluster by using the regression
equation; B; = (cDiTcDi)‘l(éiTYi). More information on least square estimation
(LSE) could be found in Appendix 1. As it can be seen from the equation, when all
algorithms of fuzzy functions are applied, there will be “C” number of column matrix
that consists of regression coefficients. In other words until the number of cluster “c”
is reached, the same procedures are repeated and regression coefficients are found
out for all clusters. In Table 4.7 final data matrix X, which consists of original input
variables, membership values and identity matrix and corresponding output matrix
are shown for cluster 1. Until we reach cluster number 3, same procedures are

repeated. Also final input data matrixes and output data matrix for cluster 2 and 3 are

shown in Table 4. 9 and Table 4.11

Table 4.7 Final input (®;) and output data matrix of the training algorithm for cluster 1 (for i=1)

Identity Membershi

Original Data Matrix-Inputs (X)

matrix p values

Variablel Variable2 Variable3

1 0.0003
1 0.9759

(72}

S 1 0.8662

S 1 0.9748

2

g 1 0.0005
1 0.0011
1 0.0009

14.30
9.56
11.00
8.77
23.80
26.23
24.76

55.00
7.90
29.90
7.80
86.50
89.00
85.40

12.43
51.20
50.44
51.87
45.87
44.90
43.12
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Matrix (Y)

Outputs

58.93
122.00
120.18
131.11

75.00

73.20

76.00



The obtained regression coefficients by applying the equation
B; = (&, @)~ (&,Y;), for cluster 1 is shown in Table 4.8.

Table 4.8 Obtained regression coefficients for cluster 1

Regression Coefficients for Cluster 1 ()

65.7958
26.3913
-1.1911
-0.0151
0.8936

Table 4.9 Final input (®;) and output data matrix of the training algorithm for cluster 2 (for i=2)

ldentit Membership Original Data Matrix-Inputs (X) Mgfr:?(u(g()
. values
matrix Variablel Variable2 Var:i))able Outputs
1 0.0004 14.30 55.00 12.43 58.93
1 0.0089 9.56 7.90 51.20 122.00
g 1 0.0513 11.00 29.90 50.44 120.18
§ 1 0.0094 8.77 7.80 51.87 131.11
é 1 0.9982 23.80 86.50 45.87 75.00
1 0.9962 26.23 89.00 44.90 73.20
1 0.9969 24.76 85.40 43.12 76.00

The regression coefficients for cluster 2 are shown in Table 4.10.

Table 4.10 Obtained regression coefficients for cluster 2

Regression Coefficients for Cluster 2 (B85)

67.0901

-11.9701
-1.3130

-0.1231
1.4122
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Table 4.11 Final input (®;) and output data matrix of the training algorithm for cluster 3 (for i=3)

Identity  Membership Original Data Matrix-Inputs (X) M(a)\ttjr:stj(;)
matrix values _—
Variablel Variable2 Variable3 Outputs
1 0.9994 14.30 55.00 12.43 58.93
1 0.0152 9.56 7.90 51.20 122.00
_é 1 0.0824 11.00 29.90 50.44 120.18
§ 1 0.0158 8.77 7.80 51.87 131.11
"é 1 0.0013 23.80 86.50 45.87 75.00
1 0.0027 26.23 89.00 44.90 73.20
1 0.0022 24.76 85.40 43.12 76.00

The regression coefficients for cluster 3 are shown in Table 4.12 and thus all
computing process for the regression coefficients is completed. The obtained

regression coefficients for all clusters are shown in Table 4.13.

Table 4.12 Obtained regression coefficients for cluster 3

Regression Coefficients for Cluster 3 (f83)

104.2185
-15.9448
-2.567
-0.0711
0.9152

Table 4.13 Obtained regression coefficients for all clusters

Regression Coefficients Matrix for All Clusters (4, B2 ,B3)

Cluster 1 Cluster 2 Cluster 3
i=1 i=2 i=3
65.7958 67.0901 104.2185
26.3913 -11.9701 -15.9448
-1.1911 -1.3130 -2.5670
-0.0151 -0.1231 -0.0711
0.8936 1.4122 0.9152
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Step 5: After regression coefficients are found (with regression equation of LSE), the
estimated output values of training data for each cluster are calculated. The equation
(4.14) expresses the general regression form of a multi-input single output model. In
equation (4.15) the long form of regression model is expressed. Executing the
equation (4.15), there will be “k” number of predicted values for all clusters (“c”) for

[ 52
l

the training data. In the equation “k” is the vector identifier, is the cluster

identifier. The open forms of regression equations are also shown below for all

clusters.

Y=XB+¢ (4.14)

Vi =Prj*Biy k=1,.,n, i=1.,c j= 1,..(ww+nm+1) (4.15)

V1A =@y Pyt Pro*for+ Prgk Pa1+ Praxfur + Prs Py (4.16)
Vo1t = Doy #Prat Pop* fog + Doz x 3+ Poyx fuy + Qo5 sy (417)
Y317 = D3y xPry+ Pypx fog + Pazx Pz + Py x Pyt P35 * sy (4.18)
Va " =@y % Br1 + Pag * Pog + Pyz a1+ Doy * Pa1 + Pos * Psy (4.19)
Vs1 = Psq % Pra+ Pso*foy+ Pszx Pz + Psgxfur+ Pss*fsr (4.20)
Vo1 = Pe1 * P11+ Poo* Por+ Pezx P31+ Pogx a1t Pes* P51 (421)
Y71 =Py x Prat ProxPoy + Pyzx 3+ Praxfurt Prs*Pfsy (4:22)

V127" =@y * Pra+ Prp* Pog + Prg*Pra+ @iy x fuz + Pis* P (4.23)
V22 = Ppy #Prot @op* Bopt Pozxfap+ Poyxfast Pos* Py (4.24)
V32 = @3y #Prot Pypx fopt Pazxfap+ Py fust P35 *fsy  (4:.25)
Va2 = @yy x Bro+ Pap * Pog + Pazx fap + Py fuy + Pus * Ps2(4.26)

Y52 = Psq % Pro+ Psy*fop+ Pozxfap+ Py Pas+ Pss*fsy  (4.27)
Ve2'™ = Pe1 * P12+ Pgo* Pop+ Pe3* 3+ Py * fast Pes*Psz  (4.28)
V72" =@y % Prot Prpx oyt Pra*Prot PraxPust Prsxfsy  (429)

V13" =@y * P13+ Prp* oz + Prz* P33+ Pra* Pz + Prs*Pss (4.30)
V23" =@y x Br3+ Pog x Boz+ Doz * Paz+ Poa* fazt+ Pos * Pss (4.31)
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Y33 = @3y #Pr3+ Pyp* fozt Pazxfaz+ Py fuzt P35+ P53 (4.32)
Va3 = @yy x Brgt Pup * Pozt+ Pz 3zt Pygx fazt Pus * P (4.33)
V53 = @51 *Br3+ Pspx ozt Poz* a3+ Doy fuz+ Pssxfsz  (4.34)
Vo3 = Dg1 * P13+ Do * a3+ Posz* P33zt Do * Paz+ Pos*fsz  (4.35)
Y73 =Py x P13t Pyo* Pozt Pyzx a3+ Praxfuzt Prs* sz (4.36)

In order to predict the output values, data matrixes and coefficient matrixes for
cluster 1, cluster 2 and cluster 3 are shown respectively in Table 4.14, 4.15 and
4.16.In order to facilitate to following up, all of the calculations are shown below one

by one.

Table 4.14 Obtaining predicted output values of training data for cluster 1

Regression Coefficients Matrix

Original data matrix-inputs (X) for All Clusters

Identity Membership

matrix degrees Variable Variable Variable Cluster  Cluster  Cluster
1 2 3 1 2 3

1 0.0003 14.30 55.00 12.43 65.7958 | 67.0901 104.2185
1 0.9759 9.56 7.90 51.20 26.3913 | -11.9701 -15.9448
1 0.8662 11.00 29.90 50.44 -1.1911 | -1.3130 -2.5670
1 0.9748 8.77 7.80 51.87 -0.0151 -0.1231 -0.0711
1 0.0005 23.80 86.50 45.87 0.8936 1.4122 0.9152
1 0.0011 26.23 89.00 44.90
1 0.0009 24.76 85.40 43.12

Y11 = 1% 65.7958 + (0.0003) * (26.3913) + (14.30) * (—=1.1911) + (55.00) * (—0.0151)
+ (12.43) * (0.8936) = 59.0482

Y21 = 1% 65.7958 + (0.9759) * (26.3913) + (9.56) * (—1.1911) + (7.90) * (—0.0151)
+ (51.20) * (0.8936) = 125.7977

y31™ = 1% 65.7958 + (0.8662) * (26.3913) + (11.00) * (—1.1911) + (29.90) * (—0.0151)
+ (50.44) * (0.8936) = 120.1786

48



Va1 = 1% 65.7958 + (0.9748) * (26.3913) + (8.77) * (—1.1911) + (7.80) * (—0.0151)
+ (51.87) * (0.8936) = 127.311786

Y51 = 1% 65.7958 + (0.0005) * (26.3913) + (23.80) * (—1.1911) + (86.50) * (—0.0151)
+ (45.87) * (0.8936) = 77.1484

Ye1™ = 1% 65.7958 + (0.0011) * (26.3913) + (26.23) * (—1.1911) + (89.00) * (—0.0151)
+ (44.90) * (0.8936) = 73.3648

Y71 =1 % 65.7958 + (0.0009) * (26.3913) + (24.76) * (—1.1911) + (85.40) * (—0.0151)
+ (43.12) * (0.8936) = 73.5724

Table 4.15 Obtaining predicted output values of validation data for cluster 2

Original data matrix-inputs (X) Regression Coefficients

Identity Membership Matrix For All Clusters
matrix degrees variable \Variable Variable Cluster Cluster Cluster
1 2 3 1 2 3
0.0004 14.30 55.00 12.43 65.7958 67.0901 |104.2185
1 0.0089 9.56 7.90 51.20 26.3913 [-11.9701 | -15.9448
1 0.0513 11.00 29.90 50.44 -1.1911 |-1.3130 | -2.5670
1 0.0094 8.77 7.80 51.87 -0.0151 |-0.1231 | -0.0711
1 0.9982 23.80 86.50 45.87 0.8936 1.4122 0.9152
1 0.9962 26.23 89.00 44.90
1 0.9969 24.76 85.40 43.12

Y1, = 1%67.0901 + (0.0004) * (=11.9701) + (14.30) * (—1.3130) + (55.00) * (—0.1231)
+ (12.43) * (1.4122) = 59.0917

Y22 = 1%67.0901 + (0.0089)  (—11.9701) + (9.56) * (—1.3130) + (7.90) * (—0.1231)
+(51.20) * (1.4122) = 125.7645

Y32 = 1%67.0901 + (0.0513) * (=11.9701) + (11.00) * (—=1.3130) + (29.90) * (—0.1231)
+(50.44) * (1.4122) = 119.5844
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Vaz'™ = 1%67.0901 + (0.0094) * (—=11.9701) + (8.77) * (—1.3130) + (7.80) * (—0.1231)
+ (51.87) * (1.4122) = 127.7547

Y52 = 1% 67.0901 + (0.9982) * (=11.9701) + (23.80) * (—1.3130) + (86.50) * (—0.1231)
+ (45.87) * (1.4122) = 78.0209

Voo™ = 1% 67.0901 + (0.9962) * (=11.9701) + (26.23) * (—1.3130) + (89.00) * (—0.1231)
+ (44.90) * (1.4122) = 73.1765

Y72 = 1% 67.0901 + (09969) * (—11.9701) + (24.76) * (—1.3130) + (85.40) * (—0.1231)
+ (43.12) * (1.4122) = 73.0273

Table 4.16 Obtaining predicted output values of validation data for cluster 3

Original Data Matrix-Inputs (X) Regression Coefficients

Identity Membership Matrix for All Clusters
matrix  degrees  \jarjaple Variable Variable Cluster ~ Cluster Cluster
1 2 3 1 2 3
! 0.9994 14.30 55.00 12.43 65.7958 67.0901 104.2185
1 0.0152 9.56 7.90 51.20 26.3913 -11.9701 |-15.9448
1 0.0824 11.00 29.90 50.44 -1.1911  -1.3130 | -2.5670
1 0.0158 8.77 7.80 51.87 -0.0151 -0.1231 | -0.0711
1 0.0013 23.80 86.50 45.87 0.8936 1.4122 0.9152
1 0.0027 26.23 89.00 44,90
1 0.0022 24.76 85.40 43.12

Y13 = 1% 104.2185 + (0.9994) * (—15.9448) + (14.30) * (—2.5670) + (55.00) * (—0.0711)
+(12.43) * (0.9152) = 59.0418

Y23 = 1% 104.2185 + (0.0152) * (—15.9448) + (9.56) * (—2.5670) + (7.90) * (—0.0711)
+(51.20) * (0.9152) = 125.7344

Y33 =1+ 1042185 + (0.0824) * (—15.9448) + (11.00) * (—2.5670) + (29.90) * (=0.0711)
+ (50.44) * (0.9152) = 118.7064
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Ya3'™ = 1 104.2185 + (0.0158) * (—15.9448) + (8.77) * (—2.5670) + (7.80) * (—0.0711)
+ (51.87) * (0.9152) = 128.3727

Y53 = 1% 104.2185 + (0.0013) * (—15.9448) + (23.80) * (—2.5670) + (86.50) * (—0.0711)
+ (45.87) = (0.9152) = 78.9363

Ye3'™ = 1%104.2185 + (0.0027) * (—15.9448) + (26.23) * (—2.5670) + (89.00) * (—0.0711)
+ (44.90) * (0.9152) = 71.6103

Y73 = 1% 104.2185 + (0.0022) * (—15.9448) + (24.76) * (—2.5670) + (85.40) * (—0.0711)
+ (43.12) * (0.9152) = 74.0182

The predicted output values for the training data for each cluster are shown in Table
4.17.

Table 4.17 Obtained predicted output values of training data for each cluster

Prediction Values The Observation of Training Data Set

Cluster 1 Cluster 2 Cluster 3
59.0482 59.0917 59.0418
125.7977 125.7645 125.7344
120.1786 119.5844 118.7064
127.31 127.7547 128.3727
77.1484 78.0209 78.9363
73.3648 73.1765 71.6103
73.5724 73.0273 74.0182

As it can be seen from Table (4.17), we obtain a matrix that consists of “c”

number of columns after regression equation is applied.

Step 6: In the final step, a single output is obtained for each observation by
weighting the obtained output values with their corresponding membership values. In
order to facilitate to follow up, the membership degree matrix is rewritten in the
Table 4.18.

51



Table 4.18 Membership degrees of training data

Membership Degrees of Training Data

Observations Clqsfer 1 Clqsfer 2 Clqsfer 3
i=1 i=2 i=3
2. observation 0.0003 0.0004 0.9994
4. observation 0.9759 0.0089 0.0152
6. observation 0.8662 0.0513 0.0824
7. observation 0.9748 0.0094 0.0158
8. observation 0.0005 0.9982 0.0013
9. observation 0.0011 0.9962 0.0027
10. observation 0.0009 0.9969 0.0022

Executing equation (4.37), membership matrix and predicted value matrix are
multiplied and then divided into sum of membership values of k.th observation. In

other words in this step, all these “c” number of predicted values are weighted with

membership degrees in order to obtain a single predicted value for each observation.

o X MaVki
YV =——" 4.37
Y (437)
For all observations the single final predicted output values are calculated as

follows;

g _ (0.0003 = 59.0482 + 0.0004 = 59.0917 + 0.9994 * 59.0418)

= 59.0418
! (0.0003 + 0.0004 + 0.9994)

o tn (09759 % 125.7977 4+ 0.0089 * 125.7645 + 0.0152 + 125.7344)

7. = 125.7965
2 (0.9759 + 0.0089 + 0.0152)
_om (0.8662 % 120.1786 + 0.0513 * 119.5844 + 0.0824 * 118.7064)
%= = 120.0267
(0.8662 + 0.0513 + 0.0824)
_om (0.9748 % 127.31 + 0.0094 * 127.7547 + 0.0158 * 128.3727)
7, = = 127331

(0.9748 + 0.0094 + 0.0158)
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L (0.0005 * 127.31 4+ 0.9982 * 78.0209 + 0.0013 % 78.9363)

= 78.0216
> (0.0005 + 0.9982 + 0.0013)
g _ (0.0011 * 73.3648 + 0.9962 * 73.1765 + 0.0027 * 71.6103) _ 31725
6 (0.0011 + 0.9962 + 0.0027) T
g _ (0.0009 * 73.5724 + 0.9969 * 73.0273 + 0.0022 * 74.0182) _ 73,03

7 (0.0009 + 0.9969 + 0.0022)

After weighting process is completed, the final predicted output values are

obtained as shown in Table 4.19.

Table 4.19 Final single predicted values for training data

Predicted Values for Training
Data

59.0418
125.7965
120.0267
127.3310

78.0216

73.1725

73.0300

R-square value which measure of how well future outcomes are likely to be
predicted by the model is calculated at the final step for training data (Calculation of
R-square value is explained in Appendix 2). R-square value for training data is found
as 0.991.

Validation Data
In this section the same procedures are repeated for validation dataset. Based on

the found out regression coefficients, output variables of the validation dataset are

predicted and R-square value for the validation data is calculated.
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Table 4.20 Randomly selected observations for validation data

Variablel Variable2 Variable3 Output
1. observation 15.00 56.00 10.33 58.77
3. observation 9.98 8.60 50.00 120.4
5. observation 10.12 30.10 49.80 123.5

Table 4.21 Membership degrees of validation dataset of artificial dataset

Membership Degrees of Validation Data

Observations of Cluster 1 Cluster 2 Cluster 3
dataset i=1 i=2 i=3
1. observation 0.0007 0.0011 0.9982
2. observation 0.9791 0.0076 0.0132
3. observation 0.8614 0.0524 0.0861

Table 4.22 Membership degrees and input variables of validation data for cluster 1

MZTgfgsship Variablel  Variable2 Variable3
% 0.0007 15.00 56.00 10.33
g 0.9791 9.98 8.60 50.00
é 0.8614 10.12 30.10 49.80

Table 4.23 Obtaining predicted output values of validation data for cluster 1

Original Data Matrix-Inputs Regression Coefficients
Identity Membership X) Matrix for All Clusters
matrix degrees  \/ariable Variable Variable Cluster Cluster
Cluster 2
1 2 3 1 3
1 0.0007 15.00 56.00 10.33 65.7958 | 67.0901 104.2185
1 0.9791 9.98 8.60 50.00 26.3913 | -11.9701 -15.9448
1 0.8614 10.12 30.10 49.80 -1.1911 | -1.3130 -2.5670
-0.0151 | -0.1231 -0.0711
0.8936 1.4122 0.9152
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y11"% = 1% 65.7958 + (0.0007) * (26.3913) + (15.00) * (—=1.1911) + (56.00) * (—0.0151)

+(10.33) * (0.8936) = 56.3353

Y217 = 1%65.7958 + (0.9791) * (26.3913) + (9.98) * (—1.1911) + (8.60) * (—0.0151)

+ (50.00) = (0.8936) = 124.3011

y31"% = 1% 65.7958 + (0.8614) * (26.3913) + (10.12) * (=1.1911) + (30.10) * (—0.0151)

+ (49.80) * (0.8936) = 120.5256

Table 4.24 Membership degrees and input variables of validation data for cluster 2

Membership Variablel Variable2 Variable3
degrees
2 0.0011 15.00 56.00 10.33
o
S 0.0076 9.98 8.60 50.00
D
[72]
o]
®) 0.0524 10.12 30.10 49.80
Table 4.25 Obtaining predicted output values of validation data for cluster 2
Original Data Matrix-Inputs Regression Coefficients Matrix
Identity Membership X) for All Clusters
matrix  degrees v/ariable Variable Variable Cluster  Cluster  Cluster
1 2 3 1 2 3
. 0.0011 15.00 56.00 10.33 65.7958  67.0901 | 104.2185
1 0.0076 9.98 8.60 50.00 26.3913 |-11.9701| -15.9448
1 0.0524 10.12 30.10 49.80 -1.1911 -1.3130 -2.5670
-0.0151 | -0.1231 | -0.0711
0.8936 1.4122 0.9152

1,7 = 1% 67.0901 + (0.0011) * (—11.9701) + (15.00) * (—1.3130) + (56.00) * (—0.1231)

+(10.33) * (1.4122) = 55.0751

¥22"% = 1% 67.0901 + (0.0076) * (—=11.9701) + (9.98) * (—1.3130) + (8.60) * (—0.1231)

+ (50.00) * (1.4122) = 123.448
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Y327 = 1%67.0901 + (0.0524) * (—11.9701) + (10.12) * (=1.3130) + (30.10) * (—0.1231)
+ (49.80) * (1.4122) = 119.7984

Table 4.26 Membership degrees and input variables of validation data for cluster 3

Membership Variablel Variable2 Variable3
degrees
2 0.9982 15.00 56.00 10.33
o
s 0.0132 9.98 8.60 50.00
[«B]
3
o 0.0861 10.12 30.10 49.80

Table 4.27 Obtaining predicted output values of validation data for cluster 3

Original data matrix-inputs (X) Regression Coefficients

|dent|ty Membership Matrix For All Clusters
matrix degrees Variable Variable Variable Cluster Cluster  Cluster
1 2 3 1 2 3
0.9982 15.00 56.00 10.33 65.7958 67.0901 104.2185
1 0.0132 9.98 8.60 50.00 26.3913 -11.9701 | -15.9448
1 0.0861 10.12 30.10 49.80 -1.1911 -1.3130 -2.5670

-0.0151 -0.1231 | -0.0711

0.8936  1.4122 0.9152

y13% = 1% 104.2185 + (0.9982) * (—15.9448) + (15.00) * (—2.5670) + (56.00) * (—0.0711)
+(10.33) % (0.9152) = 55.271

Y237 = 1+ 104.2185 + (0.0132) * (—15.9448) + (9.98) * (—2.5670) + (8.60) * (—0.0711)
+ (50.00) * (0.9152) = 123.5394

Y3379 = 1% 104.2185 + (0.0861) * (—15.9448) + (10.12) * (—2.5670) + (30.10) * (—0.0711)
+ (49.80) * (0.9152) = 120.3063

The final predicted values for each observation of validation data are obtained as
shown in Table 4.28.
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Table 4.28 Final single predicted values for validation data

Prediction values the observation of validation

data set
56.3353 55.0751 55.2710
124.3011 123.4480 123.5394
120.5256 119.7984 120.3063

Membership matrix and predicted value matrix are multiplied and divided into
sum of membership values of k.th observation of validation data by executing
equation (4.37). In order to follow up easily, membership values of validation data

are rewritten below.

Table 4.29 Membership degrees of validation data of artificial dataset

Membership Degrees of Validation Data

Observations of Cluster 1  Cluster 2 Cluster 3
dataset i=1 i=2 i=3
1. observation 0.0007 0.0011 0.9982
3. observation 0.9791 0.0076 0.0132
5. observation 0.8614 0.0524 0.0861

gl _ (0.0007 * 56.3353 + 0.0011 = 55.0751 + 0.9982 * 55.2710)

=55.2716
! (0.0007 + 0.0011 + 0.9982)

g val _ (0.9791 * 124.3011 + 0.0076 * 123.4480 + 0.0132 * 123.5394)

= 124.2845
2 (0.9791 + 0.0076 + 0.0132)

g.val _ (0.8614 x 120.5256 + 0.0524 * 119.7984 + 0.0861 * 120.3063)

= 120.4686
3 (0.8614 + 0.0524 + 0.0861)
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Table 4.30 Final single predicted values for validation data

Predicted Values for
Validation Data

55.2716
124.2845
120.4686

After final predicted values are calculated, R-square value is caluculated. R-
square value for validation data is found as 0.9863. R-square value is also calculated
for all-data which is found as 0.9896.

4.4Conclusions

In this chapter, Tirksen’s fuzzy functions concept is introduced briefly. To sum
up, fuzzy functions concept is recommended as an alternative to fuzzy rule bases in
order to eliminate difficulties of it and enable to handle large and complex systems
that fuzzy rule base system may remain incapable. The theory of fuzzy functions
approach is based on membership values and regression functions and this
constitutes the main difference of it. After the fundamental properties of fuzzy
functions are introduced, the structure identification and reasoning mechanism of the
fuzzy function approach for regression type models is explained. Finally a detailed
computational example is provided in order to facilitate better understanding of the

fuzzy functions approach.

In the next chapter, a new approach which makes use genetic programming in
defining fuzzy functions instead of regressions equations is presented. It is aimed to
investigate whether it is possible to further improve the performance of the fuzzy

functions approach by integrating it with genetic programming approaches.
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CHAPTER FIVE
A BRIEF OVERVIEW OF GENETIC PROGRAMMING

5.1 Introduction

Genetic algorithm (GA) which was proposed by Holland in the 1960s is a search
and optimization technique and is based on the principles of natural selection. In
GAs, each candidate solution is called an individual or a chromosome and

aggregation of these chromosomes form the populations.

The genetic algorithm (GA) transforms a population (set) of individual objects,
each with an associated fitness value, into a new generation of the population
using the principle of reproduction and survival of the fittest and analogs of
naturally occurring genetic operations such as crossover and mutation (Koza,
1995, p. 589).

Palit and Popovic (2005) express the features of a typical GAs to be able to solve

an optimization problem, as follows:

e Genetic representation of each possible solution,

e A population of encoded solutions,

e A evaluation function which evaluates the fittingness of each solution,
e Genetic operators that are used in order to form new populations,

e Control parameters such as population size and number of generations.

Broadly the three genetic operations which are selection, crossover and mutation
constitute the concept of genetic algorithms. These operations are used in order to
select the most proper offspring to be able to obtain succeeding generations. Firstly,
from the current population the individuals are chosen and then mated in order to

generate next generations. These operations are explained below briefly.
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Selection: Selection is the process where individuals are chosen in order to
be processed. Selection process is based on the survival-of-the-fittest strategy
which means that the individual compete with each other to be able to survive
in the population. There are a number of selection methodologies and the
most commonly known methods are fitness proportionate selection, greedy

over-selection, and tournament selection.

Crossover: Crossover operation is basically based on the swapping of
genetic material between two parent strings. For crossover operations two
individuals are needed and these individuals breed two different individuals
for the new population. Crossover is a process of information exchange
between two parent chromosomes and genetic materials that are coming from

these two parent chromosomes are mixed to in order to generate an offspring.

One point crossover
Crossover point

Ojojo|1|0]0 Ofo (1] 1|1[1

1101 (1171 11o0f0O0(1]0]|0

Parent chromosomes Offspring chromosomes

Two point crossover
Crossover points

0j0jO0(1]0]O0 oOjo|(1|1]1]0

Lo 1]1 1] 1 11 o0j0]1[0(1

Parent chromosomes Offspring chromosomes

Uniform crossover

Ojojo|1|0]0 11 0j0| 101
10| 1]1 1] 1 Ofof1|1 1[0
Parent chromosomes Offspring chromosomes

Figure 5.1 Sample representation of crossover operation (Sastry, Goldberg and Kandall, 2005)
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e Mutation: Mutation operation operates on a single individual from the
population and generates new genetic materials by which the diversity of the
population is increased and the diversity of gene pool is maintained. By
mutation operation one or more values are altered at randomly selected
locations in randomly selected strings. Usually, mutation is applied after the

crossover operation.

Figure 5.2 A sample representation of mutation of a chromosome X (Buttand Abhari, 2010)

Maulik and Bandyopadhyay (2000) described the application of GA, in their study
as follows: Initially, a random population is created, which represents different
points in the search space. An objective and fitness function is associated with
each string that represents the degree of goodness of the string. Based on the
principle of survival of the fittest, a few of the strings are selected and each is
assigned a number of copies that go into the mating pool. Biologically inspired
operators like crossover and mutation are applied on these strings to yield a new
generation of strings. The process of selection, crossover and mutation continues
for a fixed number of generations or till a termination condition is satisfied (p.
1455).

Genetic algorithms provide a basis for many kinds of metaheuristicoptimization
techniques with the combination of other modeling tools (Javadi, Farmani and Tan,
2005) and has been used in wide range of application areas for different kinds of

problems such as data mining (Karthick, Saravanan and Vetrisalvan, 2012),
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clustering (Maulik and Bandyopadhyay, 2000) and business application (Grupe and
Jooste, 2004) problems.

As Grupe and Jooste (2004) indicated in their study, when GAs are applied to the
suitable problems they could be a very powerful techniques and capable of giving the
closest solution to the optimum solutions. And it could be said that the underlying
factor of the success of genetic algorithms is that genetic algorithms are able to
consider many points simultaneously and provide nearly ideal solutions for many

kinds of problems.

5.2 Genetic Programming

Genetic programming is a specialization of genetic algorithms and an
evolutionary algorithm based machine learning technique in which each individual
represented with a computer program and used in order to find out the best formula
that represents the problem. By applying a number of processes that is consisting of
reproduction, crossover and mutation operators, genetic programming generates the
next population in which only the more successful genetic materials of individuals

are existing.

As it was indicated before genetic programming is based on computer programs
and the computer programs can give millions of solutions for a particular problem.
Between these possible solutions, the best possible solution or solutions are chosen
on the bases of some processes that are similar to principles of natural selection and

evolution.

Koza (1995) explained the search space in genetic programming as the space of
all possible computer programs which are composed of functions and terminals such
as standard arithmetic operations, standard programming operations, standard

mathematical functions, logical functions, or domain-specific functions.
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In genetic programming each mathematical program is represented in a tree
structure, where n trees form the population of size n. The crossover and mutation
are applied on the population to obtain the new generation of computer programs.
For each computer program, a fitness function is computed to scale its usefulness.
In GP, usually one formula is obtained that can give the best answer (Hewai,

2012, p. 32).

./'Jr'\\
)
/ : R
=) b 9 | 4 ) %
| wents 4 }._-_“/l
o8 @§ ® &
( X )
(*(=2x)(+y1 U (+4(*Fx X))
= “ o T \/ ‘\f ™
| — -
\=J Offspring \/ | <
EN
s
o/ D \_/
(F(-2x)x) @
(+4(*(+y DHx)

Figure 5.3A sample representation of a genetic programming tree (Brameier and Banzhaf,2007)

As Ponce-Cruz and Ramirez-Figueroa (2010) stated in their study, the basic
difference between GA and GP is the evolution process while in GA strings of bits
representing chromosomes are evolved, in genetic programming the whole structure
of a computer program is evolved by the algorithm. And they indicated that thanks to
this structure, genetic programming can handle the problems that are harder to

manage by GAs.

As Cordon, Herrera, Hoffmann et al. (2001) indicated in their study, genetic

programming has a wide range of application area and combining with different
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techniques, genetic programming has been applied to a variety of problems
successfully by researchers (Al-Rahamneh, Reyalat, Sheta, Bani Ahmad and Al-
Ogeili, 2011; Baykasoglu, Gok¢en and Ozbakir, 2010; Cunkas and Taskiran, 2011;
Fyfe, Marney and Tarbert, 1999; Chan, Kwong and Wong, 2011; Moreno-Torres,
Llora, Goldberg and Bhargava, 2013; Song and Zhang, 2012; Zhou et al., 2008).

Baykasoglu et al. (2010) used genetic programming in data mining approaches in
order to select dispatching rules according to subjected shop parameters. Chan et al.
(2011) used also genetic programming for product development through modeling
customer satisfaction, Zhou et al. (2008) used genetic programming in their study in
order to propose a controller adaptive to traffic flows fordouble-deck elevator
system. Al-Rahamneh et al. (2011) used genetic programming for the software

reliability problems and built a software reliability growth model.

5.3 Fuzz Functions with Genetic Programming (GP)

In the present study, as a new contribution to existing studies on fuzzy functions it
is proposed to use genetic programming in generating fuzzy functions as an
alternative to using LSE or SVM with the intention of searching whether the
performance of fuzzy functions approach could be improved by combining it with
genetic programming or not. In this part of the study, this new approach is going to
be introduced and also going to be supported with a numerical example in order to
provide a better understanding.

Similar to fuzzy functions with LSE, the membership values and their
transformations are used as new variables in fuzzy functions with GP. In order to
find out the membership values FCM clustering algorithm is also used for the
proposed model. Thereinafter the algorithm of the proposed model is introduced step

by step and with an example all of these steps are explained numerically.

As it could be seen below,the steps in the algorithm of fuzzy functions with GP

arequite similar to the steps in the algorithm of fuzzy functions with LSE. First of all,
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the parameters are decided to be able to execute FCM clustering algorithm and
thenby executing FCM clustering algorithm, membership values are found out for
each observation. In the following step, by adding these found out membership
values and their transformations, the new data matrix is generated and the genetic
programming is run in order to obtain the best formula for each cluster. Afterwards
applying the found out formula,predicted values are obtained for each cluster. Finally
same as in the algorithm of fuzzy functions with LSE, by weighting the obtained
values with their corresponding membership values, a single predicted output value

is obtained for all observations.
The algorithm of fuzzy function with GP is described below step by step;

Step 1: Firstly the parameters of the FCM clustering algorithm are decided:;

e m>1.1 (degree of fuzziness),

e c>1 (the number of clusters),

e ¢ (atermination threshold).

Step 2: Execute FCM clustering algorithm to find out cluster centers v;(xy)of the
datasetZ (x, y).

2 —1
c d . m-—1
Y M (xy) = Z( ) dif = (e y) = vl (5.1

1<i<c d.: (x
1<k<n = k]( y)

Step 3: Membership values are found out according to equation in (5.2);

2/(m-1)\ "1

c dy;
Y () = Z(d’;gg , whered (x) = llx, — v (Ol (5.2)
1<k<n j=1

Step 4: Membership values of each input data sample, u;;, and their transformations
are augmented to the original input matrix as shown in equation (5.3) for each cluster

ey

U
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Step 5: After membership values are found out according to FCM clustering
algorithm, Eurega Formulize genetic programming software is run for all clusters
individually and the equations that describe the data most appropriately is obtained
for all new data matrixes that are generated by the addition of membership values.
After the most appropriate equations are obtained, prediction process is carried out
and predicted values are found out by applying the equation in (5.4). “a” represents

the most appropriate equation for each cluster “i”.
Vi = Pri (5.4)
Step 6: Finally similar to fuzzy functions with LSE, single output values are

calculated for each data vector by weighting predicted output values from each

cluster with their corresponding membership values.

o 2 Vit

Vi = S i=1,..,c k=1,..,n (5.5)
1 l

In the following section Eureqa Formulize genetic programming software, which

is used in the present thesis, is explained in order to provide a brief introduction.
5.3.1 The Introduction of the Eurega Formulize Genetic Software Program
To give some brief information on “Eureqa Formulize” software program, firstly

the dataset that is going to be searched is entered into the Eureqa Formulize program

from the “Enter Data” tab as it is shown in the Figure 5.4.
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Fle Edit Project Tools Wiew Help
Enter Data Prepare Data @ Set Target Start Search ‘ Yiew Results |£| Repottifnalyze
s | e | ¢ | o | & | F |
desc
Thisis a default  Thisis adefault  Thisis a default
example data example data example data
variable, vatiable, variable,
var Tt 7 W
1 -2.676041 -2,23945861 054539852
2 -2.8207904 -2,0397593 06212453
& -2,7592552 -2, 6309724 0.99187531
4 -2.6963685 -2.8518024 0,99536299
& -2,6385082 -2 166931 0.10541832
B -2.5797204 -3.2425239 099787334
7 -2,5180719 -3,8557676 0,26962392
i -2.4656775 -3..3860766 0,99990075
] -2 4017367 -3.294823 0,920659043
1 -2.3390774 -3.3140675 099471347

Figure 5.4 The screenshot of the “Enter Data” tab of Eurega Formulize software program

After the data is entered, with the “Prepare Data” tab the data can be prepared by
smoothing the data, handling missing values, removing outliers, normalizing scale
and offset or applying a filter (nutonian.com).The view of the “Prepare Data” tab

window is shown in Figure 5.5.
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Figure 5.5 The screenshot of the “Prepare Data” tab of Eureqa Formulize software program

As a next step, in the “Set Target” tabthe type of the formula that satisfies the
equation is decided by choosing the operations (such as addition, subtraction,
division, or sine) that we want to be in the equation.The view of the “Set Target” tab

window is shown in Figure 5.6.
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Figure 5.6 The screenshot of the “Set Target” window of Eureqa Formulize software program

After the parameters are determined to be in the formula, then with “Start Search”
tab the search is started. The buttons in the “Start Search” tab provide to control the
formula search. After stopping a search, clicking "Run™ will give two options:
continue the search from where it left off, or start fresh(nutonian.com). The

screenshot of “Start Search” tab is presented in Figure 5.7.

69



(A" Eureqa

File Edit Project  Tools  Yiew Help

Enter Data Prepare Data @I Set Target Start Search Yiew Results Reportfanalyze Secure Cloud

Run the Formula search:

Run Pause Stop
Progress and performance Progress aver time
Time aeF
Seatch time 145
CPU cares a
Performance orr
Generations 1351 'L.E[_J‘
Generations/sec 111.2 ‘%‘ n.o
Formula evaluations 2.9e7 L;_,E—
Evaluations)sec 2.23M g s
Confidence ﬁ
Stability 0.157% E 0.4k
Maturity 0.993% £
0L3F
g, S
| 1 |
1 10

Time [seconds]

Figure 5.7 The screenshot of the “Start Search” window of Eurega Formulize software program

After the program is run for a period of time, with stop button, the search is ended
and in “View Results” tab, the solutions that the program has found are shown.
Between these solutions, the most appropriate equationsare chosen. To be an

example the screenshot of the tab is depicted in Figure 5.8.
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Figure 5.8 The screenshot of the “View Results” window of Eureqa Formulize software program

With the “Report/Analyze” tab as it is shown in Figure 5.9,s0me basic reports are
provided. Selecting the desired report or tool from the "Select task" drop-down

menu, and the necessary controls will appear (nutonian.com).
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Figure 5.9 The screenshot of the “Report/Analyze” window of Eureqa Formulize software program

In “Secure Cloud” tab, the searches could be accelerated by enabling Formulize to
use the Amazon Elastic Compute Cloud(Amazon EC2). A local computer typically
has only four cores, which limits its search processing speed. By temporarily using
additional cores, the search could be faster, deeper, and more confidence

(nutonian.com). The screenshot of the tab is depicted in Figure 5.10.
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Figure 5.10 The screenshot of the “Secure cloud” window of Eureqa Formulize software program

5.3.2 Implementation of Fuzzy Functions with Genetic Programming

In this part, how the fuzzy functions are going to be implemented with genetic
programming is going to be explained with the artificial dataset which is used for
fuzzy functions with LSE in previous chapter. The artificial dataset is represented in

Table 5.1 in order to following up easily.
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Table 5.1 Input and output variables of generated artificial dataset

Observations Variablel Variable2 Variable3 Outputs
1. observation 15.00 56.00 10.33 58.77
2. observation 14.30 55.00 12.43 58.93
3. observation 9.98 8.60 50.00 120.40
4. observation 9.56 7.90 51.20 122.00
5. observation 10.12 30.10 49.80 123.50
6. observation 11.00 29.90 50.44 120.18
7. observation 8.77 7.80 51.87 131.11
8. observation 23.80 86.50 45.87 75.00
9. observation 26.23 89.00 44.90 73.20
10. observation 24.76 85.40 43.12 76.00

Step 1: Firstly “c” the optimum number of cluster should be found out and degree of

fuzziness should be decided. As it can be remembered from the previous chapter the

best partition was found as 3 for the artificial dataset.

Step 2: According to the optimum number of clusters, the membership values are
found out with FCM algorithm. In Table 5.2 the obtained membership values of the

data for all observations are shown.

Table 5.2 Membership values of the artificial data

Membership Values of the Data

Observations of Cluster 1 Cluster 2 Cluster 3
dataset i=1 i=2 i=3
1. observation 0.0007 0.0011 0.9982
2. observation 0.0003 0.0004 0.999%4
3. observation 0.9791 0.0076 0.0132
4. observation 0.9759 0.0089 0.0152
5. observation 0.8614 0.0524 0.0861
6. observation 0.8662 0.0513 0.0824
7. observation 0.9748 0.0094 0.0158
8. observation 0.0005 0.9982 0.0013
9. observation 0.0011 0.9962 0.0027
10. observation 0.0009 0.9969 0.0022
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Step 3: After the membership degrees are found out, membership degrees and their
transformation such as exp(u), exp(u)?, 1/exp(u) and u = log(1 + u) are added to
original data matrix for each cluster. For this numerical example only membership
values are decided to be added as new variables. The new augmented matrixes are
respectively shown in Table 5.3, 5.4 and 5.5 for each cluster.

Table 5.3 Membership values and original input variables for cluster 1

Membership Variablel Variable2 Variable3
degrees
0.0007 15.00 56.00 10.33
0.0003 14.30 55.00 12.43
0.9791 9.98 8.60 50.00
2 0.9759 9.56 7.90 51.20
'*% 0.8614 10.12 30.10 49.80
c
% 0.8662 11.00 29.90 50.44
o 0.9748 8.77 7.80 51.87
0.0005 23.80 86.50 45.87
0.0011 26.23 89.00 44.90
0.0009 24.76 85.40 43.12

Table 5.4 Membership values and input variables for cluster 2

Membership Variablel Variable2 Variable3
degrees
0.0011 15.00 56.00 10.33
0.0004 14.30 55.00 12.43
0.0076 9.98 8.60 50.00
2 0.0089 9.56 7.90 51.20
% 0.0524 10.12 30.10 49.80
Z
g 0.0513 11.00 29.90 50.44
© 0.0094 8.77 7.80 51.87
0.9982 23.80 86.50 45.87
0.9962 26.23 89.00 44.90
0.9969 24.76 85.40 43.12
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Table 5.5 Membership values and input variables for cluster 3

Mzrggﬁges:ip Variablel Variable2 Variable3
0.9982 15.00 56.00 10.33
0.9994 14.30 55.00 12.43
0.0132 9.98 8.60 50.00
@ 0.0152 9.56 7.90 51.20
'}"E 0.0861 10.12 30.10 49.80
2
% 0.0824 11.00 29.90 50.44
© 0.0158 8.77 7.80 51.87
0.0013 23.80 86.50 45.87
0.0027 26.23 89.00 44.90
0.0022 24.76 85.40 43.12

The views of new augmented matrixes in genetic programming software are also

shown respectively in Figure 5.11, Figure 5.12 and Figure 5.13 for all clusters.

Praoject: | artificiall Search:  k & Howe ko Enter Data
Enkter Daka I;' Prepare Data @ Sek Target ‘ Start Search ‘ View Resuls
A | B | C | D | E
desc
The generated
niew makrizx For wariable 1 wariable 2 wariable 3 output value
clusker 1
var U; X Xz Xg F
; 0.0007 15.00 S6.00 10,33 558,77
L 0.0003 14,30 55.00 12.43 55,93
i 0.9791 9.95 g.60 S0.00 120.40
L 0.9739 2.56 790 a1.z20 122,00
L 0.5614 10,12 30,10 49,80 123,50
L 0.5662 11.00 29.90 S0.44 120,18
L 0.9745 g8.77 780 51.87 131.11
L 0.000% 23.80 56,50 45,87 75.00
L 0.0011 26,23 59,00 44,90 73.20
i 0.0009 24,76 85.40 43.12 76.00
11

Figure 5.11 Eureqga-formulize screenshot of the artificial dataset for cluster 1
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Praoject: | artificiall Search:  » ) Howe bo Enter Data
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A B | s D | E
desc
The generated
riew makrix For wariable 1 watiable 2 wariable 3 oukput value
cluster 2
el Uz X; Xz Xg F¥
1 0.0011 15.00 S6.00 10,33 5877
2 0.0004 14.30 55.00 12,43 58,93
3 0.0076 9.95 g.60 S0.00 120,40
4 00,0059 9.56 .90 51.20 122,00
5 0.0524 10,12 30,10 49,80 123,50
& 0.0513 11.00 29,90 50.44 120.18
7 0.0094 8.77 7.80 51.587 131.11
g 0.9952 23.80 G6.50 45,57 75.00
9 0.9962 26,23 9,00 44,90 73.20
10 0.9959 24.76 55,40 43,12 76.00
11
Figure 5.12 Eurega-formulize screenshot of the artificial dataset for cluster 2
Projeck: | artificiall Search: k &4 How ta Enter Data
Enter Diaka EI Prepare Data @ Set Target ‘ Start Search
A | B | C | D | E
desc
The generated
niew makrix For wariable 1 variable 2 wariable 3 output value
cluster 3
W Ug X Xz Xa F
; 0,995z 15,00 56,00 10,33 55,77
i 0,9994 14,30 55.00 12,43 55,93
i 0.0132 9,95 5.60 50,00 120.40
L 0.0152 9.56 .90 51.20 122,00
L 0.0861 10,12 30,10 49,80 123.50
L 0.0824 11,00 29,90 50,44 120,158
L 0.01558 877 .80 51.87 131.11
L 0.0013 23.80 56,50 45.87 75.00
L 0.0027 26,23 59,00 44,90 73.20
i 0.0022 24.76 55.40 43.12 F6.00
11

Figure 5.13 Eurega-formulize screenshot of the artificial dataset for cluster 3
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Step 4: After the new matrixes are generated,with the usage of different
parameters (such as addition, subtraction, division, cosine) Eureqa Formulize
software program is run and the equations that describe the data most appropriately is
tried to be found out. In the Figure 5.14 the obtained results and selected equation are
shown for the first cluster. From the Figure 5.14 it could be seen that most

appropriate formula is found as y = 7.15 + x3sqrt(u,).

E

Enter Daka I;l Prepare Data

Best Solutions of Different Sizes:

@l Set Target | Skart Search ‘ Wiew Resulks

Size Fit Solution
] F=140—-xz

F=7T14+x, ;—".u:p't{uj]

Solution Details:
Solution [AIC] yw = T1.35 + x3¥sqrk(ul)

R 2 Goodness
of Fit 0,99970471
Correlation

Coefficient 0.5999561

Figure 5.14 The screenshot of the results page for cluster 1 and selected equation

Step 5: In this step, according to best fitting equations, the output values are
predicted for each cluster. The screenshot of the predicted output values are show in

Figure 5.15, Figure 5.16 and Figure 5.17 respectively.
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Enker Data IE Prepare Diata ﬂ.’\f) Set Target

Report and Analysis Tools

Yiew Results EI Feportianalyze

Start Search ‘

Select Task: |Quick evaluake and predict values - Fun...

Expression ko evaluate:
y=713 +x, sqrt(uj)

Enter values to evalute:

A B | C | D | E |

var | <oufput= il xi x2 x3 ¥

1| 716233 0.0007 15.00 56.00 10,33 58.77
2 | 715683 0,0003 14,30 55.00 12.43 58.93
3| 1208 0.9791 9,93 8,60 50,00 120,40
(4| 121929 09759 9.56 7.90 51.20 122,00
5| 11757 0.8614 10.12 30.10 49,30 123.50
B | 118.294 0.8662 11.00 29,90 50,44 120,18
T | 1z2562 09748 8.77 7.80 51.87 13111

Figure 5.15 Predicted output values of artificial dataset for cluster 1

Enter Data I;I Prepare Data ﬂ’\‘) Set Target Start Search ‘ View Results IEI Reportfanalyze
Report and Analysis Tools

Select Task; | Quick evaluate and predict walues v Rur. ..

Expression to evaluate;

=74 C — 1
y=749+x, — 0.524x,
Enter values ko evalute:
A B | C | D | E |

var | <auigii= ul x} x2 x3 ¥
1 E5.0116 0.0011 15.00 56.00 10,33 58,77
2 58,5355 0.0004 14,30 55.00 12.43 55,93
3 120,414 0,0076 9,95 G.60 50,00 120,40
4 121,981 0.0039 9.56 7.90 51.20 122,00
5 105,951 0.0524 10,12 30,10 43,80 123,50
b 109,695 0.0513 11.00 29,90 50.44 120,18
7 122,704 0.0094 8.77 7.80 51.87 131.11

Figure 5.16 Predicted output values of artificial dataset for cluster 2
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Yiew Results @ Report/analvze

Enter Data E Prepare Data ﬂﬁ‘) Set Target ‘ Start Search

Report and Analysis Tools

Select Task: |Quick evaluate and predict values - Run...

Expression ko evaluate;

y=T749 4 x, - 0.524x,

Enter values to evalute:

A B | C | D | E | F |

var | <outpui= u3 xl x2 x3 ¥

1_ 55,9216 0,9952 15.00 56,00 10,33 56,77
L 58,9455 0,9994 14,30 55.00 12,43 58,93
i 120.424 0.0132 9,95 8.60 50.00 120,40
L 121.991 0.0152 9.56 7.80 51.20 122,00
5 | 10886l 0.0861 10.12 30.10 49.80 123.50
L 109,705 0.0524 11.00 29,90 50,44 120,18
L 122,714 0,0155 8,77 .50 o187 131.11

Figure 5.17 Predicted output values of artificial dataset for cluster 3

After all processes are finished we obtain “c” number of predicted values for each

observation. The obtained predicted output values are shown in Table 5.6.

Table 5.6 Obtained predicted values for all clusters

The predicted output values for all clusters

Cluster 1 Cluster 2 Cluster 3
Vi,i 71.6233 55.9116 55.9216
YVa,i 71.5653 58.5355 58.5455
V3,i 120.825 120.414 120.424
Va,i 121.929 121.981 121.991
Vs.i 117.57 108.951 108.961
Ve,i 118.294 109.695 109.705
Y7, 122.562 122.704 122.714
Vs,i 72.3757 75.4726 75.4827
Vo, 72.8392 73.1929 73.2029
YV10,i 72.6436 73.2989 73.3089
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Step 6: Same as in the fuzzy functions with LSE, finally single output values are
calculated for each data vector by weighting predicted output values from each

cluster with their corresponding membership values as shown in equation (5.6).

~ i i ki

e="5e, — i=L..c k=1.,nd (5.6)
L l

For all observations the single final predicted output values are calculated as

follows;

o (0.0007 x71.6233 4+ 0.0011 * 55.9116 + 0.9982 * 55.9216)

Y, = 55.93258

! (0.0007 + 0.0011 + 0.9982)

_ (0.0003 * 71.5653 + 0.0004  58.5355 + 0.9994 * 58.5455)

Y, = = 58.55526
(0.0003 + 0.0004 + 0.9994)

_ (0.9791 % 120.825 + 0.0076 * 120.414 + 0.0132 * 120.424)

7 = = 120.8045
(0.9791 + 0.0076 + 0.0132)

_ (0.9759  121.929 + 0.0089  121.981 + 0.0152 * 121.991)

¥, = = 121.9304
(0.9759 + 0.0089 + 0.0152)

_ (0.8614 % 117.57 + 0.0524 * 108.951 + 0.0861  108.961)

7 = = 116.3654
(0.8614 + 0.0524 + 0.0861)

(08662 * 118.294 + 0.0513 * 109.695 + 0.0824 * 109.705)

7, = =117.1333
(0.8662 + 0.0513 + 0.0824)

_ (0.9748  122.562 + 0.0094  122.704 + 0.0158 * 122.714)

¥, = = 122.5657
(0.9748 + 0.0094 + 0.0158)

_ (0.0005 % 72.3757 + 0.9982 * 75.4726 + 0.0013 * 75.4827)

A = 75.47106
(0.0005 + 0.9982 + 0.0013)

(00011 * 72,8392 + 0.9962 * 73.1929 + 0.0027 * 73.2029)

¥y = = 73.19254

? (0.0011 4 0.9962 + 0.0027)
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? (0.0009 * 72.6436 + 0.9969 * 73.2989 + 0.0022 * 73.3089)

= = 73.29833
10 (0.0009 + 0.9969 + 0.0022)

The weighted predicted output values are represented in Table 5.7.

Table 5.7 Obtained single predicted values for all observations

Predicted Values for Artificial
Data

55.93258
58.55526
120.8045
121.9304
116.3654
117.1333
122.5657
75.47106
73.19254
73.29833

R-square value is found as 0.9813 for the numerical example with fuzzy functions
with GP.

5.4 Conclusion

In this part of the study, genetic programming which forms the main points of the
proposed modelis tried to be represented broadly. For that purpose, firstlygenetic
algorithms which are robust search and optimization techniques and form the basis of
genetic programming are reviewed briefly. Afterwards, the basis of the proposed
model is introduced and its algorithm is explainedstep by step. Finally, with an
example the steps of the algorithm are explained numerically in order to be sure that

the algorithm is comprehended clearly.
In the following chapter, the datasets that are taken from the literature are applied

to fuzzy functions with LSE and fuzzy functions with GP.Then the prediction

performances of both models are compared based on the obtained results.
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CHAPTER SIX
CASE STUDIES

6.1 Introduction

In this chapter, 8 datasets that are taken from Uci Machine Learning
Repository(UCI Machine Learning Repository)are applied for the purpose of
evaluating the performance of fuzzy functions with LSE and the proposed model,
fuzzy functions with GP. Afterwards the results of both models are compared with
each other and the prediction performance of the proposed model is assessed. For the
evaluation and comparison process, the flow of chapter is as follows; initially the
datasets are introduced briefly in the next section. Then cluster validity indexes are
determined in order to find out the best partitions for each dataset.For this study it is
decided to choose 3 different cluster numbers that are thought to represent the best
partitions. Then by executing the FCM algorithm,according to these cluster
numbersmembership values are obtained. Afterwards, adding the membership
values and their different transformations as new variables, fuzzy functions with LSE
and fuzzy functions with GP methods are applied to these datasets. Then according
to R-square results both models are compared and evaluated both in itself and

between each other.

6.2 Introduction of the Datasets

6.2.1 Abalone Dataset

Abalone data is about predicting the age of abalone from physical measurements.
The number of instances is 4177 and number of attributes is 8. In the original dataset
the first attribute is nominal and indicates the sex of abalone whether female, male or
infant. Since, in this study regression equation is used, the first linguistic attribute
“sex” 1s not taken as a parameter. In the original data the aim is to predict the ring of

abalones, in other saying predicting the age of abalones. But in this study, number of
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rings is used as an input parameter and shell weight is tried to be predicted. The

parameters of the dataset are depicted in Table 6.1.

Table 6.1 Abalone dataset parameters

Input parameters Output parameter Type of data
Length
Diameter
Height .

€19 Shell weight Classification type
Whole weight

data

Shucked weight

Viscera weight

Rings

6.2.2 Auto-Mpg Dataset

Auto-mpg data set deals with city fuel consumption in miles per consumption. In
this data set originally there are 9 attributes; 1 attribute is output parameter and the
other remaining attributes are input parameters. But due to using regression analysis
in this study the last linguistic attribute “car name” removed from the data set. After
the 6 observations which have missing values in horsepower variable have removed
from the dataset the remained number of observation is 392. The parameters of the

auto-mpg dataset are shown in Table 6.2.

Table 6.2 Auto-mpg dataset parameters

Input parameters Output parameter Type of data

Cylinders

Displacement

Horsepower

Weight Mpg

Acceleration

Regression type

data

Model year
Origin
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6.2.3 Concrete Compressive Strength Dataset

Concrete compressive strength dataset is a regression type problem. In this data,

concrete compressive strength is tried to be predicted with some different

ingredientsunder some conditions. In the datasets there are 1030 instances and no

missing values. There are 9 attributes and concrete compressive strength is the output

variable. The parameters of the datasets are represented in Table 6.3.

Table 6.3 Concrete compressive dataset parameters

Input parameters ~ Output parameter

Type of data

Cement

Blast Furnace Slag
Slag

Fly Ash

Water

Super plasticizer

Concrete compressive
strength

Coarse Aggregate
Fine Aggregate
Age

Regression type
data

6.2.4 Ecoli Dataset

In ecoli dataset there are no missing values. The dataset consist of 336 instances

and in the original data there are 8 attributes. But in our study 1 linguistic attribute is

removed from the data in order to fit regression analysis.

Ecoli dataset is a classification type data. Therefore to be able to use fuzzy

functions one attribute is chosen as the output parameter. The attributes are listed in

Table 6.4.
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Table6.4 Ecoli dataset parameters

Input parameters Output parameter

Type of data

Mcg
Gvh
Lip
Chg
Aac
Alml

Alm2

Classification type

data

6.2.5 Glass Dataset

Glass identification dataset is an example of classification type problem and

consisting of ten parameters. In the original dataset, the last parameter is the type of

glass and indicates cluster numbers. Due to using regression function in fuzzy

functions,last parameter is removed from the dataset and refractive index (RI) is

chosen as output parameter. Remaining parameters are used as input parameters. In

glass data there are 214 observations, 8 input variables and 1 outputparameter. These

parameters are represented in Table 6.5.

Table 6.5 Glass dataset parameters

Input parameters Output parameter

Type of data

Na: Sodium
Mg: Magnesium
Al: Aluminum
Si: Silicon o
] RI: refractive index
K: Potassium
Ca: Calcium
Ba: Barium

Fe: Iron

Classification
type data
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6.2.6 Housing Dataset

Housing data is about housing values in the suburbs of Boston. There are 506
observations and 14 attributes, 13 of them are continuous attributes and the
remaining observation is a binary valued attribute. There are no missing values. The

attributes of the housing data are explained in Table 6.6.

Table 6.6 Housing data parameters

Input parameters Output parameter Type of data

Crim Age

Zn Dis

Indus Rad

Chas Tax Medv Regression type data
Rox Ptratio

Rm B

Lstat

6.2.7 Iris Dataset

Fisher’s Iris dataset is about cluster analysis and data mining. There are no
missing values in the dataset. This dataset consist of 3 clusters which represent the
species of Iris data (Iris Setosa, Iris Versicolour and Iris Virginica). Each of these
clusters has 50 instances. Each species of Iris data contains 4 attributes. These are
introduced in Table 6.7. Iris data is a classification type data and for this study first
three attributes are chosen as input parameters and the last one which is petal width is

chosen as output parameter. The parameters of the iris data are shown in Table 6.7.
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Table 6.7 Iris dataset parameters

Input parameters Output parameter Type of data
sepal length
sepal width petal_ width Classification type
continuous data
petal length
6.2.8 Wine dataset

The wine dataset is about chemical analysis of wines grown in the same region in
Italy and derived from three different cultivars. The dataset is classification type data
and contains 178 observations.The dataset consists of 13 attributes which are
depicted in Table 6.8. For this study one of them is chosen as an output variable and

remaining attributes are taken as input variables.

Table 6.8 Wine dataset parameters

Input parameters Output parameter Type of data

Alcohol
Malic acid
Ash

Alcalinity of ash

Magnesium

Total phenols 0D280/0D315 of Classification
Flavanoids diluted wines type data
Nonflavanoid phenols

Proanthocyanins

Color intensity

Hue

Proline

6.3 Defining the Best Possible Number of Clusters

In this section optimum number of clusters are tried to be found out. As it was
mentioned in previous chapters, in order to find out the optimum number of clusters,

partition coefficient (PC), classification entropy (CE), partition index (SC),
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separation index (S), Xie and Beni (XB) index, Dunn index and Alternative Dunn
index are used. These cluster validity indexes are found via “fuzzy clustering and
data analysis toolbox” which is prepared for using with Matlabby Balasko, Abonyi
and Feil(2005).Since the monotonic decreasing of partition coefficient with ¢ and
monotonic increasing of classification entropy with c, it could be said that these
validity indexes are not connected with data directly. Due to this reason, partition
coefficient and classification entropy are not taken into consideration and are slurred

over.

Balasko et al (2005), in their study indicated that no validation index could be
reliable alone and due to this reason the optimum cluster number should be detected
with the comparison of all cluster validity results. Also they indicated that, when the
differences between the values of a validation index are minor, choosing the less

cluster numbers are better.

6.3.1 Optimum Number of Clusters for Abalone Dataset

When we look at the graph in Figure 6.1, the decrease at cluster number 3 for
partition (SC) index and also for separation index (S) can be seen clearly. Then
separation index values continue to decrease until cluster number 6 and then continue
to decrease monotonically. Due to that fact optimum number of clusters could be
thought as 3, 4 and 5. For Xie and Beni (XB) index, there is a decline at cluster
number 3, then it increases at cluster number 5 and again it decreases at cluster
number 7 and continues to decrease. And finally reaches the minimum value at
cluster number 9. Dunn index reaches the maximum values at cluster number 3 and
5. ADI index reaches minimum values at 3 and 9. By considering that fewer clusters
are better, and considering all these results, we decided to take 3, 4 and 5 as optimum

cluster numbers.
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Table 6.9 Cluster validity index results for abalone data

Cluster number

2 3 4 5 6 7 8 9 10
PC 1 0.72693 0.70150 0.62910 0.57953 0.52149 0.50247 0.47780 0.46963 0.44463
CE | 0.42915 0.54171 0.70932 0.84101 0.98516 1.07110 1.13144 1.19162 1.27245
SC | 245403 1.18303 1.02855 0.96543 0.96431 0.93809 0.73777 0.75702 0.77150
S | 0.00059 0.00044 0.00038 0.00037 0.00038 0.00035 0.00029 0.00029 0.00029
XB | 4.73834 4.63486 4.88133 4.59593 4.71698 3.75419 2.52050 2.30811 2.82300
DI 1 0.00621 0.00682 0.00516 0.00669 0.00603 0.00520 0.00621 0.00573 0.00617
ADI | 0.03903 0.00091 0.00923 0.00818 0.00423 0.00399 0.00045 0.00019 0.00080
Parition Index [(SC)
'4 T T T T T T T
2 I .
D 1 1 1 1 1 1 1
2 3 4 5 5] 7 g 9 10
X 107 Separation Index (5]
05 .
I:I 1 1 1 1 1 1 1
2 3 4 5 5] 7 3 9 10
ie and Beni Index (B
E T T T T T T T
4 %/_—\’_’\/J_’/_
2 1 1 1 1 1 1 1
2 3 4 5 5] 7 g 9 10

Figure 6.1 Values of Partition Index, Separation Index and Xie and Beni Index for abalonedataset
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w10 Dunn Index (D)
? T T T T T T T

5 1 1 1 1 1 1 1
2 3 4 5 5 7 ] 9 10
Alternative Dunn Index (ADI)
I:II:I"IJ' T T T T T T T
0.03 .
0.02 -
0.01 -
|:| 1 1 1 1 } 1
2 3 4 5 5 7 ] 9 10

Figure 6.2 Values of Dunn Index and Alternative Dunn Index for abalone dataset

6.3.2 Optimum Number of Clusters for Auto-mpg Dataset

If we interpret the Table 6.10 and graphs in Figure 6.3 and 6.4, partition index
reaches minimum values at 3, 6 and 8. Separation index reaches minimum value at 5.
Xie and Beni index also reaches minimum values at 3, 8, 9 and 10. If we look at the
graph in Figure 6.4, the optimum number of clusters according to Dunn index is 6
and 8 at which the maximum valuesare reached. Considering all these results the

optimum number of clusters for auto-mpg data are taken as 3, 5 and 8.
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Table 6.10 Cluster validity index results for auto-mpg data

Cluster number

2 3 4 5 6 7 8 9 10

PC 1 0.92326 0.88486 0.85638 0.84335 0.82560 0.80787 0.79443 0.78540 0.77179
CE | 043030 0.66421 0.84505 0.94050 1.05805 1.17789 1.26968 1.33852 1.43106
SC | 142870 1.15714 1.32095 1.29934 1.21520 1.44681 1.39096 1.51760 1.62233
S | 0.00364 0.00428 0.00503 0.00442 0.00489 0.00495 0.00509 0.00517 0.00570
XB | 250645 1.74099 2.00629 2.13677 2.06232 1.78113 1.68870 1.60234 1.37205
DI t 0.27587 0.03632 0.05664 0.03633 0.07435 0.05820 0.07308 0.06845 0.07011

ADI | 0.03403 0.00187 0.00212 0.00124 0.00131 0.00040 0.00211 0.00011 0.00001

Fartition Index [SC)

2 T T T T T T T
1.5F -
“I 1 1 1 1 1 1 1
2 3 4 5 B i g =] 10
w10 Separation Index (3)
E T T T T T T T
4 //\/_f—,—//_
2 1 1 1 1 1 1 1
2 3 4 5 =] F g = 10
=g and Beni Index (xB)
3 T T T T T T T
“I 1 1 1 1 1 1 1
2 3 4 5 B i g =] 10

Figure 6.3 Values of Partition Index, Separation Index and Xie and Beni Index for auto-mpgdataset
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Dunn Index (DI}
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Alternative Dunn Index [ADI)
I:I':Id T T T T T T T
0.03 .
0.02 .
0.01 .
|:| 1 1 1 L
2 3 4 L8] B 7 5] 9 10

Figure 6.4 Values of Dunn Index and Alternative Dunn Index for auto-mpg dataset

6.3.3 Optimum Number of Clusters for Concrete Dataset

When we look at the results in Table 6.11 and graphs in Figure 6.5 and Figure
6.6,for concrete dataset each the validity index points different cluster numbers. The
validity index values reaches minimum at 5, 7 and 9 for partition index. At cluster
number 5 the value is decreasing, at 7 the value continues to increasing, but at 9 it is
decreasing again. Because of that it could not be wrong to say that 5 and 9 is more
appropriate as optimum number of clusters. For separation index, values reaches
minimum at 5, 7 and 9. Because of that the values are hardly decreasing at cluster
number 5 and 9,same as partition index 5 and 9 is more appropriate for separation
index. Dunn index reaches at 4 and 8 to maximum numbers. In conclusion for

concrete dataset the optimal cluster numbers are chosen as 4, 5 and 9.
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Table 6.11 Cluster validity index results for concrete dataset

Cluster number

2 3 4 5 6 7 8 9 10

PC 1 0.89149 0.83480 0.79526 0.77244 0.74806 0.72739 0.70682 0.69583 0.68205
CE | 059131 0.93227 1.18349 1.34200 1.50807 1.65143 1.79521 1.87933 1.98172
SC | 6.45980 5.32736 5.49949 4.46829 5.04430 5.17987 6.20888 5.43847 5.95852

S | 0.00627 0.00596 0.00769 0.00536 0.00729 0.00693 0.00892 0.00675 0.00840

XB | 1.42823 1.21890 1.12854 0.94961 0.93879 0.80727 0.67716 0.71748 0.65987
DI 1 0.18651 0.04121 0.05687 0.01032 0.01032 0.01071 0.02798 0.00655 0.00756

ADI | 0.00480 0.00370 0.00253 0.00209 0.00149 0.00028 0.00024 0.00005 0.00006

Partition Index [(SC)

B T T T T T T
E - -
4 1 1 1 1 1 1 1
2 3 4 5 5 i & =] 10
w107 Separation Index (5]

Hie and Beni Index =B}
1.5 T T T T T T T

|:|5 1 1 1 1 1 1 1
2 3 4 5 5 i & =] 10

Figure 6.5 Values of Partition Index, Separation Index and Xie and Beni Index for concrete dataset
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Dunn Index (D)
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0.15 .
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w107 Alternative Dunn Index (ADI)
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Figure 6.6 Values of Dunn Index and Alternative Dunn Index for concrete dataset
6.3.4 Optimum Number of Clusters for Ecoli Dataset

To interpret the Table 6.12, Figure 6.7 and Figure 6.8 for partition index, optimum
cluster numbers are 3, 5, 9 and 10. For separation index the results reaches minimum
degrees at 3, 5, 9 and 10 and at cluster number 3 and 5, the results are decreasing
suddenly. XB index and ADI values are decreasing monotonically, because of that
we did not define any cluster number for XB and ADI. According to Dunn index, the
optimum values are 4 and 6 which are reachingto maximum degrees. According to

these results for ecoli data optimum numbers of clusters are chosen as 4, 5 and 6.
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Table 6.12 Cluster validity index results for ecoli dataset

Cluster number

2 3

4

5 6 7

8

9

10

PC 1 0.69747 0.61029
CE | 0.46722 0.69649
SC | 2.78739 1.74669
S | 0.00830 0.00616
XB | 3.15834 2.31858
DI 1 0.04830 0.03694

ADI| 0.06114 0.00419

0.47734

0.97881

1.98565

0.00912

2.13907

0.04641

0.00227

0.42445 0.36728 0.33283
1.13147 1.30247 1.43599
1.47959 1.59222 1.57655
0.00582 0.00703 0.00697
1.74446 1.38030 1.25782
0.02984 0.03928 0.02984

0.00118 0.00094 0.00016

0.30435

1.55803

1.68135

0.00814

1.04028

0.03015

0.00002

0.28189

1.64357

1.42028

0.00654

0.91969

0.03284

0.00007

0.25804

1.74292

1.37807

0.00579

0.86232

0.01606

0.00019

Fartition Index [(SC)

5 5] 7
Separation Index (S)

10

Figure 6.7 Values of Partition Index, Separation Index and Xie and Beni Index for ecolidataset
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Figure 6.8 Values of Dunn Index and Alternative Dunn Index for ecoli dataset

6.3.5 Optimum Number of Clusters for Glass Dataset

If we look at the graph in Figure 6.10, for Dunn index and also Alternative Dunn
index there is no certain values that we can say this is the best partition for glass data.
For this reason, we take no account of DI and ADI. But as it can be seen in Figure
6.9 and in Table 6.13, partition index takes the minimum values at cluster number 7
and 9. Separation index takes the minimum values at 7 and 8. XB index also takes
the minimum value at 7 and 9 same as partition index. According to these results, we

take the optimum cluster numbers as 7, 8 and 9.
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Table 6.13 Cluster validity index results for glass dataset

Cluster number

2 3 4 5 6 7 8 9 10

PC 1 0.82454 0.68357 0.64927 0.55926 0.48555 0.50252 0.4557 0.44492 0.40884
CE | 033793 0.63226 0.75683 0.97317 1.17612 1.18156 1.31015 1.38023 1.48637
SC | 1.88266 1.47443 1.32515 1.16045 1.1976 1.41284 0.99068 1.15042 0.89998
S | 0.00806 0.00792 0.00666 0.00662 0.00851 0.00609 0.00606 0.00908 0.00643
XB | 1.78527 3.32253 2.68297 1.41631 1.16428 1.10712 1.18523 1.0789 1.18014
DI 1 0.11589 0.0326 0.0326 0.01517 0.02736 0.01491 0.01808 0.01803 0.01517

ADI | 0.07706 0.00041 0.0002 0.00013 6.9E-06 7.7E-05 0.00012 7.4E-05 0.00011

Fartition Index [5C)

2 T T T T T T T
1 - -
D 1 1 1 1 1 1 1
2 3 4 5 (& 7 a8 9 10
w10 Separation Index (=)
1':' T T T T T T T
B M /\‘
E 1 1 1 1 1
2 3 4 5 5] 7 g =] 10
®xie and Beni Index (=5
4 T T T T T T T
2 -
D 1 1 1 1 1 1 1
2 3 4 5 5] 7 g =] 10

Figure 6.9 Values of Partition Index, Separation Index and Xie and Beni Index for glass dataset
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Figure 6.10 Values of Dunn Index and Alternative Dunn Index for glass dataset

6.3.6 Optimum Number of Clusters for Housing Dataset

For XB index, there is not a certain value and the index is monotonically
decreasing. When we look at the obtained graphs in Figure 6.11 and Figure 6.12, we
can see that at the points of 3, 6 and 8 partition index reaches minimum values. For
separation index, minimum values are obtained at cluster number 6 and 8 too. And
for Dunn index, the value increasing at 6 and takes the second largest value at cluster
number 6. Also Dunn index reaches minimum value at 6. According to these results,

optimum cluster numbers are taken for 3, 6 and 8.
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Table 6.14 Cluster validity index results for housing dataset

Cluster number

10

PC 1

CE |

sC |

XB |
DI 1

ADI |

0.92249

0.43440

1.50632

0.00298

1.81961

0.24156

0.03112

0.86388

0.77451

1.53431

0.00443

1.80884

0.04821

0.00453

0.81936

1.04642

1.97621

0.00556

1.32860

0.05323

0.00261

0.78648

1.25767

2.41764

0.00673

1.06105

0.03517

0.00199

0.77749

1.32877

1.51946

0.00451

1.01079

0.06439

0.00039

0.75412

1.48540

1.78438

0.00518

0.81323

0.03388

0.00277

0.73718

1.59837

1.63370

0.00477

0.72453

0.03544

0.00092

0.72243

1.71267

2.18032

0.00631

0.69892

0.03705

0.00021

0.70750

1.82102

2.49230

0.00710

0.65451

0.02623

0.00020

2.5

Fartition Index [(SC)

1.5
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] 5] 7 &]

Separation Index (3]

005

10

Figure 6.11 Values of Partition Index, Separation Index and Xie and Beni Index forhousing dataset
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Figure 6.12 Values of Dunn Index and Alternative Dunn Index for housing dataset

6.3.7 Optimum Number of Clusters for Iris Dataset

When we look at Table 6.15, Figure 6.13 and Figure 6.14, partition index reaches
minimum values at 3, 7 and 9for iris dataset. Separation index takes the minimum
values at 2, 8 and 9. XB index value is decreasing at 4 and then continues to decrease
monotonically. For Dunn Index the maximum value is obtained at cluster number 2.
By considering that the minimum value is better; according to these results we chose

the optimum number of clusters as 2, 3 and 4.

Table 6.15 Cluster validity index results for iris dataset

Cluster number

2 3 4 5 6 7 8 9 10

PC 1 0.84878 0.73117 0.63672 0.59296 0.54608 0.52462 0.49546 0.48653 0.46682
CE | 0.26321 0.48860 0.69020 0.81734 0.95148 1.00088 1.10019 1.12444 1.19366
SC | 0.99076 0.88489 0.97520 0.93921 1.04914 0.68642 0.75822 0.52489 0.51289
S | 0.00661 0.00855 0.00899 0.00987 0.01053 0.00737 0.00774 0.00541 0.00549
XB | 5.97166 7.96675 4.33773 3.87654 3.44132 1.83890 1.78263 1.43446 1.44847
DI 1 0.10744 0.05733 0.03618 0.05345 0.06936 0.05445 0.05445 0.05445 0.05445
ADI] 0.01049 0.00632 0.00422 0.00294 0.00075 0.00120 0.00201 0.00061 0.00001
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Figure 6.13 Values of Partition Index, Separation Index and Xie and Beni Index for iris dataset
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Figure 6.14 Values of Dunn Index and Alternative Dunn Index for iris dataset

6.3.8 Optimum Number of Clusters for Wine Dataset

As we can see from Table 6.16 and the graph in Figure 6.15, partition index

reaches the minimum value at cluster number 3, 6 and 9. Separation index also
reaches the minimum value at cluster number 3, 6 and 9. XB index values continue

to decrease monotonically while the number of cluster is increasing, because of that
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for XB index the optimum number of clusters cannot be decided clearly. When we
look at the Figure 6.16, Dunn index takes the maximum value at cluster number 4
and 6. For ADI minimum values are obtained at cluster number 5, 6, 8 and 9.
Eventually for wine dataset we decided to take the optimum cluster numbers as 3, 4
and 6.

Table 6.16 Cluster validity index results for wine dataset

Cluster number

2 3 4 5 6 7 8 9 10

PC 1 0.60770 0.48865 0.36502 0.29222 0.24520 0.20983 0.18251 0.16403 0.14515
CE |l 057794 0.87670 1.17730 1.39949 1.56894 1.72742 1.87044 197348 2.09529
SC | 3.50236 1.98958 2.45271 2.32039 1.99495 2.16858 2.45271 1.99941 2.43172
S | 0.01968 0.01412 0.01844 0.01610 0.01414 0.01617 0.01843 0.01416 0.01807
XB | 1.43259 1.09641 0.79604 0.67052 0.55346 0.46064 0.39802 0.36756 0.31865
DI 1 0.15643 0.15001 0.17403 0.13744 0.15368 0.14628 0.14440 0.14628 0.12509

ADI| 0.01013 0.01619 0.01492 0.00249 0.00129 0.00700 0.00068 0.00024 0.00118

FPartition Index (S

2 - -
D 1 1 1 1 1 1 1
2 3 4 L= (=1 7 g 9 10
Separation Index (3]
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Figure 6.15 Values of Partition Index, Separation Index and Xie and Beni Index for winedataset
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Figure 6.16 Values of Dunn Index and Alternative Dunn Index for wine dataset

6.4 Application of Fuzzy Functions with LSE

After the optimum numbers of clusters are decided for all datasets, for the next
step, fuzzy functions approach with LSE is going to be implemented for all datasets.
In order to apply fuzzy functions algorithm, Matlab program is used. All codes for
fuzzy functions with LSE are written in Matlab and also R-square values are

calculated in Matlab.

To be able to measure the effect of fuzzy functions, firstly regression analysis is
implemented to the original datasets. Then for the next step membership values and
some of their transformations are used for fuzzy functions with LSE. Respectively
only membership values, membership values and two of their transformationsand
finally membership values and four of their transformations are used as additional

variables for fuzzy functions. Respectively these transformations are;exp(y; ),

1
exp (1)

obtained from these 3 different methods are compared. For each data, the algorithm

exp(u;)?andexp(u; ), exp(u;)?, (1) * log(1 + (w;)).Afterwards the results

is iterated six times in Matlab and the average R-square values are calculated. In the
following section, obtained R-square values for all datasets are shown in the tables

and graphs. To be able compare “fuzzy functions with LSE” with the proposed
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model, “fuzzy functions with GP”, R-square values are also calculated for whole
datasetsand used for the comparison and also these R-square values are taken as a

basis when the results are depicted in graphs.

As it can be seen in the Figure 6.17, for all chosen optimum cluster numbers,
using both membership degrees and membership degrees and their transformations
for fuzzy functions increased R-square values. Also for abalone data it could be said
that, using membership degrees and their transformations as additional variables
increased the R-square values more than using only membership degrees as
additional variables.

Table 6.17 R-square values for abalone dataset

R’ results for fuzzy functions with LSE for abalone dataset R2 with
etz METbOSE e Mempars deges | only
degrees transformations transformations
Rtrain 0.89218 0.89360 0.89487
R?val 0.89423 0.87668 0.88425
3 R’test 0.87040 0.89087 0.90462
. R?all 0.89022 0.89178 0.89478
é Rtrain 0.89165 0.89340 0.89432
= 4 R?val 0.89230 0.88290 0.88948 0.8654
E R’test 0.88108 0.87482 0.89073 '
3 Rall 0.89038 0.89078 0.89358
© Rtrain 0.89423 0.89237 0.89472
. R?val 0.86360 0.89380 0.89832
R’test 0.87530 0.88165 0.88467
R?all 0.88950 0.89143 0.89405
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Abalone Dataset
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Figure 6.17 Graphical representation of R?ll values for each chosen optimum cluster numberfor
abalone dataset

As it can be seen from the Figure 6.18, using fuzzy functions with both membership
values and their transformations also increased R-square values for auto-mpg data.
According to the graph the same inference could be made that using membership
values and their transformations as additional variables improved performance of

auto-mpg data more than using only membership degrees.

Table 6.18 R-square values for auto-mpg dataset

R? results for fuzzy functions with LSE for auto-mpg dataset
R? with
. Membershi r Membershi r
vemberstip et and fourof ther | 011V LSE
degrees - .
transformations transformations
R°train 0.84153 0.85232 0.85923
5 R?val 0.84210 0.85012 0.85515
R?test 0.81780 0.84865 0.83487
= R%all 0.83942 0.85185 0.85715
= R’train 0.84197 0.86317 0.85702
2 3 szal 0.82353 0.78795 0.85930 0.8151
5 R-test 0.82833 0.84503 0.85655
§ R%all 0.83973 0.85567 0.85770
@) R’train 0.84392 0.84422 0.84293
3 R?val 0.79965 0.81888 0.84313
R’test 0.83695 0.80263 0.81392
R?all 0.83932 0.83865 0.84108
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Auto-mpg Dataset
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Figure 6.18 Graphical representation of RZll values for each chosen optimum cluster number for
auto-mpg dataset

For concrete dataset, as it could be understood from Figure 6.19, all chosen cluster
numbers do not have the same effect. Choosing 9 as cluster number decreased the R-
square values at the point of membership degrees and four of their transformations.
Choosing 5 also decreased the R-square values a bit for membership degrees and

four of their transformations.

Table 6.19 R-square values for concrete dataset

R? results for fuzzy functions with LSE for concrete dataset R? with
embarrip  MIRED Cges Mebe b g | only
degrees transformations transformations

R%train 0.61822 0.63260 0.63048
A Rval 0.62138 0.60662 0.61380
R%test 0.57883 0.57985 0.57960
= RZall 0.61610 0.62710 0.62543
= R%train 0.62193 0.62395 0.56178

= 9 Rval 0.55082 0.59883 0.57110 0.6152

5 R%test 0.62445 0.61877 0.59720 '

3 RZall 0.61842 0.62315 0.56758
o R°train 0.61762 0.62660 0.61250
. Rval 0.60502 0.58298 0.60373
Rtest 0.61292 0.63737 0.62107
RZall 0.61763 0.62472 0.61372
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Concrete Compressive Strenght Data
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Figure 6.19 Graphical representation of R?ll values for each chosen optimum cluster numberfor
concrete compressive strength dataset

If we look at the Figure 6.20, we can say that using fuzzy functions with
membership values or with membership values and their transformations improved
the prediction performance of ecoli data. Also for ecoli dataset it could be said that
using transformations of membership values as additional variables improved the

performance of fuzzy functions more than using only membership values.

Table 6.20 R-squarevalues for ecoli dataset

R? results for fuzzy functions with LSE for ecoli dataset

Membership Membership R? with

Membership degrees _ degrees an_d four of only LSE
degrees and two of their their
transformations transformations

Rtrain 0.73783 0.75105 0.77197
4 R?val 0.79458 0.77997 0.61908
R’test 0.77173 0.73332 0.73327
5 RZall 0.74832 0.75515 0.75718
g Rtrain 0.74608 0.75268 0.75540

2 6 R?val 0.72118 0.74867 0.72295 0.7375

E, R%test 0.74518 0.72452 0.73763 '

g R%all 0.74653 0.75367 0.75302
@) Rtrain 0.76092 0.76735 0.78037
5 R?val 0.64585 0.68670 0.74078
R%test 0.68947 0.70170 0.62760
RZall 0.74377 0.75463 0.76320
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Ecoli dataset
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Figure 6.20 Graphical representation of RZll values for each chosen optimum cluster number for
ecoli dataset

As it can be seen from the Figure 6.21, fuzzy function has a significant effect on
glass dataset and has improved the prediction performance of the regression analysis

prominently.

Table 6.21 R-square values for glass dataset

R? results for fuzzy functions with LSE for glass dataset ,
- R“ with
. Membership Membership degrees onl
Membership degrees . y
. and four of their LSE
degrees and two of their .
- transformations
transformations

R%train 0.89997 0.90117 0.92035
7 |Ral 0.82140 0.86152 0.85000
R%test 0.84510 0.85323 0.85417
s R2all 0.89443 0.89627 0.91170
2 R°train 0.90122 0.89590 0.91395

2 9 R%val 0.79433 0.75117 0.77890 0.6536

5 R%test 0.87735 0.77858 0.78478 '

§ R2all 0.89520 0.87650 0.90033
S R’train 0.89640 0.89928 0.90275
8 R%val 0.90930 0.85073 0.84353
R’test 0.75593 0.85462 0.86823
R2all 0.89608 0.89755 0.90277
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Glass dataset
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Figure 6.21 Graphical representation of RZll values for each chosen optimum cluster number for
glass dataset

Using fuzzy functions with LSE also affect the prediction performance of housing
dataset positively. Using membership values and their transformations provide a

regular and explicit increase for R-square values.

Table 6.22 R-square values for housing dataset

R? results for fuzzy functions with LSE for housing dataset
: - R? with
. Membership degrees Membership degrees
Membership and two of their and four of their only LSE
degrees - .
transformations transformations

R’train 0.74312 0.76535 0.76685
o R?val 0.72773 0.70912 0.67987
R°test 0.72040 0.64442 0.75967
o RZall 0.74058 0.74762 0.75862
é R’train 0.75198 0.74362 0.75460
2 R?val 0.72867 0.76232 0.76780

o | 3 |52 0.7137
3 R-test 0.69350 0.72288 0.67927
3 Rall 0.74605 0.74627 0.74957
© Rltrain __ 0.75258 0.74667 0.75945
6 R?val 0.64932 0.71772 0.73062
R°test 0.70790 0.74778 0.69272
RZall 0.74132 0.74612 0.75065
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Housing dataset
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Figure 6.22 Graphical representation of R?ll values for each chosen optimum cluster numberfor

housing dataset

As it can be seen in Table 6.23 and Figure 6.23, except membership values and

four of their transformations at cluster number 4, fuzzy functions increased the

performance of iris dataset regularly.

Table 6.23 R-square values for iris dataset

R? results for fuzzy functions with LSE for iris dataset
.
erberip VT g Menwe g | (L
degrees transformations transformations

R’train 0.94430 0.94490 0.94825
3 Rval 0.94292 0.94885 0.95967
R’test 0.91537 0.92492 0.92307
o RZall 0.94307 0.94585 0.94792
é R?train 0.94230 0.94160 0.94378

2 5 R?val 0.91800 0.94495 0.93973 0.0371

E R°test 0.92210 0.93280 0.93768 '

3 Rall 0.93852 0.94283 0.94342
© R’train 0.93985 0.94545 0.94047
4 R?val 0.92333 0.94113 0.95327
R’test 0.92748 0.91678 0.91950
RZall 0.93890 0.94355 0.94030
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R2values

Iris dataset
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Figure 6.23 Graphical representation of R?all values for each chosen optimum cluster number for iris

dataset

For wine dataset, using fuzzy functions do not provide a regular increase and R-

square value is decreasing at cluster number 3 for membership values and two of

their transformations. But except this point, R-square values show an increasing

trend for the other points and it would not be wrong to say that fuzzy functions give

better results compared to regression analysis.

Table 6.24 R-square values for wine dataset

R? results for fuzzy functions with LSE for wine dataset
Membership . R2 with
Membership degrees Membership degrees |
. and four of their only LSE
degrees and two of their .
- transformations
transformations
R%train 0.74892 0.75640 0.75915
3 R?val 0.69997 0.64325 0.69455
R’test 0.60047 0.68263 0.69972
= R2all 0.73697 0.74020 0.74900
-g R%train 0.74602 0.78005 0.76657
2 4 R?val 0.68418 0.52653 0.66292 0.7322
E, R’test 0.67888 0.61378 0.61602 '
§ R2all 0.73843 0.74262 0.74843
O Rtrain 0.75920 0.75017 0.77253
6 R?val 0.69683 0.71373 0.69605
R’test 0.56965 0.68883 0.60248
RZall 0.73605 0.74452 0.75168
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Wine dataset
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Figure 6.24 Graphical representation of R?all values for each chosen optimum cluster number for wine
dataset

Making a general interpretation, as it could be seen in the tables and graphs, using
fuzzy functions have generally improved the predictions performance of regression
analysis with a few exceptions. Also it would not be wrong to say that using
transformations of membership values in addition to membership values have also
improved the performance of fuzzy functions more than using only membership

values.
6.5 Application of Fuzzy Functions with GP

Genetic programming on its own is an efficient and powerful method for data
analysis. From this point of view it is expected that using genetic programming with
fuzzy functions will increase the prediction performance of fuzzy functions.

In this section, the proposed algorithm, fuzzy functions with GP, is applied to the

same datasets and R-square values are calculated for selected number of clusters for

each dataset.
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To interpret Table 6.25 and Figure 6.25, the effect of fuzzy functions with GP is
not same for all clusters and has not provide a regular increase for abalone dataset.
While at some points it is led to the decrease of R-square values, at some points it is

led to increase of R-square values.

Table 6.25 R-square values of genetic fuzzy functions for abalone dataset

R? results of fuzzy functions with genetic programming for
abalone dataset
. Membership
Only Membership Membership deg_rees degrees and four of
L and two of their .
original data degrees transformations their
transformations
3 0.9180 0.9109 0.9194
Chosen
optimumy 0.9171 0.9091 0.9275 0.9194
cluster
number | g 0.9143 0.9172 0.9131
Abalone Dataset
0,930

0,925 /)\
T~ 3

$ 0,915 \—— v
=3
S 0,910 ‘/ ——4
iy 5
0,905
0,900
0,895

1 2 3 4
1: Only original data
2: Membership values in addition to original data
3: Membership values and two of their transformations in addition to original data
4: Membership values and four of their transformations in addition to original data

Figure 6.25 Graphical representation of R? values for fuzzy functionsgeneticwith programming
forabalone dataset

As it can be seen in Table 6.26 and Figure 6.26, using fuzzy functions has
increased the R-square values except at cluster number 5 for membership values and

four of their transformations.
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Table 6.26 R-square values of genetic fuzzy functions for auto-mpg dataset

R? results of fuzzy functions with genetic programming for
auto-mpg dataset
Only original | Membership Membership deg_rees Membership deg(ees
and two of their and four of their
data degrees . .
transformations transformations
5 0.8589 0.8432 0.7185
Chosen
opumum | g 0.7623 0.8564 0.8034 0.8630
cluster
number
3 0.8489 0.8392 0.8559
Auto-mpg Dataset
1,00
0,90 T — =
0,80 - \h<‘
0,70
@ 0,60 =5
2 050 -3
> 040
© 0,30 3
0,20
0,10
0,00
1 2 3 4
1: Only original data
2: Membership values in addition to original data
3: Membership values and two of their transformations in addition to original data
4: Membership valuesand four of their transformations in addition to original data

Figure 6.26 Graphical representation of R? values for fuzzy functionswith genetic programming for
auto-mpg dataset

For concrete compressive strength dataset, there is not a regular increase as it can
be seen clearly from Figure 6.27. Although at cluster number 5, R-squarevalues
shows a substantial increase, at cluster number 4 and 9, the results of R-squarevalues

are inconstant.
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Table 6.27 R-square values of genetic fuzzy functions for concrete dataset

R? results of fuzzy functions with genetic programming for
concrete dataset
. Membership degrees | Membership degrees
. (_)nly Membership and two of their and four of their
original data degrees - .
transformations transformations
4 0.7703 0.7060 0.7826
Chosen
optimumy o 0.7988 0.8068 0.7223 0.7135
cluster
number |- g 0.7839 0.8175 0.8051
Concrete Compressive Strenght Dataset
0,84
0,82

0,80 ,-\—-—'%

0,78 \\\ / ——14
0,76

0.74 NN\ e =9
0,72 \H 5
0,70
0,68
0,66
0,64

R? vlaues

1 2 3 4

1: Only original data

2: Membership values in addition to original data

3: Membership valuesand two of their transformations in addition to original data
4: Membership valuesand four of their transformations in addition to original data

Figure 6.27 Graphical representation of R? values for fuzzy functions with genetic programming for
concrete compressive strength dataset

There is not also a regular increase for ecoli dataset as it can be seen in Table
6.28. While at some points R-square values shows an increase, generally there is a

decrease for R-squarevalues.
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Table 6.28 R-square values of genetic fuzzy functions for ecoli dataset

R? results of fuzzy functions with genetic programming for
ecoli dataset
. Membership
Only original Membership Membership deg_rees degrees and four of
and two of their .
data degrees - their
transformations .
transformations
Chosen 4 0.7967 0.7503 0.7603
optimum 0.7855
cluster 6 0.7784 0.7823 0.7723
number | g 0.7790 0.7720 0.7831
Ecoli Dataset
0,81

0,80 /\
0,79
0,78 — = =4

0,77 _ AN E—
0,76

\/ 5
0,75

0,74
0,73
0,72

R2values

1 2 3 4

1: Only original data

2: Membership values in addition to original data

3: Membership values and two of their transformations in addition to original data
4: Membership values and four of their transformations in addition to original data

Figure 6.28 Graphical representation of R? values for fuzzy functions with genetic programming for
ecoli dataset

As it could be seen in Figure 6.29, for glass dataset, using fuzzy functions has
improved the predictions performance of genetic programming for all chosen cluster

numbers despite the some declines at some points.
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Table 6.29 R-squarevalues of genetic fuzzy functions for glass dataset

R? results of fuzzy functions with genetic programming for
glass dataset
. Membership
Only original Membership Membership deg_rees degrees and four of
and two of their .
data degrees - their
transformations transformations
7 0.8490 0.8659 0.8625
Chosen
optimumy g 0.7552 0.7982 0.8726 0.8337
cluster
number
8 0.8614 0.8461 0.8332
Glass Dataset
0,90

0,88
0,86 ﬁ—yﬁ
0,84 A 7
0[82 / / E
0,80 4

) / -9
0,78

e

0,76 yé
0,74
0,72
0,70
0,68

R? values

1 2 3 4

1: Only original data

2: Membership values in addition to original data

3: Membership values and two of their transformations in addition to original data
4: Membership values and four of their transformations in addition to original data

Figure 6.29 Graphical representation of R? values for fuzzy functionsgenetic programming for
glass dataset

As it could be seen in Figure 6.30, for housing dataset, using fuzzy functions
concept has generally improved the predictions performance of genetic programming
except the point at which membership values and two of their transformations are

used as additional variables.
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Table 6.30 R-squarevalues of genetic fuzzy functions for housing dataset

R? results of fuzzy functions with genetic programming for
housing dataset
. Membership
Only original Membership Mzwgicsglgftiﬁgirrees degrees and four
data degrees - of their
transformations .
transformations
8 0.7342 0.6829 0.7924
Chosen
optimum| 5 0.7319 0.7631 0.7060 0.7777
cluster
number
6 0.7488 0.7014 0.7850
Housing Dataset
0,82
0,80

3'32 2
0,74 7’/__‘.\.\ // ——38

w
3 o7 —=-3
é 0,70 \\// ]
0,68
0,66
0,64
0,62

1 2 3 4

1: Only original data

2: Membership values in addition to original data

3: Membership values and two of their transformations in addition to original data
4: Membership values and four of their transformations in addition to original data

Figure 6.30 Graphical representation of R? values for fuzzy functions with genetic programmingfor
housing dataset

For iris dataset, all cluster numbers has not shown a positive effect, as it could be
seen in Table 6.31 and in Figure 6.31. While R-squarevalues are increasing atcluster

number 3, it is decreasing atcluster number 2 and 4.
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Table 6.31 R-square values of genetic fuzzy functions for iris dataset

R? results of fuzzy functions with genetic programming for
iris dataset
. Membership
Only Membership Membership deg_rees degrees and four of
i, and two of their .
original data degrees - their
transformations transformations
3 0.9576 0.9545 0.9482
Chosen
opimum{ 0.9427 0.9418 0.9427 0.9436
cluster
number
4 0.9390 0.9400 0.9413
Iris Dataset
0,960
0,955 //\\
0,950
’ \
8 0,945 / 3
5 ré— = —l— Y -2
2 0,940
o 4
0,935
0,930
0,925
1 2 3 4

1: Only original data

2: Membership degrees in addition to original data

3: Membership degrees and two of their transformations in addition to original data
4: Membership degrees and four of their transformations in addition to original data

Figure 6.31 Graphical representation of R® values for fuzzy functions with genetic programming
for iris dataset

As it could be seen in Table 6.32 and Figure 6.32, there is not a regular increase
for wine dataset; while at some points, using fuzzy functions improved the R-square

values, at some points R-square values are decreasing.
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Table 6.32 R-square values of genetic fuzzy functions for wine dataset

R? results of fuzzy functions with genetic programming for
wine dataset
Membership .
Only Membership degrees Membership degfees
i, . and four of their
original data degrees and two of their transformations
transformations
3 0.7076 0.7667 0.7736
Chosen
optimumy 4 0.7362 0.7223 0.781 0.7125
cluster
number | ¢ 0.7162 0.6963 0.7327
Wine Dataset
0,80
0,78 M
0,76 // \ 3
§ 0,74 r‘\-// N —_-—
T 072 \\,',’ N
& 0,70 — °
0,68
0,66
0,64

1 2 3 4

1: Only original data

2: Membership degrees in addition to original data

3: Membership degrees and two of their transformations in addition to original data
4: Membership degrees and four of their transformations in addition to original data

Figure 6.32 Graphical representation of R? values for fuzzy functions with genetic programming for

wine dataset

If we interpret the all result, it could be said that, using membership degrees and
their transformations generally improved the performance of genetic programming as
in regression analysis. In the following section, the results of R-square values of
fuzzy functions with LSE and fuzzy functions with GP are depicted in a table for all

datasets in order to be able to be compared.

121



Table 6.33 Comparison of fuzzy functions with LSE and fuzzy functions with GP for abalone dataset

Membership degrees Membership
Abalone  Cluster Only original Membership . degrees and four
and two of their .
data number data degrees i - of their
ransformations .
transformations
R? results 3 0.89022 0.89178 0.89478
for fuzz
functionﬁ 4 0.8654 0.89038 0.89078 0.89358
with LSE 5 0.88950 0.89143 0.89405
R? results 3 0.9180 0.9109 0.9194
for fuzzy
functions 4 0.9171 0.9091 0.9275 0.9194
with GP 5 0.9143 0.9172 0.9131

Table 6.34 Comparison of fuzzy functions with LSE and fuzzy functions with GP for auto-mpg

dataset
) Only . Membership degrees Membership degrees
Au;o tmpg nCJ:JnStt)irr original Mzr:brirsglp and two of their and four of their
ata data 9 transformations transformations
R? results 5 0.83942 0.85185 0.85715
for fuzz
funcﬁon); 8 0.8151  0.83973 0.85567 0.85770
with LSE 3 0.83932 0.83865 0.84108
R? results 5 0.8589 0.8432 0.7185
for fuzzy 0.7623
functions 0.8564 0.8034 0.8630
with GP 3 0.8489 0.8392 0.8559

Table 6.35 Comparison of fuzzy functions with LSE and fuzzy functions with GP for concrete dataset

Membership Membership degrees
Concrete  Cluster Only Membership degrees and four of their
data number original data degrees and two of t_helr transformations
transformations
R? results 4 0.61610 0.62710 0.62543
for fuzz
functionﬁ 9 0.6152 0.61842 0.62315 0.56758
with LSE 5 0.61763 0.62472 0.61372
7 g 182
R? results 4 0.7703 0.7060 0.7826
for fuzzy 0.7988
functions 9 0.8068 0.7223 0.7135
with GP
0.7839 0.8175 0.8051
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Table 6.36 Comparison of fuzzy functions with LSE and fuzzy functions with GP for ecoli dataset

Membership degrees Membership
Ecoli dat Cluster Only original Membership and two of their degrees and four
colrdata — nymper data degrees : of their
transformations .
transformations
R results 4 0.74832 0.75515 0.75718
for fuzz
functionﬁ 6 0.7375 0.74653 0.75367 0.75302
ith LSE
w 5 0.74377 0.75463 0.76320
R results 4 0.7967 0.7503 0.7603
for fuzzy 0.7855
functions 6 0.7784 0.7823 0.7723
with GP
5 0.7790 0.7720 0.7831

Table 6.37 Comparison of fuzzy functions with LSE and fuzzy functions with GP for glass dataset

Cl onl Membershi Mzmbership Membership degrees
Glass data uster e embership egrees and four of their
number original data degrees and two of their transformations
transformations

R? results 7 0.89443 0.89627 0.91170
for fuzz
functionﬁ 9 0.6536 0.89520 0.87650 0.90033
with LSE

8 0.89608 0.89755 0.90277
R? results 7 0.8490 0.8659 0.8625
for fuzzy
functions g 07552 0.7982 0.8726 0.8337
with GP

8 0.8614 0.8461 0.8332
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Table 6.38 Comparison of fuzzy functions with LSE and fuzzy functions with GP for housing dataset

. Membership Membership degrees
Housing  Cluster Only original Membership degrees and four gf thgeir
data number data degrees and two of their .
. transformations
transformations
R? results 8 0.74058 0.74762 0.75862
for fuzz
function); 3 0.7137 0.74605 0.74627 0.74957
with LSE 6 0.74132 0.74612 0.75065
R? results 8 0.7342 0.6829 0.7924
for fuzzy 0.7319
functions 3 0.7631 0.7060 0.7777
with GP
0.7488 0.7014 0.7850

Table 6.39 Comparison of fuzzy functions with LSE and fuzzy functions with GP for iris dataset

Cluster Only Membership Membership degrees Membership degrees
Irisdata number original degrees and two of their and four of their
data transformations transformations
R? results 3 0.94307 0.94585 0.94792
for fuzz
functionﬁ 2 09371 0.93852 0.94283 0.94342
ith LSE
with LS 4 0.93890 0.94355 0.94030
R results 3 0.9576 0.9545 0.9482
for fuzzy
functions 2 0.9427 0.9418 0.9427 0.9436
with GP
4 0.9390 0.9400 0.9413
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Table 6.40 Comparison of fuzzy functions with LSE and fuzzy functions with GP for wine dataset

Membership degrees  Membership degrees

. Cluster Only Membership . .

Wine data i, and two of their and four of their

number  original data degrees transformations transformations
R results 3 0.73697 0.74020 0.74900
for fuzz
functionﬁ 4 07322 073843 0.74262 0.74843
with LSE 6 0.73605 0.74452 0.75168
R? results 3 0.7076 0.7667 0.7736
for fuzzy
functions 4 07362 7203 0.7810 0.7125
with GP

6 0.7162 0.6963 0.7327

6.6 Conclusion

In this part of the study, fuzzy functions with LSE and fuzzy functions with GPare
applied to the datasetsand the effect of fuzzy functions concept on genetic
programming is tried to be searched. According to the obtained results it could be
said that fuzzy functions with LSE improved the prediction performance and gave
better results with a few exceptions compared to regression analysis. When fuzzy
functions are generated using genetic programming also improved the prediction

performance in some cases.
In the following chapter, a briefsummary of the study is made and then a general

assessment is made on fuzzy functions approach by comparing and evaluating the

obtained results. Finally the study is terminated with future research part.
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CHAPTER SEVEN
CONCLUSION AND FUTURE RESEARCH

7.1 Conclusion

In this part of the study, the purpose of the study is going to be overviewed and a
general summary of the thesis is going to be made. Then finally future works are

going to be represented.

As it was expressed before in previous chapters, the prime purpose of this study is
to represent fuzzy functions with GP on the basis of fuzzy functions approach and its
foundations. For this purpose a general review of the related topics which constitute
the basis of fuzzy functions approach and form the starting point of fuzzy functions
are represented.Firstly in chapter 2, fuzzy rule bases approach which is one of the
most commonly known fuzzy inference system and applied in a variety of fieldsis
introduced. The foundations of fuzzy rule bases, commonly used types of fuzzy rule

bases and its main disadvantages are overviewedbriefly in chapter 2.

Due to play a crucial part in fuzzy functions conceptthe concept of fuzzy
clustering, important types of clustering algorithms and commonly used clustering

validity indexes are explained briefly in chapter 3.

The fundamental theory of fuzzy functions approach, which is proposed by
Tiirksen in order to eliminate the difficulties of fuzzy rule bases and constitutes the
basis of this study is introduced in chapter 4. Then in the following sections the
algorithm of fuzzy functions with LSE is represented and explained with a numerical

example step by step.

In chapter 5, the proposed approach in which it is recommended to use genetic
programming in generating fuzzy functions is introduced. For this purpose firstly the
theory of genetic programming is overviewed andafterwards the proposed algorithm

is introduced and then explained with a numerical example step by step.
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In chapter 6, fuzzy functions with LSE and proposed model, fuzzy functions with
GP, applied to datasets from the literature in order to be able to compare and present

the performance of our approach.

If we evaluate the resultsit could be said that generating fuzzy functions by using
different analyzing methods generally give better results and improve the prediction
performance. But we can say that the effects of fuzzy functions are changing
depending on the dataset. In the present thesis while using fuzzy functions approach
improved the performance of some datasets significantly, for some of the datasets it

showed just a small improvement and even decreased the prediction performance.

7.2 Future Works

Suggestions for future works based on the obtained results could be stated as

follows;

= As it stated in previous section, the effects of type of problems (regression,
classification, regression and classification i.e.) could be searched in detail by
applying fuzzy functions to different types of problems.

= By applying different clustering validity indexes,more appropriate cluster
numbers could be found out and thus the effects of more appropriate number
of clusters could be compared.

= By using different clustering algorithms, the effect of the clustering algorithms
could be searched in detail.

» For the present study Eureqa Formulize software program is used for the
proposed model. As a future research, by choosing different types parameters
and even using different genetic programming software the effects of them

could be searched in details.
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APPENDIX

Appx.1

Least Square Estimation

In statistics and mathematics, linear least squares is an approach fitting a
mathematical or statistical model to data in cases where the idealized value provided
by the model for any data point is expressed linearly in terms of the unknown

parameters of the model (Wikipedia, 2010).

In a regression model, the assumption is that the dependent variable is a linear
function of one or more independent variables plus an error factor. Let the regression
model be defined as a multi-input, single output (MISO) model as follows:In matrix
notationthe general linear model is expressed as (Celikyillmaz and Tiirksen, 2009b, p.
340);

Yy = Bo+ Bix1 + BryXny + € (A.1)
Here;
= ‘y’ represents the output variable,
" Xy are the input variables where nv is the number of variables,
= g represent the error term.
= B’s are the coefficients parameters.
To represent the regression model in matrix notation;

y=XB+¢ (A.2)

* y isoutput matrix that consist of n vectors,
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= X is the inputs which is consist of [n X p] matrix of. Here n represents the
number of vectors, nv is the number of variables.
» B isrepresent the coefficient parameters matrix that is consist of [nv x 1]

= ¢ represents the error matrix which is consist of [n x 1].

The objective is to minimize the total residuals. Therefore the simplest linear
regression, which tries to minimize the total squared error between the actual and
estimated output, is called the least squares regression. (Celikyilmaz and Tiirksen,
2009b, p. 341);

minG = > (i = fo + Buxie + B 1)’ (4.3)
k=1

In matrix notation the equation below is minimized,

minQ = (y — XB)' (v — XB)
9
ap
200 X)B = 2X'y
B=&XX)"Xy

[y —XB)'(y —XB)] =0 (4.4)
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Appx.2
Calculation of R-square value

Sum of squares due to error: This statistic measures the total deviation of the
response values from the fit to the response values and also called as the summed

square of residuals and represent as below (MathWorks, n.d.).
SSE = ) wi(yi = 9)? (4.5)
i=1

Here;
= yrepresents the observed output value,
= y;represents the predicted output value.

= w; is the weighting value and generally takes 1.

This statistic measures how successful the fit is in explaining the variation of the
data. In other words R-square is the square of the correlation between the response

values and the predicted response values. (MathWorks, n.d.).

R-square is defined as the ratio of the sum of squares of the regression (SSR) and
the total sum of squares (SST). SSR is defined as;

SSR= ) wi (@ —)* (A.6)
2

SST = ) wi(y; —¥)* (4.7)
2

Where y is the mean of the observed data y;.

SSR SSE

Rsquare =
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