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INVESTIGATION OF FUZZY FUNCTIONS APPROACH AND ITS 

POSSIBLE APPLICATIONS IN INDUSTRIAL ENGINEERING PROBLEMS 

 

ABSTRACT 

 

Fuzzy set theory was introduced by Zadeh in 1965 as an extension to classical set 

theory. It has been a very important research subject for many researchers and has 

led to new developments for many fields since it enables to handle uncertainties 

successfully. One of these important developments is the fuzzy functions concept 

which was introduced by Professor I. Burhan Türkşen and combines fuzzy sets and 

fuzzy clustering concepts to provide an alternative solution approach to solve 

problems in diverse domains. The novelty of fuzzy functions is based on the fuzzy 

clustering concept and therefore based on fuzzy membership values. Fuzzy clustering 

is one of the corner stone of the fuzzy functions since finding the best partition 

constitutes the main problem in this approach. There are several fuzzy clustering 

algorithms in the literature which can be used in generating fuzzy functions. In this 

thesis Fuzzy c-Means (FCM) clustering algorithm is used in order to find out the 

membership values. 

 

One of the main motivations behind the development of the fuzzy functions approach 

was to overcome some of the drawbacks of the fuzzy rule bases which are one of the 

most frequently used fuzzy inference methods with many successful applications.  

 

     As a contribution to the existing studies about fuzzy functions, first time in the 

present thesis we proposed to use genetic programming (GP) along with fuzzy 

clustering as a new approach in generating fuzzy functions. We used many data sets 

from the literature in order to present the application and the performance of our 

approach. We also performed comparisons with the existing fuzzy function 

generation methods like Least Square Estimation (LSE) in order to prove the validity 

of our approach. Based on the computational results we illustrated that fuzzy 

functions which are generated through genetic programming are very competitive 

and effective in many problem settings.   
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BULANIK FONKSİYON YAKLAŞIMININ ARAŞTIRILMASI VE 

ENDÜSTRİ MÜHENDİSLİĞİ PROBLEMLERİNDE OLASI 

UYGULAMALARI 

 

ÖZ 

 

Bulanık küme teorisi,  Zadeh tarafından 1965‟de klasik küme teorisinin 

genişletilmiş bir şekli olarak ortaya atılmıştır. Bulanık küme teorisi birçok 

araştırmacı için çok önemli bir araştırma konusu olmuş ve belirsizliklerle başarılı bir 

şekilde baş etme olanağı sağladığı için birçok alanda yeni gelişmelere yol açmıştır. 

Bu önemli gelişmelerden biri de, Profesör I. Burhan Türkşen tarafından ortaya atılan 

ve çeşitli alanlardaki problemlerin çözümünde alternatif çözüm yaklaşımı sağlamak 

için bulanık küme ve bulanık kümeleme kavramlarını kombine eden bulanık 

fonksiyonlardır. En iyi bölümlemeyi bulmak bulanık fonksiyonlar yaklaşımın temel 

problemini oluşturduğundan dolayı, bulanık kümeleme, bulanık fonksiyonların temel 

taşlarından biridir. Literatürde, bulanık fonksiyonları üretmede kullanılabilen çeşitli 

bulanık kümeleme algoritmaları vardır. Bu çalışmada, üyelik değerlerini bulmak için 

Fuzzy c-Means (FCM) kümeleme algoritması kullanılmaktadır. 

 

Bulanık fonksiyon yaklaşımının gelişiminin arkasındaki ana etkenlerden biri, pek 

çok başarılı uygulaması olan ve en sık kullanılan bulanık çıkarsama yöntemlerinden 

biri olan bulanık kural tabanlarının bazı dezavantajlarının üstesinden gelmektir.  

 

Bulanık fonksiyonlar ilgili var olan çalışmalara katkı olarak, mevcut tezde ilk defa 

yeni bir yöntem olarak bulanık fonksiyonların oluşturulmasında, bulanık 

kümelemeyle birlikte genetik programlamanın (GP) kullanmasını önerdik. 

Yaklaşımımızın uygulanışını ve performansını göstermek için literatürden birçok 

veri setini kullandık. Ayrıca yaklaşımımızın geçerliliğini kanıtlamak için En Küçük 

Kareler Yöntemi (EKKY)gibi mevcut yöntemler ile oluşturulan bulanık 

fonksiyonları kullanarak karşılaştırmalar yaptık. Sayısal sonuçlara dayanarak, 

genetik programlamayla oluşturulan bulanık fonksiyonların birçok problem 

kümelerinde rekabetçi ve etkili olduklarını örneklendirdik. 
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CHAPTER ONE 

INTRODUCTION 

 

1.1 Background 

 

     Uncertainty is an important part of the systems and almost all of the problems 

encountered in real life stem from containing uncertainty. Therefore defining and 

modeling the systems appropriately constitutes the basis of problems. This 

uncertainty leads to subjectivity of the expressions which could be changed from 

different points of view and limits measuring the performance of the systems. The 

classical set theory ignores this uncertainty and defines the systems with sharp 

boundaries such as true or false expressions. According to classical set theory an 

element either is a member of a set or not. When it is thought the element belongs to 

a set, it is represented with “1”, when it is thought the element does not belong to a 

set, it is represented with “0” which could be liken to seeing the glass either empty or 

full ignoring the water inside the glass. There is a sharp distinction between the 

element and the set. But in real life elements are not classified with sharp boundaries 

and the classical set theory of 0-1 cannot reflect the systems adequately. Because of 

that classical set theory is not capable of explaining such vague systems precisely. In 

order to eliminate such an important insufficiency, Prof. Dr. Lotfi Zadeh proposed 

fuzzy set theory in 1965 and since than it has become a very important subject. In his 

article (1965) he described this new concept as follows; “a fuzzy set is as a class of 

objects with a continuum of grades of membership” (p. 338) and claimed that, an 

element of a set can take values between 0 and 1 which represents the degree of 

belongings of the element to a fuzzy set. Therefore it could be said that fuzzy set 

theory describes the systems more accurately and gives better results when classical 

set theory is not successful and sufficient. 

 

Since Prof. Dr. Lotfi Zadeh introduced fuzzy set theory, thanks to enabling to 

cope with data more sufficiently, it has been a very important way of analyzing and 

modeling the systems. As it was expressed by Çelikyılmaz (2005), “fuzzy logic (FL) 

provides a means for modeling linguistic terms (i.e., fair, good, excellent) by
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utilizing membership functions; and in turn provides a framework for Fuzzy System 

Modeling” (p. 2).  

 

After fuzzy logic theory has become widely known and itsimportance has been 

understood, it has formed the basis of many well-known and efficient researches. 

One of them is fuzzy rule bases concept which is originally proposed by Zadeh 

(1973) and then studied and developed by many of researchers. Many researchers 

such as Mamdani (1974) and Takagi & Sugeno (1985) have made important 

contributions depending on the encountered problems in the course of application.  

 

     Fuzzy rule bases concept is one of the most known fuzzy inference methods and 

could be defined as a system thatis composed of a set of rules which describe the 

relationships between inputs and outputs with linguistic variables. The ability of 

fuzzy rule bases to model complex systems and developing rules that make intuitive 

sense are some of the important advantages of fuzzy rule bases. But despite the 

widespread use of fuzzy rule bases, enabling to model complex systems easily and 

successful applications, fuzzy rule bases still have some important drawbacks that 

obstruct to define systems easily and correctly when the systems are being larger 

besides fuzzy rule bases require expert knowledge. All these aforementioned subjects 

and more detailed information concerning the fuzzy rule bases could be found out in 

chapter 2. 

 

      Fuzzy functions concept, which wasproposed by Professor I. Burhan Türkşen in 

order to overcome all aforementioned deficiencies of fuzzy rule bases such as 

dependence on expert knowledge and complexity of required operators during the 

modeling and analyzing phase, forms the basis of this study. Fuzzy functions concept 

could be defined as a combination of functions and fuzzy sets that offers a more 

objective way of analyzing the systems.  In the literature “fuzzy functions” term has 

been used in order to describe many different concepts. Among them, the most 

widely used is the one which represents the membership functions.  One of the 

examples of other definitions is mathematical definition of fuzzy functions that is 

proposed by Professor Mustafa Demirci (1999, 2000 and 2001). The implied 
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meaning of fuzzy functions suggested by Demirci is different from fuzzy functions 

concept that is proposed by Professor I. Burhan Türkşen. However it would not be 

wrong to say that fuzzy functions term used by Demirci underlines the mathematical 

basis of Türkşen‟s fuzzy functions concept. 

 

In their studies, Çelikyılmaz and Türkşen (2007a, 2007b, 2008a and 2008b) have 

applied fuzzy functions to many dataset from the literature and have shown that this 

proposed approach gives more efficient results in comparison to fuzzy rule bases.    

 

“Fuzzy Functions” are multi-variable crisp valued functions. The prominent 

feature of these functions 𝑓(𝑋, 𝜇) are that they use the degree of membership 𝜇, of 

each object to the specified fuzzy set as an additional attribute just as the rest of 

the input variables, X. In a sense, the gradations (membership values) become the 

predictors. This type of “Fuzzy Functions” emerged from the idea of representing 

each unique fuzzy rule in terms of functions (Çelikyılmaz and Türkşen, 2009b,p. 

35).  

 

     According to Türkşen‟s approach membership values and some of their 

transformations such as exponential and logarithmic transformations are added as 

new variables to the original datasets. As it could be understood from here, 

membership values are the keystones of fuzzy functions. In the literature many 

different methods have been proposed for the purpose of finding membership values 

and for thepresent study fuzzy c-means (FCM) clustering algorithm is taken as a 

basis in order to obtain membership values. As Rezaee, Lelieveldt and Reiber (1998) 

defined, “The objective of most clustering methods is to provide useful information 

by grouping (unlabeled) data in clusters; within each cluster the data exhibits 

similarity” (p. 237). As stated by Rezaee et al. (1998) similarity is very important and 

constitutes the basis of fuzzy clustering. Therefore many methods have been 

proposed in order to measure the validity of fuzzy clustering algorithms.  

 

In chapter 6, for the implementation phase of fuzzy functions, three different ways 

are followed. After membership values of datasets which are taken from UCI 
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learning machine repository have been found, first of all, only these membership 

values are added to the original input variables as new predictors. Then respectively 

four and two different transformations of these membership values are added as new 

variables to original input variables. But before fuzzy functions with LSE is applied 

to these datasets, an artificial dataset is generated and Türkşen‟s proposed algorithm 

is explained via this artificial dataset step by step in chapter 4. Then in the next 

chapter genetic programming concept which is the main focus of this study and 

forms the basis of fuzzy functions with genetic programming is introduced and the 

algorithm is explained with the generated artificial dataset.  

 

1.2 The Main Scope of the Study 

 

Based on Türkşen‟s fuzzy functions approach, the proposed model of fuzzy 

functions with genetic programming (GP) forms the basis of this study. The purpose 

in using genetic programming is to search whether using the proposed model is 

increasing the performance of fuzzy functions or not.  

 

Langdon, Poli, McPhee and Koza (2008) defined genetic programming (GP) as an 

evolutionary computation (EC) technique that automatically solves problems 

without having to tell the computer explicitly how to do it. At the most abstract 

level GP is a systematic, domain-independent method for getting computers to 

automatically solve problems starting from a high-level statement of what needs 

to be done (p. 927).  

 

Genetic programming is an efficient technique on its own, and gives competitive 

results compared to other techniques. In the literature, there are many studies that 

combine the genetic programming with other techniques. From this point of view, 

assuming that using genetic programming with fuzzy functions may improve the 

performance of fuzzy functions, just as in the case of the application of fuzzy 

functions with LSE, the same three methods are followed for fuzzy functions with 

GP and the same datasets and transformations are used for all methods. Moreover the 
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same artificial dataset is used in order to explain the algorithm of the proposed model 

of fuzzy functions with GP.  

 

After the algorithm of the proposed model is explained step by step with an 

artificial dataset, the proposed model is applied to all datasets and then the results of 

fuzzy functions with GP and the results of fuzzy functions with LSE are compared. 

With the intention of being able to compare in itself R-squarevalues of training, 

validation and testing data are calculated for fuzzy functions with LSE.  However in 

order to be able to compare fuzzy functions with LSE and fuzzy functions with GP, 

R-square values are calculated for also whole datasets without separating into 

training or testing data. Afterwards based on these R-square values, the validity of 

the proposed model is discussed. 

 

1.3 The Structure of The Thesis 

 

The present thesis consists of seven chapters and organized as follows. In chapter 

1, a brief introduction is made on the course of the study. In chapter 2, the 

fundamental theory of fuzzy rule bases; mostly used types of fuzzy rule bases and 

their main drawbacks are explained in detail. Fuzzy clustering concept which 

constitutes the basis of the fuzzy functions; type of fuzzy clustering algorithms and 

most widely used clustering validity indexes that provide to determine best possible 

fuzzy partition are presented in chapter 3. In chapter 4, outlines of fuzzy functions 

concept and fuzzy functions with Least Square Estimation (LSE) is explained step by 

step with an artificial dataset. After fuzzy functions concept is overviewed, the 

proposed method of fuzzy functions with genetic programming approach is discussed 

and the algorithm is explained with the same artificial dataset in chapter 5. In chapter 

6, the datasets taken from UCI Machine Learning Repository are evaluated with 

“fuzzy functions with LSE” and “fuzzy functions with genetic programming”. 

Finally the study is ended with chapter 7 in which a brief summary of the study is 

provided, conclusions are reviewed and potential future researches are stated.   
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CHAPTER TWO 

A BRIEF OVERVIEW OF FUZZY RULE BASES 

 

2.1 Introduction 

 

A system can be described as a collection of elements which have relationships 

with each other and aiming at a common purpose. As much as modeling the systems 

always has been an important subject for researches, defining these systems 

appropriately has also become an important part of the problems and constitutes 

prerequisite step to able to modeling the systems. However systems often contain 

linguistic expressions and are stated with linguistic variables which in other words 

mean subjectivity. Therefore modeling the systems that composed of linguistic 

variables is quite difficult and the classical inference systems are not sufficient for 

these systems and do not reflect the accurate results. The notion of fuzzy system 

deals with such these problems.  

 

Palit and Popovic (2005) stated that “Fuzzy systems are unique in the sense that 

they can simultaneously process numerical data and linguistic knowledge” (p. 146). 

As it was expressed by Palit and Popovic, thanks to that fuzzy systems allows both 

processing numerical and linguistic variables, modeling the systems realistically 

become easier. This advantage has provided fuzzy systems to be widespread in a 

short time and to be used successfully for various purposes such as for prediction, 

modeling and classification.  

 

After Zadeh introduced fuzzy set theory in 1965 and then its advantages were 

discovered, many researches on fuzzy sets have been made. In the literature many 

studies have been proposed on fuzzy sets. Between them the most commonly known 

and applied fuzzy inference system is fuzzy rule bases system which is also 

originally introduced by Zadeh in 1973 and then developed by many researchers.  

 

In his study, Zadeh (1973) described the difference of his proposed approach from 

the conventional quantitative techniques of system analysis. As it was expressed by 

Zadeh (1973), the proposed approach has three main distinguishing features: “1) use 
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of so-called "linguistic" variables in place of or in addition to numerical variables; 2) 

characterization of simple relations between variables by fuzzy conditional 

statements; and 3) characterization of complex relations by fuzzy algorithms”(p. 28). 

More information could be found in his study which is called “Outline of a new 

approach to the analysis of complex systems and decision processes”. 

 

In the following section fuzzy rule bases concept is reviewed and then detail 

information on most commonly known and used types of fuzzy rule bases is given.  

 

2.2 Fuzzy Rule Bases 

 

In their study Cordon, Herrera, Hoffmann and Magdalena (2001) described fuzzy 

rule bases as follows; “FRBS is a rule-based system where fuzzy logic (FL) is used 

as a tool for representing different forms of knowledge about the problem at hand, as 

well as for modeling the interactions and relationships that exist between its 

variables” (p.1).  

 

Fuzzy rule bases concept is one of the most known fuzzy inference method and 

could be defined as a system thatis composed of a set of rules which describe the 

relationships between inputs and outputs with linguistic variables. Due to consisting 

of a set of if-then rules fuzzy rule bases are generally known as IF-THEN rules and 

in a general structure of fuzzy rule base, IF part represents the antecedent part and 

THEN part represents the consequent part of a system.  Explaining mathematically, 

the general form of a fuzzy rule base is, IF antecedent propositions THEN 

consequent proposition. The general representation is shown as follows;   

 

𝐼𝑓 𝑋1 𝑖𝑠 𝐴1 𝑎𝑛𝑑;  𝑋2 𝑖𝑠 𝐴2, 𝑡𝑕𝑒𝑛 𝑦 𝑖𝑠 𝐵,                                                                      (2.1) 

 

Due to fuzzy rule bases composed of linguistic variables such as IF, THEN rules 

and do not contain any mathematical values, while fuzzy rule bases are handled 

researchers could be confronted with some important problems which are explained 

in details in the following parts. 
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As it can be seen in the Figure 2.1, a typical fuzzy interface system is composed 

of a few elements. Rule bases block represents the IF-THEN rules and the database 

block defines the membership functions of fuzzy sets. Fuzzification interface is the 

process where the crisp values are transformed into fuzzy values.  In order to get a 

crisp solution, contrary to fuzzification interface, in defuzzification interface 

obtained fuzzy values are transferred into crisp values. And the decision making unit 

block represents that all these processes are done by the decision making unit.  

 

As it is mentioned above, fuzzy rule bases are composed of a set of operators that 

provide to convert crisp variables into fuzzy variables and also fuzzy variables into 

crisp variables. Therefore the identification of right operators and variables and their 

proper use are very important for modeling systems ideally. Because of that in order 

to improve the efficiency of the systems, many studies have been made and still 

many researchers study for the correct identification of systems.  

 

INPUT

Crisp

Fuzzification 
interface

Decision making unit

Knowledge base

Database
Rule 
base

Defuzzification 
interface

OUTPUT

Crisp

Fuzzy Fuzzy

 

Figure 2.1 A typical fuzzy inference system (Moallem, Mousavi and Monadjemi, 2011) 

 

Fuzzy rule base system was firstly applied by Mamdani (1974). With his 

studyMamdani applied fuzzy rule bases to a simple dynamic plant - a model steam 

engine and Mamdani‟s study showed that fuzzy rule base inference systems could be 

applied to such these areas easily and successfully. 
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Tsoi and Gao (1999) used fuzzy rule bases system to control injection velocity for 

thermoplastics injection molding and based on the results of the experiments, in their 

study they indicated that “the fuzzy logic-based controller works well with different 

molds, materials, barrel temperatures, and injection velocity profiles, indicating that 

the fuzzy logic controller has superior performance over the conventional PID 

controller in response speed, set-point tracking ability, noise rejection, and 

robustness” (p. 3). 

 

     As it was mentioned by Leondes (1998) in his study, fuzzy rule bases have an 

extensive range of application areas. Some example studies on fuzzy rule bases are 

as follows: 

 

 Tsoi and Gao (1999) used fuzzy rule bases in order to control injection 

velocity for thermoplastics injection molding which is widely using and 

important in plastic processing.  

 

 Traffic signal control is one of the oldest applications of fuzzy logic theory 

and in the study of “general fuzzy rule base for isolated traffic signal control-

rule formulation” Niittymaki (2001) used fuzzy rule bases for traffic signal 

control.  

 

 Surmann and Selenschtschikow (2002) appliedgenetic fuzzy rule base 

learning algorithm to some datasets taken from machine learning repository 

in order to compare the results with other approaches.   

 

 Chang and Chen (2009) used fuzzy rule bases and fuzzy clustering techniques 

in order to predict the temperature based on the data set of the daily average 

temperature and the data set of the daily average cloud density.  

 

 Based on Mamdani fuzzy rule base system, Sivarao, Brevern, El-Tayeb and 

Vengkatesh (2009) developed a Matlab GUI in order to predict surface 

roughness in laser machining.  
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 Kaur and Kaur (2012) both applied Mamdani and Takagi-Sugeno fuzzy rule 

base for air conditioning system and compared the results.  

 

 Moallem et al. (2011) proposed a novel fuzzy rule base system and applied 

this proposed fuzzy rule based system for pose, size, and position 

independent face detection in color images. 

 

 Kamyab and Bahrololoum (2012) used TSK fuzzy rule based system with 

bacterial foraging optimization algorithm (BFOA) in order to simulate the 

foraging behavior.  

 

 In their study which was named as “a genetic fuzzy-rule-based classifier for 

land cover classification from hyperspectral imagery” Stavrakoudis, Galidaki, 

Gitas, and Theocharis (2012) used fuzzy rule bases for land cover 

classification by combining genetic programming.   

 

From this point of view the wide range of application areas of fuzzy rule bases 

can be seen clearly. In the following section most commonly known types of fuzzy 

rule bases are introduced. Some of the most commonly used fuzzy rule bases are 

Zadeh‟ fuzzy rule base, Takagi-Sugeno (TSK) fuzzy rule base, Mamdani‟s rule base 

and Mizumoto‟s fuzzy rule base system. Detailed information on the fundamental 

theory of these fuzzy rule bases and the difference between them are explained 

briefly in the next section.    

 

2.2.1 Zadeh’s Fuzzy Rule Base Structure 

 

“Zadeh first introduced the Fuzzy Modus Ponens known as Generalized Modus 

Ponens (GMP) and defined a methodology known as Compositional Rule of 

Inference (CRI), which is used to infer fuzzy consequents. Generally, GMP is shown 

as follows”(Çelikyılmaz, 2005, p. 21); 
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𝑃𝑟𝑒𝑚𝑖𝑠𝑒1: 𝐴 → 𝐵 

𝑃𝑟𝑒𝑚𝑖𝑠𝑒2: 𝐴′                                                                                                                         (2.2) 

𝐷𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛: 𝐵∗ 

 

Where 𝐴 and 𝐴′ are fuzzy sets corresponding to linguistic values of linguistic 

variables defined on the universe of discourse of antecedent variable 𝑥 with 

membership functions 𝜇𝐴 𝑥 : 𝑥 ∈ 𝑋 → [0,1] and 𝐵 and 𝐵∗ are linguistic values of 

linguistic variable defined on the universe of discourse of the consequent variable 

𝑦 with membership functions, 𝜇𝐵 𝑦 : 𝑦 ∈ 𝑌 → [0,1]. → denotes the implication 

relation operator and each premise is a relation and denoted as 𝑅𝑖 : 𝐴 →

𝐵, 𝑖: 1, …, number of relations (Çelikyılmaz, 2005, p. 21).  

 

The above mentioned equations could be also indicated as in equation (2.3) where 

“𝑜” represents the composition operator and “→” represents the implication operator. 

 

𝐵∗ = 𝐴′𝑜 𝐴 → 𝐵                                                                                                                 (2.3) 

 

Another and common representation of Zadeh‟s (1965) fuzzy rule base structure 

is formulated as follows (Çelikyılmaz and Türkşen, 2009b, p. 36): 

 

ℛ:
𝑐

𝐴𝐿𝑆𝑂
𝑖 = 1

 𝐼𝐹
𝑛𝑣

𝐴𝑁𝐷
𝑗 = 1

 𝑥𝑗 ∈ 𝑋𝑗 𝑖𝑠𝑟𝐴𝑖𝑗  𝑇𝐻𝐸𝑁𝑦 ∈ 𝑌𝑖𝑠𝑟𝐵𝑖                           (2.4) 

 

 𝑐 is the number of rules, 

 𝑥𝑗  represents the 𝑗𝑡𝑕 input variable and 𝑗 = 1, … , 𝑛𝑣, 𝑛𝑣 represents the 

number of input variables, 𝑋𝑗   is the domain of 𝑥𝑗  

 𝐴𝑖𝑗  is the linguistic label associated with input variable 𝑥𝑗  in rule 𝑖 with 

membership function 𝜇𝐴𝑖𝑗  𝑥𝑖 : 𝑋𝑗 → [0, 1] 

 𝑦 is the output variable of each rule, 𝑌 is the domain of 𝑦,  

 𝐵𝑖  is the linguistic label associated with the output variable in the 𝑖𝑡𝑕 rule 

with the membership function 𝜇𝐵𝑖 𝑦 : 𝑌 → [0, 1] 
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 AND is the logical connective that aggregate the membership values of input 

variables for a given observation,  

 THEN (→) is the logical implication connective, 

 ALSO is the logical connective used to aggregate model outputs of fuzzy 

rules, 

 „𝑖𝑠𝑟’ is introduced by Zadeh and it represents the definition or assignment is 

not crisp, it is fuzzy. 

 

     Zadeh‟s fuzzy rule base has become fundamental for further works and led to 

development of new methods, depending on the encountered problems and 

shortcomings. Thereinafter, some basic and well known fuzzy inference methods are 

going to be introduced briefly.   

 

2.2.2 Mamdani’s Fuzzy Rule Base Structure 

 

Mamdani‟s fuzzy inference method is one of the most widely used fuzzy 

inference method. By taking Zadeh‟s study as a base, Mamdani introduced the 

concept of fuzzy logic control. In his study Mamdani (1974) used fuzzy rule bases in 

order to control a steam engine and boiler combination by using a set of linguistic 

rules supplied from experienced human operators.  

 

The format of his fuzzy rules is as follows; “If; 𝑥1 is 𝐴1and 𝑥2is 𝐴2and... and 𝑥𝑛 is 

𝐴𝑛  then 𝑦 is 𝐵, where 𝐴1, 𝐴2 , … , 𝐴𝑛and 𝐵 are fuzzy sets. The consequence of 

implication is a fuzzy set”(Leondes, 1998, p. 63). The mathematical notation and the 

general structure of Mamdani‟s fuzzy rule base are respectively given in equation 2.5 

and in Figure 2.2.    

 

ℛ ∶  
𝑐

𝐴𝐿𝑆𝑂
𝑖 = 1

 𝐼𝐹
𝑛𝑣

𝐴𝑁𝐷
𝑗 = 1

 𝑥𝑗 ∈ 𝑋𝑗 𝑖𝑠𝐴𝑖𝑗  𝑇𝐻𝐸𝑁𝑦𝑖  𝑖𝑠 𝑏𝑖                                      (2.5) 
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Figure 2.2 Takagi-Sugeno fuzzy rule base (Ponce-Cruz and Ramirez-Figueroa, 2010) 

 

Mamdani type fuzzy rule based systems provide a highly flexible means to 

formulate knowledge, but although Mamdani fuzzy rule based systems possess 

several advantages, still they have some drawbacks. As it mentioned in the study of 

Cordon (2011) one of the main pitfalls of Mamdani‟s fuzzy rule base is the lack of 

accuracy when complex and high-dimensional systems are modeled and this is 

stemmed from the inflexibility of the linguistic variables, which imposes hard 

restrictions to the fuzzy rule structure.  

 

Cordon, Herrera and Zwir (2001) also stated the deficiency of Mamdani fuzzy 

rule base as follows: “The lack of accuracy of Mamdani type models is due to some 

problems related to the linguistic rule structure considered, which is a consequence 

of the inflexibility of the concept of linguistic variables” (p. 63). 

 

2.2.3 Mizumoto Fuzzy Rule Base Structure 

 

Mizumoto fuzzy rule base differs from Zadeh‟s fuzzy rule base, with its 

consequence part, it could be said that, it is a simplified version of Zadeh rule base. 

In Mizumoto rule base, instead of a fuzzy set scalar𝐵𝑖 , each consequence of rules 

represented with a scalar𝑏𝑖 . Mizumoto fuzzy rule base is represented as follows; 
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ℛ:
𝑐

𝐴𝐿𝑆𝑂
𝑖 = 1

 𝐼𝐹
𝑛𝑣

𝐴𝑁𝐷
𝑗 = 1

 𝑥𝑗 ∈ 𝑋𝑗 𝑖𝑠𝑟𝐴𝑖𝑗  𝑇𝐻𝐸𝑁𝑦𝑖 =  𝑏𝑖                                     (2.6) 

 

In the equation AND, THEN, ALSO are connectives, c represents the number of 

rules. 

 

2.2.4 Takagi-Sugeno-Kang (TSK) Fuzzy Rule Base Structure 

 

Takagi and Sugeno modified the consequence of Mamdani rule base structure and 

applied their proposed rule base to parking control of a model car. The format of 

their fuzzy rules is; If ; x1 is A1 and x2 is A2 and... and xn  is An  then y = (a0 +

a1x1 + ⋯ + anxn). 

 

As stated by Kaur and Kaur (2012) in their study, contrary to Mamdani fuzzy rule 

bases TSK fuzzy rule base is computationally more efficient and gives better results 

with optimization and adaptive techniques which enables to model the data more 

appropriately. 

 

Kaur and Kaur (2012) explain the difference between Mamdani and TSK fuzzy 

rule base as follows; “Mamdani-type FIS and Sugeno-type FIS is the way the crisp 

output is generated from the fuzzy inputs. While Mamdani-type FIS uses the 

technique of defuzzification of a fuzzy output, Sugeno-type FIS uses weighted 

average to compute the crisp output” (p. 323).   

 

As it could be seen from the Figure 2.3 the difference between Takagi-Sugeno and 

Mamdani fuzzy rule bases is that, the outputs of the rule bases are not defined by 

membership functions; they are defined with non-fuzzy analytical functions. 
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Figure 2.3 Takagi-Sugeno fuzzy rule base (Ponce-Cruz and Ramirez-Figueroa, 2010) 

 

As Mizumoto rule base structure, TSK is differ from Zadeh‟s rule bases with its 

consequent part. Consequent part of TSK fuzzy rule base structure is expressed with 

a function of input variables. Fuzzy rule base structure ofTSK can be given as 

follows; 

 

ℛ ∶  
𝑐

𝐴𝐿𝑆𝑂
𝑖 = 1

 𝐼𝐹
𝑛𝑣

𝐴𝑁𝐷
𝑗 = 1

 𝑥𝑗 ∈ 𝑋𝑗 𝑖𝑠𝑟𝐴𝑖𝑗  𝑇𝐻𝐸𝑁𝑦𝑖 =  𝑎𝑖𝑥
𝑇 + 𝑏𝑖                    (2.7) 

 

 𝑎𝑖  and 𝑏𝑖  are regression line coefficients associated with ith rule, 

 𝑦𝑖  is the model output of 𝑖𝑡𝑕 rule,  

 THEN is the connective, which weights 𝑦𝑖  for each rule by using 

corresponding degree of firing of a given observation in order to find the 

model output from each rule, 

 ALSO is the connective, which takes the weighted average of the model 

output of each rule in order aggregate the model outputs of fuzzy rules 

(Çelikyılmaz and Türkşen, 2009b, p. 39). 
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2.3 Advantages and Disadvantages of Fuzzy Rule Bases 

 

Despite the wide range of application areas, fuzzy rule bases still have some 

disadvantages. Constructing a rule base is generally difficult and time consuming 

besides the need of expert knowledge, due to containing linguistic variables and need 

to know the system very well. Another substantial disadvantage of fuzzy rule bases is 

the increasing number of parameters and therefore the increasing complexity of 

fuzzy rule bases while the systems are being larger. If the system that is going to be 

studied has a large number of parameters, it will be so hard to build up an inference 

system and decide which parameters are going to be used such as t-norms, co-

norms.In their study Siary and Guely (1998) also mentioned some basic 

disadvantages of fuzzy rule bases when the knowledge does not exist and parameters 

take time and no consistent methodology exist.  

 

In order to increase the efficiency of fuzzy rule-based systems with multiple 

variables, it is necessary to reduce bigger fuzzy rule bases into smaller fuzzy rule 

bases while keeping the essential fuzzy rules in the rule bases. However, reducing 

fuzzy rule bases will cause sparse fuzzy rule bases which contain blank areas 

uncovered by fuzzy rules in the universe of discourse while conventional fuzzy 

inference methods only can handle complete fuzzy rule bases (Chang and Chen, 

2009, p. 3444).  

 

In order to eliminate these deficiencies, by integrating fuzzy rule bases with other 

techniques such as genetic algorithms, neural networks and etc. many different 

approaches are proposed. Based on the fuzzy rule base systems and its 

disadvantages, one of these proposed approaches is fuzzy functions approach which 

is suggested by Türkşen and combines Least Square Estimation (LSE) with fuzzy 

membership values. 
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2.4 Conclusion 

 

As it could be understood from all aforementioned expressions, fuzzy rule bases 

have a great importance and have provided great convenience after they have been 

proposed by Zadeh (1973) and then have become widely known.  Fuzzy rule base 

system applied to a variety of fields successfully and provided to be able to obtain 

very good results. But despite their all benefits, they have many substantial 

limitations. Türkşen and Çelikyılmaz have proposed fuzzy functions concept in order 

to eliminate these insufficiencies. 

 

The fundamental theory of Türkşen‟s fuzzy functions concept is explained in 

chapter 4, after the theory of fuzzy clustering, which forms the cornerstone of fuzzy 

functions,  and the basic types of clustering algorithms are reviewed in the next 

chapter. 
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CHAPTER THREE 

A BRIEF OVERVIEW OF FUZZY CLUSTERING AND CLUSTER 

VALIDITY MEASURES 

 

3.1 Introduction 

 

Clustering could be defined as dividing predefined data elements into a number of 

subgroups according to their similarities or dissimilarities. In other words a data set 

is split into different groups where each element of a group shows a degree of 

closeness and similarity. For grouping into classes, different measures are used 

according to the data and the aim of clustering. Palit and Popovic (2005) expressed 

that “clusters are usually defined as groups of objects mutually more similar within 

the same groups than with the members of other clusters, whereby the term 

„similarity‟ should be understood as mathematical similarity, measured in some well-

defined sense” (p. 174). 

 

The objective of most clustering methods is to provide useful information by 

grouping (unlabeled) data in clusters; within each cluster the data exhibits 

similarity. Similarity is defined by a distance measure, and global objective 

functional or regional graph-theoretic criteria are optimized to find the optimal 

partitions of data. The partitions generated by a clustering approach define for all 

data elements to which class (cluster) they belong (Rezaee et al., 1998, p. 237). 

 

Clustering has been a very important way of data analysis and has been subjected 

to many researches. In order to improve the efficiency of existing clustering 

algorithms, researchers are studying on new approaches which integrate clustering 

algorithms with different methodologies. 

 

In the following sections, some well-known clustering methods and their basic 

properties are going to be introduced and compared with each other. 
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3.2 Basic Types of Clustering Algorithms 

 

Clustering methods have been widely applied in various areas such as taxonomy, 

geology, business, engineering systems, medicine and image processing etc. The 

objective of clustering is to find the data structure and also partition the data set 

into groups with similar individuals. These clustering methods may be heuristic, 

hierarchical and objective-function-based etc. (Yang, Hwang and Chen, 2004, p. 

301).  

 

To classify clustering algorithms, in a general manner, clustering could be divided 

c-partitions of data as hard (or crisp) and soft (or fuzzy) clustering as Ross (2004) 

classified in his study. In the next sections, hard clustering, fuzzy c-means clustering 

and Gustafson-Kessel clustering algorithms are introduced briefly.  

 

3.2.1 Hard Clustering 

 

In classical set theory, when elements are grouped, they are split into clusters 

according to whether they belong to a cluster or not. If an element belongs to a 

cluster it is represented with “1” if it doesnot belong to a cluster it is represented with 

“0”. Furthermore an element can be a member of only one cluster, cannot be a 

member of a different cluster at the same time. In the literature this is called as hard 

clustering.  

 

A hard partition can be considered as a group of subsets formulated in terms of 

classical sets. The objective of hard clustering is to partition the given data set; 

𝑋 =  𝑥1,  𝑥2 , … , 𝑥𝑛  into c clusters. 

 

Let we define a family of {𝐴𝑖 , 𝑖 = 1, . . , 𝑐} as a hard partition of 𝑋, the following 

forms apply to these partitions: 

 

 𝐴𝑖 = 𝑋

𝑐

𝑖=1

       2 ≤ 𝑐 < 𝑛                                                                                                  (3.1) 
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𝐴𝑖 ∩ 𝐴𝑗 = ∅       𝑎𝑙𝑙 𝑖 ≠ 𝑗                                                                                                    (3.2) 

 

∅ ⊂ 𝐴𝑖 ∩ 𝑋       𝑎𝑙𝑙                                                                                                                (3.3) 

 

𝑈 =  

𝜇11

𝜇21

𝜇12
⋯ 𝜇1𝑛

𝜇22
⋯ 𝜇2𝑛

⋮
𝜇𝑐1

⋮
𝜇𝑐2

⋮
⋯

⋮
𝜇𝑐𝑛

                                                                                                (3.4) 

 

The above equations that the elements of the U partition matrix must satisfy the 

following conditions: 

 

𝜇𝑖𝑘 ∈  0,1 , 1 ≤ 𝑖 ≤ 𝑐;  1 ≤ 𝑘 ≤ 𝑛                                                                          (3.5) 

 

 𝜇𝑖𝑘

𝑐

𝑖=1

= 1,    1 ≤ 𝑘 ≤ 𝑛                                                                                                    (3.6) 

 

0 ≤  𝜇𝑖𝑘

𝑛

𝑘=1

< 𝑛,     1 ≤ 𝑖 ≤ 𝑐  3.7  

 

The discrete nature of hard partitioning causes difficulties with algorithms based 

on analytic functionals, since these functional are not differentiable. Clustering 

algorithms may use an objective function to measure the desirability of partitions. 

Nonlinear optimization algorithms are used to search for local optima of the 

objective function. The concept of fuzzy partition is essential for cluster analysis, 

and consequently also for the identification techniques based on fuzzy clustering 

(Palit and Popovic, 2005, p. 175). 
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3.2.2 Fuzzy C- Means Clustering Algorithm 

 

Contrary to hard clustering, in fuzzy clustering data elements do not have to 

belong only one cluster. Each element can belong to a cluster with different 

membership degrees and these membership degrees indicate the strength of 

relationship between the element and cluster. 

 

Bezdek, Ehrlich and Full (1984) explained the fuzz clustering as follows; the key 

to Zadeh's idea is to represent the similarity a point shares with each cluster with a 

function (termed the membership function) whose values (called memberships) 

are between zero and one. Each sample will have a membership in every cluster; 

memberships close to unity signify a high degree of similarity between the sample 

and a cluster while memberships close to zero imply little similarity between the 

sample and that cluster (p. 191). 

 

Fuzzy c-means clustering algorithm has proposed by Bezdek (1981) and this 

algorithm gives a c-partition of a dataset. According to this algorithm, each sample in 

the dataset represented with membership function which ranges between zero and 

one and the sum of the memberships for each sample must be unity. After Bezdek 

has proposed fuzzy c-means clustering algorithm, it has been one of the most popular 

clustering algorithm and paved the way for the developments of new methods. In the 

literature there are many different variations of fuzzy c-means algorithm. 

 

The FCM algorithm tries to divide the elements of a dataset 𝑋 =  {𝑥1, . . . , 𝑥𝑛} into 

fuzzy clusters according to the some given criterions. Given a finite set of data, the 

algorithm returns a list of 𝑐 cluster centers𝐶 = {𝑐1, . . . , 𝑐𝑐} and a partition matrix 𝑈 =

𝑢𝑖,𝑗 ∈  0,1 ,   𝑖 = 1, . . . , 𝑛, 𝑗 = 1, . . . , 𝑐 where each element 𝑢𝑖,𝑗  tells the degree to 

which element 𝑥𝑖  belongs to cluster𝑐𝑗 . Same as hard clustering FCM algorithm aims 

to minimize an objective function. 

 

In fuzzy clustering the membership value of the 𝑘𝑡𝑕 data in the 𝑖𝑡𝑕cluster 

represented as in the following notation:  
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𝜇𝑖𝑘 = 𝜇𝐴𝑖
 𝑥𝑘 ∈  0,1                                                                                                          (3.8) 

 

In fuzzy c-means (FCM) algorithm the equation below must be satisfied; 

 

 𝜇𝑖𝑘 = 1         𝑓𝑜𝑟 𝑎𝑙𝑙  𝑘 = 1,2, … , 𝑛

𝑐

𝑖=1

                                                                          (3.9) 

 

As in crisp classification, there can be no empty classes and there can be no class 

that contains all the data points. This qualification is manifested in the following 

expression:  

 

0 <  𝜇𝑖𝑘 < 𝑛                                                                                                                 (3.10)

𝑐

𝑖=1

 

 

Fuzzy c-means is based on minimization of the objective function, which is 

shown below (Dulyakarn and Rangsansei, 2001); 

 

𝐽𝑚  𝑈, 𝑉 =   𝑢𝑖𝑗
𝑚

𝑐

𝑖=1

 𝑋𝑖 − 𝑉𝑖 
2,           1 ≤ 𝑚 ≤ ∞(3.11)

𝑛

𝑗 =1

 

 

The “𝑚” value is the degree of fuzziness and is greater than 1, 𝑢𝑖𝑗   is the 

membership values which represents the degree of belongingness of 𝑋𝑖 to cluster 𝑖, 𝑉𝑖  

represents the cluster center and  ∗  is any norm expressed the similarity between 

any measured data and the center. 

 

For FCM algorithm, fuzzy partition is carried out through an iterative 

optimization of with the update of membership 𝑢𝑖𝑗  and the cluster centers 𝑉𝑖by; 

 

𝑢𝑖𝑗 =
1

  
𝑑𝑖𝑗

𝑑𝑖𝑘
 

2

𝑚−1𝑐
𝑘=1

                                                                                                      (3.12) 
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𝑉𝑖 =
 𝑢𝑖𝑗

𝑚𝑛
𝑗 =1 𝑋𝑗

 𝑢𝑖𝑗
𝑚𝑐

𝑘=1

                                                                                                                (3.13) 

 

FCM algorithm is iterated until the equation below is supplied. In the equation  is 

a termination criterion between 0 and 1. 

max𝑖𝑗  𝑢𝑖𝑗
𝑚 − 𝑢 𝑖𝑗

𝑚  < 𝜀                                                                                                       (3.14) 

 

As it mentioned before, fuzzy c-means clustering algorithm is one of the most 

know and used soft clustering algorithm. It has a diverse of application areas and 

many researchers have applied fuzzy c-means clustering algorithm successfully 

(Chaira, 2012; Kim, Kim, Ho and Chu, 2011; Kuo, Shih and Lee, 2004). Kuo, et al. 

(2004) used fuzzy c-means clustering algorithm for the automatic recognition of 

fabric weave patterns. Also in another study Kim et al. (2011) applied fuzzy c-means 

clustering method to cluster tropical cyclone tracks. 

 

In the literature there are many different kinds of clustering methods. Some 

example studies on fuzzy c-means clustering and its improved versions are as 

follows:  

 

 Çelikyılmaz and Türkşen (2008a) proposed a new clustering algorithm which 

combines the standard fuzzy clustering and regression methods.  

 

 One of the improved versions of FCM algorithm “DifFUZZY: A fuzzy 

clustering algorithm for complex data sets” clustering method proposed by 

Cominetti et al. (2010). Cominetti et al. indicated that their clustering method 

is applicable to a larger class of clustering problems and can handle complex, 

nonlinear geometric structures in comparison to FCM clustering algorithm.  

 

 Chaira (2012) also proposed a new approach based on fuzzy c-means to 

cluster pathological cell images by using different color models.  
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 Parker, Hall and Bezdek (2012) proposed new clustering algorithms which 

are some different variations of fuzz c-means clustering algorithm and 

proposed for the purpose of being able to cope with large datasets.  

 

 Dagher (2012) proposed the complex fuzzy c-means algorithm (CFCM) and 

concluded that CFCM algorithm gave better cluster partitions. 

 

     Other new methods also have been also proposed based on fuzzy c-means 

clustering algorithm (Cannon, Dave and Bezdek, 1986; Hathaway and Bezdek, 

2006).   

 

FCM clustering algorithm has two important information; “c” the number of 

clusters and m-the order of fuzziness. It is difficult to select suitable (c*, m*) pairs 

because of the unsupervised behavior of FCM. There are many different validity 

indexes for choosing the number of clusters and the order of fuzziness for fuzzy 

clustering algorithms (Başkır and Türkşen, 2013, p. 930).  

  

 In section 3.3, some of the commonly used validity indexes are introduced briefly.   

 

3.2.3 Gustafson-Kessel Clustering Algorithm 

 

Gustafson-Kessel clustering algorithm differs from the FCM clustering algorithm. 

The FCM clustering algorithm is a cluster prototype with one center of gravity 

location, while the Gustafson-Kessel clustering algorithm is a cluster prototype of 

volume, each of which contains the relevant covariance matrix and center of 

gravity location. Hence, each data set has a sub-clustering center of gravity 

location and data set distribution information (Kuo , Jian, Wu and Peng, 2012, p. 

580).  

 

Hamed, Keshavarz, Dehghani and Pourghassem (2012) in their study indicated 

that, ”the Gustafson-Kessel algorithm (GK) extended the standard fuzzy c-means 

algorithm by employing an adaptive distance norm, in order to detect clusters with 
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different geometrical shapes in one data set. Each cluster has its own norm-inducing 

matrix” (p. 223). 

 

In comparison to fuzzy c-means algorithm, GK clustering algorithm needs more 

computation. In order to reduce calculations, the GK clustering can be performed 

after obtaining results from fuzzy c-means algorithm. 

 

The GK clustering is based on iterative optimization of an objective function of 

the c-means type: 

 

𝐽 𝑃; 𝑈, 𝑉,  𝑀𝑖  =    𝜇𝑖𝑘 
𝑚𝐷𝑖𝑘𝐴𝑖

2

𝑁

𝑘=1

𝑐

𝑖=1

                       (3.15) 

 

Given the data set 𝑃, choose the number of clusters 1 < 𝑐 < 𝑁, degree of 

fuzziness >  1 , the termination tolerance 𝜀 > 0 and the cluster volumes 𝜌𝑖 .    

Initialize the partition matrix randomly, such that 𝑈(0) ∈ 𝑀𝑓𝑐 . 𝑈 =  𝜇𝑖𝑘  ∈ [0,1]∝𝑁 is 

fuzzy partition matrix of the data. The algorithm of GK clustering algorithm is 

repeated for 𝑙 = 1, 2, … as below (Hamed et al., 2012, p. 224).  

 

Firstly cluster centers are calculated: 

 

𝑣𝑖
𝑙 =

 𝑢𝑖𝑘
(𝑙−1)𝑁

𝑘=1 𝑝𝑘

  𝑢𝑖𝑗
(𝑙−1)

 
𝑚

𝑁
𝑘=1

 ,     1 ≤ 𝑖 ≤ 𝑐                                                                             (3.16) 

 

Then cluster covariance matrix is calculated: 

 

𝐹𝑖 =
  𝑢𝑖𝑘

(𝑙−1)
 
𝑚

𝑁
𝑘=1  𝑝𝑘−𝑣𝑖

𝑙  𝑝𝑘−𝑣𝑖
𝑙 𝑇

  𝑢𝑖𝑗
(𝑙−1)

 
𝑚

𝑁
𝑘=1

                                                                   (3.17) 
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Selected identity matrix is added: 

 

𝐹𝑖 =  1 − 𝛾 , 𝐹𝑖

+ 𝛾det⁡(𝐹0) (
1

𝑛
)𝐼                                                                                    (3.18) 

 

Extract eigenvalues 𝜆𝑖𝑗  and eigenvectors 𝜑𝑖𝑗  from 𝐹𝑖 . Find 𝜆𝑖𝑚𝑎𝑥 = 𝑚𝑎𝑥𝑗𝜆𝑖𝑗  and 

set: 𝜆𝑖𝑗 = 𝜆𝑖𝑚𝑎𝑥 /𝛽 ∀𝑗 for which
𝜆𝑖𝑚𝑎𝑥

𝜆𝑖𝑗
> 𝛽. Reconstruct 𝐹𝑖  by; 

 

𝐹𝑖 =  𝜙𝑖1 …𝜙𝑖𝑛  𝑑𝑖𝑎𝑔 𝜆𝑖1, … , 𝜆𝑖𝑛   𝜙𝑖1 …𝜙𝑖𝑛  −1                                                       (3.19) 

 

Then the distance is calculated: 

 

𝐷𝑖𝑘𝐴𝑖

2 =  𝑝𝑘 − 𝑣𝑖
𝑙 𝑇  𝜌𝑖 det 𝐹𝑖 

1

𝑛𝐹𝑖
−1  𝑝𝑘 − 𝑣𝑖

𝑙 , 1 ≤ 𝑖 ≤ 𝑐, 1 ≤ 𝑘 ≤ 𝑁    (3.20) 

 

The partition matrix is updated: 

 

𝑢𝑖𝑘
(𝑙)

=
1

  𝐷𝑖𝑘𝐴𝑖
/𝐷𝑗𝑘 𝐴𝑖

 
2/(𝑚−1) 𝑐

𝑗 =1

                           (3.21) 

 

The production of the cluster centers and partition matrix is continued 

until 𝑈(𝑙) − 𝑈(𝑙−1) ≥ 𝜀. Otherwise GK algorithm is stopped. 

 

3.3 Cluster Validity Measures 

 

Validity measures are scalar indices that assess the goodness of the partition 

obtained. Clustering algorithms generally aim at locating well-separated and 

compact clusters. When the number of clusters is chosen equal to the number of 

groups that are actually present in the data, it is expected that the clustering 

algorithm will identify them correctly. When this is not the case, 

misclassifications appear, and the clusters are not likely to be well-separated and 
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compact. Hence, most cluster validity measures are open to interpretation and can 

be formulated in different ways (Palit and Popovic, 2005, p. 181). 

 

For fuzzy clustering, cluster validity is based on finding a fuzzy partition that fits 

the all data appropriately. Therefore clustering validity always tries to find the best 

fixes number of clusters. In the literature there are many different cluster validity 

measures. But as Balasko, Abonyi and Feil (2005) indicated in their study, no 

validation index is reliable only by itself. The optimal number of cluster should be 

determined by synthesizing all available measures. Also in their study they stated 

that less clusters are better for the optimal number of clusters.  

 

Commonly used cluster validity indexes are represented below. Before 

representing validity indexes, general parameters which are used in validity indexes 

are introduced below.  

 

 “c” is the number of cluster,  

 “𝑛” is the number of data vectors, 

 “𝜇” represents the membership values,  

 “𝑣i” is center points of 𝑖𝑡𝑕 cluster 

 “𝑚” is degree of fuzziness, 

 “𝑛𝑖” is the number of element in 𝑖𝑡𝑕 dimension, 

 “𝑐𝑖” 𝑖𝑡𝑕 cluster  

  𝑐𝑖  number of element in 𝑖𝑡𝑕 cluster 

 𝑑(𝑥, 𝑦) distance between two data element 

 

 Partition coefficient (PC): It is defined by Bezdek, and measures the amount of 

overlapping clusters. For partition index, the maximum value means the 

optimum value.  

 

𝑃𝐶 𝑐 =
1

𝑛
  (𝜇𝑖𝑗 )2 3.22 

𝑛

𝑗=1

𝑐

𝑖=1
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 Classification entropy (CE):It measures the fuzziness of the cluster partition. 

For classification entropy the minimum value is the optimum value.      

 

𝐶𝐸 𝑐 = −
1

𝑛
  𝜇𝑖𝑗 log 𝜇𝑖𝑗   3.23 

𝑛

𝑗 =1

𝑐

𝑖=1

 

 

 Partition index (SC): is the ratio of the sum of compactness and separation of 

the clusters. The lower value of partition index represents a better partition.  

 

𝑆𝐶 𝑐 =  
 (𝜇𝑖𝑗 )𝑚 𝑥𝑗 − 𝑣𝑖 

2𝑛
𝑗=1

𝑛𝑖   𝑣𝑘 − 𝑣𝑖 2𝑐
𝑘=1

𝑐

𝑖=1

                                                                   (3.24) 

 

 Separation index (S): The separation index uses the minimum-distance 

separation for partition validity. The minimum value gives the best partition. 

 

𝑆 𝑐 =
  (𝜇𝑖𝑗 )2 𝑥𝑗 − 𝑣𝑖 

2𝑛
𝑗 =1

𝑐
𝑖=1

𝑛𝑚𝑖𝑛𝑖,𝑘 𝑥𝑗 − 𝑣𝑖 
2                                                                     (3.25) 

 

 

 Xie and Beni’s index (XB): XB index quantifies the ratio of the total variation 

within clusters and the separation of clusters. The minimum value gives the 

optimum number of clusters. 

 

𝑆 𝑐 =
  (𝜇𝑖𝑗 )𝑚 𝑥𝑗 − 𝑣𝑖 

2𝑛
𝑗=1

𝑐
𝑖=1

𝑛𝑚𝑖𝑛𝑖,𝑗 𝑥𝑗 − 𝑣𝑖 
2                                                                    (3.26) 

 

 Dunn’s index (DI): The maximum value of Dunn index gives the optimum 

number of clusters. 
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𝐷𝐼 𝑐 = 𝑚𝑖𝑛𝑖∈𝑐  𝑚𝑖𝑛𝑗∈𝑐,𝑖≠𝑗  
𝑚𝑖𝑛𝑥∈𝐶𝑖 ,  𝑦∈𝐶𝑗

𝑑(𝑥, 𝑦)

𝑚𝑎𝑥𝑘∈𝑐 𝑚𝑎𝑥𝑥,𝑦∈𝐶𝑑(𝑥, 𝑦) 
                          (3.27) 

 

 Davies–Bouldin index (DB): “This is probably one of the most used indices in 

CVI comparison studies. It estimates the cohesion based on the distance from the 

points in a cluster to its centroid and the separation based on the distance 

between centroids” (Arbelaitz, Gurrutxaga, Muguerza, Perez and Perona, 2013, 

p. 245).  

 

The Davies-Bouldin Validation Indice (DB) represents the ratio of the total 

within-cluster scatter to between-cluster separation. The scatter,𝑆𝑖 , within the 𝑖 th 

cluster, is computed as (Sato, Suzuki and Mabuchi, 2007); 

 

𝑆𝑖 =
1

 𝑐𝑖 
 𝑑(𝑥, 𝑣𝑖)

𝑥∈𝑐𝑖

                                                                                             (3.28) 

 

Where 𝑐𝑖  is the set of data points in the 𝑖𝑡𝑕 cluster,  𝑐𝑖  is the number of data   

points in 𝑖𝑡𝑕 cluster and 𝑣𝑖  is the cluster center point of 𝑖𝑡𝑕 cluster. The centroid 

distance, 𝑑𝑖𝑗  is;  

 

𝑑𝑖𝑗 =  𝑣𝑖 − 𝑣𝑗                                                                                                             (3.29) 

 

Thus Davies-Bouldin index is defined as where 𝑖, 𝑗 = 1, … , 𝑐; 

 

𝐷𝐵 𝑐 =
1

𝑐
 max

𝑖,𝑗≠𝑖

𝑆𝑖 + 𝑆𝑗

𝑑𝑖𝑗

𝑐

𝑖=1

                                                                                      (3.30) 

 

The minimum value of Davies-Bouldin index gives the optimum number of 

clusters. 
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 Kim Index (KI): In cluster validity index, the relative degree of sharing of two 

fuzzy clusters is defined as the weighted sum of the relative degrees of sharing 

for all data (Zhang and Qian, 2012). 

 

𝐾𝑖𝑚 𝑐 =
2

𝑐 − (−1)
   𝑐 × min⁡ 𝓊F𝑝 𝑥𝑗  , 𝓊F𝑞 𝑥𝑗   × 𝑕(𝑥𝑗 ) 

𝑛

𝑗

𝑐

𝑝≠𝑞

           (3.31) 

 

Where 𝑕 𝑥𝑗  = − 𝓊F𝑖 𝑥𝑗  
𝑐
𝑖=1 log𝑎 𝓊F𝑖 𝑥𝑗  ,  F𝑝  and F𝑞  are be two fuzzy 

clusters belonging to a fuzzy partition (𝑈, 𝑉) and c is the number of clusters. The 

minimum value of Kim index, gives the best optimum number of clusters.  

 

     Arbelaitz et al. (2013) compared 30 cluster validity indexes in an experimental 

setting. More information on cluster validity indexes could be found out in their 

study. 

 

3.4 Conclusion 

 

As it was emphasized in previous sections, clustering concept is one of the 

cornerstones of Türkşen‟s fuzzy functions approach. Clustering is also crucial in the 

proposed “fuzzy functions with genetic programming” approach as it is based on the 

Tükşen‟s fuzzy functions concept.  

 

As it was emphasized before the novelty of Türkşen‟s fuzzy functions approach is 

that membership values and some of their user predefined transformations are added 

as new variables to original input variables of the dataset. Therefore fuzzy clustering 

forms an important part of fuzzy functions. For this reason in this chapter, the 

concept of clustering and basic types of clustering algorithms areintroduced.  

 

In order to find out membership values of the datasets, fuzzy c-means (FCM) 

clustering algorithm ischosen to be used in the present study. To find out the optimal 

number of clusters for the application phase of fuzzy functions with LSE and fuzzy 

functions with GP, partition coefficient (PC), classification entropy (CE), partition 
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index (SC), separation index (S), Xie and Beni‟s index (XB),Dunn‟s index (DI) and 

alternative Dunn index (ADI) are used. These validity indexes are realized via fuzzy 

clustering toolbox which is prepared by Balasko, Abonyi and Feil(2005) in Matlab.   

 

In the next chapter, firstly fuzzy functions concept and its algorithm is introduced, 

afterwards a small artificial data is generated and the algorithm is explained with this 

dataset step by step for enabling a better understanding of the concepts.   
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CHAPTER FOUR 

FUZZY SYSTEM MODELING BY TURKSEN’S FUZZY FUNCTIONS 

APPROACH 

 

4.1Introduction 

 

In the literature, there have been many different definitions of “fuzzy functions” 

concept. Probably the most known definition of “fuzzy functions” is the one which 

represents the membership functions. Another implied meaning of fuzzy functions is 

the mathematical definition which is coined by Demirci (1999). The fuzzy functions 

term which used in this study was introduced by Türkşen in 2004 and it is not same 

with fuzzy function term used by Demirci (1999). However as also stated by 

Çelikyılmaz and Türkşen (2009a, 2009b) the fuzzy functions term used by Demirci 

(1999) underlines the mathematical basis of Türkşen‟s fuzzy functions concept.   

 

Fuzzy rule bases which are overviewed in the previous chapter were used 

successfully for modeling many problems. Although its success in many problems, 

fuzzy rule bases still have some difficulties. In fuzzy rule bases there are several 

parameters to be identified such as “number of fuzzy rules”, “type of fuzzy 

operators” that affect the performance of the fuzzy rule bases. In a sense this means 

that fuzzy inference system which is based on fuzzy rule bases involves subjectivity 

and requires expert knowledge. Many researchers have pointed out the difficulty of 

fuzzy rule bases, when it is not easy to access the knowledge and the dimensions of 

the system changes (Siary and Guely, 1998). It is clear that systems are generally 

complex and this poses an obstacle for correct identification of the systems and 

therefore modeling them properly. In this respect, applying fuzzy rule bases to real 

problems can become more difficult. For this reason, Türkşen in 2004 has proposed 

fuzzy functions as an alternative to fuzzy rule bases. Fuzzy functions approach does 

not require “expert knowledge” and fuzzy set operators such as “fuzzification”, 

“difuzzification”, “t-norms”, “co-norms” etc. Therefore, these properties provide 

fuzzy functions to be implemented more easily for several problem types. 



 
 

33 
 

After Türkşen‟s introduction of fuzzy functions approach, Çelikyılmaz and 

Türkşen (Çelikyılmaz and Türkşen, 2007a and 2007b; Türkşen and Çelikyılmaz, 

2006;) have also made improvements by combining fuzzy functions with several 

other soft computing techniques like metaheuristics.  

 

4.2The Concept of Fuzzy Functions 

 

Türkşen (2012) described fuzzy functions concept as an approach where a 

classical regression is enhanced by the introduction of membership values and 

their transformations to improve the regression constant, and hence the 

introduction of fuzzy functions in place of fuzzy rule bases where a fuzzy 

clustering algorithm such as FCM or IFC is used to determine the number of such 

fuzzy regressions required for an affective solution (p. 348). 

 

As it was stated before in fuzzy functions approach, instead of representing a 

system with IF-THEN rules or similar linguistic expressions, a system is represented 

with fuzzy functions. In their excellent study Çelikyılmaz and Türkşen (2009b) 

indicated that in fuzzy functions approach depending on the complexity of the 

system, each vector could be represented with different methods such as least square 

estimation (LSE) or support vector machines (SVM).  

 

One can build models for various system structures as with the other fuzzy system 

modeling tools by making use of fuzzy functions approach. The goal of the 

general system modeling depends on the type of the system under study. If the 

aim is to assign class labels to objects, such as in classification problems, the goal 

of the system modeling is to reduce the number of misclassified cases. On the 

other hand, if the problem involves estimation of a relationship between given 

independent variables and the dependent variable by using functions, then the goal 

of a system modeling is to find a representation function that can minimize the 

prediction error (Çelikyılmaz and Türkşen 2009b, p. 106). 
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The novel feature of fuzzy functions is that the membership values and some of 

their proper transformations obtained from fuzzy clustering algorithms (i.e. fuzzy c-

means (FCM) clustering algorithm or Gustafson-Kessel clustering algorithm) can 

also be added to the original data matrix in order to explain the relationship between 

input and output values better. Türkşen propound that, using membership values and 

their transformations as additional variables will enable to identify the structure of 

the given data more easily. 

 

Çelikyılmaz (2005)in her thesis, applied fuzzy functions with LSE and fuzzy 

functions with SVM to two datasets and compared the results of both model.  

Türkşen and Çelikyılmaz also used different methodologies with fuzzy functions and 

other fuzzy inference methods and compared them in order to evaluate the 

performance of fuzzy functions (Çelikyılmaz and Türkşen, 2008a, 2008b; Türkşen 

and Çelikyılmaz, 2006). Also in his study, Türkşen (2011) studied Type-1 Fuzzy 

Functions (FF) and Improved Fuzzy Functions (IFF) in which improved fuzzy 

clustering algorithm was used and results were compared. 

 

Generally, modeling a system is composed of three phases; “training”, 

“validation” and “testing” phases. Structure identification of the model constitutes 

the training phase. General structure of the system and the parameters which 

represent the system ideally are tried to be found out with training dataset. Training 

dataset comprise a large part of the system. The modeling performance of the system 

which is modeled according to parameters found out during the training algorithm is 

trying to be measured with testing dataset. These processes are repeated several times 

in order to calculate general performance of the system.  
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Figure 4.1 General structure of fuzzy functions (Çelikyılmaz and Türkşen, 2009b) 

 

4.2.1Type-1 Fuzzy Function Approach with Least Square Estimation (T1FF) 

 

In the first step of the fuzzy functions approach, the data which is going to be 

searched is firstly clustered into overlapping clusters. FCM clustering algorithm is 

one of the most commonly used clustering technique and the degree of overlapping 

clusters is represented with “𝑚”. In order to obtain membership values that represent 

the degree of belongingness to each cluster, fuzzy c-means (FCM) clustering 

algorithm is decided to be used also in this study. Then the membership degrees of 

the observations for each cluster have to be found out. As it can be understood 

clearly, the membership values play a key role for fuzzy functions approach. Finding 

the best descriptive membership degrees directly related to finding the most 

appropriate number of clusters. In the next section more detailed information on the 

structure identification of fuzzy functions and the inference mechanism is given.  
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4.2.1.1 Structure Identification of Fuzzy Functions with LSE 

 

Let 𝑍(𝑥, 𝑦) = {(𝑥1, 𝑦1),  (𝑥2, 𝑦2), … , (𝑥𝑛 , 𝑦𝑛)},  represents the input-output space, 

where 𝑧(𝑥𝑘 , 𝑦𝑘) ⊂ ℜ𝑛𝑣+1 denotes any data vector from training set and every data 

point is composed of (𝑛𝑣 + 1) dimensions of input vectors, 

𝑥𝑘 =  𝑥1,𝑘 , … , 𝑥𝑛𝑣 ,𝑘 ∈ ℜ𝑛𝑣 , 𝑘 = 1, … , 𝑛,  a total of 𝑛 vectors, and an output 

𝑦𝑘 ∈ ℜ𝑛𝑣 (Çelikyılmaz and Türkşen, 2009b, p. 114). Here 𝑍 represents the input-

output matrix.  “𝑛𝑣” is the number of variables. 

 

Before applying the fuzzy functions approach, some parameters are defined and 

FCM algorithm is applied. In the FCM clustering algorithm, “𝑖” is used to symbolize 

“𝑐” which represents the total number of clusters. “𝑛” represents the number of data 

vectors and “𝑚” represents the degree of fuzziness which means “degree of 

overlapping clusters” and it is greater than 1. To indicate the related matrixes, let 

assume that there is a multi-input single output (MISO) dataset and 𝑋 represents the 

input matrix; the mathematical notation of input matrix is shown below; 

 

𝑋 =  

𝑥1,1

⋮
𝑥𝑛,1

𝑥1,2

⋮
𝑥𝑛,2

…

𝑥1,𝑛𝑣

⋮
𝑥𝑛,𝑛𝑣

 (4.1) 

 

Let 𝑌 represents the output matrix; the output matrix is shown as follows; 

 

𝑌 =

 
 
 
 
 
𝑦1

⋮
⋮
⋮
𝑦𝑛  

 
 
 
 

(4.2) 

 

𝜇𝑘𝑖 ∈ [0,1] represents the membership degrees of the 𝑘𝑡𝑕 data in cluster “𝑖”.  The 

matrix of the membership degrees of all data for each cluster is shown as below; 

 

𝑈 =  

𝜇1,1

⋮
𝜇𝑛,1

𝜇1,2

⋮
𝜇𝑛,2

…
⋮
…

𝜇1,𝑐

⋮
𝜇𝑛,𝑐

 (4.3) 
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“𝑛𝑚” is the dimension of augmented matrix (membership values and their 

transformations) that is added to the original data matrix. To give an example, we 

assume that there is a dataset composed of multi input single output and only 

membership values are selected to be added. So 𝑛𝑚 is equal to 1 (𝑛𝑚=1) and the 

new matrix is shown in equation 4.4. The abnormalities generated by the clustering 

algorithms could be eliminated with an α-cut. 

 

𝛷𝑖 𝑥, 𝜇𝑖 ∈ ℜ𝑛𝑣+1 =  

𝜇𝑘,1

⋮
𝜇𝑘,𝑖

𝑥1×1 ⋯ 𝑥1×𝑛𝑣

⋮ ⋱ ⋮
𝑥𝑘×1 ⋯ 𝑥𝑘×𝑛𝑣

 

         𝜇𝑘,𝑖 > 𝛼 − 𝑐𝑢𝑡

 0 < 𝑘 ≤ 𝑛
 𝑖 = 1, … , 𝑐

(4.4) 

 

As it was mentioned before the novelty of the fuzzy functions is that membership 

values and their transformations are added to the original data matrix as additional 

dimensions. The final matrix which is composed of the original data, membership 

values and some of their transformations is shown by equation 4.5; 

 

𝛷 𝑥, 𝜇1 =  

𝜇1,𝑖

⋮
𝜇𝑛,𝑖

𝑒𝑥𝑝⁡(𝜇1,𝑖)

⋮
𝑒𝑥𝑝⁡(𝜇𝑛,𝑖)

(𝜇1,𝑖)
𝑝

⋮
(𝜇𝑛,𝑖)

𝑝

𝑥1×2 ⋯ 𝑥1×𝑛𝑣

⋮ ⋱ ⋮
𝑥𝑛×2 ⋯ 𝑥𝑛×𝑛𝑣

 (4.5)  

 

In fuzzy functions approach in order to explain the relationship between variables, 

some kind of statistical methods such as least square estimation (LSE) or support 

vector machines (SVM) can be used according to the complexity of the datasets. In 

this study, fuzzy functions approach with least square estimation (LSE) is going to be 

introduced and it is used for all example case studies. 

 

Çelikyılmaz and Türkşen (2009b) have described the training algorithm for fuzzy 

functions as follows;  

 

Step 1: Firstly the parameters of the FCM clustering algorithm are decided; 

 m≥1.1 (degree of fuzziness), 

 c>1 (the number of clusters), 

 ε (a termination threshold). 
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Step 2: Execute FCM clustering algorithm to find cluster centers 𝑣𝑖 𝑥𝑦 of the 

dataset𝑍(𝑥, 𝑦). 

 

∀
1≤𝑖≤𝑐
1≤𝑘≤𝑛

𝜇𝑘𝑖 (𝑥𝑦) =

 

    
𝑑𝑘𝑖 (𝑥𝑦)

𝑑𝑘𝑗 (𝑥𝑦)
 

𝑐

𝑗=1

 

2

𝑚−1

 

 

−1

𝑑𝑘𝑖
𝑥𝑦

=   𝑥𝑘 , 𝑦𝑘 − 𝑣𝑖(𝑥, 𝑦)      (4.6) 

 

Step 3: Membership values are found out according to equation in (4.7); 

 

∀
1≤𝑖≤𝑐
1≤𝑘≤𝑛

𝜇𝑘𝑖 (𝑥) =     
𝑑𝑘𝑖 (𝑥)

𝑑𝑘𝑗 (𝑥)
 

𝑐

𝑗 =1

 

2/(𝑚−1)

 

−1

,   𝑤𝑕𝑒𝑟𝑒𝑑𝑘𝑖 𝑥 =  𝑥𝑘 − 𝑣𝑖 𝑥       (4.7) 

 

Step 4: Membership values of each input data sample, 𝜇𝑘𝑖 , their transformations and 

identity matrix are augmented to the original input matrix as shown by equation (4.8) 

for each cluster “𝑖”. 

 

𝛷𝑖 =  
1
⋮
1

𝜇1,𝑖

⋮
𝜇𝑛,𝑖

𝑒𝑥𝑝⁡(𝜇1,𝑖)

⋮
𝑒𝑥𝑝⁡(𝜇𝑛,𝑖)

(𝜇1,𝑖)
𝑝

⋮
(𝜇𝑛,𝑖)

𝑝

𝑥1×1 ⋯ 𝑥1×𝑛𝑣

⋮ ⋱ ⋮
𝑥𝑛×1 ⋯ 𝑥𝑛×𝑛𝑣

 (4.8) 

 

Step 5: Regression coefficient parameters are calculated for each cluster “𝑖” by 

executing the equation (4.9).  

 

𝛽𝑖 = (𝛷𝑖
𝑇𝛷𝑖)

−1 𝛷𝑖
𝑇𝑌𝑖                                                                                                      (4.9) 

 

As it was stated in the algorithm above, firstly FCM clustering parameters; 𝑚, 𝑐, 

and 𝜀 are chosen. Then applying FCM clustering algorithm, membership values are 

obtained. In step 4, membership values (𝜇𝑘𝑖 ) and their transformations are 

augmented into the original data matrix as new dimensions of the original dataset. 
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In the algorithm as it wasdepicted above, the last step means that one regression 

function 𝑓(𝛷𝑖 , 𝛽𝑖) is identified for each cluster. Original input matrix could be 

mapped onto higher dimensions by using transformations of membership values. In 

order to get more appropriate or accurate results, Çelikyılmaz and Türkşen (2009b) 

proposed to use mathematical transformation of membership values such as (𝜇𝑘𝑖 ) 2,

𝜇𝑘𝑖
𝑚 , exp 𝜇𝑘𝑖 , ln⁡(1 − (𝜇𝑘𝑖 )/(𝜇𝑘𝑖 ). 

 

4.2.1.2  Inference Mechanism of Fuzzy Functions with LSE (T1FF) 

 

Let the validation data be represented with  𝑋𝑣 = {𝑥1
𝑣 , 𝑥2

𝑣 , … , 𝑥𝑛𝑑𝑣
𝑣 } every 𝑘𝑡𝑕 

data vector contain input vectors of dimension of 𝑛𝑣, 𝑋𝑘
𝑣 = (𝑥1,𝑘

𝑣 , … , 𝑥𝑛𝑣 ,𝑘
𝑣 )  and an 

output 𝑦𝑣
𝑘 ∈ ℜ. Here 𝑋𝑣 represents the input matrix of (𝑛𝑑𝑣 × 𝑛𝑣), 𝑛𝑑𝑣 is the 

number of validation vectors, c is the number of clusters, 𝑚 is the degree of 

fuzziness and 𝑖 (𝑖 = 1, … , 𝑐) is the cluster identifier. Same as in the validation data, 

testing data is represented with 𝑋𝑡𝑒𝑠𝑡 = {𝑥1
𝑡𝑒𝑠𝑡 , 𝑥2

𝑡𝑒𝑠𝑡 , … , 𝑥𝑛𝑡𝑒
𝑡𝑒𝑠𝑡 }. In every vector 

(observation) contains a 𝑛𝑣 dimensional vector of 𝑋𝑘
𝑡𝑒𝑠𝑡 = (𝑥1,𝑘

𝑡𝑒𝑠𝑡 , … , 𝑥𝑛𝑣 ,𝑘
𝑡𝑒𝑠𝑡 ) ∈ ℜ𝑛𝑣  

and an output variable𝑦𝑣
𝑡𝑒𝑠𝑡 ∈ ℜ. 𝑋𝑡𝑒𝑠𝑡  is the input matrix, 𝑛𝑡𝑒 is the number of 

testing vectors. 

 

The algorithm for the inference mechanism of fuzzy functions is described as 

follows (Çelikyılmaz and Türkşen, 2009b); 

 

Step 1: Membership values of each validation sample, 𝑥𝑘
𝑣 , 𝑘 = 1, … , 𝑛𝑑𝑣 are found 

out by using the equation (4.10); 

 

∀
1≤𝑖≤𝑐

1≤𝑘≤𝑛𝑑𝑣

𝜇𝑘𝑖
𝑣 =

 

   
𝑑𝑘𝑖

𝑣

𝑑𝑘𝑗
𝑣

𝑐

𝑗 =1

 

2

𝑚−1

 

 

−1

𝑖 = 1, … , 𝑐, 𝑤𝑕𝑒𝑟𝑒𝑑𝑘𝑖
𝑣 =  𝑥𝑘

𝑣 − 𝑣𝑖 𝑥       (4.10) 

 

Step 2: Membership values of validation data, 𝜇𝑘𝑖
𝑣 , their transformations and identity 

matrix are added to original validation data  𝑥𝑣 → Φi 𝑥
𝑣 𝜇𝑖

𝑣 , in ℜ𝑛𝑣+𝑛𝑚 space. 
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𝛷𝑖
𝑣 =  

1
⋮
1

𝜇1,𝑖
𝑣

⋮
𝜇𝑛,𝑖

𝑣

𝑒𝑥𝑝(𝜇1,𝑖
𝑣 )

⋮
𝑒𝑥𝑝(𝜇𝑛,𝑖

𝑣 )

(𝜇1,𝑖
𝑣 )𝑝

⋮
(𝜇1,𝑖

𝑣 )𝑝

𝑥𝑣
1×1 ⋯ 𝑥𝑣

1×𝑛𝑣

⋮ ⋱ ⋮
𝑥𝑣

𝑛×1 ⋯ 𝑥𝑣
𝑛×𝑛𝑣

 (4.11) 

 

Step 3: Then by using equation (4.12)output values are calculated. 

 

𝑦 𝑘,𝑖 = 𝛷𝑘,𝑖𝛽𝑖                                                                                                                       (4.12) 

 

Step 4: Finally single output value for validation data samples are calculated by 

weighting inferred fuzzy output values from each cluster with their corresponding 

membership values.  

 

𝑦 𝑘 =
 𝑦 𝑘𝑖𝜇𝑘𝑖

𝑐
𝑖

 𝜇𝑘𝑖
𝑐
𝑖

   𝑖 = 1, … , 𝑐, 𝑘 = 1, … , 𝑛𝑑𝑣                                                      (4.13) 

 

In the algorithm as stated above, firstly membership values according to fuzzy-c 

means clustering (FCM) algorithm are calculated. Then these membership values and 

their transformations (same as in training algorithm) are added to the original 

validation data matrix as additional dimensions. Then (same as the training algorithm 

with this new matrix) fuzzy functions are defined for each observation. Afterwards, 

the predictedoutput values of the data vectors are found by multiplying coefficients 

matrix which is found in the training algorithm and this new matrix. When this stage 

is finished “𝑐” numbers of output matrixes are found for each observation. Finally 

for each data sample a single output value is found by using the equation (4.13),by 

multiplying the output values with their corresponding membership values. 

 

In order to enable much better understanding of the fuzzy functions approach a 

hypothetical example with all necessary computational steps is shown in the next 

sub-section.  
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4.3An Illustrative Example for Fuzzy Functions with LSE 

 

In order to ensure that the concept of Türkşen‟s fuzzy functions approach is 

understood more easily, the algorithm is explained with a numerical example. For 

this purpose a small artificial dataset is generated which is consisting of 3variables 

and 10 observations. The dataset is represented in Table 4.1. 

 

Table 4.1 Input and output variables of generated artificial dataset 

Observations Variable1 Variable2 Variable3 Outputs 

1. observation 15.00 56.00 10.33 58.77 

2. observation 14.30 55.00 12.43 58.93 

3. observation 9.98 8.60 50.00 120.40 

4. observation 9.56 7.90 51.20 122.00 

5. observation 10.12 30.10 49.80 123.50 

6. observation 11.00 29.90 50.44 120.18 

7. observation 8.77 7.80 51.87 131.11 

8. observation 23.80 86.50 45.87 75.00 

9. observation 26.23 89.00 44.90 73.20 

10. observation 24.76 85.40 43.12 76.00 

 

Firstly the dataset is divided into two parts randomly in Matlab as training and 

validation phases in order to implement fuzzy functions algorithm. Training data set 

constitutes the seventy percent of all data and remained observations of the data 

constitute the validation data which is thirty percent of all data. Thus there are 7 

observations for training data and 3 observations for validation data. Training and 

validation datasets which are randomly selected in Matlab are shown respectively in 

Table 4.2 and Table 4.3.  
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Table 4.2 Input and output variables of training dataset 

Observations Variable1 Variable2 Variable3 Outputs 

2. observation 14.30 55.00 12.43 58.93 

4. observation 9.56 7.90 51.20 122.00 

6. observation 11.00 29.90 50.44 120.18 

7. observation 8.77 7.80 51.87 131.11 

8. observation 23.80 86.50 45.87 75.00 

9. observation 26.23 89.00 44.90 73.20 

10. observation 24.76 85.40 43.12 76.00 

 

 

Table 4.3 Input and output variables of validation data 

Observations Variable1 Variable2 Variable3 Outputs 

1. observation 15.00 56.00 10.33 58.77 

3. observation 9.98 8.60 50.00 120.4 

5. observation 10.12 30.10 49.80 123.5 

 

After training and validation datasets are introduced, the algorithm is applied step 

by step.   

 

Step 1: Firstly “𝑐” the optimum number of cluster should be found out and degree of 

fuzziness should be decided. In order to find out the best partition “fuzzy clustering 

toolbox” which was prepared in Matlab by Balasko, Abonyi and Feil (2005) is used. 

For the artificial dataset the best partition is found as 3.  

 

Step 2: In this step, according to the optimum number of cluster, the membership 

valuesare found out for training and validation data with FCM algorithm. In Table 

4.4 and Table 4.5 membership values of training and validation data are shown 

respectively. 
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Table 4.4 Membership values of training data 

Membership Values of Training Data 

Observations of 

dataset 

Cluster 1 

i=1 

Cluster 2 

i=2 

Cluster 3 

i=3 

2. observation 0.0003 0.0004 0.9994 

4. observation 0.9759 0.0089 0.0152 

6. observation 0.8662 0.0513 0.0824 

7. observation 0.9748 0.0094 0.0158 

8. observation 0.0005 0.9982 0.0013 

9. observation 0.0011 0.9962 0.0027 

10. observation 0.0009 0.9969 0.0022 

 

Table 4.5 Membership values of validation data 

Membership Values of Validation Data 

Observations of 

dataset 

Cluster 1 

i=1 

Cluster 2 

i=2 

Cluster 3 

i=3 

1. observation 0.0007 0.0011 0.9982 

3. observation 0.9791 0.0076 0.0132 

5. observation 0.8614 0.0524 0.0861 

 

Step 3: After the membership valuesare found out for training data, membership 

valuesand their transformation such as exp 𝑢 , exp 𝑢 2, 1/exp 𝑢  and u ∗ log 1 +

𝑢  are added to original data matrix for each cluster. These transformations are 

defined by user. For this numerical example only membership values are decided to 

be added as new variables. The new augmented matrix is shown in Table 4.6. 
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Table 4.6 Membership values and input variables of training data for cluster 1 

 
Membership 

degrees 
Variable1  Variable2 Variable3 

O
b

se
r
v

a
ti

o
n

s 
0.0003 14.30 55.00 12.43 

0.9759 9.56 7.90 51.20 

0.8662 11.00 29.90 50.44 

0.9748 8.77 7.80 51.87 

0.0005 23.80 86.50 45.87 

0.0011 26.23 89.00 44.90 

0.0009 24.76 85.40 43.12 

 

Step 4: Regression coefficients are found out for each cluster by using the regression 

equation; 𝛽𝑖 = (𝛷𝑖
𝑇𝛷𝑖)

−1 𝛷𝑖
𝑇𝑌𝑖 . More information on least square estimation 

(LSE) could be found in Appendix 1. As it can be seen from the equation, when all 

algorithms of fuzzy functions are applied, there will be “c” number of column matrix 

that consists of regression coefficients. In other words until the number of cluster “c” 

is reached, the same procedures are repeated and regression coefficients are found 

out for all clusters. In Table 4.7 final data matrix 𝑋, which consists of original input 

variables, membership values and identity matrix and corresponding output matrix 

are shown for cluster 1. Until we reach cluster number 3, same procedures are 

repeated. Also final input data matrixes and output data matrix for cluster 2 and 3 are 

shown in Table 4. 9 and Table 4.11 

 

Table 4.7 Final input (𝛷𝑖 ) and output data matrix of the training algorithm for cluster 1 (for i=1) 

 
Identity 

matrix 

Membershi

p values 

Original Data Matrix-Inputs (𝑿) 
 

Output 

Matrix (Y) 

Variable1 Variable2 Variable3 Outputs 

O
b

se
rv

at
io

n
s 

1 0.0003 14.30 55.00 12.43  58.93 

1 0.9759 9.56 7.90 51.20  122.00 

1 0.8662 11.00 29.90 50.44  120.18 

1 0.9748 8.77 7.80 51.87  131.11 

1 0.0005 23.80 86.50 45.87  75.00 

1 0.0011 26.23 89.00 44.90  73.20 

1 0.0009 24.76 85.40 43.12  76.00 
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      The obtained regression coefficients by applying the equation 

𝛽𝑖 = (𝛷𝑖
𝑇𝛷𝑖)

−1 𝛷𝑖
𝑇𝑌𝑖 , for cluster 1 is shown in Table 4.8. 

 

Table 4.8 Obtained regression coefficients for cluster 1  

 

 

Table 4.9 Final input (𝛷𝑖 ) and output data matrix of the training algorithm for cluster 2 (for i=2) 

 

Identit

y 

matrix 

Membership 

values 

Original Data Matrix-Inputs (𝑿) 

 

Output 

Matrix (Y) 

Variable1 Variable2 
Variable

3 
Outputs 

O
b

se
rv

at
io

n
s 

1 0.0004 14.30 55.00 12.43  58.93 

1 0.0089 9.56 7.90 51.20  122.00 

1 0.0513 11.00 29.90 50.44  120.18 

1 0.0094 8.77 7.80 51.87  131.11 

1 0.9982 23.80 86.50 45.87  75.00 

1 0.9962 26.23 89.00 44.90  73.20 

1 0.9969 24.76 85.40 43.12  76.00 

 

The regression coefficients for cluster 2 are shown in Table 4.10. 

 

Table 4.10 Obtained regression coefficients for cluster 2  

Regression Coefficients for Cluster 2 (𝜷𝟐) 

67.0901 

-11.9701 

-1.3130 

-0.1231 

1.4122 

Regression Coefficients for Cluster 1 (𝜷𝟏) 

65.7958 

26.3913 

-1.1911 

-0.0151 

0.8936 



 
 

46 
 

Table 4.11 Final input (𝛷𝑖 ) and output data matrix of the training algorithm for cluster 3 (for i=3) 

 
Identity 

matrix 

Membership 

values 

Original Data Matrix-Inputs (X) 

 

Output 

Matrix (𝑌) 

Variable1 Variable2 Variable3 Outputs 

O
b

se
rv

at
io

n
s 

1 0.9994 14.30 55.00 12.43  58.93 

1 0.0152 9.56 7.90 51.20  122.00 

1 0.0824 11.00 29.90 50.44  120.18 

1 0.0158 8.77 7.80 51.87  131.11 

1 0.0013 23.80 86.50 45.87  75.00 

1 0.0027 26.23 89.00 44.90  73.20 

1 0.0022 24.76 85.40 43.12  76.00 

 

The regression coefficients for cluster 3 are shown in Table 4.12 and thus all 

computing process for the regression coefficients is completed. The obtained 

regression coefficients for all clusters are shown in Table 4.13.   

 

Table 4.12 Obtained regression coefficients for cluster 3 

Regression Coefficients for Cluster 3 (𝜷𝟑) 

104.2185 

-15.9448 

-2.567 

-0.0711 

0.9152 

 

Table 4.13 Obtained regression coefficients for all clusters  

Regression Coefficients Matrix for All Clusters (𝜷𝟏, 𝜷𝟐 , 𝜷𝟑) 

Cluster 1 

i=1 

Cluster 2 

i=2 

Cluster 3 

i=3 

65.7958 67.0901 104.2185 

26.3913 -11.9701 -15.9448 

-1.1911 -1.3130 -2.5670 

-0.0151 -0.1231 -0.0711 

0.8936 1.4122 0.9152 
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Step 5: After regression coefficients are found (with regression equation of LSE), the 

estimated output values of training data for each cluster are calculated. The equation 

(4.14) expresses the general regression form of a multi-input single output model. In 

equation (4.15) the long form of regression model is expressed. Executing the 

equation (4.15), there will be “𝑘” number of predicted values for all clusters (“c”) for 

the training data. In the equation “𝑘” is the vector identifier, “𝑖” is the cluster 

identifier. The open forms of regression equations are also shown below for all 

clusters.  

 

𝑌 = 𝑋𝛽 + 𝜀                                                                                                                         (4.14) 

 

𝑦𝑘,𝑖 = 𝛷𝑘,𝑗 ∗ 𝛽𝑗 ,𝑖        𝑘 = 1, … , 𝑛  ,      𝑖 = 1, … , 𝑐     𝑗 = 1, …  𝑛𝑣 + 𝑛𝑚 + 1       (4.15) 

 

𝑦1,1
𝑡𝑟𝑛 = 𝛷1,1 ∗ 𝛽1,1 + 𝛷1,2 ∗ 𝛽2,1 + 𝛷1,3 ∗ 𝛽3,1 + 𝛷1,4 ∗ 𝛽4,1 + 𝛷1,5 ∗ 𝛽5,1         (4.16) 

𝑦2,1
𝑡𝑟𝑛 = 𝛷2,1 ∗ 𝛽1,1 + 𝛷2,2 ∗ 𝛽2,1 + 𝛷2,3 ∗ 𝛽3,1 + 𝛷2,4 ∗ 𝛽4,1 + 𝛷2,5 ∗ 𝛽5,1        (4.17) 

𝑦3,1
𝑡𝑟𝑛 = 𝛷3,1 ∗ 𝛽1,1 + 𝛷3,2 ∗ 𝛽2,1 + 𝛷3,3 ∗ 𝛽3,1 + 𝛷3,4 ∗ 𝛽4,1 + 𝛷3,5 ∗ 𝛽5,1        (4.18) 

𝑦4,1
𝑡𝑟𝑛 = 𝛷4,1 ∗ 𝛽1,1 + 𝛷4,2 ∗ 𝛽2,1 + 𝛷4,3 ∗ 𝛽3,1 + 𝛷4,4 ∗ 𝛽4,1 + 𝛷4,5 ∗ 𝛽5,1         (4.19) 

𝑦5,1
𝑡𝑟𝑛 = 𝛷5,1 ∗ 𝛽1,1 + 𝛷5,2 ∗ 𝛽2,1 + 𝛷5,3 ∗ 𝛽3,1 + 𝛷5,4 ∗ 𝛽4,1 + 𝛷5,5 ∗ 𝛽5,1        (4.20) 

𝑦6,1
𝑡𝑟𝑛 = 𝛷6,1 ∗ 𝛽1,1 + 𝛷6,2 ∗ 𝛽2,1 + 𝛷6,3 ∗ 𝛽3,1 + 𝛷6,4 ∗ 𝛽4,1 + 𝛷6,5 ∗ 𝛽5,1        (4.21) 

𝑦7,1
𝑡𝑟𝑛 = 𝛷7,1 ∗ 𝛽1,1 + 𝛷7,2 ∗ 𝛽2,1 + 𝛷7,3 ∗ 𝛽3,1 + 𝛷7,4 ∗ 𝛽4,1 + 𝛷7,5 ∗ 𝛽5,1        (4.22) 

 

𝑦1,2
𝑡𝑟𝑛 = 𝛷1,1 ∗ 𝛽1,2 + 𝛷1,2 ∗ 𝛽2,2 + 𝛷1,3 ∗ 𝛽3,2 + 𝛷1,4 ∗ 𝛽4,2 + 𝛷1,5 ∗ 𝛽5,2         (4.23) 

𝑦2,2
𝑡𝑟𝑛 = 𝛷2,1 ∗ 𝛽1,2 + 𝛷2,2 ∗ 𝛽2,2 + 𝛷2,3 ∗ 𝛽3,2 + 𝛷2,4 ∗ 𝛽4,2 + 𝛷2,5 ∗ 𝛽5,2        (4.24) 

𝑦3,2
𝑡𝑟𝑛 = 𝛷3,1 ∗ 𝛽1,2 + 𝛷3,2 ∗ 𝛽2,2 + 𝛷3,3 ∗ 𝛽3,2 + 𝛷3,4 ∗ 𝛽4,2 + 𝛷3,5 ∗ 𝛽5,2        (4.25) 

𝑦4,2
𝑡𝑟𝑛 = 𝛷4,1 ∗ 𝛽1,2 + 𝛷4,2 ∗ 𝛽2,2 + 𝛷4,3 ∗ 𝛽3,2 + 𝛷4,4 ∗ 𝛽4,2 + 𝛷4,5 ∗ 𝛽5,2 4.26  

𝑦5,2
𝑡𝑟𝑛 = 𝛷5,1 ∗ 𝛽1,2 + 𝛷5,2 ∗ 𝛽2,2 + 𝛷5,3 ∗ 𝛽3,2 + 𝛷5,4 ∗ 𝛽4,2 + 𝛷5,5 ∗ 𝛽5,2        (4.27) 

𝑦6,2
𝑡𝑟𝑛 = 𝛷6,1 ∗ 𝛽1,2 + 𝛷6,2 ∗ 𝛽2,2 + 𝛷6,3 ∗ 𝛽3,2 + 𝛷6,4 ∗ 𝛽4,2 + 𝛷6,5 ∗ 𝛽5,2        (4.28) 

𝑦7,2
𝑡𝑟𝑛 = 𝛷7,1 ∗ 𝛽1,2 + 𝛷7,2 ∗ 𝛽2,2 + 𝛷7,3 ∗ 𝛽3,2 + 𝛷7,4 ∗ 𝛽4,2 + 𝛷7,5 ∗ 𝛽5,2        (4.29) 

 

𝑦1,3
𝑡𝑟𝑛 = 𝛷1,1 ∗ 𝛽1,3 + 𝛷1,2 ∗ 𝛽2,3 + 𝛷1,3 ∗ 𝛽3,3 + 𝛷1,4 ∗ 𝛽4,3 + 𝛷1,5 ∗ 𝛽5,3         (4.30) 

𝑦2,3
𝑡𝑟𝑛 = 𝛷2,1 ∗ 𝛽1,3 + 𝛷2,2 ∗ 𝛽2,3 + 𝛷2,3 ∗ 𝛽3,3 + 𝛷2,4 ∗ 𝛽4,3 + 𝛷2,5 ∗ 𝛽5,3        (4.31) 
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𝑦3,3
𝑡𝑟𝑛 = 𝛷3,1 ∗ 𝛽1,3 + 𝛷3,2 ∗ 𝛽2,3 + 𝛷3,3 ∗ 𝛽3,3 + 𝛷3,4 ∗ 𝛽4,3 + 𝛷3,5 ∗ 𝛽5,3        (4.32) 

𝑦4,3
𝑡𝑟𝑛 = 𝛷4,1 ∗ 𝛽1,3 + 𝛷4,2 ∗ 𝛽2,3 + 𝛷4,3 ∗ 𝛽3,3 + 𝛷4,4 ∗ 𝛽4,3 + 𝛷4,5 ∗ 𝛽5,3         (4.33) 

𝑦5,3
𝑡𝑟𝑛 = 𝛷5,1 ∗ 𝛽1,3 + 𝛷5,2 ∗ 𝛽2,3 + 𝛷5,3 ∗ 𝛽3,3 + 𝛷5,4 ∗ 𝛽4,3 + 𝛷5,5 ∗ 𝛽5,3        (4.34) 

𝑦6,3
𝑡𝑟𝑛 = 𝛷6,1 ∗ 𝛽1,3 + 𝛷6,2 ∗ 𝛽2,3 + 𝛷6,3 ∗ 𝛽3,3 + 𝛷6,4 ∗ 𝛽4,3 + 𝛷6,5 ∗ 𝛽5,3        (4.35) 

𝑦7,3
𝑡𝑟𝑛 = 𝛷7,1 ∗ 𝛽1,3 + 𝛷7,2 ∗ 𝛽2,3 + 𝛷7,3 ∗ 𝛽3,3 + 𝛷7,4 ∗ 𝛽4,3 + 𝛷7,5 ∗ 𝛽5,3        (4.36) 

 

In order to predict the output values, data matrixes and coefficient matrixes for 

cluster 1, cluster 2 and cluster 3 are shown respectively in Table 4.14, 4.15 and 

4.16.In order to facilitate to following up, all of the calculations are shown below one 

by one. 

 

Table 4.14 Obtaining predicted output values of training data for cluster 1 

Identity 

matrix 

Membership 

degrees 

Original data matrix-inputs (X)  
Regression Coefficients Matrix 

for All Clusters 

Variable 

1 

Variable 

2 

Variable 

3 
 

Cluster 

1 

Cluster  

2 

Cluster 

3 

1 
0.0003 14.30 55.00 12.43  65.7958 67.0901 104.2185 

1 0.9759 9.56 7.90 51.20  26.3913 -11.9701 -15.9448 

1 0.8662 11.00 29.90 50.44  -1.1911 -1.3130 -2.5670 

1 0.9748 8.77 7.80 51.87  -0.0151 -0.1231 -0.0711 

1 0.0005 23.80 86.50 45.87  0.8936 1.4122 0.9152 

1 0.0011 26.23 89.00 44.90     

1 0.0009 24.76 85.40 43.12     

 

 

𝑦1,1
𝑡𝑟𝑛 = 1 ∗ 65.7958 +  0.0003 ∗  26.3913 +  14.30 ∗  −1.1911 +  55.00 ∗  −0.0151 

+  12.43 ∗ (0.8936) = 59.0482  

 

𝑦2,1
𝑡𝑟𝑛 = 1 ∗ 65.7958 +  0.9759 ∗  26.3913 +  9.56 ∗  −1.1911 +  7.90 ∗  −0.0151 

+  51.20 ∗ (0.8936) = 125.7977    

 

𝑦3,1
𝑡𝑟𝑛 = 1 ∗ 65.7958 +  0.8662 ∗  26.3913 +  11.00 ∗  −1.1911 +  29.90 ∗  −0.0151  

+  50.44 ∗ (0.8936) = 120.1786                                                                            
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𝑦4,1
𝑡𝑟𝑛 = 1 ∗ 65.7958 +  0.9748 ∗  26.3913 +  8.77 ∗  −1.1911 +  7.80 ∗  −0.0151  

+  51.87 ∗ (0.8936) = 127.311786                                                                        

 

𝑦5,1
𝑡𝑟𝑛 = 1 ∗ 65.7958 +  0.0005 ∗  26.3913 +  23.80 ∗  −1.1911 +  86.50 ∗  −0.0151  

+  45.87 ∗  0.8936 = 77.1484                                                                               

 

𝑦6,1
𝑡𝑟𝑛 = 1 ∗ 65.7958 +  0.0011 ∗  26.3913 +  26.23 ∗  −1.1911 +  89.00 ∗  −0.0151  

+  44.90 ∗  0.8936 = 73.3648                                                                                

 

𝑦7,1
𝑡𝑟𝑛 = 1 ∗ 65.7958 +  0.0009 ∗  26.3913 +  24.76 ∗  −1.1911 +  85.40 ∗  −0.0151  

+  43.12 ∗  0.8936 = 73.5724                                                                              

 

Table 4.15 Obtaining predicted output values of validation data for cluster 2 

Identity 

matrix 

Membership 

degrees 

Original data matrix-inputs (X)  
Regression Coefficients 

Matrix For All Clusters 

Variable 

1 

Variable 

2 

Variable 

3 
 

Cluster 

1 

Cluster 

2 

Cluster 

3 

1 
0.0004 14.30 55.00 12.43  65.7958 67.0901 104.2185 

1 0.0089 9.56 7.90 51.20  26.3913 -11.9701 -15.9448 

1 0.0513 11.00 29.90 50.44  -1.1911 -1.3130 -2.5670 

1 0.0094 8.77 7.80 51.87  -0.0151 -0.1231 -0.0711 

1 0.9982 23.80 86.50 45.87  0.8936 1.4122 0.9152 

1 0.9962 26.23 89.00 44.90     

1 0.9969 24.76 85.40 43.12     

 

 

𝑦1,2
𝑡𝑟𝑛 = 1 ∗ 67.0901 +  0.0004 ∗  −11.9701 +  14.30 ∗  −1.3130 +  55.00 ∗  −0.1231 

+  12.43 ∗ (1.4122) = 59.0917     

 

𝑦2,2
𝑡𝑟𝑛 = 1 ∗ 67.0901 +  0.0089 ∗  −11.9701 +  9.56 ∗  −1.3130 +  7.90 ∗  −0.1231 

+  51.20 ∗ (1.4122) = 125.7645                                                    

 

𝑦3,2
𝑡𝑟𝑛 = 1 ∗ 67.0901 +  0.0513 ∗  −11.9701 +  11.00 ∗  −1.3130 +  29.90 ∗  −0.1231 

+  50.44 ∗ (1.4122) = 119.5844                                                                   
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𝑦4,2
𝑡𝑟𝑛 = 1 ∗ 67.0901 +  0.0094 ∗  −11.9701 +  8.77 ∗  −1.3130 +  7.80 ∗  −0.1231   

+  51.87 ∗ (1.4122) = 127.7547                                                                

 

𝑦5,2
𝑡𝑟𝑛 = 1 ∗ 67.0901 +  0.9982 ∗  −11.9701 +  23.80 ∗  −1.3130 +  86.50 ∗  −0.1231  

+  45.87 ∗  1.4122 = 78.0209                                                                                

 

𝑦6,2
𝑡𝑟𝑛 = 1 ∗ 67.0901 +  0.9962 ∗  −11.9701 +  26.23 ∗  −1.3130 +  89.00 ∗  −0.1231  

+  44.90 ∗  1.4122 = 73.1765                                                                                

 

𝑦7,2
𝑡𝑟𝑛 = 1 ∗ 67.0901 +  09969 ∗  −11.9701 +  24.76 ∗  −1.3130 +  85.40 ∗  −0.1231  

+  43.12 ∗  1.4122 = 73.0273                                                                                

 

Table 4.16 Obtaining predicted output values of validation data for cluster 3 

Identity 

matrix 

Membership 

degrees 

Original Data Matrix-Inputs (X)  
Regression Coefficients 

Matrix for All Clusters 

Variable 

1 

Variable 

2 

Variable 

3 
 

Cluster 

1 

Cluster 

2 

Cluster 

3 

1 
0.9994 14.30 55.00 12.43  65.7958 67.0901 104.2185 

1 0.0152 9.56 7.90 51.20  26.3913 -11.9701 -15.9448 

1 0.0824 11.00 29.90 50.44  -1.1911 -1.3130 -2.5670 

1 0.0158 8.77 7.80 51.87  -0.0151 -0.1231 -0.0711 

1 0.0013 23.80 86.50 45.87  0.8936 1.4122 0.9152 

1 0.0027 26.23 89.00 44.90     

1 0.0022 24.76 85.40 43.12     

 

 

𝑦1,3
𝑡𝑟𝑛 = 1 ∗ 104.2185 +  0.9994 ∗  −15.9448 +  14.30 ∗  −2.5670 +  55.00 ∗  −0.0711 

+  12.43 ∗ (0.9152) = 59.0418     

 

𝑦2,3
𝑡𝑟𝑛 = 1 ∗ 104.2185 +  0.0152 ∗  −15.9448 +  9.56 ∗  −2.5670 +  7.90 ∗  −0.0711  

+  51.20 ∗ (0.9152) = 125.7344                                                         

 

𝑦3,3
𝑡𝑟𝑛 = 1 ∗ 104.2185 +  0.0824 ∗  −15.9448 +  11.00 ∗  −2.5670 +  29.90 ∗  −0.0711   

+  50.44 ∗ (0.9152) = 118.7064                                                                             
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𝑦4,3
𝑡𝑟𝑛 = 1 ∗ 104.2185 +  0.0158 ∗  −15.9448 +  8.77 ∗  −2.5670 +  7.80 ∗  −0.0711   

+  51.87 ∗ (0.9152) = 128.3727                                                                             

 

𝑦5,3
𝑡𝑟𝑛 = 1 ∗ 104.2185 +  0.0013 ∗  −15.9448 +  23.80 ∗  −2.5670 +  86.50 ∗  −0.0711 

+  45.87 ∗  0.9152 = 78.9363                                                                                

 

𝑦6,3
𝑡𝑟𝑛 = 1 ∗ 104.2185 +  0.0027 ∗  −15.9448 +  26.23 ∗  −2.5670 +  89.00 ∗  −0.0711  

+  44.90 ∗  0.9152 = 71.6103                                                                               

 

𝑦7,3
𝑡𝑟𝑛 = 1 ∗ 104.2185 +  0.0022 ∗  −15.9448 +  24.76 ∗  −2.5670 +  85.40 ∗  −0.0711   

+  43.12 ∗  0.9152 = 74.0182                                                                                

 

The predicted output values for the training data for each cluster are shown in Table 

4.17. 

 

Table 4.17 Obtained predicted output values of training data for each cluster  

Prediction Values The Observation of Training Data Set 

Cluster 1 Cluster 2 Cluster 3 

59.0482 59.0917 59.0418 

125.7977 125.7645 125.7344 

120.1786 119.5844 118.7064 

127.31 127.7547 128.3727 

77.1484 78.0209 78.9363 

73.3648 73.1765 71.6103 

73.5724 73.0273 74.0182 

 

As it can be seen from Table (4.17), we obtain a matrix that consists of “c” 

number of columns after regression equation is applied. 

 

Step 6: In the final step, a single output is obtained for each observation by 

weighting the obtained output values with their corresponding membership values. In 

order to facilitate to follow up, the membership degree matrix is rewritten in the 

Table 4.18.  
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Table 4.18 Membership degrees of training data 

Membership Degrees of Training Data 

Observations  
Cluster 1 

i=1 

Cluster 2 

i=2 

Cluster 3 

i=3 

2. observation 0.0003 0.0004 0.9994 

4. observation 0.9759 0.0089 0.0152 

6. observation 0.8662 0.0513 0.0824 

7. observation 0.9748 0.0094 0.0158 

8. observation 0.0005 0.9982 0.0013 

9. observation 0.0011 0.9962 0.0027 

10. observation 0.0009 0.9969 0.0022 

 

Executing equation (4.37), membership matrix and predicted value matrix are 

multiplied and then divided into sum of membership values of k.th observation.  In 

other words in this step, all these “𝑐” number of predicted values are weighted with 

membership degrees in order to obtain a single predicted value for each observation. 

 

𝑌 𝑘 =
 𝜇𝑘𝑖𝑦𝑘𝑖

𝑐
𝑖

 𝜇𝑘𝑖
𝑐
𝑖

                                                                                                                   (4.37) 

 

For all observations the single final predicted output values are calculated as 

follows; 

 

𝑌 1
𝑡𝑟𝑛

=
(0.0003 ∗ 59.0482 + 0.0004 ∗ 59.0917 + 0.9994 ∗ 59.0418)

(0.0003 + 0.0004 + 0.9994)
= 59.0418 

 

𝑌 2
𝑡𝑟𝑛

=
(0.9759 ∗ 125.7977 + 0.0089 ∗ 125.7645 + 0.0152 ∗ 125.7344)

(0.9759 + 0.0089 + 0.0152)
= 125.7965 

 

𝑌 3
𝑡𝑟𝑛

=
(0.8662 ∗ 120.1786 + 0.0513 ∗ 119.5844 + 0.0824 ∗ 118.7064)

(0.8662 + 0.0513 + 0.0824)
= 120.0267 

 

𝑌 4
𝑡𝑟𝑛

=
(0.9748 ∗ 127.31 + 0.0094 ∗ 127.7547 + 0.0158 ∗ 128.3727)

(0.9748 + 0.0094 + 0.0158)
= 127.331 
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𝑌 5
𝑡𝑟𝑛

=
(0.0005 ∗ 127.31 + 0.9982 ∗ 78.0209 + 0.0013 ∗ 78.9363)

(0.0005 + 0.9982 + 0.0013)
= 78.0216 

 

𝑌 6
𝑡𝑟𝑛

=
(0.0011 ∗ 73.3648 + 0.9962 ∗ 73.1765 + 0.0027 ∗ 71.6103)

(0.0011 + 0.9962 + 0.0027)
= 73.1725 

 

𝑌 7
𝑡𝑟𝑛

=
(0.0009 ∗ 73.5724 + 0.9969 ∗ 73.0273 + 0.0022 ∗ 74.0182)

(0.0009 + 0.9969 + 0.0022)
= 73.03 

 

     After weighting process is completed, the final predicted output values are 

obtained as shown in Table 4.19.  

 

Table 4.19 Final single predicted values for training data 

 

 

 

 

 

 

 

  

 

R-square value which measure of how well future outcomes are likely to be 

predicted by the model is calculated at the final step for training data (Calculation of 

R-square value is explained in Appendix 2). R-square value for training data is found 

as 0.991. 

 

Validation Data 

 

In this section the same procedures are repeated for validation dataset. Based on 

the found out regression coefficients, output variables of the validation dataset are 

predicted and R-square value for the validation data is calculated.  

 

 

 

Predicted Values for Training 

Data 

59.0418 

125.7965 

120.0267 

127.3310 

78.0216 

73.1725 

73.0300 
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Table 4.20 Randomly selected observations for validation data 

 Variable1 Variable2 Variable3 Output 

1. observation 15.00 56.00 10.33 58.77 

3. observation 9.98 8.60 50.00 120.4 

5. observation 10.12 30.10 49.80 123.5 

 

Table 4.21 Membership degrees of validation dataset of artificial dataset 

Membership Degrees of Validation Data 

Observations of 

dataset 

Cluster 1 

i=1 

Cluster 2 

i=2 

Cluster 3 

i=3 

1. observation 0.0007 0.0011 0.9982 

2. observation 0.9791 0.0076 0.0132 

3. observation 0.8614 0.0524 0.0861 

 

Table 4.22 Membership degrees and input variables of validation data for cluster 1 

 
Membership 

degrees 
Variable1 Variable2 Variable3 

O
b

se
rv

at
io

n
s 0.0007 15.00 56.00 10.33 

0.9791 9.98 8.60 50.00 

0.8614 10.12 30.10 49.80 

 

Table 4.23 Obtaining predicted output values of validation data for cluster 1 

Identity 

matrix 

Membership 

degrees 

Original Data Matrix-Inputs 

(X) 
 

Regression Coefficients 

Matrix for All Clusters 

Variable 

1 

Variable 

2 

Variable 

3 
 

Cluster 

1 
Cluster 2 

Cluster 

3 

1 
0.0007 15.00 56.00 10.33  65.7958 67.0901 104.2185 

1 0.9791 9.98 8.60 50.00  26.3913 -11.9701 -15.9448 

1 0.8614 10.12 30.10 49.80  -1.1911 -1.3130 -2.5670 

      -0.0151 -0.1231 -0.0711 

      0.8936 1.4122 0.9152 
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𝑦1,1
𝑣𝑎𝑙 = 1 ∗ 65.7958 +  0.0007 ∗  26.3913 +  15.00 ∗  −1.1911 +  56.00 ∗  −0.0151 

+  10.33 ∗ (0.8936) = 56.3353  

 

𝑦2,1
𝑣𝑎𝑙 = 1 ∗ 65.7958 +  0.9791 ∗  26.3913 +  9.98 ∗  −1.1911 +  8.60 ∗  −0.0151 

+  50.00 ∗ (0.8936) = 124.3011    

 

𝑦3,1
𝑣𝑎𝑙 = 1 ∗ 65.7958 +  0.8614 ∗  26.3913 +  10.12 ∗  −1.1911 +  30.10 ∗  −0.0151  

+  49.80 ∗ (0.8936) = 120.5256                                                     

 

Table 4.24 Membership degrees and input variables of validation data for cluster 2 

 
Membership 

degrees 
Variable1 Variable2 Variable3 

O
b

se
rv

at
io

n
s 0.0011 15.00 56.00 10.33 

0.0076 9.98 8.60 50.00 

0.0524 10.12 30.10 49.80 

 

 

Table 4.25 Obtaining predicted output values of validation data for cluster 2 

Identity 

matrix 

Membership 

degrees 

Original Data Matrix-Inputs 

(X) 
 

Regression Coefficients Matrix 

for All Clusters 

Variable 

1 

Variable 

2 

Variable 

3 
 

Cluster 

1 

Cluster  

2 

Cluster 

3 

1 
0.0011 15.00 56.00 10.33  65.7958 67.0901 104.2185 

1 0.0076 9.98 8.60 50.00  26.3913 -11.9701 -15.9448 

1 0.0524 10.12 30.10 49.80  -1.1911 -1.3130 -2.5670 

      -0.0151 -0.1231 -0.0711 

      0.8936 1.4122 0.9152 

 

 

𝑦1,2
𝑣𝑎𝑙 = 1 ∗ 67.0901 +  0.0011 ∗  −11.9701 +  15.00 ∗  −1.3130 +  56.00 ∗  −0.1231 

+  10.33 ∗ (1.4122) = 55.0751     

 

𝑦2,2
𝑣𝑎𝑙 = 1 ∗ 67.0901 +  0.0076 ∗  −11.9701 +  9.98 ∗  −1.3130 +  8.60 ∗  −0.1231 

+  50.00 ∗ (1.4122) = 123.448                                                                 



 
 

56 
 

𝑦3,2
𝑣𝑎𝑙 = 1 ∗ 67.0901 +  0.0524 ∗  −11.9701 +  10.12 ∗  −1.3130 +  30.10 ∗  −0.1231 

+  49.80 ∗ (1.4122) = 119.7984                                                                

 

Table 4.26 Membership degrees and input variables of validation data for cluster 3 

 
Membership 

degrees 
Variable1 Variable2 Variable3 

O
b

se
rv

at
io

n
s 0.9982 15.00 56.00 10.33 

0.0132 9.98 8.60 50.00 

0.0861 10.12 30.10 49.80 

 

Table 4.27 Obtaining predicted output values of validation data for cluster 3 

Identity 

matrix 

Membership 

degrees 

Original data matrix-inputs (X)  
Regression Coefficients 

Matrix For All Clusters 

Variable 

1 

Variable 

2 

Variable 

3 
 

Cluster 

1 

Cluster 

 2 

Cluster 

3 

1 
0.9982 15.00 56.00 10.33  65.7958 67.0901 104.2185 

1 0.0132 9.98 8.60 50.00  26.3913 -11.9701 -15.9448 

1 0.0861 10.12 30.10 49.80  -1.1911 -1.3130 -2.5670 

      -0.0151 -0.1231 -0.0711 

      0.8936 1.4122 0.9152 

 

𝑦1,3
𝑣𝑎𝑙 = 1 ∗ 104.2185 +  0.9982 ∗  −15.9448 +  15.00 ∗  −2.5670 +  56.00 ∗  −0.0711 

+  10.33 ∗ (0.9152) = 55.271     

 

𝑦2,3
𝑣𝑎𝑙 = 1 ∗ 104.2185 +  0.0132 ∗  −15.9448 +  9.98 ∗  −2.5670 +  8.60 ∗  −0.0711  

+  50.00 ∗ (0.9152) = 123.5394       

 

𝑦3,3
𝑣𝑎𝑙 = 1 ∗ 104.2185 +  0.0861 ∗  −15.9448 +  10.12 ∗  −2.5670 +  30.10 ∗  −0.0711   

+  49.80 ∗ (0.9152) = 120.3063                                                                             

 

The final predicted values for each observation of validation data are obtained as 

shown in Table 4.28. 
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Table 4.28 Final single predicted values for validation data 

Prediction values the observation of validation 

data set 

56.3353 55.0751 55.2710 

124.3011 123.4480 123.5394 

120.5256 119.7984 120.3063 

 

     Membership matrix and predicted value matrix are multiplied and divided into 

sum of membership values of 𝑘. 𝑡𝑕 observation of validation data by executing 

equation (4.37). In order to follow up easily, membership values of validation data 

are rewritten below.  

 

Table 4.29 Membership degrees of validation data of artificial dataset 

Membership Degrees of Validation Data 

Observations of 

dataset 

Cluster 1 

i=1 

Cluster 2 

i=2 

Cluster 3 

i=3 

1. observation 0.0007 0.0011 0.9982 

3. observation 0.9791 0.0076 0.0132 

5. observation 0.8614 0.0524 0.0861 

 

 

𝑌 1
𝑣𝑎𝑙

=
(0.0007 ∗ 56.3353 + 0.0011 ∗ 55.0751 + 0.9982 ∗ 55.2710)

(0.0007 + 0.0011 + 0.9982)
= 55.2716 

 

𝑌 2
𝑣𝑎𝑙

=
(0.9791 ∗ 124.3011 + 0.0076 ∗ 123.4480 + 0.0132 ∗ 123.5394)

(0.9791 + 0.0076 + 0.0132)
= 124.2845 

 

𝑌 3
𝑣𝑎𝑙

=
(0.8614 ∗ 120.5256 + 0.0524 ∗ 119.7984 + 0.0861 ∗ 120.3063)

(0.8614 + 0.0524 + 0.0861)
= 120.4686 
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Table 4.30 Final single predicted values for validation data 

 

 

 

 

 

 

After final predicted values are calculated,  R-square value is caluculated. R-

square value for validation data is found as 0.9863. R-square value is also calculated 

for all-data which is found as 0.9896. 

 

4.4Conclusions 

 

In this chapter, Türkşen‟s fuzzy functions concept is introduced briefly. To sum 

up, fuzzy functions concept is recommended as an alternative to fuzzy rule bases in 

order to eliminate difficulties of it and enable to handle large and complex systems 

that fuzzy rule base system may remain incapable. The theory of fuzzy functions 

approach is based on membership values and regression functions and this 

constitutes the main difference of it. After the fundamental properties of fuzzy 

functions are introduced, the structure identification and reasoning mechanism of the 

fuzzy function approach for regression type models is explained. Finally a detailed 

computational example is provided in order to facilitate better understanding of the 

fuzzy functions approach.    

 

In the next chapter, a new approach which makes use genetic programming in 

defining fuzzy functions instead of regressions equations is presented. It is aimed to 

investigate whether it is possible to further improve the performance of the fuzzy 

functions approach by integrating it with genetic programming approaches.

Predicted Values for 

Validation Data 

55.2716 

124.2845 

120.4686 
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CHAPTER FIVE 

A BRIEF OVERVIEW OF GENETIC PROGRAMMING 

 

5.1 Introduction 

 

Genetic algorithm (GA) which was proposed by Holland in the 1960s is a search 

and optimization technique and is based on the principles of natural selection. In 

GAs, each candidate solution is called an individual or a chromosome and 

aggregation of these chromosomes form the populations. 

 

The genetic algorithm (GA) transforms a population (set) of individual objects, 

each with an associated fitness value, into a new generation of the population 

using the principle of reproduction and survival of the fittest and analogs of 

naturally occurring genetic operations such as crossover and mutation (Koza, 

1995, p. 589).  

 

Palit and Popovic (2005) express the features of a typical GAs to be able to solve 

an optimization problem, as follows: 

 

 Genetic representation of each possible solution, 

 A population of encoded solutions, 

 A evaluation function which evaluates the fittingness of each solution, 

 Genetic operators that are used in order to form new populations, 

 Control parameters such as population size and number of generations. 

 

Broadly the three genetic operations which are selection, crossover and mutation 

constitute the concept of genetic algorithms. These operations are used in order to 

select the most proper offspring to be able to obtain succeeding generations. Firstly, 

from the current population the individuals are chosen and then mated in order to 

generate next generations.  These operations are explained below briefly.   
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 Selection: Selection is the process where individuals are chosen in order to 

be processed. Selection process is based on the survival-of-the-fittest strategy 

which means that the individual compete with each other to be able to survive 

in the population. There are a number of selection methodologies and the 

most commonly known methods are fitness proportionate selection, greedy 

over-selection, and tournament selection.  

 

 Crossover: Crossover operation is basically based on the swapping of 

genetic material between two parent strings. For crossover operations two 

individuals are needed and these individuals breed two different individuals 

for the new population. Crossover is a process of information exchange 

between two parent chromosomes and genetic materials that are coming from 

these two parent chromosomes are mixed to in order to generate an offspring.  

 

 

Figure 5.1 Sample representation of crossover operation (Sastry, Goldberg and Kandall, 2005) 
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 Mutation: Mutation operation operates on a single individual from the 

population and generates new genetic materials by which the diversity of the 

population is increased and the diversity of gene pool is maintained. By 

mutation operation one or more values are altered at randomly selected 

locations in randomly selected strings. Usually, mutation is applied after the 

crossover operation.  

 

 
Figure 5.2  A sample representation of mutation of a chromosome X (Buttand Abhari, 2010) 

 

Maulik and Bandyopadhyay (2000) described the application of GA, in their study 

as follows: Initially, a random population is created, which represents different 

points in the search space. An objective and fitness function is associated with 

each string that represents the degree of goodness of the string. Based on the 

principle of survival of the fittest, a few of the strings are selected and each is 

assigned a number of copies that go into the mating pool. Biologically inspired 

operators like crossover and mutation are applied on these strings to yield a new 

generation of strings. The process of selection, crossover and mutation continues 

for a fixed number of generations or till a termination condition is satisfied (p. 

1455). 

 

Genetic algorithms provide a basis for many kinds of metaheuristicoptimization 

techniques with the combination of other modeling tools (Javadi, Farmani and Tan, 

2005) and has been used in wide range of application areas for different kinds of 

problems such as data mining (Karthick, Saravanan and Vetrisalvan, 2012), 
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clustering (Maulik and Bandyopadhyay, 2000) and business application (Grupe and 

Jooste, 2004) problems.  

 

As Grupe and Jooste (2004) indicated in their study, when GAs are applied to the 

suitable problems they could be a very powerful techniques and capable of giving the 

closest solution to the optimum solutions. And it could be said that the underlying 

factor of the success of genetic algorithms is that genetic algorithms are able to 

consider many points simultaneously and provide nearly ideal solutions for many 

kinds of problems.  

 

5.2 Genetic Programming 

 

Genetic programming is a specialization of genetic algorithms and an 

evolutionary algorithm based machine learning technique in which each individual 

represented with a computer program and used in order to find out the best formula 

that represents the problem. By applying a number of processes that is consisting of 

reproduction, crossover and mutation operators, genetic programming generates the 

next population in which only the more successful genetic materials of individuals 

are existing. 

 

As it was indicated before genetic programming is based on computer programs 

and the computer programs can give millions of solutions for a particular problem. 

Between these possible solutions, the best possible solution or solutions are chosen 

on the bases of some processes that are similar to principles of natural selection and 

evolution.  

 

Koza (1995) explained the search space in genetic programming as the space of 

all possible computer programs which are composed of functions and terminals such 

as standard arithmetic operations, standard programming operations, standard 

mathematical functions, logical functions, or domain-specific functions. 
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In genetic programming each mathematical program is represented in a tree 

structure, where 𝑛 trees form the population of size 𝑛. The crossover and mutation 

are applied on the population to obtain the new generation of computer programs. 

For each computer program, a fitness function is computed to scale its usefulness. 

In GP, usually one formula is obtained that can give the best answer (Hewai, 

2012, p. 32). 

 

 

Figure 5.3A sample representation of a genetic programming tree (Brameier and Banzhaf,2007) 

 

As Ponce-Cruz and Ramirez-Figueroa (2010) stated in their study, the basic 

difference between GA and GP is the evolution process while in GA strings of bits 

representing chromosomes are evolved, in genetic programming the whole structure 

of a computer program is evolved by the algorithm. And they indicated that thanks to 

this structure, genetic programming can handle the problems that are harder to 

manage by GAs.  

 

As Cordon, Herrera, Hoffmann et al. (2001) indicated in their study, genetic 

programming has a wide range of application area and combining with different 
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techniques, genetic programming has been applied to a variety of problems 

successfully by researchers (Al-Rahamneh, Reyalat, Sheta, Bani Ahmad and Al-

Oqeili, 2011; Baykasoğlu, Gökçen and Özbakır, 2010; Çunkaş and Taşkıran, 2011; 

Fyfe, Marney and Tarbert, 1999; Chan, Kwong and Wong, 2011; Moreno-Torres, 

Llorà, Goldberg and Bhargava, 2013; Song and Zhang, 2012; Zhou et al., 2008).  

 

Baykasoğlu et al. (2010) used genetic programming in data mining approaches in 

order to select dispatching rules according to subjected shop parameters. Chan et al. 

(2011) used also genetic programming for product development through modeling 

customer satisfaction, Zhou et al. (2008) used genetic programming in their study in 

order to propose a controller adaptive to traffic flows fordouble-deck elevator 

system. Al-Rahamneh et al. (2011) used genetic programming for the software 

reliability problems and built a software reliability growth model.  

 

5.3 Fuzz Functions with Genetic Programming (GP) 

 

In the present study, as a new contribution to existing studies on fuzzy functions it 

is proposed to use genetic programming in generating fuzzy functions as an 

alternative to using LSE or SVM with the intention of searching whether the 

performance of fuzzy functions approach could be improved by combining it with 

genetic programming or not. In this part of the study, this new approach is going to 

be introduced and also going to be supported with a numerical example in order to 

provide a better understanding.  

 

Similar to fuzzy functions with LSE, the membership values and their 

transformations are used as new variables in fuzzy functions with GP. In order to 

find out the membership values FCM clustering algorithm is also used for the 

proposed model. Thereinafter the algorithm of the proposed model is introduced step 

by step and with an example all of these steps are explained numerically.  

 

As it could be seen below,the steps in the algorithm of fuzzy functions with GP 

arequite similar to the steps in the algorithm of fuzzy functions with LSE. First of all, 
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the parameters are decided to be able to execute FCM clustering algorithm and 

thenby executing FCM clustering algorithm, membership values are found out for 

each observation. In the following step, by adding these found out membership 

values and their transformations, the new data matrix is generated and the genetic 

programming is run in order to obtain the best formula for each cluster. Afterwards 

applying the found out formula,predicted values are obtained for each cluster. Finally 

same as in the algorithm of fuzzy functions with LSE, by weighting the obtained 

values with their corresponding membership values, a single predicted output value 

is obtained for all observations.    

 

The algorithm of fuzzy function with GP is described below step by step;  

 

Step 1: Firstly the parameters of the FCM clustering algorithm are decided; 

 m≥1.1 (degree of fuzziness), 

 c>1 (the number of clusters), 

 ε (a termination threshold). 

Step 2: Execute FCM clustering algorithm to find out cluster centers 𝑣𝑖 𝑥𝑦 of the 

dataset𝑍(𝑥, 𝑦). 

 

∀
1≤𝑖≤𝑐
1≤𝑘≤𝑛

𝜇𝑘𝑖 (𝑥𝑦) =

 

    
𝑑𝑘𝑖 (𝑥𝑦)

𝑑𝑘𝑗 (𝑥𝑦)
 

𝑐

𝑗=1

 

2

𝑚−1

 

 

−1

𝑑𝑘𝑖
𝑥𝑦

=   𝑥𝑘 , 𝑦𝑘 − 𝑣𝑖(𝑥, 𝑦)      (5.1) 

 

Step 3: Membership values are found out according to equation in (5.2); 

 

∀
1≤𝑖≤𝑐
1≤𝑘≤𝑛

𝜇𝑘𝑖 (𝑥) =     
𝑑𝑘𝑖 (𝑥)

𝑑𝑘𝑗 (𝑥)
 

𝑐

𝑗 =1

 

2/(𝑚−1)

 

−1

,   𝑤𝑕𝑒𝑟𝑒𝑑𝑘𝑖 𝑥 =  𝑥𝑘 − 𝑣𝑖 𝑥       (5.2) 

 

Step 4: Membership values of each input data sample, 𝜇𝑘𝑖 , and their transformations 

are augmented to the original input matrix as shown in equation (5.3) for each cluster 

“𝑖”. 
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𝛷𝑖 =  

𝜇1,𝑖

⋮
𝜇𝑛,𝑖

𝑒𝑥𝑝⁡(𝜇1,𝑖)

⋮
𝑒𝑥𝑝⁡(𝜇𝑛,𝑖)

(𝜇1,𝑖)
𝑝

⋮
(𝜇𝑛,𝑖)

𝑝

𝑥1×1 ⋯ 𝑥1×𝑛𝑣

⋮ ⋱ ⋮
𝑥𝑛×1 ⋯ 𝑥𝑛×𝑛𝑣

 (5.3) 

 

Step 5: After membership values are found out according to FCM clustering 

algorithm, Eureqa Formulize genetic programming software is run for all clusters 

individually and the equations that describe the data most appropriately is obtained 

for all new data matrixes that are generated by the addition of membership values. 

After the most appropriate equations are obtained, prediction process is carried out 

and predicted values are found out by applying the equation in (5.4). “α” represents 

the most appropriate equation for each cluster “𝑖”. 

 

𝑦 𝑘,𝑖 = 𝛷𝑘,𝑖𝛼𝑖                                                                                                                          (5.4) 

 

Step 6: Finally similar to fuzzy functions with LSE, single output values are 

calculated for each data vector by weighting predicted output values from each 

cluster with their corresponding membership values.  

 

𝑦 𝑘 =
 𝑦 𝑘𝑖𝜇𝑘𝑖

𝑐
𝑖

 𝜇𝑘𝑖
𝑐
𝑖

   𝑖 = 1, … , 𝑐, 𝑘 = 1, … , 𝑛                                                            (5.5) 

 

In the following section Eureqa Formulize genetic programming software, which 

is used in the present thesis, is explained in order to provide a brief introduction. 

 

5.3.1 The Introduction of the Eureqa Formulize Genetic Software Program 

 

To give some brief information on “Eureqa Formulize” software program, firstly 

the dataset that is going to be searched is entered into the Eureqa Formulize program 

from the “Enter Data” tab as it is shown in the Figure 5.4.  
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Figure 5.4 The screenshot of the “Enter Data” tab of Eureqa Formulize software program 

 

 

After the data is entered, with the “Prepare Data” tab the data can be prepared by 

smoothing the data, handling missing values, removing outliers, normalizing scale 

and offset or applying a filter (nutonian.com).The view of the “Prepare Data” tab 

window is shown in Figure 5.5. 
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Figure 5.5 The screenshot of the “Prepare Data” tab of Eureqa Formulize software program 

 
 

As a next step, in the “Set Target” tabthe type of the formula that satisfies the 

equation is decided by choosing the operations (such as addition, subtraction, 

division, or sine) that we want to be in the equation.The view of the “Set Target” tab 

window is shown in Figure 5.6. 
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Figure 5.6 The screenshot of the “Set Target” window of Eureqa Formulize software program 

 

After the parameters are determined to be in the formula, then with “Start Search” 

tab the search is started. The buttons in the “Start Search” tab provide to control the 

formula search. After stopping a search, clicking "Run" will give two options: 

continue the search from where it left off, or start fresh(nutonian.com). The 

screenshot of “Start Search” tab is presented in Figure 5.7.  
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Figure 5.7 The screenshot of the “Start Search” window of Eureqa Formulize software program 

 

After the program is run for a period of time, with stop button, the search is ended 

and in “View Results” tab, the solutions that the program has found are shown. 

Between these solutions, the most appropriate equationsare chosen. To be an 

example the screenshot of the tab is depicted in Figure 5.8.  
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Figure 5.8 The screenshot of the “View Results” window of Eureqa Formulize software program 

 

     With the “Report/Analyze” tab as it is shown in Figure 5.9,some basic reports are 

provided. Selecting the desired report or tool from the "Select task" drop-down 

menu, and the necessary controls will appear (nutonian.com). 
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Figure 5.9 The screenshot of the “Report/Analyze” window of Eureqa Formulize software program 

 

In “Secure Cloud” tab, the searches could be accelerated by enabling Formulize to 

use the Amazon Elastic Compute Cloud(Amazon EC2). A local computer typically 

has only four cores, which limits its search processing speed. By temporarily using 

additional cores, the search could be faster, deeper, and more confidence 

(nutonian.com). The screenshot of the tab is depicted in Figure 5.10. 
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Figure 5.10 The screenshot of the “Secure cloud” window of Eureqa Formulize software program 

 

5.3.2 Implementation of Fuzzy Functions with Genetic Programming 

 

In this part, how the fuzzy functions are going to be implemented with genetic 

programming is going to be explained with the artificial dataset which is used for 

fuzzy functions with LSE in previous chapter. The artificial dataset is represented in 

Table 5.1 in order to following up easily. 
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Table 5.1 Input and output variables of generated artificial dataset 

Observations Variable1 Variable2 Variable3 Outputs 

1. observation 15.00 56.00 10.33 58.77 

2. observation 14.30 55.00 12.43 58.93 

3. observation 9.98 8.60 50.00 120.40 

4. observation 9.56 7.90 51.20 122.00 

5. observation 10.12 30.10 49.80 123.50 

6. observation 11.00 29.90 50.44 120.18 

7. observation 8.77 7.80 51.87 131.11 

8. observation 23.80 86.50 45.87 75.00 

9. observation 26.23 89.00 44.90 73.20 

10. observation 24.76 85.40 43.12 76.00 

 

Step 1: Firstly “𝑐” the optimum number of cluster should be found out and degree of 

fuzziness should be decided. As it can be remembered from the previous chapter the 

best partition was found as 3 for the artificial dataset.  

 

Step 2: According to the optimum number of clusters, the membership values are 

found out with FCM algorithm. In Table 5.2 the obtained membership values of the 

data for all observations are shown. 

 

Table 5.2 Membership values of the artificial data 

Membership Values of the Data 

Observations of 

dataset 

Cluster 1 

i=1 

Cluster 2 

i=2 

Cluster 3 

i=3 

1. observation 0.0007 0.0011 0.9982 

2. observation 0.0003 0.0004 0.9994 

3. observation 0.9791 0.0076 0.0132 

4. observation 0.9759 0.0089 0.0152 

5. observation 0.8614 0.0524 0.0861 

6. observation 0.8662 0.0513 0.0824 

7. observation 0.9748 0.0094 0.0158 

8. observation 0.0005 0.9982 0.0013 

9. observation 0.0011 0.9962 0.0027 

10. observation 0.0009 0.9969 0.0022 
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Step 3: After the membership degrees are found out, membership degrees and their 

transformation such as exp 𝑢 , exp 𝑢 2, 1/exp 𝑢  and u ∗ log 1 + 𝑢  are added to 

original data matrix for each cluster. For this numerical example only membership 

values are decided to be added as new variables. The new augmented matrixes are 

respectively shown in Table 5.3, 5.4 and 5.5 for each cluster. 

 

Table 5.3 Membership values and original input variables for cluster 1 

 Membership 

degrees 
Variable1  Variable2 Variable3 

O
b

se
r
v

a
ti

o
n

s 

0.0007 15.00 56.00 10.33 

0.0003 14.30 55.00 12.43 

0.9791 9.98 8.60 50.00 

0.9759 9.56 7.90 51.20 

0.8614 10.12 30.10 49.80 

0.8662 11.00 29.90 50.44 

0.9748 8.77 7.80 51.87 

0.0005 23.80 86.50 45.87 

0.0011 26.23 89.00 44.90 

0.0009 24.76 85.40 43.12 

 

Table 5.4 Membership values and input variables for cluster 2 

 
Membership 

degrees 
Variable1  Variable2 Variable3 

O
b

se
r
v

a
ti

o
n

s 

0.0011 15.00 56.00 10.33 

0.0004 14.30 55.00 12.43 

0.0076 9.98 8.60 50.00 

0.0089 9.56 7.90 51.20 

0.0524 10.12 30.10 49.80 

0.0513 11.00 29.90 50.44 

0.0094 8.77 7.80 51.87 

0.9982 23.80 86.50 45.87 

0.9962 26.23 89.00 44.90 

0.9969 24.76 85.40 43.12 
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Table 5.5 Membership values and input variables for cluster 3 

 
Membership 

degrees 
Variable1  Variable2 Variable3 

O
b

se
r
v

a
ti

o
n

s 
0.9982 15.00 56.00 10.33 

0.9994 14.30 55.00 12.43 

0.0132 9.98 8.60 50.00 

0.0152 9.56 7.90 51.20 

0.0861 10.12 30.10 49.80 

0.0824 11.00 29.90 50.44 

0.0158 8.77 7.80 51.87 

0.0013 23.80 86.50 45.87 

0.0027 26.23 89.00 44.90 

0.0022 24.76 85.40 43.12 

 

The views of new augmented matrixes in genetic programming software are also 

shown respectively in Figure 5.11, Figure 5.12 and Figure 5.13 for all clusters.  

 

 

Figure 5.11 Eureqa-formulize screenshot of the artificial dataset for cluster 1 
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Figure 5.12 Eureqa-formulize screenshot of the artificial dataset for cluster 2 

 

 

 

Figure 5.13 Eureqa-formulize screenshot of the artificial dataset for cluster 3 
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Step 4: After the new matrixes are generated,with the usage of different 

parameters (such as addition, subtraction, division, cosine) Eureqa Formulize 

software program is run and the equations that describe the data most appropriately is 

tried to be found out. In the Figure 5.14 the obtained results and selected equation are 

shown for the first cluster. From the Figure 5.14 it could be seen that most 

appropriate formula is found as 𝑦 = 7.15 + 𝑥3𝑠𝑞𝑟𝑡(𝑢1).  

 

 

 

Figure 5.14 The screenshot of the results page for cluster 1 and selected equation 

 

Step 5: In this step, according to best fitting equations, the output values are 

predicted for each cluster. The screenshot of the predicted output values are show in 

Figure 5.15, Figure 5.16 and Figure 5.17 respectively.     
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Figure 5.15 Predicted output values of artificial dataset for cluster 1 

 

 

 

Figure 5.16 Predicted output values of artificial dataset for cluster 2 



 
 

80 
 

 

Figure 5.17 Predicted output values of artificial dataset for cluster 3 

 

After all processes are finished we obtain “c” number of predicted values for each 

observation. The obtained predicted output values are shown in Table 5.6.   

 

Table 5.6 Obtained predicted values for all clusters 

The predicted output values for all clusters 

 
Cluster 1  Cluster 2 Cluster 3 

𝑦1,𝑖  71.6233 55.9116 55.9216 

𝑦2,𝑖  71.5653 58.5355 58.5455 

𝑦3,𝑖  120.825 120.414 120.424 

𝑦4,𝑖  121.929 121.981 121.991 

𝑦5,𝑖  117.57 108.951 108.961 

𝑦6,𝑖  118.294 109.695 109.705 

𝑦7,𝑖  122.562 122.704 122.714 

𝑦8,𝑖  72.3757 75.4726 75.4827 

𝑦9,𝑖  72.8392 73.1929 73.2029 

𝑦10,𝑖  72.6436 73.2989 73.3089 
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Step 6:  Same as in the fuzzy functions with LSE, finally single output values are 

calculated for each data vector by weighting predicted output values from each 

cluster with their corresponding membership values as shown in equation (5.6).  

 

𝑦 𝑘 =
 𝜇𝑘𝑖𝑦 𝑘𝑖

𝑐
𝑖

 𝜇𝑘𝑖
𝑐
𝑖

   𝑖 = 1, … , 𝑐, 𝑘 = 1, … , 𝑛𝑑                                                            (5.6) 

 

For all observations the single final predicted output values are calculated as 

follows; 

 

𝑌 1 =
(0.0007 ∗ 71.6233 + 0.0011 ∗ 55.9116 + 0.9982 ∗ 55.9216)

(0.0007 + 0.0011 + 0.9982)
= 55.93258 

 

𝑌 2 =
(0.0003 ∗ 71.5653 + 0.0004 ∗ 58.5355 + 0.9994 ∗ 58.5455)

(0.0003 + 0.0004 + 0.9994)
= 58.55526 

 

𝑌 3 =
(0.9791 ∗ 120.825 + 0.0076 ∗ 120.414 + 0.0132 ∗ 120.424)

(0.9791 + 0.0076 + 0.0132)
= 120.8045 

 

𝑌 4 =
(0.9759 ∗ 121.929 + 0.0089 ∗ 121.981 + 0.0152 ∗ 121.991)

(0.9759 + 0.0089 + 0.0152)
= 121.9304 

 

𝑌 5 =
(0.8614 ∗ 117.57 + 0.0524 ∗ 108.951 + 0.0861 ∗ 108.961)

(0.8614 + 0.0524 + 0.0861)
= 116.3654 

 

𝑌 6 =
(0.8662 ∗ 118.294 + 0.0513 ∗ 109.695 + 0.0824 ∗ 109.705)

(0.8662 + 0.0513 + 0.0824)
= 117.1333 

 

𝑌 7 =
(0.9748 ∗ 122.562 + 0.0094 ∗ 122.704 + 0.0158 ∗ 122.714)

(0.9748 + 0.0094 + 0.0158)
= 122.5657 

 

𝑌 8 =
(0.0005 ∗ 72.3757 + 0.9982 ∗ 75.4726 + 0.0013 ∗ 75.4827)

(0.0005 + 0.9982 + 0.0013)
= 75.47106 

 

𝑌 9 =
(0.0011 ∗ 72.8392 + 0.9962 ∗ 73.1929 + 0.0027 ∗ 73.2029)

(0.0011 + 0.9962 + 0.0027)
= 73.19254 
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𝑌 10 =
(0.0009 ∗ 72.6436 + 0.9969 ∗ 73.2989 + 0.0022 ∗ 73.3089)

(0.0009 + 0.9969 + 0.0022)
= 73.29833 

 

The weighted predicted output values are represented in Table 5.7. 

 

Table 5.7 Obtained single predicted values for all observations 

 

 

 

 

 

 

 

 

 

 

 

R-square value is found as 0.9813 for the numerical example with fuzzy functions 

with GP. 

 

5.4 Conclusion 

 

In this part of the study, genetic programming which forms the main points of the 

proposed modelis tried to be represented broadly. For that purpose, firstlygenetic 

algorithms which are robust search and optimization techniques and form the basis of 

genetic programming are reviewed briefly. Afterwards, the basis of the proposed 

model is introduced and its algorithm is explainedstep by step. Finally, with an 

example the steps of the algorithm are explained numerically in order to be sure that 

the algorithm is comprehended clearly. 

 

In the following chapter, the datasets that are taken from the literature are applied 

to fuzzy functions with LSE and fuzzy functions with GP.Then the prediction 

performances of both models are compared based on the obtained results. 

Predicted Values for Artificial 

Data 

55.93258 

58.55526 

120.8045 

121.9304 

116.3654 

117.1333 

122.5657 

75.47106 

73.19254 

73.29833 
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CHAPTER SIX 

CASE STUDIES 

 

6.1 Introduction 

 

In this chapter, 8 datasets that are taken from Uci Machine Learning 

Repository(UCI Machine Learning Repository)are applied for the purpose of 

evaluating the performance of fuzzy functions with LSE and the proposed model, 

fuzzy functions with GP. Afterwards the results of both models are compared with 

each other and the prediction performance of the proposed model is assessed. For the 

evaluation and comparison process, the flow of chapter is as follows; initially the 

datasets are introduced briefly in the next section. Then cluster validity indexes are 

determined in order to find out the best partitions for each dataset.For this study it is 

decided to choose 3 different cluster numbers that are thought to represent the best 

partitions. Then by executing the FCM algorithm,according to these cluster 

numbersmembership values are obtained.  Afterwards, adding the membership 

values and their different transformations as new variables, fuzzy functions with LSE 

and fuzzy functions with GP methods are applied to these datasets. Then according 

to R-square results both models are compared and evaluated both in itself and 

between each other. 

 

6.2 Introduction of the Datasets 

 

6.2.1 Abalone Dataset 

 

Abalone data is about predicting the age of abalone from physical measurements. 

The number of instances is 4177 and number of attributes is 8. In the original dataset 

the first attribute is nominal and indicates the sex of abalone whether female, male or 

infant. Since, in this study regression equation is used, the first linguistic attribute 

“sex” is not taken as a parameter. In the original data the aim is to predict the ring of 

abalones, in other saying predicting the age of abalones. But in this study, number of  
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rings is used as an input parameter and shell weight is tried to be predicted. The 

parameters of the dataset are depicted in Table 6.1. 

 

Table 6.1 Abalone dataset parameters 

Input parameters Output parameter Type of data 

Length 

Shell weight Classification type 

data 

Diameter 

Height 

Whole weight 

Shucked weight 

Viscera weight 

Rings  

 

6.2.2 Auto-Mpg Dataset 

 

Auto-mpg data set deals with city fuel consumption in miles per consumption. In 

this data set originally there are 9 attributes; 1 attribute is output parameter and the 

other remaining attributes are input parameters. But due to using regression analysis 

in this study the last linguistic attribute “car name” removed from the data set. After 

the 6 observations which have missing values in horsepower variable have removed 

from the dataset the remained number of observation is 392. The parameters of the 

auto-mpg dataset are shown in Table 6.2. 

 
Table 6.2 Auto-mpg dataset parameters  

Input parameters Output parameter Type of data 

Cylinders  

Displacement  

Horsepower  

Weight  

Acceleration 

Model year  

Origin 

Mpg  
Regression type 

data 
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6.2.3 Concrete Compressive Strength Dataset 

 

Concrete compressive strength dataset is a regression type problem. In this data, 

concrete compressive strength is tried to be predicted with some different 

ingredientsunder some conditions. In the datasets there are 1030 instances and no 

missing values. There are 9 attributes and concrete compressive strength is the output 

variable. The parameters of the datasets are represented in Table 6.3. 

 

Table 6.3 Concrete compressive dataset parameters 

Input parameters Output parameter Type of data 

Cement 

Concrete compressive 

strength 

Regression type 

data 

Blast Furnace Slag 

Slag 

Fly Ash 

Water 

Super plasticizer 

Coarse Aggregate 

Fine Aggregate 

Age 

 

6.2.4 Ecoli Dataset 

 

In ecoli dataset there are no missing values. The dataset consist of 336 instances 

and in the original data there are 8 attributes. But in our study 1 linguistic attribute is 

removed from the data in order to fit regression analysis.  

 

Ecoli dataset is a classification type data. Therefore to be able to use fuzzy 

functions one attribute is chosen as the output parameter. The attributes are listed in 

Table 6.4.  
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Table6.4 Ecoli dataset parameters   

Input parameters Output parameter Type of data 

Mcg 

Gvh 

Lip 

Chg 

Aac 

Alm1 

Alm2 
Classification type 

data 

 

6.2.5 Glass Dataset 

 

Glass identification dataset is an example of classification type problem and 

consisting of ten parameters. In the original dataset, the last parameter is the type of 

glass and indicates cluster numbers. Due to using regression function in fuzzy 

functions,last parameter is removed from the dataset and refractive index (RI) is 

chosen as output parameter. Remaining parameters are used as input parameters. In 

glass data there are 214 observations, 8 input variables and 1 outputparameter. These 

parameters are represented in Table 6.5. 

 

Table 6.5 Glass dataset parameters 

Input parameters Output parameter Type of data 

Na: Sodium 

RI: refractive index 
Classification 

 type data 

Mg: Magnesium 

Al: Aluminum 

Si: Silicon 

K: Potassium 

Ca: Calcium 

Ba: Barium 

Fe: Iron 
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6.2.6 Housing Dataset 

 

Housing data is about housing values in the suburbs of Boston.  There are 506 

observations and 14 attributes, 13 of them are continuous attributes and the 

remaining observation is a binary valued attribute. There are no missing values. The 

attributes of the housing data are explained in Table 6.6. 

 

Table 6.6 Housing data parameters   

Input parameters Output parameter Type of data 

Crim Age 

Medv Regression type data 

Zn Dis 

Indus Rad 

Chas Tax 

Rox Ptratio 

Rm B 

Lstat  

 

 

6.2.7 Iris Dataset 

 

Fisher‟s Iris dataset is about cluster analysis and data mining. There are no 

missing values in the dataset. This dataset consist of 3 clusters which represent the 

species of Iris data (Iris Setosa, Iris Versicolour and Iris Virginica). Each of these 

clusters has 50 instances. Each species of Iris data contains 4 attributes. These are 

introduced in Table 6.7. Iris data is a classification type data and for this study first 

three attributes are chosen as input parameters and the last one which is petal width is 

chosen as output parameter. The parameters of the iris data are shown in Table 6.7. 
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Table 6.7 Iris dataset parameters 

Input parameters Output parameter Type of data 

sepal length  

 

sepal width  

 

petal length  

petal width 

continuous 

Classification type 

data 

 

6.2.8 Wine dataset 

 

The wine dataset is about chemical analysis of wines grown in the same region in 

Italy and derived from three different cultivars. The dataset is classification type data 

and contains 178 observations.The dataset consists of 13 attributes which are 

depicted in Table 6.8. For this study one of them is chosen as an output variable and 

remaining attributes are taken as input variables. 

 

Table 6.8 Wine dataset parameters 

Input parameters Output parameter Type of data 

Alcohol 

OD280/OD315 of 

diluted wines 

Classification 

type data 

Malic acid 

Ash 

Alcalinity of ash 

Magnesium 

Total phenols 

Flavanoids 

Nonflavanoid phenols 

Proanthocyanins 

Color intensity 

Hue 

Proline 

 

6.3 Defining the Best Possible Number of Clusters 

 

In this section optimum number of clusters are tried to be found out. As it was 

mentioned in previous chapters, in order to find out the optimum number of clusters, 

partition coefficient (PC), classification entropy (CE), partition index (SC), 
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separation index (S), Xie and Beni (XB) index, Dunn index and Alternative Dunn 

index are used. These cluster validity indexes are found via “fuzzy clustering and 

data analysis toolbox” which is prepared for using with Matlabby Balasko, Abonyi 

and Feil(2005).Since the monotonic decreasing of partition coefficient with c and 

monotonic increasing of classification entropy with c, it could be said that these 

validity indexes are not connected with data directly. Due to this reason, partition 

coefficient and classification entropy are not taken into consideration and are slurred 

over.  

 

Balasko et al (2005), in their study indicated that no validation index could be 

reliable alone and due to this reason  the optimum cluster number should be detected 

with the comparison of all cluster validity results. Also they indicated that, when the 

differences between the values of a validation index are minor, choosing the less 

cluster numbers are better.  

 

6.3.1 Optimum Number of Clusters for Abalone Dataset 

 

When we look at the graph in Figure 6.1, the decrease at cluster number 3 for 

partition (SC) index and also for separation index (S) can be seen clearly. Then 

separation index values continue to decrease until cluster number 6 and then continue 

to decrease monotonically. Due to that fact optimum number of clusters could be 

thought as 3, 4 and 5. For Xie and Beni (XB) index, there is a decline at cluster 

number 3, then it increases at cluster number 5 and again it decreases at cluster 

number 7 and continues to decrease. And finally reaches the minimum value at 

cluster number 9. Dunn index reaches the maximum values at cluster number 3 and 

5. ADI index reaches minimum values at 3 and 9. By considering that fewer clusters 

are better, and considering all these results, we decided to take 3, 4 and 5 as optimum 

cluster numbers.  
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Table 6.9 Cluster validity index results for abalone data 

Cluster number 

 
2 3 4 5 6 7 8 9 10 

PC  ↑ 0.72693 0.70150 0.62910 0.57953 0.52149 0.50247 0.47780 0.46963 0.44463 

CE  ↓ 0.42915 0.54171 0.70932 0.84101 0.98516 1.07110 1.13144 1.19162 1.27245 

SC  ↓ 2.45403 1.18303 1.02855 0.96543 0.96431 0.93809 0.73777 0.75702 0.77150 

S     ↓ 0.00059 0.00044 0.00038 0.00037 0.00038 0.00035 0.00029 0.00029 0.00029 

XB  ↓ 4.73834 4.63486 4.88133 4.59593 4.71698 3.75419 2.52050 2.30811 2.82300 

DI   ↑ 0.00621 0.00682 0.00516 0.00669 0.00603 0.00520 0.00621 0.00573 0.00617 

ADI ↓ 0.03903 0.00091 0.00923 0.00818 0.00423 0.00399 0.00045 0.00019 0.00080 

 

 

Figure 6.1 Values of Partition Index, Separation Index and Xie and Beni Index for abalonedataset 
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Figure 6.2 Values of Dunn Index and Alternative Dunn Index for abalone dataset 

 

6.3.2 Optimum Number of Clusters for Auto-mpg Dataset 

 

If we interpret the Table 6.10 and graphs in Figure 6.3 and 6.4, partition index 

reaches minimum values at 3, 6 and 8. Separation index reaches minimum value at 5. 

Xie and Beni index also reaches minimum values at 3, 8, 9 and 10. If we look at the 

graph in Figure 6.4, the optimum number of clusters according to Dunn index is 6 

and 8 at which the maximum valuesare reached. Considering all these results the 

optimum number of clusters for auto-mpg data are taken as 3, 5 and 8. 
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Table 6.10 Cluster validity index results for auto-mpg data  

Cluster number 

 
2 3 4 5 6 7 8 9 10 

PC  ↑ 0.92326 0.88486 0.85638 0.84335 0.82560 0.80787 0.79443 0.78540 0.77179 

CE  ↓ 0.43030 0.66421 0.84505 0.94050 1.05805 1.17789 1.26968 1.33852 1.43106 

SC  ↓ 1.42870 1.15714 1.32095 1.29934 1.21520 1.44681 1.39096 1.51760 1.62233 

S     ↓ 0.00364 0.00428 0.00503 0.00442 0.00489 0.00495 0.00509 0.00517 0.00570 

XB  ↓ 2.50645 1.74099 2.00629 2.13677 2.06232 1.78113 1.68870 1.60234 1.37205 

DI   ↑ 0.27587 0.03632 0.05664 0.03633 0.07435 0.05820 0.07308 0.06845 0.07011 

ADI ↓ 0.03403 0.00187 0.00212 0.00124 0.00131 0.00040 0.00211 0.00011 0.00001 

 

 

Figure 6.3 Values of Partition Index, Separation Index and Xie and Beni Index for auto-mpgdataset 
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Figure 6.4 Values of Dunn Index and Alternative Dunn Index for auto-mpg dataset 

 

6.3.3 Optimum Number of Clusters for Concrete Dataset 

 

When we look at the results in Table 6.11 and graphs in Figure 6.5 and Figure 

6.6,for concrete dataset each the validity index points different cluster numbers. The 

validity index values reaches minimum at 5, 7 and 9 for partition index. At cluster 

number 5 the value is decreasing, at 7 the value continues to increasing, but at 9 it is 

decreasing again. Because of that it could not be wrong to say that 5 and 9 is more 

appropriate as optimum number of clusters. For separation index, values reaches 

minimum at 5, 7 and 9. Because of that the values are hardly decreasing at cluster 

number 5 and 9,same as partition index 5 and 9 is more appropriate for separation 

index. Dunn index reaches at 4 and 8 to maximum numbers. In conclusion for 

concrete dataset the optimal cluster numbers are chosen as 4, 5 and 9. 
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Table 6.11 Cluster validity index results for concrete dataset  

Cluster number 

 
2 3 4 5 6 7 8 9 10 

PC  ↑ 0.89149 0.83480 0.79526 0.77244 0.74806 0.72739 0.70682 0.69583 0.68205 

CE  ↓ 0.59131 0.93227 1.18349 1.34200 1.50807 1.65143 1.79521 1.87933 1.98172 

SC  ↓ 6.45980 5.32736 5.49949 4.46829 5.04430 5.17987 6.20888 5.43847 5.95852 

S     ↓ 0.00627 0.00596 0.00769 0.00536 0.00729 0.00693 0.00892 0.00675 0.00840 

XB  ↓ 1.42823 1.21890 1.12854 0.94961 0.93879 0.80727 0.67716 0.71748 0.65987 

DI   ↑ 0.18651 0.04121 0.05687 0.01032 0.01032 0.01071 0.02798 0.00655 0.00756 

ADI ↓ 0.00480 0.00370 0.00253 0.00209 0.00149 0.00028 0.00024 0.00005 0.00006 

 

 

Figure 6.5 Values of Partition Index, Separation Index and Xie and Beni Index for concrete dataset 
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Figure 6.6 Values of Dunn Index and Alternative Dunn Index for concrete dataset 

 

6.3.4 Optimum Number of Clusters for Ecoli Dataset 

 

To interpret the Table 6.12, Figure 6.7 and Figure 6.8 for partition index, optimum 

cluster numbers are 3, 5, 9 and 10. For separation index the results reaches minimum 

degrees at 3, 5, 9 and 10 and at cluster number 3 and 5, the results are decreasing 

suddenly. XB index and ADI values are decreasing monotonically, because of that 

we did not define any cluster number for XB and ADI. According to Dunn index, the 

optimum values are 4 and 6 which are reachingto maximum degrees. According to 

these results for ecoli data optimum numbers of clusters are chosen as 4, 5 and 6.   
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Table 6.12 Cluster validity index results for ecoli dataset  

Cluster number 

 
2 3 4 5 6 7 8 9 10 

PC  ↑ 0.69747 0.61029 0.47734 0.42445 0.36728 0.33283 0.30435 0.28189 0.25804 

CE  ↓ 0.46722 0.69649 0.97881 1.13147 1.30247 1.43599 1.55803 1.64357 1.74292 

SC  ↓ 2.78739 1.74669 1.98565 1.47959 1.59222 1.57655 1.68135 1.42028 1.37807 

S     ↓ 0.00830 0.00616 0.00912 0.00582 0.00703 0.00697 0.00814 0.00654 0.00579 

XB  ↓ 3.15834 2.31858 2.13907 1.74446 1.38030 1.25782 1.04028 0.91969 0.86232 

DI   ↑ 0.04830 0.03694 0.04641 0.02984 0.03928 0.02984 0.03015 0.03284 0.01606 

ADI↓ 0.06114 0.00419 0.00227 0.00118 0.00094 0.00016 0.00002 0.00007 0.00019 

 

 

Figure 6.7 Values of Partition Index, Separation Index and Xie and Beni Index for ecolidataset 
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Figure 6.8 Values of Dunn Index and Alternative Dunn Index for ecoli dataset 

 

6.3.5 Optimum Number of Clusters for Glass Dataset 

 

     If we look at the graph in Figure 6.10, for Dunn index and also Alternative Dunn 

index there is no certain values that we can say this is the best partition for glass data. 

For this reason, we take no account of DI and ADI. But as it can be seen in Figure 

6.9 and in Table 6.13, partition index takes the minimum values at cluster number 7 

and 9. Separation index takes the minimum values at 7 and 8. XB index also takes 

the minimum value at 7 and 9 same as partition index. According to these results, we 

take the optimum cluster numbers as 7, 8 and 9.  
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Table 6.13 Cluster validity index results for glass dataset  

Cluster number 

 
2 3 4 5 6 7 8 9 10 

PC  ↑ 0.82454 0.68357 0.64927 0.55926 0.48555 0.50252 0.4557 0.44492 0.40884 

CE  ↓ 0.33793 0.63226 0.75683 0.97317 1.17612 1.18156 1.31015 1.38023 1.48637 

SC  ↓ 1.88266 1.47443 1.32515 1.16045 1.1976 1.41284 0.99068 1.15042 0.89998 

S     ↓ 0.00806 0.00792 0.00666 0.00662 0.00851 0.00609 0.00606 0.00908 0.00643 

XB  ↓ 1.78527 3.32253 2.68297 1.41631 1.16428 1.10712 1.18523 1.0789 1.18014 

DI   ↑ 0.11589 0.0326 0.0326 0.01517 0.02736 0.01491 0.01808 0.01803 0.01517 

ADI ↓ 0.07706 0.00041 0.0002 0.00013 6.9E-06 7.7E-05 0.00012 7.4E-05 0.00011 

 

 

Figure 6.9 Values of Partition Index, Separation Index and Xie and Beni Index for glass dataset 
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Figure 6.10 Values of Dunn Index and Alternative Dunn Index for glass dataset 

 

6.3.6 Optimum Number of Clusters for Housing Dataset 

 

For XB index, there is not a certain value and the index is monotonically 

decreasing. When we look at the obtained graphs in Figure 6.11 and Figure 6.12, we 

can see that at the points of 3, 6 and 8 partition index reaches minimum values. For 

separation index, minimum values are obtained at cluster number 6 and 8 too. And 

for Dunn index, the value increasing at 6 and takes the second largest value at cluster 

number 6. Also Dunn index reaches minimum value at 6. According to these results, 

optimum cluster numbers are taken for 3, 6 and 8.  
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Table 6.14 Cluster validity index results for housing dataset  

Cluster number 

 
2 3 4 5 6 7 8 9 10 

PC  ↑ 0.92249 0.86388 0.81936 0.78648 0.77749 0.75412 0.73718 0.72243 0.70750 

CE  ↓ 0.43440 0.77451 1.04642 1.25767 1.32877 1.48540 1.59837 1.71267 1.82102 

SC  ↓ 1.50632 1.53431 1.97621 2.41764 1.51946 1.78438 1.63370 2.18032 2.49230 

S     ↓ 0.00298 0.00443 0.00556 0.00673 0.00451 0.00518 0.00477 0.00631 0.00710 

XB  ↓ 1.81961 1.80884 1.32860 1.06105 1.01079 0.81323 0.72453 0.69892 0.65451 

DI   ↑ 0.24156 0.04821 0.05323 0.03517 0.06439 0.03388 0.03544 0.03705 0.02623 

ADI ↓ 0.03112 0.00453 0.00261 0.00199 0.00039 0.00277 0.00092 0.00021 0.00020 

 

 

 

Figure 6.11 Values of Partition Index, Separation Index and Xie and Beni Index forhousing dataset 
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Figure 6.12 Values of Dunn Index and Alternative Dunn Index for housing dataset 

 

6.3.7 Optimum Number of Clusters for Iris Dataset 

 

When we look at Table 6.15, Figure 6.13 and Figure 6.14, partition index reaches 

minimum values at 3, 7 and 9for iris dataset. Separation index takes the minimum 

values at 2, 8 and 9. XB index value is decreasing at 4 and then continues to decrease 

monotonically. For Dunn Index the maximum value is obtained at cluster number 2. 

By considering that the minimum value is better; according to these results we chose 

the optimum number of clusters as 2, 3 and 4.   

 

Table 6.15 Cluster validity index results for iris dataset  

Cluster number 

 
2 3 4 5 6 7 8 9 10 

PC  ↑ 0.84878 0.73117 0.63672 0.59296 0.54608 0.52462 0.49546 0.48653 0.46682 

CE  ↓ 0.26321 0.48860 0.69020 0.81734 0.95148 1.00088 1.10019 1.12444 1.19366 

SC  ↓ 0.99076 0.88489 0.97520 0.93921 1.04914 0.68642 0.75822 0.52489 0.51289 

S     ↓ 0.00661 0.00855 0.00899 0.00987 0.01053 0.00737 0.00774 0.00541 0.00549 

XB  ↓ 5.97166 7.96675 4.33773 3.87654 3.44132 1.83890 1.78263 1.43446 1.44847 

DI   ↑ 0.10744 0.05733 0.03618 0.05345 0.06936 0.05445 0.05445 0.05445 0.05445 

ADI↓ 0.01049 0.00632 0.00422 0.00294 0.00075 0.00120 0.00201 0.00061 0.00001 
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Figure 6.13 Values of Partition Index, Separation Index and Xie and Beni Index for iris dataset 

 

 

Figure 6.14 Values of Dunn Index and Alternative Dunn Index for iris dataset 

 

6.3.8 Optimum Number of Clusters for Wine Dataset 

 

As we can see from Table 6.16 and the graph in Figure 6.15, partition index 

reaches the minimum value at cluster number 3, 6 and 9. Separation index also 

reaches the minimum value at cluster number 3, 6 and 9. XB index values continue 

to decrease monotonically while the number of cluster is increasing, because of that 
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for XB index the optimum number of clusters cannot be decided clearly. When we 

look at the Figure 6.16, Dunn index takes the maximum value at cluster number 4 

and 6. For ADI minimum values are obtained at cluster number 5, 6, 8 and 9. 

Eventually for wine dataset we decided to take the optimum cluster numbers as 3, 4 

and 6.  

 

Table 6.16 Cluster validity index results for wine dataset  

Cluster number 

 
2 3 4 5 6 7 8 9 10 

PC  ↑ 0.60770 0.48865 0.36502 0.29222 0.24520 0.20983 0.18251 0.16403 0.14515 

CE  ↓ 0.57794 0.87670 1.17730 1.39949 1.56894 1.72742 1.87044 1.97348 2.09529 

SC  ↓ 3.50236 1.98958 2.45271 2.32039 1.99495 2.16858 2.45271 1.99941 2.43172 

S     ↓ 0.01968 0.01412 0.01844 0.01610 0.01414 0.01617 0.01843 0.01416 0.01807 

XB  ↓ 1.43259 1.09641 0.79604 0.67052 0.55346 0.46064 0.39802 0.36756 0.31865 

DI   ↑ 0.15643 0.15001 0.17403 0.13744 0.15368 0.14628 0.14440 0.14628 0.12509 

ADI↓ 0.01013 0.01619 0.01492 0.00249 0.00129 0.00700 0.00068 0.00024 0.00118 

 

 

 

Figure 6.15 Values of Partition Index, Separation Index and Xie and Beni Index for winedataset 
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Figure 6.16 Values of Dunn Index and Alternative Dunn Index for wine dataset 

 

6.4 Application of Fuzzy Functions with LSE 

 

After the optimum numbers of clusters are decided for all datasets, for the next 

step, fuzzy functions approach with LSE is going to be implemented for all datasets. 

In order to apply fuzzy functions algorithm, Matlab program is used. All codes for 

fuzzy functions with LSE are written in Matlab and also R-square values are  

calculated in Matlab.  

 

To be able to measure the effect of fuzzy functions, firstly regression analysis is 

implemented to the original datasets. Then for the next step membership values and 

some of their transformations are used for fuzzy functions with LSE. Respectively 

only membership values, membership values and two of their transformationsand 

finally membership values and four of their transformations are used as additional 

variables for fuzzy functions. Respectively these transformations are;𝑒𝑥𝑝 𝜇𝑖  , 

exp 𝜇𝑖 
2and𝑒𝑥𝑝 𝜇𝑖  ,  exp 𝜇𝑖 

2, 
1

𝑒𝑥𝑝  𝜇 𝑖  
, 𝜇𝑖  ∗ log 1 +  𝜇𝑖   .Afterwards the results 

obtained from these 3 different methods are compared. For each data, the algorithm 

is iterated six times in Matlab and the average R-square values are calculated. In the 

following section, obtained R-square values for all datasets are shown in the tables 

and graphs. To be able compare “fuzzy functions with LSE” with the proposed 
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model, “fuzzy functions with GP”, R-square values are also calculated for whole 

datasetsand used for the comparison and also these R-square values are taken as a 

basis when the results are depicted in graphs. 

 

As it can be seen in the Figure 6.17, for all chosen optimum cluster numbers, 

using both membership degrees and membership degrees and their transformations 

for fuzzy functions increased R-square values. Also for abalone data it could be said 

that, using membership degrees and their transformations as additional variables 

increased the R-square values more than using only membership degrees as 

additional variables. 

 

Table 6.17 R-square values for abalone dataset  

 
 R

2
 results for fuzzy functions with LSE for abalone dataset 

R
2
 with 

only 

LSE  
  

Membership 

degrees 

Membership degrees 

and two of their 

transformations 

Membership degrees 

and four of their 

transformations 

C
lu

st
er

 n
u

m
b

er
 

3 

R
2
train 0.89218 0.89360 0.89487  

R
2
val 0.89423 0.87668 0.88425  

R
2
test 0.87040 0.89087 0.90462 

0.8654 

R
2
all 0.89022 0.89178 0.89478 

4 

R
2
train 0.89165 0.89340 0.89432 

R
2
val 0.89230 0.88290 0.88948 

R
2
test 0.88108 0.87482 0.89073 

R
2
all 0.89038 0.89078 0.89358 

5 

R
2
train 0.89423 0.89237 0.89472 

R
2
val 0.86360 0.89380 0.89832 

R
2
test 0.87530 0.88165 0.88467  

R
2
all 0.88950 0.89143 0.89405  
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Figure 6.17 Graphical representation of R
2
all values for each chosen optimum cluster numberfor 

abalone dataset  

 

As it can be seen from the Figure 6.18, using fuzzy functions with both membership 

values and their transformations also increased R-square values for auto-mpg data. 

According to the graph the same inference could be made that using membership 

values and their transformations as additional variables improved performance of 

auto-mpg data more than using only membership degrees. 

 

Table 6.18 R-square values for auto-mpg dataset  

 
 R

2
 results for fuzzy functions with LSE for auto-mpg dataset 

R
2
 with 

only LSE 
 

  
Membership 

degrees 

Membership degrees 

and two of their 

transformations 

Membership degrees 

and four of their 

transformations 

C
lu

st
er

 n
u

m
b

er
 

5 

R
2
train 0.84153 0.85232 0.85923  

R
2
val 0.84210 0.85012 0.85515  

R
2
test 0.81780 0.84865 0.83487 

0.8151 

R
2
all 0.83942 0.85185 0.85715 

8 

R
2
train 0.84197 0.86317 0.85702 

R
2
val 0.82353 0.78795 0.85930 

R
2
test 0.82833 0.84503 0.85655 

R
2
all 0.83973 0.85567 0.85770 

3 

R
2
train 0.84392 0.84422 0.84293 

R
2
val 0.79965 0.81888 0.84313 

R
2
test 0.83695 0.80263 0.81392  

R
2
all 0.83932 0.83865 0.84108  
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3

4

5
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Figure 6.18 Graphical representation of R
2
all values for each chosen optimum cluster number for 

auto-mpg dataset 

 

For concrete dataset, as it could be understood from Figure 6.19, all chosen cluster 

numbers do not have the same effect. Choosing 9 as cluster number decreased the R-

square values at the point of membership degrees and four of their transformations. 

Choosing 5 also decreased the R-square values a bit for membership degrees and 

four of their transformations.   

 

Table 6.19 R-square values for concrete dataset  

 
 R

2
 results for fuzzy functions with LSE for concrete dataset 

R
2
 with 

only 

LSE  
  

Membership 

degrees 

Membership degrees 

and two of their 

transformations 

Membership degrees 

and four of their 

transformations 

C
lu

st
er

 n
u

m
b

er
 

4 

R
2
train 0.61822 0.63260 0.63048  

R
2
val 0.62138 0.60662 0.61380  

R
2
test 0.57883 0.57985 0.57960 

0.6152 

R
2
all 0.61610 0.62710 0.62543 

9 

R
2
train 0.62193 0.62395 0.56178 

R
2
val 0.55082 0.59883 0.57110 

R
2
test 0.62445 0.61877 0.59720 

R
2
all 0.61842 0.62315 0.56758 

5 

R
2
train 0.61762 0.62660 0.61250 

R
2
val 0.60502 0.58298 0.60373 

R
2
test 0.61292 0.63737 0.62107  

R
2
all 0.61763 0.62472 0.61372  
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Figure 6.19 Graphical representation of R
2
all values for each chosen optimum cluster numberfor 

concrete compressive strength dataset   

 

If we look at the Figure 6.20, we can say that using fuzzy functions with 

membership values or with membership values and their transformations improved 

the prediction performance of ecoli data. Also for ecoli dataset it could be said that 

using transformations of membership values as additional variables improved the 

performance of fuzzy functions more than using only membership values. 

 

Table 6.20 R-squarevalues for ecoli dataset  

 
 R

2
 results for fuzzy functions with LSE for ecoli dataset 

R
2
 with 

only LSE 
 

  
Membership 

degrees 

Membership 

degrees 

and two of their 

transformations 

Membership 

degrees and four of 

their 

transformations 

C
lu

st
er

 n
u

m
b

er
 

4 

R
2
train 0.73783 0.75105 0.77197  

R
2
val 0.79458 0.77997 0.61908  

R
2
test 0.77173 0.73332 0.73327 

0.7375 

R
2
all 0.74832 0.75515 0.75718 

6 

R
2
train 0.74608 0.75268 0.75540 

R
2
val 0.72118 0.74867 0.72295 

R
2
test 0.74518 0.72452 0.73763 

R
2
all 0.74653 0.75367 0.75302 

5 

R
2
train 0.76092 0.76735 0.78037 

R
2
val 0.64585 0.68670 0.74078 

R
2
test 0.68947 0.70170 0.62760  

R
2
all 0.74377 0.75463 0.76320  
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5
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Figure 6.20 Graphical representation of R
2
all values for each chosen optimum cluster number for     

ecoli dataset 

 

     As it can be seen from the Figure 6.21, fuzzy function has a significant effect on 

glass dataset and has improved the prediction performance of the regression analysis 

prominently.  

 

Table 6.21 R-square values for glass dataset  

 
 R

2
 results for fuzzy functions with LSE for glass dataset 

R
2
 with 

only 

LSE  
  

Membership 

degrees 

Membership 

degrees 

and two of their 

transformations 

Membership degrees 

and four of their 

transformations 

C
lu

st
er

 n
u

m
b

er
 

7 

 

R
2
train 0.89997 0.90117 0.92035  

R
2
val 0.82140 0.86152 0.85000  

R
2
test 0.84510 0.85323 0.85417 

0.6536 

R
2
all 0.89443 0.89627 0.91170 

9 

R
2
train 0.90122 0.89590 0.91395 

R
2
val 0.79433 0.75117 0.77890 

R
2
test 0.87735 0.77858 0.78478 

R
2
all 0.89520 0.87650 0.90033 

8 

R
2
train 0.89640 0.89928 0.90275 

R
2
val 0.90930 0.85073 0.84353 

R
2
test 0.75593 0.85462 0.86823  

R
2
all 0.89608 0.89755 0.90277  
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Figure 6.21 Graphical representation of R
2
all values for each chosen optimum cluster number for 

glass dataset 

 

     Using fuzzy functions with LSE also affect the prediction performance of housing 

dataset positively. Using membership values and their transformations provide a 

regular and explicit increase for R-square values. 

 

Table 6.22 R-square values for housing dataset  

 
 R

2
 results for fuzzy functions with LSE for housing dataset 

R
2
 with 

only LSE 
 

  
Membership 

degrees 

Membership degrees 

and two of their 

transformations 

Membership degrees 

and four of their 

transformations 

C
lu

st
er

 n
u

m
b

er
 

8 

R
2
train 0.74312 0.76535 0.76685  

R
2
val 0.72773 0.70912 0.67987  

R
2
test 0.72040 0.64442 0.75967 

0.7137 

R
2
all 0.74058 0.74762 0.75862 

3 

R
2
train 0.75198 0.74362 0.75460 

R
2
val 0.72867 0.76232 0.76780 

R
2
test 0.69350 0.72288 0.67927 

R
2
all 0.74605 0.74627 0.74957 

6 

R
2
train 0.75258 0.74667 0.75945 

R
2
val 0.64932 0.71772 0.73062 

R
2
test 0.70790 0.74778 0.69272  

R
2
all 0.74132 0.74612 0.75065  
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Figure 6.22 Graphical representation of R
2
all values for each chosen optimum cluster numberfor 

housing dataset 

 

    As it can be seen in Table 6.23 and Figure 6.23, except membership values and 

four of their transformations at cluster number 4, fuzzy functions increased the 

performance of iris dataset regularly.  

 

Table 6.23 R-square values for iris dataset  

 
 R

2
 results for fuzzy functions with LSE for iris dataset 

R
2
 with 

only LSE 
 

  
Membership 

degrees 

Membership degrees 

and two of their 

transformations 

Membership degrees 

and four of their 

transformations 

C
lu

st
er

 n
u

m
b

er
 

3 

R
2
train 0.94430 0.94490 0.94825  

R
2
val 0.94292 0.94885 0.95967  

R
2
test 0.91537 0.92492 0.92307 

0.9371 

R
2
all 0.94307 0.94585 0.94792 

2 

R
2
train 0.94230 0.94160 0.94378 

R
2
val 0.91800 0.94495 0.93973 

R
2
test 0.92210 0.93280 0.93768 

R
2
all 0.93852 0.94283 0.94342 

4 

R
2
train 0.93985 0.94545 0.94047 

R
2
val 0.92333 0.94113 0.95327 

R
2
test 0.92748 0.91678 0.91950  

R
2
all 0.93890 0.94355 0.94030  
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Figure 6.23 Graphical representation of R
2
all values for each chosen optimum cluster number for iris 

dataset 

 

For wine dataset, using fuzzy functions do not provide a regular increase and R-

square value is decreasing at cluster number 3 for membership values and two of 

their transformations. But except this point, R-square values show an increasing 

trend for the other points and it would not be wrong to say that fuzzy functions give 

better results compared to regression analysis. 

 

Table 6.24 R-square values for wine dataset  

 
 R

2
 results for fuzzy functions with LSE for wine dataset 

R
2
 with 

only LSE 
 

  
Membership 

degrees 

Membership 

degrees 

and two of their 

transformations 

Membership degrees 

and four of their 

transformations 

C
lu

st
er

 n
u

m
b

er
 

3 

R
2
train 0.74892 0.75640 0.75915  

R
2
val 0.69997 0.64325 0.69455  

R
2
test 0.60047 0.68263 0.69972 

0.7322 

R
2
all 0.73697 0.74020 0.74900 

4 

R
2
train 0.74602 0.78005 0.76657 

R
2
val 0.68418 0.52653 0.66292 

R
2
test 0.67888 0.61378 0.61602 

R
2
all 0.73843 0.74262 0.74843 

6 

R
2
train 0.75920 0.75017 0.77253 

R
2
val 0.69683 0.71373 0.69605 

R
2
test 0.56965 0.68883 0.60248  

R
2
all 0.73605 0.74452 0.75168  
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Figure 6.24 Graphical representation of R
2
all values for each chosen optimum cluster number for wine 

dataset 

 

Making a general interpretation, as it could be seen in the tables and graphs, using 

fuzzy functions have generally improved the predictions performance of regression 

analysis with a few exceptions. Also it would not be wrong to say that using 

transformations of membership values in addition to membership values have also 

improved the performance of fuzzy functions more than using only membership 

values.  

 

6.5 Application of Fuzzy Functions with GP 

 

     Genetic programming on its own is an efficient and powerful method for data 

analysis. From this point of view it is expected that using genetic programming with 

fuzzy functions will increase the prediction performance of fuzzy functions.  

 

In this section, the proposed algorithm, fuzzy functions with GP, is applied to the 

same datasets and R-square values are calculated for selected number of clusters for 

each dataset.  
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To interpret Table 6.25 and Figure 6.25, the effect of fuzzy functions with GP is 

not same for all clusters and has not provide a regular increase for abalone dataset. 

While at some points it is led to the decrease of R-square values, at some points it is 

led to increase of R-square values.  

 

Table 6.25 R-square values of genetic fuzzy functions for abalone dataset 

    
R

2
 results of fuzzy functions with genetic programming for  

abalone dataset 

    
Only 

original data  

Membership 

degrees 

Membership degrees 

and two of their 

transformations 

Membership 

degrees and four of 

their 

transformations 

Chosen 

optimum 

cluster 

number    

3 

0.9171 

0.9180 0.9109 0.9194 

4 0.9091 0.9275 0.9194 

5 0.9143 0.9172 0.9131 

 

 

Figure 6.25 Graphical representation of R
2
 values for fuzzy functionsgeneticwith programming 

forabalone dataset 

 

As it can be seen in Table 6.26 and Figure 6.26, using fuzzy functions has 

increased the R-square values except at cluster number 5 for membership values and 

four of their transformations.  
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Table 6.26 R-square values of genetic fuzzy functions for auto-mpg dataset 

    
R

2
 results of fuzzy functions with genetic programming for  

auto-mpg dataset 

    
Only original 

data  

Membership 

degrees 

Membership degrees 

and two of their 

transformations 

Membership degrees 

and four of their 

transformations 

Chosen 

optimum 

cluster 

number    

5 

0.7623 

0.8589 0.8432 0.7185 

8 0.8564 0.8034 0.8630 

3 0.8489 0.8392 0.8559 

 

 

 

Figure 6.26 Graphical representation of R
2
 values for fuzzy functionswith genetic programming for  

auto-mpg dataset 

 

For concrete compressive strength dataset, there is not a regular increase as it can 

be seen clearly from Figure 6.27. Although at cluster number 5, R-squarevalues 

shows a substantial increase, at cluster number 4 and 9, the results of R-squarevalues 

are inconstant.  
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Table 6.27 R-square values of genetic fuzzy functions for concrete dataset 

    
R

2
 results of fuzzy functions with genetic programming for  

concrete dataset 

    
Only 

original data  

Membership 

degrees 

Membership degrees 

and two of their 

transformations 

Membership degrees 

and four of their 

transformations 

Chosen 

optimum 

cluster 

number    

4 

0.7988 

0.7703 0.7060 0.7826 

9 0.8068 0.7223 0.7135 

5 0.7839 0.8175 0.8051 

 

 

 

Figure 6.27 Graphical representation of R
2
 values for fuzzy functions with genetic programming for 

concrete compressive strength dataset 

 

There is not also a regular increase for ecoli dataset as it can be seen in Table 

6.28. While at some points R-square values shows an increase, generally there is a 

decrease for R-squarevalues.  
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Table 6.28 R-square values of genetic fuzzy functions for ecoli dataset 

    
R

2
 results of fuzzy functions with genetic programming for  

ecoli dataset 

    
Only original 

data  

Membership 

degrees 

Membership degrees 

and two of their 

transformations 

Membership 

degrees and four of 

their 

transformations 

Chosen 

optimum 

cluster 

number    

4 

0.7855 

 

0.7967 0.7503 0.7603 

6 0.7784 0.7823 0.7723 

5 0.7790 0.7720 0.7831 

 

 

Figure 6.28 Graphical representation of R
2
 values for fuzzy functions with genetic programming for  

ecoli dataset 

 

As it could be seen in Figure 6.29, for glass dataset, using fuzzy functions has 

improved the predictions performance of genetic programming for all chosen cluster 

numbers despite the some declines at some points.  
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Table 6.29 R-squarevalues of genetic fuzzy functions for glass dataset 

    
R

2
 results of fuzzy functions with genetic programming for  

glass dataset 

    
Only original 

data  

Membership 

degrees 

Membership degrees 

and two of their 

transformations 

Membership 

degrees and four of 

their 

transformations 

Chosen 

optimum 

cluster 

number    

7 

0.7552 

0.8490 0.8659 0.8625 

9 0.7982 0.8726 0.8337 

8 0.8614 0.8461 0.8332 

 

 

 

Figure 6.29 Graphical representation of R
2
 values for fuzzy functionsgenetic programming for        

glass dataset 

 

As it could be seen in Figure 6.30, for housing dataset, using fuzzy functions 

concept has generally improved the predictions performance of genetic programming 

except the point at which membership values and two of their transformations are 

used as additional variables. 
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Table 6.30 R-squarevalues of genetic fuzzy functions for housing dataset 

    
R

2
 results of fuzzy functions with genetic programming for  

housing dataset 

    
Only original 

data  

Membership 

degrees 

Membership degrees 

and two of their 

transformations 

Membership 

degrees and four 

of their 

transformations 

Chosen 

optimum 

cluster 

number    

8 

0.7319 

 

0.7342 0.6829 0.7924 

3 0.7631 0.7060 0.7777 

6 0.7488 0.7014 0.7850 

 

 

 

Figure 6.30 Graphical representation of R
2
 values for fuzzy functions with genetic programmingfor 

housing dataset 

 

For iris dataset, all cluster numbers has not shown a positive effect, as it could be 

seen in Table 6.31 and in Figure 6.31. While R-squarevalues are increasing atcluster 

number 3, it is decreasing atcluster number 2 and 4.  
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Table 6.31 R-square values of genetic fuzzy functions for iris dataset 

    
R

2
 results of fuzzy functions with genetic programming for  

iris dataset 

    
Only 

original data  

Membership 

degrees 

Membership degrees 

and two of their 

transformations 

Membership 

degrees and four of 

their 

transformations 

Chosen 

optimum 

cluster 

number    

3 

0.9427 

0.9576 0.9545 0.9482 

2 0.9418 0.9427 0.9436 

4 0.9390 0.9400 0.9413 

 

 

 

Figure 6.31 Graphical representation of R
2
 values for fuzzy functions with genetic programming      

for iris dataset 

 

As it could be seen in Table 6.32 and Figure 6.32, there is not a regular increase 

for wine dataset; while at some points, using fuzzy functions improved the R-square 

values, at some points R-square values are decreasing.  
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Table 6.32 R-square values of genetic fuzzy functions for wine dataset 

    
R

2
 results of fuzzy functions with genetic programming for  

wine dataset 

    
Only 

original data  

Membership 

degrees 

Membership 

degrees 

and two of their 

transformations 

Membership degrees 

and four of their 

transformations 

Chosen 

optimum 

cluster 

number    

3 

0.7362 

0.7076 0.7667 0.7736 

4 0.7223 0.781 0.7125 

6 0.7162 0.6963 0.7327 

 
 

 

Figure 6.32 Graphical representation of R
2
 values for fuzzy functions with genetic programming for 

wine dataset   

 

If we interpret the all result, it could be said that, using membership degrees and 

their transformations generally improved the performance of genetic programming as 

in regression analysis. In the following section, the results of R-square values of 

fuzzy functions with LSE and fuzzy functions with GP are depicted in a table for all 

datasets in order to be able to be compared.  
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Table 6.33 Comparison of fuzzy functions with LSE and fuzzy functions with GP for abalone dataset 

Abalone 

data 

Cluster 

number 
Only original 

data 

Membership 

degrees 

Membership degrees 

and two of their 

transformations 

Membership 

degrees and four  

of their 

transformations 

R
2
 results 

for fuzzy 

functions 

with LSE 

3 

0.8654 

0.89022 0.89178 0.89478 

4 0.89038 0.89078 0.89358 

5 0.88950 0.89143 0.89405 

R
2
 results 

for fuzzy 

functions 

with GP 

3 

0.9171 

0.9180 0.9109 0.9194 

4 0.9091 0.9275 0.9194 

5 0.9143 0.9172 0.9131 

 

Table 6.34 Comparison of fuzzy functions with LSE and fuzzy functions with GP for auto-mpg 

dataset 

Auto-mpg 

data 

Cluster 

number 

Only 

original 

data 

Membership 

degrees 

Membership degrees 

and two of their 

transformations 

Membership degrees 

and four of their 

transformations 

R
2
 results 

for fuzzy 

functions 

with LSE 

5 

0.8151 

0.83942 0.85185 0.85715 

8 0.83973 0.85567 0.85770 

3 0.83932 0.83865 0.84108 

R
2
 results 

for fuzzy 

functions 

with GP 

5 

0.7623 

0.8589 0.8432 0.7185 

8 0.8564 0.8034 0.8630 

3 0.8489 0.8392 0.8559 

 

 

Table 6.35 Comparison of fuzzy functions with LSE and fuzzy functions with GP for concrete dataset 

Concrete 

data 

Cluster 

number 
Only 

original data 

Membership 

degrees 

Membership 

degrees 

and two of their 

transformations 

Membership degrees 

and four of their 

transformations 

R
2
 results 

for fuzzy 

functions 

with LSE 

4 

0.6152 

0.61610 0.62710 0.62543 

9 0.61842 0.62315 0.56758 

5 0.61763 0.62472 0.61372 

R
2
 results 

for fuzzy 

functions 

with GP 

4 

0.7988 

0.7703 0.7060 0.7826 

9 0.8068 0.7223 0.7135 

5 0.7839 0.8175 0.8051 
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Table 6.36 Comparison of fuzzy functions with LSE and fuzzy functions with GP for ecoli dataset 

Ecoli data 
Cluster 

number 
Only original 

data 

Membership 

degrees 

Membership degrees 

and two of their 

transformations 

Membership 

degrees and four 

 of their 

transformations 

R
2
 results 

for fuzzy 

functions 

with LSE 

4 

0.7375 

0.74832 0.75515 0.75718 

6 0.74653 0.75367 0.75302 

5 0.74377 0.75463 0.76320 

R
2
 results 

for fuzzy 

functions 

with GP 

4 

0.7855 

 

0.7967 0.7503 0.7603 

6 0.7784 0.7823 0.7723 

5 0.7790 0.7720 0.7831 

 

 

Table 6.37 Comparison of fuzzy functions with LSE and fuzzy functions with GP for glass dataset 

Glass data 
Cluster 

number 
Only 

original data 

Membership 

degrees 

Membership 

degrees 

and two of their 

transformations 

Membership degrees 

and four of their 

transformations 

R
2
 results 

for fuzzy 

functions 

with LSE 

7 

0.6536 

0.89443 0.89627 0.91170 

9 0.89520 0.87650 0.90033 

8 0.89608 0.89755 0.90277 

R
2
 results 

for fuzzy 

functions 

with GP 

7 

0.7552 

0.8490 0.8659 0.8625 

9 0.7982 0.8726 0.8337 

8 0.8614 0.8461 0.8332 
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Table 6.38 Comparison of fuzzy functions with LSE and fuzzy functions with GP for housing dataset 

Housing 

data 

Cluster 

number 
Only original 

data 

Membership 

degrees 

Membership 

degrees 

and two of their 

transformations 

Membership degrees 

and four of their 

transformations 

R
2
 results 

for fuzzy 

functions 

with LSE 

8 

0.7137 

0.74058 0.74762 0.75862 

3 0.74605 0.74627 0.74957 

6 0.74132 0.74612 0.75065 

R
2
 results 

for fuzzy 

functions 

with GP 

8 

0.7319 

 

0.7342 0.6829 0.7924 

3 0.7631 0.7060 0.7777 

6 0.7488 0.7014 0.7850 

 

 

Table 6.39 Comparison of fuzzy functions with LSE and fuzzy functions with GP for iris dataset 

Iris data 

Cluster 

number 

 

Only 

original 

 data 

Membership 

degrees 

 

Membership degrees 

and two of their 

transformations 

Membership degrees 

and four of their 

transformations 

R
2
 results 

for fuzzy 

functions 

with LSE 

3 

0.9371 

0.94307 0.94585 0.94792 

2 0.93852 0.94283 0.94342 

4 0.93890 0.94355 0.94030 

R
2
 results 

for fuzzy 

functions 

with GP 

3 

0.9427 

0.9576 0.9545 0.9482 

2 0.9418 0.9427 0.9436 

4 0.9390 0.9400 0.9413 
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Table 6.40 Comparison of fuzzy functions with LSE and fuzzy functions with GP for wine dataset 

Wine data 
Cluster 

number 
Only 

original data 

Membership 

degrees 

Membership degrees 

and two of their 

transformations 

Membership degrees 

and four of their 

transformations 

R
2
 results 

for fuzzy 

functions 

with LSE 

3 

0.7322 

0.73697 0.74020 0.74900 

4 0.73843 0.74262 0.74843 

6 0.73605 0.74452 0.75168 

R
2
 results 

for fuzzy 

functions 

with GP 

3 

0.7362 

0.7076 0.7667 0.7736 

4 0.7223 0.7810 0.7125 

6 0.7162 0.6963 0.7327 

 

 

6.6 Conclusion 

 

In this part of the study, fuzzy functions with LSE and fuzzy functions with GPare 

applied to the datasetsand the effect of fuzzy functions concept on genetic 

programming is tried to be searched. According to the obtained results it could be 

said that fuzzy functions with LSE improved the prediction performance and gave 

better results with a few exceptions compared to regression analysis. When fuzzy 

functions are generated using genetic programming also improved the prediction 

performance in some cases.   

 

In the following chapter, a briefsummary of the study is made and then a general 

assessment is made on fuzzy functions approach by comparing and evaluating the 

obtained results. Finally the study is terminated with future research part.  
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CHAPTER SEVEN 

CONCLUSION AND FUTURE RESEARCH 

 

7.1 Conclusion 

 

In this part of the study, the purpose of the study is going to be overviewed and a 

general summary of the thesis is going to be made. Then finally future works are 

going to be represented.  

 

As it was expressed before in previous chapters, the prime purpose of this study is 

to represent fuzzy functions with GP on the basis of fuzzy functions approach and its 

foundations. For this purpose a general review of the related topics which constitute 

the basis of fuzzy functions approach and form the starting point of fuzzy functions 

are represented.Firstly in chapter 2, fuzzy rule bases approach which is one of the 

most commonly known fuzzy inference system and applied in a variety of fieldsis 

introduced. The foundations of fuzzy rule bases, commonly used types of fuzzy rule 

bases and its main disadvantages are overviewedbriefly in chapter 2. 

 

Due to play a crucial part in fuzzy functions conceptthe concept of fuzzy 

clustering, important types of clustering algorithms and commonly used clustering 

validity indexes are explained briefly in chapter 3.  

 

The fundamental theory of fuzzy functions approach, which is proposed by 

Türkşen in order to eliminate the difficulties of fuzzy rule bases and constitutes the 

basis of this study is introduced in chapter 4. Then in the following sections the 

algorithm of fuzzy functions with LSE is represented and explained with a numerical 

example step by step.  

 

In chapter 5, the proposed approach in which it is recommended to use genetic 

programming in generating fuzzy functions is introduced. For this purpose firstly the 

theory of genetic programming is overviewed andafterwards the proposed algorithm 

is introduced and then explained with a numerical example step by step.  
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In chapter 6, fuzzy functions with LSE and proposed model, fuzzy functions with 

GP, applied to datasets from the literature in order to be able to compare and present 

the performance of our approach.  

 

If we evaluate the resultsit could be said that generating fuzzy functions by using 

different analyzing methods generally give better results and improve the prediction 

performance. But we can say that the effects of fuzzy functions are changing 

depending on the dataset. In the present thesis while using fuzzy functions approach 

improved the performance of some datasets significantly, for some of the datasets it 

showed just a small improvement and even decreased the prediction performance. 

 

7.2 Future Works 

 

Suggestions for future works based on the obtained results could be stated as 

follows; 

 

 As it stated in previous section, the effects of type of problems (regression, 

classification, regression and classification i.e.) could be searched in detail by 

applying fuzzy functions to different types of problems.  

 By applying different clustering validity indexes,more appropriate cluster 

numbers could be found out and thus the effects of more appropriate number 

of clusters could be compared. 

 By using different clustering algorithms, the effect of the clustering algorithms 

could be searched in detail.  

 For the present study Eureqa Formulize software program is used for the 

proposed model. As a future research, by choosing different types parameters 

and even using different genetic programming software the effects of them 

could be searched in details.  
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APPENDIX 

 

Appx.1 

 

Least Square Estimation  

 

 

In statistics and mathematics, linear least squares is an approach fitting a 

mathematical or statistical model to data in cases where the idealized value provided 

by the model for any data point is expressed linearly in terms of the unknown 

parameters of the model (Wikipedia, 2010). 

 

In a regression model, the assumption is that the dependent variable is a linear 

function of one or more independent variables plus an error factor. Let the regression 

model be defined as a multi-input, single output (MISO) model as follows:In matrix 

notationthe general linear model is expressed as (Çelikyılmaz and Türkşen, 2009b, p. 

340); 

 

𝑦 = 𝛽0 + 𝛽1𝑥1 + 𝛽𝑛𝑣𝑥𝑛𝑣 + 𝜀                                                                                           (𝐴. 1) 

 

Here; 

 „y‟ represents the output variable,  

 xnv‟s are the input variables where nv is the number of variables,  

 ε represent the error term. 

 βj‟s are the coefficients parameters. 

 

To represent the regression model in matrix notation; 

 

𝑦 = 𝑋𝛽 + 𝜀                                                                                                                          (𝐴. 2) 

 

 𝑦 is output matrix that consist of 𝑛 vectors, 
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 𝑋 is the inputs which is consist of  𝑛 × 𝑝   matrix of. Here n represents the 

number of vectors, 𝑛𝑣 is the number of variables.  

 𝛽 is represent the coefficient parameters matrix that is consist of  𝑛𝑣 × 1  

 𝜀 represents the error matrix which is consist of  𝑛 × 1 .  

 

The objective is to minimize the total residuals. Therefore the simplest linear 

regression, which tries to minimize the total squared error between the actual and 

estimated output, is called the least squares regression. (Çelikyılmaz and Türkşen, 

2009b, p. 341); 

 

𝑚𝑖𝑛𝑄 =  (𝑦𝑖 − 𝛽0 + 𝛽1𝑥1,𝑘 + 𝛽𝑛𝑣𝑥𝑛𝑣,𝑘)2

𝑛

𝑘=1

                                                             (𝐴. 3) 

 

In matrix notation the equation below is minimized;  

 

𝑚𝑖𝑛𝑄 =  𝑦 − 𝑋𝛽 ′(𝑦 − 𝑋𝛽) 

𝜕

𝜕𝛽
  𝑦 − 𝑋𝛽 ′(𝑦 − 𝑋𝛽) = 0                                                                                          (𝐴. 4) 

2 𝑋′𝑋 𝛽 = 2𝑋′𝑦 

𝛽 = (𝑋′𝑋)−1𝑋′𝑦  
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Appx.2 

 

Calculation of R-square value 

 

Sum of squares due to error: This statistic measures the total deviation of the 

response values from the fit to the response values and also called as the summed 

square of residuals and represent as below (MathWorks, n.d.).  

 

𝑆𝑆𝐸 =  𝑤𝑖(𝑦𝑖 − 𝑦 𝑖)
2

𝑛

𝑖=1

                                                                                                   (𝐴. 5) 

 

Here; 

 𝑦𝑖represents the observed output value,  

 𝑦 𝑖represents the predicted output value. 

 𝑤𝑖  is the weighting value and generally takes 1.  

 

This statistic measures how successful the fit is in explaining the variation of the 

data. In other words R-square is the square of the correlation between the response 

values and the predicted response values. (MathWorks, n.d.). 

 

R-square is defined as the ratio of the sum of squares of the regression (SSR) and 

the total sum of squares (SST). SSR is defined as; 

 

𝑆𝑆𝑅 =  𝑤𝑖(𝑦 𝑖 − 𝑦 )2

𝑛

𝑖=1

                                                                                                    (𝐴. 6) 

𝑆𝑆𝑇 =  𝑤𝑖(𝑦𝑖 − 𝑦 )2

𝑛

𝑖=1

                                                                                                     (𝐴. 7) 

 

Where 𝑦  is the mean of the observed data 𝑦𝑖 . 

 

𝑅𝑠𝑞𝑢𝑎𝑟𝑒 =
𝑆𝑆𝑅

𝑆𝑆𝑇
= 1 −

𝑆𝑆𝐸

𝑆𝑆𝑇
                                                                                           (𝐴. 8) 


