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META-HEURISTIC SOLUTION APPROACHES FOR TRAVELING 

SALESMAN AND TRAVELING REPAIRMAN PROBLEMS 

 

ABSTRACT 

 

The traveling salesman problem (TSP) is a combinatorial optimization problem 

which has been extensively studied for years. TSP is the problem of creating a 

Hamiltonian cycle in which each node is visited only once to minimize total distance 

travelled. The ant colony optimization (ACO) is a meta-heuristic approach for 

solving optimization problems. In the study, an ACO based algorithm which utilizes 

local search heuristics is proposed. Proposed algorithm is applied to well-known TSP 

datasets and then the performance of the approach is discussed according to the 

results obtained from computations. 

 

The travelling repairman problem (TRP) is the problem of finding a Hamiltonian 

path in which the objective is to minimize total waiting time of all customers that are 

situated at different locations. Genetic algorithms (GA) are meta-heuristic solution 

methods which are created by taking inspiration from the evolution process. As a 

second study, a hybrid algorithm which combines genetic algorithm with a local 

search heuristic is proposed to solve TRP. Proposed algorithm is applied to a set of 

instances that have been studied in the literature. Performance of the approach is 

evaluated according to the results of the computational study. 

 

Aim of these studies is to develop efficient and effective algorithms that can be 

applicable to real life problems to solve large scale TSP and TRP problems. 

 

As the third study, a case study about a snow disaster situation based on some 

assumptions is examined as TSP and TRP. Proposed algorithms are applied to the 

case and results are discussed.  

 

Keywords: Traveling salesman problem, traveling repairman problem, genetic 

algorithms, ant colony optimization 
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GEZGİN SATICI VE GEZGİN TAMİRCİ PROBLEMLERİ İÇİN 

META-SEZGİSEL ÇÖZÜM YAKLAŞIMLARI 

 

ÖZ 

                

Gezgin satıcı problemi (GSP) uzun yıllardır yoğun bir şekilde çalışılan bir 

kombinatoryal optimizasyon problemidir. GSP, kat edilen toplam mesafeyi en aza 

indirmek için her noktaya sadece bir kez uğranılan bir Hamilton turu yaratma 

problemidir. Karınca kolonisi optimizasyonu (KKO), optimizasyon problemlerini 

çözmek için meta-sezgisel bir yaklaşımdır. Çalışmada, yerel arama sezgisellerinden 

yararlanan KKO tabanlı bir algoritma önerilmiştir. Önerilen algoritma iyi bilinen 

GSP veri setlerine uygulanmış ve sonrasında hesaplamalardan elde edilen sonuçlara 

göre algoritmanın performansı tartışılmıştır.  

 

Gezgin tamirci problemi (GTP) farklı konumlarda bulunan müşterilerin bekleme 

sürelerinin toplamını en aza indirmenin amaçlandığı bir Hamilton turu bulma 

problemidir. Genetik algoritmalar (GA) evrim sürecinden ilham alınarak yaratılmış 

meta-sezgisel çözüm yöntemleridir. İkinci çalışmada GTP’yi çözmek için genetik 

algoritmayı yerel arama sezgiseli ile birleştiren bir hibrit algoritma önerilmiştir. 

Önerilen algoritma literatürde çalışılmış bir dizi örneğe uygulanmıştır. Algoritmanın 

performansı hesaplama çalışmasının sonucuna göre değerlendirilmiştir.  

 

Bu çalışmaların amacı, büyük ölçekli GSP ve GTP problemlerini çözmek için 

gerçek hayat problemlerine uygulanabilen verimli ve etkili algoritmalar 

geliştirmektir. 

 

Üçüncü çalışma olarak, varsayımları temel alan bir kar felaketi durumu hakkında 

bir vaka çalışması GSP ve GTP olarak çalışılmıştır. Önerilen algoritmalar vakaya 

uygulanmış ve sonuçları tartışılmıştır. 

 

Anahtar sözcükler: Gezgin satıcı problemi, gezgin tamirci problemi, genetik 

algoritmalar, karınca kolonisi optimizasyonu 
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CHAPTER ONE 

INTRODUCTION 

 

Reaching an objective by effectively use of limited resources on hand is a 

noticeable objective for not only humans but also several systems in our 

environment. One of these systems in the operations research context is the supply 

chain. Supply chain is the system of whole affected units during the emergence of a 

product/service and delivery to customer (Glossary of Terms - Council of Supply 

Chain Management Professionals, n.d.). Since the importance of the supply chain for 

all parts of the concept has been understood, it is continuously endeavoured to find a 

method to improve the performance of the linked channels. 

 

One basic process in the supply chain is to transport goods to related customers 

and this process can be accomplished with logistics operations. The term logistics 

firstly emerged in military operations, but then used in business context. Logistics 

(business) -- Britannica Online Encyclopedia (n.d.) stated that the term logistics is 

defined by the Council of Logistics Management as “the process of planning, 

implementing, and controlling the efficient, effective flow and storage of goods, 

services, and related information from point of origin to point of consumption for the 

purpose of conforming to customer requirements”. This definition puts forward that 

logistics operations not only consider transportation of the goods, but also provide 

storage of the related parts of the goods and consider managing activities. For every 

supply chain, logistic operations take an important place; because the transportation 

costs emerge in these operations highly affect the total cost of e.g. a firm. Therefore 

it is obviously needed to decrease the transportation costs for every part of a supply 

chain.  

 

During the investigation process of the problems in transportation operations, the 

well-known traveling salesman problem (TSP) and traveling repairman problem 

(TRP) are encountered. TSP is the problem of finding a least cost tour of a salesman 

that starts with an initial point, delivers customer orders by visiting each customer 

exactly once, and returns to the initial point. It can be said that the basic concepts in 
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this problem emerged with the studies of William Rowan Hamilton (Hamilton 

biography, 1998) and Thomas Penyngton Kirkman (Kirkman biography, 1996). TSP 

has been intensively studied for years. This problem may seem easy to compute; 

besides exact solution techniques for the problem have been proposed in the 

literature. Therefore, as the problem size (number of customers) grows, the 

computation time of an exact solution method increases greatly. The necessity of 

solving such a problem leads the notion of approximating to optimal solution of the 

problem. Thus, heuristic and meta-heuristic approaches emerged to be able to reach 

this aim. 

 

The TRP is the problem of finding a tour in which the objective is to minimize 

total waiting times of all customers that are located at different places. TRP can be 

seen as a more recent problem in comparison to TSP. Exact and approximate 

methods have been developed in the TRP literature. The structure of TRP from the 

viewpoint of hardness is similar to TSP; therefore meta-heuristic approaches for TRP 

are improved in recent years.  

 

The difference between TSP and TRP is that, in TSP, the objective is to minimize 

total cost of the salesman (product/service supplier); but in TRP the main objective is 

to minimize total waiting times of the customers. Consequently, it can be said in TRP 

a customer oriented view is applied while in TSP a supplier oriented view is 

considered. TSP and TRP are combinatorial optimization problems and there stands 

a wide field of research to find better solutions in accordance with the structures of 

the problems. In this thesis, TSP and TRP are examined with two meta-heuristic 

approaches.  

 

The first thing that has done for solving these problems was to understand the 

foundations and the emergence forms of the problems. Afterwards, studies and 

methods that have been proposed for these problems are explored. 

 

Firstly in Chapter 2, the term meta-heuristic will be defined and general meta-

heuristics will be briefly described. The first meta-heuristic that will be examined in 
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this thesis is ant colony optimization (ACO). ACO is a nature based meta-heuristic 

approach for solving optimization problems. Detailed information about ACO will be 

given in Chapter 2 and Chapter 3. The second meta-heuristic that will be examined is 

the genetic algorithm (GA). GA is the artificial form of the evolution process in 

combinatorial optimization. Detailed information on GA can be found in Chapter 4.  

 

In Chapter 3, a max-min ant system (MMAS) algorithm based approach will be 

applied to TSP. The aim of the study is to develop an efficient and effective 

algorithm to solve large scale TSP instances. The algorithm will be applied to well-

known TSP datasets and then the performance of the approach will be discussed 

according to the results. 

 

A hybrid GA for TRP will be examined in Chapter 4. In the study, a hybrid 

algorithm which combines genetic algorithm with a local search heuristic will be 

proposed to solve TRP. Proposed algorithm will be applied to a set of instances that 

have been studied in the literature and then the performance of the approach will be 

evaluated according to the results of the computational study. 

 

In Chapter 5, a case study for TRP will be examined. Severe winter conditions 

may cause some communication problems especially in areas have high altitudes. 

The case study is thought as a snow disaster situation. A district of Erzurum city 

from the East Anatolian Region in Turkey is accepted as the origin, and demand 

points are the villages of this district. This case will be studied as a conceptual 

example for TRP; in a real application there will be more constraints and special 

characteristics in the problem. Finally in Chapter 6, the study will be concluded. 

 

 



4 
 

CHAPTER TWO 

META-HEURISTICS 

 

2.1 Definition of the Term Meta-heuristic 

 

The term meta-heuristic is a widely used concept in solution methods of the 

optimization problems. A meta-heuristic can be defined as an algorithmic structure 

which consists of concepts that guide heuristic methods to search for a good solution. 

Many definitions of meta-heuristics have been made in the literature, and two of 

them are mentioned here. Voß, Martello, Osman, & Roucairol (1999) define the term 

meta-heuristic as “an iterative master process that guides and modifies the operations 

of subordinate heuristics to efficiently produce high-quality solutions”. However 

Dorigo, Birattari, & Stützle (2006) pointed out problem independency of the term by 

definition of “a general-purpose algorithmic framework that can be applied to 

different optimization problems with relatively few modifications” (p.30). 

 

Although there are differences between these definitions, common principles of 

meta-heuristics can be remarked as follows: 

 

• Meta-heuristics are problem independent 

• Meta-heuristics coordinate subordinate heuristics by utilizing their 

advantages and characteristics 

• Meta-heuristics search the solution space of the problem to find a better 

solution  

• Meta-heuristics effort to reach near optimal or optimal solutions as soon as 

possible 

 

2.2 Meta-heuristics in Combinatorial Optimization 

 

Meta-heuristic approaches have been widely used in the field of combinatorial 

optimization problems. Osman & Laporte (1996) define combinatorial optimization 

as “the mathematical study of finding an optimal arrangement, grouping, ordering, or 
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selection of discrete objects usually finite in numbers” (p.514). Meta-heuristic 

approaches have the advantage of reaching near optimal solutions in a reasonable 

time period in situations where exact solution approaches are not useful for 

implementation.  

 

Figure 2.1 displays a general scheme for meta-heuristic solution approaches. 

Meta-heuristics can be examined under two distinct classes as construction based 

meta-heuristics and improvement based meta-heuristics from the viewpoint of 

solution structure.  

 

Construction based meta-heuristics try to create a solution from starting with an 

empty solution on hand. A solution to the relevant problem is found by adding 

solution components to the initial element. This search can be said as a stepwise 

approach to reach a solution. As construction based meta-heuristic, greedy 

randomized adaptive search procedure and meta-heuristics arise from swarm 

intelligence approach can be mentioned here.  

 

Improvement based meta-heuristics have a different solution search method. 

These meta-heuristics start with an initial solution and search the solution space to 

find a better solution. During this search, solution is modified and/or solution 

elements are recombined to improve the solution on hand. Meta-heuristics such as 

evolutionary algorithms, simulated annealing, local search based approaches and 

tabu search algorithm belong to this class of meta-heuristics. 

 

Common meta-heuristics used to solve optimization problems are listed below 

and briefly described. Besides, the research on meta-heuristics is continuing and in 

recent years some meta-heuristics such as bat algorithm, firefly algorithm, bee-

colony optimization and intelligent water drops algorithm are emerged by taking 

inspiration from the nature. This indication shows there is an open area to find new 

meta-heuristics that could yield good results to optimization problems. 
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Figure 2.1 General structure of the meta-heuristics 

 

2.2.1 Greedy Randomized Adaptive Search Procedure 

 

Greedy randomized adaptive search procedure (GRASP) belongs to the class of 

constructive meta-heuristics. In GRASP, a solution is constructed from an empty 

solution by addition of the solution elements step by step. Insertion of an element to 

the solution is made according to predetermined performance criterion. Therefore, all 

of the candidates are evaluated and set up in an order of best meeting the 

performance criterion.  

 

The method utilizes from a restricted candidate list in which best performing 

candidates are positioned. Restricted candidate list helps for selection of elements 

that will be added to the current solution and this selection is made randomly. The 
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resulting solution is improved then by use of a local search procedure. Additional 

information about GRASP can be found in (Feo & Resende, 1995) and (Resende & 

Ribeiro, 2010). 

 

2.2.2 Swarm Intelligence 

 

While the investigations on solving combinatorial optimization problems were 

continuing, an approach is emerged with an inspiration from the natural behaviour of 

some species of living creatures. The communication between individuals in nature 

leads to improvement of the swarm intelligence concept (Bonabeau, Dorigo & 

Theraulaz, 1999). Individuals of living creature species can communicate with each 

other in different ways, for that reason; it can be said there is an open area for 

research in the swarm intelligence concept. The particle swarm optimization (PSO) 

and ant colony optimization (ACO) meta-heuristics can be examined under this 

concept.  

 

2.2.2.1 Particle Swarm Optimization 

 

One of the approaches in the swarm intelligence area is the PSO (Merkle & 

Middendorf, 2005). In PSO, it is aimed to reach an objective by ensuring exchange 

of information in the swarm.  

 

Particles in the swarm can be thought as separate solutions. Each of these 

solutions has the knowledge of the global best solution in the swarm and continues to 

search in accordance with the result of evaluating some information. This 

information is the current objective function value of the solution, best objective 

function value of the solution, velocity of the solution and global best objective 

function value. All of the particles effort to improve the best objective function value 

with consideration of the information on hand. 
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2.2.2.2 Ant Colony Optimization 

 

Definition of the ACO is made in (Dorigo & Stützle, 2010) as “a metaheuristic 

that is inspired by the pheromone trail laying and following behaviour of some ant 

species”. Ant colonies have the capability of finding a food source with their 

remarkable information sharing type (via pheromone). Figure 2.2 indicates behaviour 

of the ants. Ants leave pheromone substance on their ground while they are walking. 

Through the alternative paths between their nest and food, the path which has the 

most pheromone amount will be chosen by the ants. Since this behaviour is thought 

as a new solution approach, researchers’ investigation is increasingly proceeding on 

solving combinatorial optimization problems by use of ACO. 

 

 
Figure 2.2 Behaviour of the ants. It can be seen that ants find their shortest way through their nest 

and food by the pheromone amount on that way (Zäpfel, Braune, & Bögl, 2010). 

 

ACO algorithm is an artificial type of the natural behaviour of the ants. In Figure 

2.3 ACO algorithm structure can be seen. Algorithm starts with creating paths for 

whole artificial ants and proceeds with calculating the lengths of these paths, 

updating the pheromone amount, keeping the shortest path in memory and finally 

ends when the capability criteria is reached. To achieve enhanced performance of the 

ant systems not only building the algorithm but it is also suggested to hybridize it 

with a local search component (Voß, 2001). Detailed information on ACO can be 

found in (Dorigo & Blum, 2005; Dorigo & Di Caro, 1999; Dorigo, Di Caro, & 

Gambardella, 1999; Dorigo & Stützle, 2004; Taillard, 1999). 
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Ant Colony Optimization Algorithm 

• Generate m ants and assign each of them to one node 

• Determine initial parameters α, β, ρ, and pheromone levels (τij ) on each edge 

for t = 1: iteration no 

for k = 1 : m 

• Compute the probability pk
ij of selecting next node 

• Determine length of the complete tour 

end 

for i = 1 : n 

• Update pheromone amounts on all of the edges 

end 

Update the best solution  

end 
Figure 2.3 The structure of the ACO meta-heuristic 

 

ACO algorithms differ from each other with some aspects. In comparison, each of 

them has the basic ACO structure but some special characteristics. For instance, in 

the ant system (AS) algorithm, pheromone updating operation is made by all of the 

ants due to Eq. (2.1) and Eq. (2.2). 

 

( ) ∑
=

∆+⋅−←
m

k

k
ijijij

1

1 ττρτ                               (2.1) 

 

 





=∆
 otherwise,             0

 tour,its in ),( edge used ant  if      / jikLQ kk
ijτ                                   (2.2) 

      

Here τij corresponds the pheromone amount on the edge (i,j), ρ means pheromone 

evaporation rate, m is number of the ants, Q is a constant, Lk is the length of the route 

created by ant k and ∆τij
k is the pheromone trail information of the kth ant on the 

edge (i,j). An ant that locates in a node searches for its next node by calculating the 

probability pk
ij of selecting the alternative nodes which have not been visited yet. 
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This calculation can be seen in Eq. (2.3). Here α is a parameter shows importance of 

the pheromone and β parameter is the importance of the visibility factor. As it can be 

seen from Eq. (2.4), ηij is the heuristic information associated with the distance 

between edge (i,j), sp is the partial solution that is constructed by the ant, N (sp) is the 

set of the candidate nodes for the corresponding ant, the solution component cij 

indicates that city j is the next city that will be visited after city i (Dorigo et al., 

2006). 
 








∈

⋅

⋅

= ∑ ∈

 otherwise,                            0

,)( if    
)(

p
ij

sNc ilil

ijij
k

ij

sNc
p p

il

βα

βα

ητ
ητ

                                               (2.3) 

 

ij
ij d

1
=η                                                                          (2.4) 

 

2.2.3 Tabu Search 

 

Tabu search meta-heuristic is found by Glover (1986) and it utilizes from a basic 

local search principle. First of all, an initial solution is found. In each iteration, 

solutions that have been found in the previous iteration called as “tabu” and a set of 

these solutions, tabu list, is created. Whole neighbours of the initial solution are 

created; if current solution is improved in one of the neighbours and the neighbour is 

not in the tabu list, new solution will be this neighbour and the same search will 

proceed on this solution. Tabu list is updated in each iteration. A solution which 

declared as tabu can be removed from the tabu list after update operation. The main 

idea in this method is to make a search by avoiding repeated solutions with the help 

of the tabu list which works as a memory (Gendreau, 2003). 

 

2.2.4 Evolutionary Algorithms 

 

As it can be clearly understood from the name, evolutionary algorithms (EA) are 

the search strategies based on the evolution process. The evolution process is 
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imitated and used for reaching the “best solution” among other solutions with these 

algorithms. Crossover, mutation, selection terms are adapted to the searching context 

in the combinatorial optimization problems. Genetic algorithms (GA), evolution 

strategies (ES), genetic programming (GP) and evolutionary programming (EP) can 

be mentioned under this class. GA is examined in this study and detailed information 

about GA is given in Chapter 4. 

 

2.2.5 Simulated Annealing 

 

Simulated annealing method belongs to the class of improvement meta-heuristics. 

The studies of Kirkpatrick, Gelatt & Vecchi (1983) and Cerny (1985) are the first 

studies on this method. The method is an optimization method inspired by the 

temperature changes of the materials. It starts with a temperature level and a solution. 

After that a neighbour of that solution is generated. Objective function value of the 

neighbour is evaluated according to the solution quality difference with the previous 

solution, and neighbour becomes new solution if it has better objective function 

value. If the neighbour has a worse objective function value than current solution, the 

neighbour becomes new solution with a probability in which quality of the solution 

and the temperature level is considered. Finally, the temperature level is updated and 

the algorithm is terminated when the capability criteria is reached. 
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CHAPTER THREE 

MAX-MIN ANT SYSTEM ALGORITHM COMBINED WITH LOCAL 

SEARCH HEURISTICS FOR TRAVELING SALESMAN PROBLEM 

 

3.1 Introduction to Traveling Salesman Problem 

 

Assume that a salesman wants to make a tour in which he starts with an origin 

point, visits each customer only once and returns to the origin point with minimum 

cost. The traveling salesman problem (TSP) is the problem of finding the shortest 

route of a salesman who must visit each customer only once. As a mathematical 

expression, the term Hamiltonian cycle that is found by William Rowan Hamilton 

(Hamilton biography, 1998) can be used to define this problem. Hamiltonian cycle is 

a cycle in which each node is visited exactly once. Therefore, TSP is the problem of 

creating the shortest Hamiltonian cycle in a graph. TSP is one of the most studied 

combinatorial optimization problems. The problem can be differentiated with a few 

modifications and studied in different areas such as logistics, scheduling, 

manufacturing, mathematics, electronics, computer science etc. (Applegate, Bixby, 

Chvátal, & Cook, 2006). Over decades, TSP still draws researchers’ attention and 

there stands a wide field of research for finding better solution methods in 

accordance with the structure of the problem (Traveling Salesman Problem, 2012). 

       

TSP has a difficulty because of its computational complexity. There has not been 

found any polynomial time algorithm for TSP, so the complexity of the problem can 

be said as exponential. It is proven by Karp (1972) that TSP is an NP-complete 

(Non-deterministic Polynomial-time- Complete) problem.  

 

Assume that n corresponds to the number of cities. Number of the possible 

Hamiltonian cycles in a complete graph will be (n-1)! /2 in the directed case, and (n-

1)! in the undirected case. This number means that in large sizes of instances, it is 

almost impossible to evaluate all of the tours and find a solution in a reasonable time 

period.   
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3.2 Problem Definition 

 

The problem can be examined as symmetric TSP or asymmetric TSP. In 

symmetric TSP, distance between two locations is equal to distance in the reverse 

direction. In this situation, graph is an undirected graph. In asymmetric case, distance 

between two locations is not equal to distance in the reverse direction or the reverse 

way between these two locations doesn’t exist, thus the graph becomes directed. TSP 

is examined as a complete graph which means all vertices have an edge with other 

vertices.  

 

Assume that ( )AVG ,=  is a directed graph where { }nV ,...,1=  is the vertex set and 

( ){ }jiVjijiA ≠∈= ,,|,  is the arc set. cij is defined as the cost associated with the 

arc (i, j). xij is a binary decision variable equal to 1 if arc (i,j) is included in the tour, 

0 otherwise. The TSP can be formulated as follows with refer to (Gutin & Punnen, 

2002): 

 

Minimize ∑∑
= =

n

i

n

j
ijij xc

1 1

 

Subject to 

∑
=

=
n

i
ijx

1

1 ( )nj ,...,1=                   (3.1) 

∑
=

=
n

j
ijx

1

1  ( )ni ,...,1=                              (3.2) 

1≥∑∑
∈ ∉Si Sj

ijx  ( )2, ≥⊂ SVS                             (3.3) 

{ }1,0∈ijx  ( )nji ,...,1, =                   (3.4) 

 

In this formulation, the objective function is the total length of the tour. 

Constraints (3.1), (3.2) and (3.4) which are also called assignment constraints ensure 

that a city is visited only once. Constraint (3.3) is the subtour elimination constraint 

that assures at least one arc comes out from each subset ( ){ }1|, == ijxjiS  in the tour 
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(Dantzig, Fulkerson, & Johnson, 1954). In other words, each subset is connected to 

another subset with this constraint (Gutin & Punnen, 2002). 

 

3.3 Literature Review 

 

In the 1800s, Irish physicist and mathematician William Rowan Hamilton 

(Hamilton biography, 1998; Wilkins, 2000) and British mathematician Thomas 

Penyngton Kirkman (Kirkman biography, 1996) studied some mathematical 

problems relevant to TSP. In the 1930s, mathematician Menger (1932) mentioned the 

problem in a colloquium held in Vienna and after a while Hassler Whitney (Whitney 

biography, 2005) and Merrill Flood (Merrill M. Flood, 2012) from Princeton 

University studied the problem and it seems that Whitney is the first person to call 

the problem as “Traveling Salesman Problem” (Lawler, Lenstra, Rinnooy Kan, & 

Shmoys, 1985). However it is stated in (Gutin & Punnen, 2002) that the report of 

Menger (1932) in which the TSP is examined as Messenger Problem, is the first 

published work on TSP. After that, studies of Dantzig et al. (1954), Flood (1956), 

Mahalanobis (1940) and Robinson (1949) can be seen as the earliest studies on TSP. 

 

The first computational study of TSP is made by Dantzig et al. (1954) in which a 

49 city problem is studied and the authors gave a solution with linear programming 

techniques. After that, a great number of problem instances have been created and 

used for the comparison of different solution algorithms. These well-known instances 

can be found in TSPLIB (2008).  

 

An example of a Hamiltonian cycle is given in Figure 3.1. In the tour, it is 

obvious that each node is served only once and the tour is a closed tour which means 

the salesman finishes his tour in the initial point. 
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Figure 3.1 An example of a TSP solution with random points 

 

3.3.1 Solution Methods for Traveling Salesman Problem 

 

Since the emergence of the problem, TSP has been extensively studied and 

several solution techniques have been proposed in the literature. We can classify 

these methods as exact methods and heuristic methods. 

   

3.3.1.1 Exact Methods 

 

Exact solution methods for TSP are solution approaches that can find optimum 

solutions via enumerative search process. Exact methods for TSP are not seemed to 

be useful solution techniques for the large instances because of the required 

computational time. Integer linear programming formulations, branch and bound 

method, branch and cut method, dynamic programming and cutting planes algorithm 

can be mentioned as exact algorithms. 

 

3.3.1.1.1 Integer Linear Programming Formulations. Integer linear programming 

(ILP) models ensure an exact solution by definition of decision variables, constraints 

and objective function. In these models, the structure of the constraints, variable 

types and objective function can be organized and modified according to special 

characteristics of the problem. ILP models find the optimal solution of the problem, 

but in some situations these models are not useful methods to examine. Consequently 
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it can be said that it is better to use ILP models in situations of problems with small 

size, requirement for solution time is not very important and preparing/constructing 

the model is easy, etc. 

 

3.3.1.1.2 Branch and Bound Method. Branch and bound (B&B) method that is 

proposed by Land & Doig (1960) is an exact algorithm for different optimization 

problems. The method searches for the optimal solution with a separating process 

named as “branching” and an investigation phase named as “bounding”. While 

branching operation divides the problem into sub problems, bounding operation 

decides which branch to be concluded.  

 
In B&B method, the problem is examined with sub problems and bounds are 

determined for each sub problem not to proceed on a bad resulting solution. The 

main idea of the method is that bounds help to compare new solutions with the 

solutions previously found and avoid making a search around a solution that will 

clearly not yield an optimal solution (Lawler & Wood, 1966). 

 

3.3.1.1.3 Dynamic Programming. In dynamic programming approach, the 

problem is examined under sequential steps. After completion of a step, following 

step starts from the solution of the previous step. After solving small sub problems, 

large sub problems are solved in accordance with solutions of the small sub 

problems. 

 

3.3.1.1.4 Cutting Planes Algorithm. Cutting planes method tries to solve the 

problem with the assumption that is based on finding integer values for variables and 

objective function. In this method, firstly, LP relaxation of the problem is solved to 

obtain a lower bound. Then a source row of the solution from LP relaxation is 

chosen. A cutting plane which removes a set of non-integer solutions is determined 

according to the source row. By adding cutting plane to the simplex tableau, LP 

problem is solved. If all of the variables are integer, then the optimum solution is 

found (Winston, 2004). 
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3.3.1.1.5 Branch and Cut Method. The branch and cut method emerges from the 

mix of the B&B method and the cutting planes method. Bounds in the B&B method 

are determined according to the result of the cutting planes; thus it ensures searching 

for optimum solution in a smaller feasible solution space (Mitchell, 2002; Winston, 

2004). 

 

3.3.1.2 Heuristic Methods 

 

In some situations where the exact solution techniques are impractical for 

application, heuristics for TSP try to reach near optimal solutions. TSP heuristics can 

be classified into two: construction heuristics and improvement heuristics.  

 

Tour construction heuristics are heuristics that effort to form the tour by inserting 

nodes to the starting node step by step, as the name suggests. Some of the most used 

construction heuristics are nearest neighbour algorithm, insertion algorithms, 

heuristics based on spanning trees (e.g. Christofides algorithm) and savings methods. 

 

In addition to construction phase, the solution found may not be satisfying and a 

better solution can be searched for. Therefore, improvement heuristics are used to 

enhance the quality of the solution on hand. For the improvement heuristics, 

common methods can be said as 2-opt and 3-opt heuristics with their variants and 

Lin-Kernighan type exchange (Johnson & McGeoch, 1997; Jünger, Reinelt & 

Rinaldi, 1995). As the problem size grows, it is getting difficult to solve the problem 

and at this point integration of some approaches becomes important. 

 

3.3.1.2.1 2-opt Heuristic. 2-opt local search algorithm is proposed by Croes 

(1958) as a method for solving TSP. In the algorithm, the main idea is that two edges 

are removed and reconnected in a different way to obtain a new Hamiltonian cycle 

which could yield a better result. With this approach, different movements may result 

less costly solutions. 
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Figure 3.2 2-opt move 

 

In Figure 3.2, 2-opt move can be seen. Here edge (i,j) and edge (l,m) are removed 

then resulting two paths are merged in a new way so that it would not generate sub 

tours. In this move, sequence in one of the two parts of the modified route is 

arranged in a reverse way. For example in Figure 3.2, initial tour is (i, j, k, l, m) and 

after 2-opt move the tour becomes (i, l, k, j, m). The algorithm continues to search 

until a tour which has less length than previous tour is found.   

 

3.3.1.2.2 3-opt Heuristic. 3-opt algorithm that firstly introduced by Bock (1958) is 

a more comprehensive search algorithm than 2-opt move. In this algorithm three 

edges are deleted and re-joined the tour in a new way. In 2-opt move, there is only 

one combination of the edges that would yield a feasible solution after removal of the 

two edges. On the other hand in 3-opt move, it is possible to bring out seven different 

tours except the initial tour. It is stated in (Lin, 1965) that number of the new tours 

derived from exchanging three edges with each other in a tour with n vertices is 







3
n .  

In Figure 3.3, 3-opt move can be seen. Number of the new tours that will emerge 

with the reconnection after removal of three edges in the tour is seven. In Figure 3.3 

only two of these moves are displayed.  

 

In comparison with the 2-opt heuristic, 3-opt heuristic searches more space and 

evaluates more neighbourhoods of the current solution. Therefore the computational 

time of the algorithm increases when the 3-opt heuristic is used.  

 

A generalization of 2-opt and 3-opt heuristics can be said as k-opt, where k 

represents number of the removed edges. It is not generally recommended to use 

large values of k in k-opt heuristic; because as the value of k increases, the 
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computational time also increases. Therefore, it can be said it is practical to use 

values of k<4 in the experiments (Jünger et al., 1995; Lin, 1965). 

 

 
Figure 3.3 Two example of 3-opt moves. Assuming the left one is the initial tour and the 

following two are modified tours.  

 

3.3.1.2.3 Lin-Kernighan Type Exchange. While in 2-opt and 3-opt heuristics 

number of the nodes that will exchange with each other is certain, in Lin Kernighan 

type exchange (Lin & Kernighan, 1973), this number is determined dynamically. The 

method is based on a search technique in which a number of different modifications 

are made. Some of the modifications applied may not necessarily lead better 

solutions. At each iteration, the best resulting solution is accepted as the new 

solution. 

 

3.4 Methodology of the Proposed Approach 

 

Since the introduction of ACO and its algorithms, continuous improvements about 

the algorithm have been made in the literature. TSP plays an important role in the 

ACO literature, because the first ACO algorithm, ant system (AS) (Dorigo, 

Maniezzo, & Colorni, 1991) is applied to this NP-hard problem. After emergence of 

the AS; elitist AS (Dorigo, Maniezzo, & Colorni, 1996), ant-q (Gambardella & 

Dorigo, 1995), ant colony system (Dorigo & Gambardella 1997; Gambardella & 

Dorigo, 1996), max-min ant system (Stützle & Hoos, 2000), rank-based AS 

(Bullnheimer, Hartl, & Strauss, 1997), best-worst AS (Cordón, Fernández de Viana, 

& Herrera, 2002), population-based ACO (Guntsch & Middendorf, 2002) and 

parallelized genetic ant colony system (Chen & Chien, 2011) algorithms that have 

been experimented for TSP are introduced.  
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3.4.1 Max-Min Ant System Algorithm 

 

Max-min ant system (MMAS) algorithm is an ACO algorithm in which 

pheromone update rules are different from other ACO algorithms. In MMAS, 

pheromone updating is made by only the ant that has the best tour length, and this 

operation is implemented by use of Eq. (3.5), Eq. (3.6) and Eq. (3.7). Pheromone 

levels are restricted between maximum and minimum levels, τmax, and τmin, 

respectively (Dorigo et al., 2006; Stützle & Hoos, 2000).  

 

( )[ ] max

min
1 τ

τ
ττρτ best

ijijij ∆+⋅−←                   (3.5) 
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



=∆
 otherwise,              0

best tour,  the tobelongs ),( if      /1 jiLbestbest
ijτ                (3.7) 

 

Lbest means global minimum length and while calculation of the bounds, minimum 

and maximum pheromone levels are found via Eq. (3.8) and Eq. (3.9). In Eq. (3.9), 

avg is accepted as n/2. 
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3.4.2 Details of Proposed Method 

 

In this study, TSP is solved via MMAS algorithm, then result of the MMAS is 

accepted as an initial tour and tried to be improved by 2-opt and 3-opt local search 

heuristics. In Figure 3.4, the MMAS algorithm is shown. 

 

Max-Min Ant System Algorithm 

• Generate m ants and assign each of them to one node starting from node 1 

• Determine initial parameters α, β, ρ, and pheromone levels (τij ) on each edge 

for t = 1: iteration no 

for k = 1 : m 

• Compute the probability pk
ij of selecting next node 

• Determine length of the complete tour 

end 

Choose the ant gives best tour length Lbest 

for i = 1 : n 

• Update pheromone amounts on all of the edges with consideration 

of τmax and τmin bound conditions  

end  

end 
Figure 3.4 The structure of the MMAS algorithm 

 

2-opt is a local search heuristic in which two nodes are exchanged to obtain better 

solutions. From the definition, algorithm may be misunderstood and be confused 

with two-exchange move. At this point, 2-opt differs from two-exchange move with 

the following: in 2-opt move, sequence in one of the two parts of the modified route 

is arranged in a reverse way. 

 

 3-opt algorithm is a more comprehensive search algorithm than 2-opt move. In 3-

opt algorithm, number of the possible tours after removal of three edges is seven 

while in 2-opt move, there is only one other combination of the edges that would 
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yield a feasible solution after removal of two edges. In these approaches, it is aimed 

to improve the quality of the solution at the end of the search process. 

 

3.5 Computational Study 

 

Initial parameter settings that are considered in MMAS are shown in Table 3.1. In 

the application of the algorithm, it is decided to make 10 iterations for the MMAS, 

because it is found in the experiments that, the solutions found in different iterations 

converge at that point. Besides, as the problem size grows, elapsed time is increasing 

explicitly.  

 

As a start point, each ant is assigned to one node randomly, then for every ant, the 

route which has minimum length is found by use of Eq. (2.3) and Eq. (2.4). 

Pheromone update is implemented using Eq. (3.5), Eq. (3.6) and Eq. (3.7) with 

consideration of the parameters. This procedure is implemented at each iteration. 

 

Table 3.1 Initial parameters for the algorithm 

Parameter Value 

Impact of pheromones (α) 2 

Impact of distance (β) 1 

Pheromone evaporation rate (ρ) 0.2 

Initial pheromone level (τ) 100 

Number of ants (m) Number of cities (n) 

 

The first application is MMAS algorithm with 2-opt heuristic. With the best route 

taken from result of the MMAS, 2-opt algorithm is started. Nodes which will 

exchange with each other are determined randomly by generation of random 

numbers, then 2-opt procedure is applied to the solution. For 2-opt, iteration number 

is determined as (n*4000) to be able to make an extensive search.  

 

The second application is MMAS algorithm with 3-opt heuristic. The initial route 

for the 3-opt is result of the MMAS. Generated random numbers are used for 
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replacement of the nodes and then 3-opt procedure that searches seven different 

combination of the new tour is applied to the solution. For 3-opt, iteration number is 

determined as (n x 1500) according to result of the experimental study. In the 

experiment, at first, the iteration number is determined as (n x 4000) as in the 2-opt 

experiment. After an experiment with a small size of instance, it is decided to 

decrease the iteration number; because the computational effort is increased 

obviously. In the next step, the iteration number is set to (n x 3000) and to make a 

decision, two instances are examined and their results are used for interpretation. 

 

 In Figure 3.4 and 3.5, the experimental study for eil51 and pr76 instances can be 

seen. On the vertical axis, length of the solution is displayed. The horizontal axis 

indicates the iteration number. For each iteration, the best solution is displayed. Since 

the convergence starts early points, the algorithm spends too much computational 

effort and it is seen that iteration number must be decreased.  

 

 
Figure 3.4 The result of eil51 experiment 
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Figure 3.5 The result of pr76 experiment 

 

 
Figure 3.6 The result of kroB200 experiment 
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As the last experiment, kroB200 instance is examined. The iteration number is set 

to (n x 1000) in this experiment. In Figure 3.6, result of this study can be seen. After 

evaluation of the experiment, it is decided to increase the iteration number; because 

the convergence is not seemed to be started. Finally, iteration number is set to (n x 

1500). 

 

In application, algorithm is coded in MATLAB 7.7.0 software and tested on a 

computer with Pentium Dual-Core E2160, 1.80 GHz processor and 4 GB RAM. 

Twenty six symmetric TSP data sets with Euclidean distances are used in the 

computations and these data sets are taken from the TSPLIB (TSPLIB, 2008).   

 

3.6 Results 

 

As a start point to the proposed algorithm, result of the MMAS algorithm ensures 

an initial route and after that the result become more acceptable when 2-opt or 3-opt 

local search heuristic is implemented.  

 

Table 3.2 shows the results of the first algorithm applied to the well-known data 

sets. Test of each data set is made for five times then best, worst and average lengths 

are stated in Table 3.2. In this table, optimal means the optimal solution for the data 

set. Percentage deviation of the best found solution to the optimal solution is 

calculated as Eq. (3.10). After the implementation of the proposed algorithm, in the 

first application, it is found that the percentage deviations of the best solution to the 

optimal solution are between 0 and 8. 

 

Optimal
OptimalBestDev −

=%                            (3.10) 

 

Figure 3.7 is the graphical interpretation of the solutions found in the first 

computational study. OPTIMAL is the optimal solution of the instance, BEST is the 

best found solution with MMAS+2-opt, AVG is the average solution and the 

WORST is the worst solution found.  
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Table 3.2 Results of MMAS+2-opt 

TSP 

Instances 
Optimal Best Worst Average 

Deviation 

of Best Sol. 

wi29 27603.00 27603.00 28029.00 27885.60 0.0000 

dj38 6656.00 6664.00 6664.00 6664.00 0.0010 

eil51 426.00 434.75 439.52 437.80 0.0210 

berlin52 7542.00 7598.40 7904.50 7682.54 0.0070 

st70 675.00 686.11 693.65 689.75 0.0160 

eil76 538.00 573.07 579.39 576.00 0.0650 

pr76 108159.00 109150.00 116510.00 113826.00 0.0090 

kroA100 21282.00 22006.00 22166.00 22084.00 0.0060 

kroB100 22141.00 22923.00 23114.00 23035.00 0.0130 

kroC100 20749.00 21242.00 21438.00 21324.80 0.0470 

kroD100 21294.00 22187.00 22367.00 22311.60 0.0350 

kroE100 22068.00 22523.00 22632.00 22580.00 0.0240 

eil101 629.00 673.24 683.44 677.69 0.0700 

lin105 14379.00 14634.00 15077.00 14792.80 0.0180 

pr107 44303.00 44575.00 44659.00 44618.40 0.0590 

pr124 59030.00 59799.00 60293.00 60028.00 0.0100 

ch130 6110.00 6470.10 6560.20 6522.42 0.0470 

pr136 96772.00 101360.00 102420.00 101942.00 0.0340 

pr144 58537.00 60569.00 60569.00 60569.00 0.0400 

ch150 6528.00 6593.90 6657.90 6616.08 0.0190 

kroA150 26524.00 27593.00 28334.00 27944.00 0.0350 

kroB150 26130.00 27002.00 27565.00 27272.40 0.0330 

pr152 73682.00 75445.00 76395.00 75995.20 0.0800 

kroA200 29368.00 29939.00 30199.00 30070.00 0.0240 

kroB200 29437.00 31789.00 32096.00 31999.20 0.0420 

lin318 42029.00 44024.00 47045.00 45307.00 0.0210 
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As the second study, the MMAS+3-opt algorithm is applied to the data sets. Table 

3.3 shows the results of the application to the TSP instances. In the second 

application, it is found that the percentage deviations of the best solution to the 

optimal solution are resulted between 0.05 and 6 and the deviations from the best 

solutions are decreased on average. Figure 3.8 is the results of the solutions found in 

the second computational study.  

 

Figure 3.9 displays the percentage deviations of the first computational study. 

Percentage deviations of the BEST found solutions and AVG found solutions from 

the optimal solutions are shown as two distinct lines. From Figure 3.9, it can be seen 

that computations of wi29 and dj38 instances result with the lowest deviations and 

kroB200 instance set gives the highest deviations. Furthermore, it is noticeable that 

except a few instances, the percentage deviations are increasing as the instance size 

grows. 

 

In Figure 3.10, percentage deviations in the second computational study can be 

seen. From Figure 3.10, it can be seen that computations of dj38 instance result with 

the lowest deviations and kroB200 instance set again gives the highest deviations. 

Furthermore, it can be said again that except a few instances, the percentage 

deviations are increasing as the instance size grows.    

 

Figure 3.11 and Figure 3.12 display the comparison of the algorithms according to 

best found solutions and average found solutions. Except a few instances, 3-opt 

heuristic gives better results than the 2-opt heuristic. This can be explained as; 

searching area of the 3-opt move is wider than 2-opt move, so it can find better 

results with this searching process. 

 

In Figure 3.13, resulting tour of the berlin52 instance after MMAS is given. The 

left side of the tour is improved after the 2-opt heuristic, and the new tour is given in 

Figure 3.14. At last, result of the MMAS+3-opt is shown in Figure 3.15. Following 

figures, Figure 3.16 to Figure 3.24, are some example tours of the solutions found for 

st70, eil101 and kroA200 instances. 
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Table 3.3 Results of MMAS+3-opt 

TSP Instances Optimal Best Worst Average 
Deviation 

of Best Sol. 

wi29 27603.00 27872.36 28300.25 27987.45 0.0098 

dj38 6656.00 6659.43 6659.43 6659.43 0.0005 

eil51 426.00 437.56 438.59 437.93 0.0271 

berlin52 7542.00 7598.44 7847.57 7696.30 0.0075 

st70 675.00 684.14 690.43 687.33 0.0135 

eil76 538.00 558.55 576.31 567.58 0.0382 

pr76 108159.00 108881.96 110131.27 109691.20 0.0067 

kroA100 21282.00 21365.54 22018.26 21670.63 0.0061 

kroB100 22141.00 22362.35 22789.34 22619.24 0.0084 

kroC100 20749.00 21204.52 21336.80 21267.37 0.0256 

kroD100 21294.00 21566.69 22329.95 21910.73 0.0014 

kroE100 22068.00 22261.69 22634.21 22385.21 0.0128 

eil101 629.00 660.94 673.09 667.34 0.0508 

lin105 14379.00 14795.47 14919.66 14851.07 0.0290 

pr107 44303.00 44575.24 44840.79 44632.98 0.0391 

pr124 59030.00 59523.59 60292.71 59900.41 0.0047 

ch130 6110.00 6349.06 6525.69 6397.43 0.0374 

pr136 96772.00 99244.57 101946.89 100904.45 0.0039 

pr144 58537.00 58620.69 60501.81 59421.42 0.0385 

ch150 6528.00 6558.66 6629.74 6589.01 0.0147 

kroA150 26524.00 27545.14 27964.18 27778.45 0.0100 

kroB150 26130.00 26825.27 27494.79 27081.68 0.0266 

pr152 73682.00 74627.10 75966.30 75374.79 0.0619 

kroA200 29368.00 29799.92 30206.90 29978.13 0.0220 

kroB200 29437.00 31259.47 32061.15 31672.30 0.0128 

lin318 42029.00 43598.92 44388.35 44154.55 0.0088 
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Figure 3.13 Solution of the berlin52 instance with MMAS. Tour length is 8051.9. 

 
 

 
Figure 3.14 An example solution for berlin52 instance with MMAS+2opt. Tour length is 

7713. 



34 
 

 
Figure 3.15 An example solution for berlin52 instance with MMAS+3opt. Tour length is 

7598.4. 

 

 
Figure 3.16 An example solution for st70 instance with MMAS. Tour length is 746.86. 
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Figure 3.17 An example solution for st70 instance with MMAS+2opt. Tour length is 689.99. 

 

 
Figure 3.18 An example solution for st70 instance with MMAS+3opt. Tour length is 684.14. 
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Figure 3.19 An example solution for eil101 instance with MMAS. Tour length is 713.33. 

 
 

 
Figure 3.20 An example solution for eil101 instance with MMAS+2opt. Tour length is 

675.49. 
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Figure 3.21 An example solution for eil101 instance with MMAS+3opt. Tour length is 

670.63. 

 

 
Figure 3.22 An example solution for kroA200 instance with MMAS. Tour length is 32055. 
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Figure 3.23 An example solution for kroA200 instance with MMAS+2opt. Tour length is 

29843. 

 

 
Figure 3.24 An example solution for kroA200 instance with MMAS+3opt. Tour length is 

29982. 



39 
 

 In the recent studies related with ACO, ant colony algorithms for the time 

dependent vehicle routing problem with time windows (Balseiro, Loiseau & 

Ramonet, 2011); parallelized genetic ant colony systems (Chen & Chien, 2011), 

elite-guided continuous ant colony optimization (Juang & Chang, 2011) and mutated 

ant colony optimization (Zhao, Wu, Zhao & Quan, 2010) algorithms have been 

considered. From these studies, it can be seen that future research on ACO focuses 

on optimization problems that include stochasticity, dynamic data modifications, and 

multiple objectives (Dorigo et al., 2006). In addition, applications of real projects, 

studies with large-scale instances stand as challenging areas. It is aimed to make 

dynamic parameter choices and decisions to obtain better solutions in the future 

studies. 
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CHAPTER FOUR 

A HYBRID GENETIC ALGORITHM FOR TRAVELING REPAIRMAN 

PROBLEM 

 

4.1 Introduction to Traveling Repairman Problem 

 

Despite the fact that cost minimization is the common objective of product and 

service suppliers, customer oriented view is of vital importance in some cases. At 

this point, traveling repairman problem (TRP) is examined to ensure customer 

satisfaction. As the name suggests, in TRP, a repairman wants to serve all of the 

customers exactly once such that total waiting time of the customers is minimized. In 

other words, TRP is the problem of finding a Hamiltonian path in which the 

objective is to minimize total waiting time of all customers that are situated at 

different locations. Real life applications of TRP can be said as a delivery situation 

such as a pizza delivery problem, disk head scheduling, or the most important, a 

disaster situation. This problem could be viewed as a variation of the well-known 

TSP. In TRP, total waiting time of the customers denotes sum of the distances from 

an origin to every customer node (including origin) along the cycle (Fischetti, 

Laporte, & Martello, 1993).  

 

In the literature, this problem is also known with other names such as the 

minimum latency problem (MLP) which uses latency expression that means the 

distance travelled before first visiting that customer (Blum et al., 1994) and the 

deliveryman problem (DMP). TRP is considered as cumulative travelling salesman 

problem (CTSP) in (Bianco, Mingozzi, & Ricciardelli, 1993), and Lucena (1990) 

examined the problem under the more general time dependent travelling salesman 

problem (TDTSP) concept.  

 

4.2 Problem Definition 

 

TRP is a NP-hard problem as TSP, so a meta-heuristic solution approach is used 

to be able to solve real life problems in a reasonable time period. This problem is 
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based on customer needs; therefore the problem can be adapted into real life 

applications where customer satisfaction is important. An example of this can be a 

delivery problem in an emergency situation such as a disaster case. 

  

 
Figure 4.1 An illustration of TRP 

 

As it is stated before, the objective is to minimize waiting times of all customers. 

Figure 4.1 displays graphical TRP. Each customer is situated at a separate node, so 

the number of the vertices equals to the number of customers. Let ( )AVG ,=  be a 

directed graph where { }nV ,...,0=  is the vertex set where n corresponds to the 

number of customers and ( ){ }jiVjijiA ≠∈= ,,|,  is the arc set. Vertex 0 is the 

depot, dij denotes the distance between node i and node j. Waiting time of a customer 

depends on its position in the sequence of service. Here, waiting time or latency can 

be expressed as in Eq. (4.1). 

 

latency (j) = latency (i) + distance (i,j)                (4.1) 

 

where i precedes j. In TRP, the sum of distances from the depot to every customer 

node denotes total waiting time of the customers. Let wi be the waiting time of ith 

customer. Thus, the total waiting time of the customers becomes
{ }
∑
∈ 0\Vi

iw . Calculation 

of the total latency is shown in Eq. (4.2) where dij denotes only travelled distance.  

( )∑∑
= =

⋅+−
n

i
ij

n

j
dkn

1 1

1                               (4.2) 
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Here, k is the position of the customer in the sequence. Accordingly, 

representation of the objective function will be min ( )∑∑
= =

⋅+−
n

i
ij

n

j
dkn

1 1

1  

 

The mathematical formulation of the problem can be seen below with reference to 

Fischetti et al. (1993). This formulation considers returning to depot in contrast to the 

open Hamiltonian cycle problem structure. Here, node 1 is accepted as the depot and 

n-1 is the number of customers. cij is the cost or distance associated with arc (vi,vj). 

Variables xij take the value 0 if arc (vi,vj) is not used and the value n-k+1 if it 

appears in position k on the Hamiltonian tour. Binary variables yij are equal to 1 if 

and only if arc (vi,vj) appears on the cycle. It is assumed xij = yij = 0 whenever i = j. 

 

Minimize ij

n

i

n

j
ij xc ⋅∑∑
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                  (4.3) 
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{ }1,0∈ijy  ( )nji ,...,1, =                 (4.10) 

0≥ijx  and integer ( )nji ,...,1, =                (4.11) 
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In this formulation, objective function (4.3) gives the sum of distances from the 

depot to every customer node. Constraints (4.4), (4.5) and (4.10) are the assignment 

constraints that ensure each node is served only once. Constraints (4.6), (4.7) and 

(4.11) define a network flow problem. Constraints (4.8) and (4.9) ensure that xij can 

only take a positive value if vertex j follows vertex i on one of the subtours.  

 

4.3 Literature Review 

 

4.3.1 Solution Methods for Traveling Repairman Problem 

 

The problem is examined with different solution methods in the literature. Three 

types of studies can be mentioned here. First one is the exact algorithm approaches. 

The second one is the approximation methods and many of the studies on this 

problem focus on these two solution methods. Several exact solution algorithms and 

approximation algorithms are examined in the literature (Archer & Williamson, 

2003; Blum et al., 1994; Fischetti et al., 1993; Wu, Huang, & Zhan, 2004). The last 

one is the meta-heuristic approaches. There are a few studies that examine TRP with 

a meta-heuristic approach; therefore result of this study can only be compared with 

the results of these studies. Meta-heuristic approaches for TRP can also be found in 

(Ngueveu, Prins, & Calvo, 2010; Salehipour, Sörensen, Goos, & Bräysy, 2008, 2011; 

Silva, Subramanian, Vidal, & Ochi, 2012). 

 

4.3.1.1 Exact and Approximation Methods 

 

As exact and approximation algorithms, following studies can be referred to. In 

(Blum et al., 1994), TSP and TRP are compared with their characteristics, exact and 

approximation algorithms for TRP are proposed. Depth first search and dynamic 

programming are examined as the exact solutions; i- tree problem, constant factor 

approximation algorithm and positive-linear TDTSP approximation algorithm are 

examined as the approximation algorithms for the problem. The approximation factor 

is denoted as 144. In (Wu, Huang, & Zhan, 2004), exact algorithms are proposed to 

solve TRP. Developed algorithms are combinations of dynamic programming and 



44 
 

branch and bound techniques. In (Fischetti et al., 1993), a linear integer 

programming formulation is proposed. TRP is considered as CTSP in (Bianco et al., 

1993). Two exact algorithms that incorporate lower bounds provided by a 

Lagrangian relaxation of the problem are proposed. Lucena (1990) examines TRP 

under the more general TDTSP concept. A non-linear integer formulation, a branch 

and bound algorithm, is described. In (Archer et al., 2003), the authors give a 9.28 

approximation algorithm for the problem. To the best of the knowledge, the smallest 

approximation factor for TRP is proposed in (Chaudhuri et al., 2003) with 3.59. The 

most recent study about TRP seems as the study of Angel-Bello, Alvarez, & García 

(2013). Two integer formulations for the TRP are proposed and compared with 

previous studies, and the asymmetric case for TRP is also experimented. 

 

4.3.1.2 Meta-heuristic Approaches  

 

The first meta-heuristic approach for the TRP is introduced in (Salehipour et al., 

2008). In the study, GRASP is used as the construction phase and variable 

neighborhood descent (VND) is used as the improvement phase. Data sets are 

generated and algorithm is tested with these data sets. Results are obtained in a 

reasonable time period by comparison with the upper and lower bounds. In (Ngueveu 

et al., 2010), a memetic algorithm which is developed for cumulative capacitated 

vehicle routing problem (CCVRP) and its results are introduced. Although the 

algorithm is not specially designed for TRP, it is applied to TRP and it is stated that 

algorithm gives better results than the first meta-heuristic approach for the problem. 

Two different memetic algorithms are compared with the previous meta-heuristic 

and tested with the same data sets. Silva et al. (2012) proposed a meta-heuristic 

based on a greedy randomized approach for solution construction and iterated 

variable neighborhood descent with random neighborhood ordering for solution 

improvement. It is shown that algorithm gives better results than the previous meta-

heuristic studies in terms of percentage deviations of the solutions from the upper 

bounds. 
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4.4 Methodology of the Proposed Approach 

 

4.4.1 Genetic Algorithm 

 

Genetic algorithm is a meta-heuristic approach which belongs to the class of 

evolutionary algorithms. Genetic algorithms can be seen as the reflectors of the 

evolution process and this point of view has made an encouragement for solving 

optimization problems (Gen & Cheng, 1997). 

 

To explain the concept of the genetic algorithm, some special terms are mentioned 

here. In genetic algorithms, a solution element is named as individual or 

chromosome. An individual can be thought as the resulting tour in TRP. The group 

of solution elements constitutes a population. The solution quality of an individual is 

represented with the fitness value of that individual. A parent is the individual 

chosen from the population for recombination. The term crossover means 

recombination operation and a child emerges from recombination of the parents 

(Zäpfel et al., 2010). 

 

 
Figure 4.2 A general framework for genetic algorithms 
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In Figure 4.2, the genetic algorithm framework can be seen. Each of these phases 

can be constructed according to the features of the problem. Firstly, the algorithm 

starts with initialization phase in which the population is determined. Fitness values 

of the individuals are calculated in the evaluation phase. Following selection phase 

makes a selection among candidate individuals and after selection, a child is obtained 

from recombination of these parents. As a necessity of the evolution process, the 

child is mutated according to a probability and evaluated in conjunction with the 

parents on hand. If child gives a better solution than at least one of the parents, the 

child is added to the population and this process is named as survival. After 

replacement operation, the algorithm is terminated until a termination criterion is 

reached. This criterion can be a condition that is expected to be reached, or it can be 

a number of iterations. During this procedure, candidate solutions for recombination 

are chosen from the new population that is continuously updated. Detailed 

information on genetic algorithms can be found in (Goldberg, 1989; Mitchell, 1996; 

Reeves, 2003). 

 

4.4.1.1 Solution Representation 

 

In a genetic algorithm, it is often better to use problem dependent encoding type 

for the individual. For TRP, solution encoding is represented with a permutation 

vector of the vertices as in Figure 4.3. 

 

Following phases are basic process steps of genetic algorithms. In these phases, 

several methods can be used and various assumptions can be made to search the 

solution space. 
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Figure 4.3 An example of permutation of a solution with 10 

vertices 

 

4.4.1.2 Initialization 

 

Initialization phase is the starting point for the algorithm. The population that will 

be used in the algorithm is determined in this phase. It is remarkable that a 

population can be created randomly or it can be constructed with some heuristic 

approaches. In this study, a random generated population is used. Besides, not only 

the content but also size of the population is important. This size must be large 

enough to search the solution space and also small enough to reduce computational 

effort. Population size p used in this study varies in accordance with the size of the 

data sets. 

 

4.4.1.3 Evaluation 

 

In the evaluation phase, solution qualities of the individuals are determined. The 

fitness of a solution element depends on the structure of the problem. However, 

fitness value may be accepted as the objective function value. In TRP, fitness value 
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of an individual can be thought as the length of its tour. In the algorithm, it is 

preferred to use a proportional fitness value as in Eq. (4.12). f(i) is the fitness of the 

ith chromosome and li is tour length of the ith chromosome. 
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4.4.1.4 Selection 

 

After initial conditions are constituted, some of the individuals are chosen from 

the population according to a criterion. Selection procedures such as random 

selection, Roulette wheel selection (RWS), tournament selection, linear ranking etc. 

can be used for selection and in this study RWS procedure is implemented to the 

individuals. The main idea in RWS is that the more individual fits to objective the 

more it is chosen. Here, fitness values of the individuals are designed so as the 

proportion of an individual will reflect its selection probability. Eq. (4.13) displays 

probability of selection where p is population size. Two individuals which have the 

highest probability of selection are selected for recombination operation. After 

selection, selected individuals are called as parents. 
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                  (4.13) 

 

4.4.1.5 Recombination 

 

To be able to make a search with the solutions on hand, some differences must be 

created between them. In this phase recombination of the parents is implemented and 

this operation is also named as crossover. Common crossover types can be said as m-

point crossover, partial mapped crossover (PMX), order crossover (OX), cycle 

crossover (CX), and position based crossover etc. (Gen & Cheng, 1997). In the 

algorithm, order crossover is selected as the crossover operator. Figure 4.4 displays 
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order crossover procedure. Firstly, a segment form one of the parents is determined 

randomly; this segment is copied to child’s corresponding situation. From the second 

parent, nodes that are in this segment are removed, and empty places in child are 

filled with the remaining nodes in the second parent. 

 

 
Figure 4.4 Order crossover operation 

 

4.4.1.6 Mutation 

 

In the mutation phase new solution element, the child, is mutated according to a 

mutation rate. In the study, mutation operator is determined as two-exchange (swap) 

operation. In this operation, two nodes are picked randomly and changed with each 

other. After mutation operation, to make a search around the new solution, 2-opt 

heuristic is applied to child, again with a 2-opt rate. 

 

4.4.1.7 Replacement 

 

In the replacement phase, parents and child are evaluated according to their 

solution quality. There are different types of replacement. One of them is adding new 

solution to the population without evaluation of how much it fits to objective. 

Another one is to select best two of them and while they are added to the population, 

worst one is removed from the population. This approach is known as elitist and in 

this study, the elitist replacement procedure is chosen. 
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4.4.2 Details of Proposed Method 

 

In Figure 4.5 the proposed genetic algorithm structure can be seen, with refer to 

(Cergibozan & Tasan, 2012). Firstly, algorithm is initialized with a random 

generated population. In the evaluation phase, fitness values of candidate solutions 

are calculated considering the features of a minimization problem. After evaluation, 

candidates are selected for crossover operation. As the selection procedure, RWS is 

used in the algorithm. Order crossover is applied to selected parents as the crossover 

operator. After recombination of the parents, mutation operation is implemented 

according to mutation rate. Two-exchange operation is used as a mutation operator 

and new solution is kept in the population if there is an improvement. Result of the 

mutation operation is the start point of the exploration procedure. In the study, 2-opt 

local search heuristic is applied to the child if it will be added to the population. The 

algorithm is terminated when the capability criteria is reached.  

 

Genetic Algorithm 

• Create initial population 

• Calculate fitness values of candidate solutions 

for t = 1: iteration no 

o Select parents via selection operator 

o Recombine parents with the crossover operator 

o Mutate child with the mutation operator 

o Evaluate solution of the child 

if fitness(child) better than or equal to fitness(worst parent)   

 Implement 2-opt operation 

 Replace child with the worst parent 

end 

end 
Figure 4.5 Genetic algorithm structure of the proposed algorithm 
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4.5 Computational Study 

 

To the best of the knowledge, there are three meta-heuristic approaches that have 

been studied in the TRP literature: Salehipour et al. (2008, 2011), Ngueveu et al. 

(2010) and Silva et al. (2012); thus the computational study is based on comparison 

with these studies. Data sets used in the computational study are obtained from the 

authors of Salehipour et al. (2008). There are six types of data sets as 10, 20, 50, 100, 

200 and 500 customers and each of these sets has 20 instances. Salehipour et al. 

(2008) generated coordinates of these instances by using random numbers from a 

uniform distribution between 0 and 100 for instance sizes of 10, 20, 50, 100 and 200; 

and  between 0 and 500 for instance size of 500.  

 

4.5.1 Bounds for Traveling Repairman Problem 

 

To be able to evaluate results of the study, two bounds are needed: a lower bound 

and an upper bound. In the previous studies, nearest neighbour algorithm (NNA) is 

used as an upper bound. The algorithm starts with an initial point (depot) and 

searches for the nearest node to this point. By adding nodes to the solution, same 

process is repeated for the next added node, until the final tour is obtained. Result of 

this algorithm is not as good as it sounds for TRP; because in TRP, closeness of the 

nodes to each other is less important than their distance to the starting node. 

Therefore, result of the NNA is examined in the computational study for the 

comparison with the previous studies.  

 

In the computations, two types of lower bound are used. First lower bound which 

is shown in Eq. (4.14) is a multiplied form of the minimum spanning tree (MST), 

with reference to Salehipour et al. (2008, 2011). It is computed by sorting the edges 

of the MST of the graph in order of increasing weight -or distance- and multiplying 

each edge with the decreasing numbers starting with n. 
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                 (4.14) 
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However Ngueveu et al. (2010) determined two lower bound procedures and used 

the maximum value of these two lower bound equations. The first lower bound in 

Eq. (4.15) is the case that each customer is connected directly to the depot. R is the 

number of vehicles, and its value is 1 in TRP. 
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jwLB                  (4.15) 

 

Ngueveu et al. (2010) introduced a second lower bound procedure given in Eq. 

(4.16); but then improved it with a few modifications. Eq. (4.16) is equal to lower 

bound proposed in (Salehipour et al., 2008, 2011). In this equation, we is the weight 

of the eth shortest edge of graph G. Eq. (4.17) is the improved version of the lower 

bound given in Eq. (4.16). Here, variable we’ is the cost of the eth shortest edge 

incident to the depot whereas we’’ is the cost of the eth shortest edge between two 

customers. 
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After comparing two lower bound procedures in Eq. (4.15) and Eq. (4.17), 

Ngueveu et al. (2010) used the following Eq. (4.18) in computational study.  

 

( )21 ' , max LBLBLB =                             (4.18) 

 

In the application, algorithm is coded again in MATLAB 7.7.0 software and 

tested on the computer with Pentium Dual-Core E2160, 1.80 GHz processor and 4 

GB RAM. Best parameter combinations used in the computational study are 
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determined by computational experiments. Because as the problem size grows, 

elapsed time for the computation is increasing obviously and a parameter study was 

implemented to reduce the computational time.  

 

In the application of the algorithm, parameter sets are built according to the data 

sets used. It should be noted that parameters arranged similarly for each pair of data 

sets which are the data sets with sizes of 10 and 20 customers; data sets with sizes of 

50 and 100 customers; and data sets with sizes of 200 and 500 customers. This 

classification is made according to sizes of the corresponding pairs. It is seen in the 

experiments that in small instances (instances with 10 and 20 customers), algorithm 

doesn’t require much effort to find a good solution. In medium and large instances 

(instances with 50 and 100 customers, and instances with 200 and 500 customers, 

respectively), it is more difficult to find a good solution without getting caught in a 

local optimum. Therefore, the difference between parameter sets is based on 

intensifying the search process. 
 

Table 4.1 Parameters for instance sizes of 10 and 20 

Parameter TRP-10 TRP-20 

Population size (p) 300 300 

Crossover rate (p*0.8) (p*0.8) 

Number of GA iterations  250 250 

Mutation rate 0.2 0.2 
Number of two exchange 
iterations  10 10 

2-opt rate 0.5 0.5 

Number of 2-opt iterations  100 200 
 

For the instance sizes of 10 and 20 customers, parameters are displayed in Table 

4.1. Difference between two instance sets is only number of the 2-opt iterations. 
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Table 4.2 is for the instance sizes of 50 and 100. For these instances, population 

size is enhanced from 300 to 350 and number of GA iterations is increased from 250 

to 500 to avoid convergence of the solutions. 

 
Table 4.2 Parameters for instance sizes of 50 and 100 

Parameter TRP-50 TRP-100 

Population size (p) 350 350 

Crossover rate (p*0.8) (p*0.8) 

Number of GA iterations  500 500 

Mutation rate 0.2 0.2 
Number of two exchange 
iterations  10 10 

2-opt rate 0.5 0.5 

Number of 2-opt iterations  100 200 
 

In Table 4.3 parameter set for instance sizes of 200 and 500 can be seen. 

Population size and number of GA iterations are determined as 400 and 500, 

respectively.  

 
Table 4.3 Parameters for instance sizes of 200 and 500 

Parameter TRP-200 TRP-500 

Population size (p) 400 400 

Crossover rate (p*0.8) (p*0.8) 

Number of GA iterations  500 500 

Mutation rate 0.2 0.2 
Number of two exchange 
iterations  10 10 

2-opt rate 0.5 0.5 

Number of 2-opt iterations  100 200 
 

Main objective in the selection of these parameter sets is to decrease 

computational effort while size of the instance set is increasing. It is found from the 

experiments that for the instance sizes of 10 and 20, a population size of 300 and GA 
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iteration number of 250 is much enough to reach best solution. However for instance 

sizes of 50 and 100, population size is increased to 350 and number of GA iterations 

is determined as 500 to be able to search more space. For the instance sizes of 200 

and 500, population size of 350 doesn’t yield a good result contrary to a population 

size of 400. For each pair of data sets, 2-opt iteration number is determined such that 

while enhancing 2-opt iteration number from 100 to 200, this number will not affect 

the computation time of the algorithm significantly. 

 

4.6 Results 

 

In Table 4.4 result of the computational study for instance sizes of 10 and 20 can 

be seen. Here, Instance displays the instance set with its size and number, Result 

shows best found solution with the proposed hybrid genetic algorithm in terms of 

tour length, Opt Sol means optimal solution for that instance set with refer to 

Salehipour et al. (2011).   

 

As it is seen from Table 4.4, proposed algorithm can find optimum solutions in a 

reasonable time period; computation time of the algorithm is recorded as 26.8 

seconds on average for the instance size of 10, and 53.6 seconds on average for the 

instance size of 20. It should be noted that the proposed hybrid genetic algorithm 

gives better results for instance sets TRP-20-17 and TRP-20-18 in comparison with 

Salehipour et al. (2011). While this research is on progress, Silva et al. (2012) found 

same results; therefore optimal solutions for corresponding instance sets are reached 

and proved to be optimal with refer to Silva et al. (2012).  
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Table 4.4 Results in terms of best tour lengths for instance sizes of 10 and 20 

Instance Result Opt Sol* Instance Result Opt Sol* 

TRP-10-1 1303 1303 TRP-20-1 3175 3175 

TRP-10-2 1517 1517 TRP-20-2 3248 3248 

TRP-10-3 1233 1233 TRP-20-3 3570 3570 

TRP-10-4 1386 1386 TRP-20-4 2983 2983 

TRP-10-5 978 978 TRP-20-5 3248 3248 

TRP-10-6 1477 1477 TRP-20-6 3328 3328 

TRP-10-7 1163 1163 TRP-20-7 2809 2809 

TRP-10-8 1234 1234 TRP-20-8 3461 3461 

TRP-10-9 1402 1402 TRP-20-9 3475 3475 

TRP-10-10 1388 1388 TRP-20-10 3359 3359 

TRP-10-11 1405 1405 TRP-20-11 2916 2916 

TRP-10-12 1150 1150 TRP-20-12 3314 3314 

TRP-10-13 1531 1531 TRP-20-13 3412 3412 

TRP-10-14 1219 1219 TRP-20-14 3297 3297 

TRP-10-15 1087 1087 TRP-20-15 2862 2862 

TRP-10-16 1264 1264 TRP-20-16 3433 3433 

TRP-10-17 1058 1058 TRP-20-17 2913 2924 

TRP-10-18 1083 1083 TRP-20-18 3124 3150 

TRP-10-19 1394 1394 TRP-20-19 3299 3299 

TRP-10-20 951 951 TRP-20-20 2796 2796 

* (Salehipour et al., 2011) 

 

Table 4.5 displays result of the computational study for instance size of 50. In 

Table 4.5, Best Result column indicates best found solutions for each instance with 

the proposed method. Average Result column displays average found solutions after 

10 runs of the algorithm. Worst Result column displays worst found solutions. 

Computation time of the algorithm is recorded as 131.5 seconds on average for the 

instance size of 50.   
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Table 4.5 Results in terms of best tour lengths for instance size of 50 

Instance Best Result Average Result Worst Result 

TRP-50-1 12241 13214.5 13839 

TRP-50-2 11776 12688.3 13327 

TRP-50-3 12424 12578 12641 

TRP-50-4 13367 13646.4 13768 

TRP-50-5 12713 12713 12713 

TRP-50-6 12923 13278.8 13325 

TRP-50-7 11645 11758.3 11966 

TRP-50-8 13196 13196 13196 

TRP-50-9 13413 13574 13954 

TRP-50-10 13164 13464.3 13731 

TRP-50-11 12442 12691.6 13574 

TRP-50-12 10977 10977 10977 

TRP-50-13 12621 12789.7 12883 

TRP-50-14 13248 13324 13568 

TRP-50-15 12348 12411.6 12455 

TRP-50-16 12852 13082 13317 

TRP-50-17 12981 13098.6 13126 

TRP-50-18 13833 13929 13953 

TRP-50-19 11430 11430 11430 

TRP-50-20 12612 12612 12612 

 

Table 4.6 displays result of the computational study for instance size of 100. 

Computation time of the algorithm is recorded as 150.2 seconds on average for the 

instance size of 100.  
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Table 4.6 Results in terms of best tour lengths for instance size of 100 

Instance Best Result Average Result Worst Result 

TRP-100-1 34038 34185.6 34202 

TRP-100-2 34029 34550.9 35249 

TRP-100-3 33310 34219.7 34703 

TRP-100-4 35829 36590.4 36959 

TRP-100-5 35050 35054.6 35096 

TRP-100-6 35539 35776.8 35805 

TRP-100-7 35492 36332.5 37793 

TRP-100-8 33052 33503.3 34820 

TRP-100-9 35686 36520.3 38247 

TRP-100-10 32451 33070.1 34673 

TRP-100-11 36997 37068.7 37137 

TRP-100-12 33589 33611.9 33652 

TRP-100-13 34072 35525.7 36759 

TRP-100-14 32544 32570.1 32615 

TRP-100-15 35239 35412.9 35578 

TRP-100-16 35571 37369.3 37764 

TRP-100-17 35646 37237.6 39585 

TRP-100-18 34982 35230.2 35459 

TRP-100-19 37052 37062.6 37105 

TRP-100-20 34425 35122.9 35872 

 

Table 4.7 is result of the computational study for instance size of 200. 

Computation time of the algorithm is 198.4 seconds on average for the instance size 

of 200. After 10 runs; best, average and worst results are found for each instance and 

displayed in Table 4.7.   
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Table 4.7 Results in terms of best tour lengths for instance size of 200 

Instance Best Result Average Result Worst Result 

TRP-200-1 96744 98593.4 99720 

TRP-200-2 96761 98795.5 102800 

TRP-200-3 103165 103763.6 104115 

TRP-200-4 100134 101328 101782 

TRP-200-5 93629 94332.9 95142 

TRP-200-6 97092 99486.3 103158 

TRP-200-7 96827 98040.8 98955 

TRP-200-8 92734 95377.7 96427 

TRP-200-9 96471 97085 97847 

TRP-200-10 96813 97413.2 98848 

TRP-200-11 97108 97855.7 98793 

TRP-200-12 99376 99676 100280 

TRP-200-13 92021 92433.3 92773 

TRP-200-14 100941 101826 102546 

TRP-200-15 97720 98392.3 98994 

TRP-200-16 95769 96275.4 96588 

TRP-200-17 91934 93140.7 93841 

TRP-200-18 97370 98827.4 99927 

TRP-200-19 101879 102306 102664 

TRP-200-20 92702 93260.4 93460 

 

In Table 4.8 result of the computational study for instance size of 500 can be seen. 

Computation time of the algorithm is 834.8 seconds on average for the instance size 

of 500. Best, average and worst found results for each instance are shown in Table 

4.8.   
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Table 4.8 Results in terms of best tour lengths for instance size of 500 

Instance Best Result Average Result Worst Result 

TRP-500-1 2061157 2082818 2121861 

TRP-500-2 1997089 2024800 2042886 

TRP-500-3 2032307 2051226 2069874 

TRP-500-4 1999398 2008325 2015378 

TRP-500-5 2059741 2070344 2082894 

TRP-500-6 1978166 1981824 1988404 

TRP-500-7 2036629 2047500 2063391 

TRP-500-8 2015932 2027147 2040959 

TRP-500-9 1880586 1893596 1905268 

TRP-500-10 1894922 1911114 1936053 

TRP-500-11 1987380 2002446 2021224 

TRP-500-12 1947744 1954614 1965962 

TRP-500-13 2046734 2057870 2072609 

TRP-500-14 1965841 1976797 1996189 

TRP-500-15 1926182 1933058 1937938 

TRP-500-16 1977857 1987069 1992261 

TRP-500-17 1981645 1993192 2001370 

TRP-500-18 2019531 2047740 2060975 

TRP-500-19 1951256 1956057 1969933 

TRP-500-20 2016970 2023614 2032731 

 

The comparison of the proposed hybrid GA with the previous studies is given in 

Table 4.9.  NI indicates number of instances in each size of data set. N is the size of 

the data set. %UB and %LB columns display percentage deviations of the best 

solution from the upper and lower bounds and differ in accordance with the previous 

algorithms are deep or fast. HGA is the hybrid GA for the problem. HGA %LB 

column displays percentage deviation of the best solution from the first study’s lower 

bound. In the same way, HGA %LB’ displays percentage deviation of the best 

solution from the second study’s lower bound. HGA %UB indicates percentage 

deviation of the best solution from the upper bound. In the last column, T indicates 
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processing time of the hybrid GA in seconds. Percentage deviation calculations from 

lower bounds are different in the previous studies; percentage deviations remarked 

with (*) are found by use of Eq. (4.19), other percentage deviations are found by use 

of Eq. (3.10).  

 

From Table 4.9, almost all of the percentage deviations of the solutions from the 

lower bounds are lower in comparison to Ngueveu et al. (2010) and for the half of 

the instances; algorithm gives better results from Salehipour et al. (2008). In 

addition, hybrid GA has the advantage in terms of computational time in the 

instances with large sizes. The result of the study yields lower values in the 

percentage deviations of the solutions from the upper bounds, the reason of that can 

be explained with a little difference between studies may has been occurred in the 

upper bound computations.  

  

( )
b

abDeviation 100*% −
=  where b>a             (4.19) 

 
Figure 4.6 displays the percentage deviations from lower bounds for the instance 

size of 10. The following figures Figure 4.7, Figure 4.8, Figure 4.9, Figure 4.10 and 

Figure 4.11 are percentage deviations from lower bounds for the instance sizes of 20, 

50, 100, 200 and 500, respectively. 

 
In the same way, in Figure 4.12, percentage deviations from the upper bound for 

instance size of 10 is shown. From Figure 4.13 to Figure 4.17 percentage deviations 

for instance sizes of 20, 50, 100, 200 and 500 can be seen. 

 

From Figure 4.18 to Figure 4.23 pattern of the hybrid GA results are given in 

terms of tour lengths according to the instance number. The graph indicates both 

upper bounds and maximum of the lower bounds. It can be seen that hybrid GA 

results are between the lower bound and the upper bound. 
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Figure 4.6 Percentage deviations from lower bounds for instance size of 10  
 
 
 
 
 
 

 
Figure 4.7 Percentage deviations from lower bounds for instance size of 20  
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Figure 4.8 Percentage deviations from lower bounds for instance size of 50 
 
 
 
 
 
 

 
Figure 4.9 Percentage deviations from lower bounds for instance size of 100 
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Figure 4.10 Percentage deviations from lower bounds for instance size of 200 
 
 
 
 
 
 

 
Figure 4.11 Percentage deviations from lower bounds for instance size of 500 
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Figure 4.12 Percentage deviations from the upper bound for instance size of 10 
 
 
 
 
 
 

 
Figure 4.13 Percentage deviations from the upper bound for instance size of 20 
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Figure 4.14 Percentage deviations from the upper bound for instance size of 50 
 
 
 
 
 
 

 
Figure 4.15 Percentage deviations from the upper bound for instance size of 100 
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Figure 4.16 Percentage deviations from the upper bound for instance size of 200 
 
 
 
 
 
 

 
Figure 4.17 Percentage deviations from the upper bound for instance size of 500 
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CHAPTER FIVE 

A CASE STUDY FOR TRAVELING REPAIRMAN PROBLEM: ROUTING 

OF REPAIRMEN UNDER HEAVY SNOW CONDITIONS 

 

5.1 Problem Definition 

 

Routing problems has been widely studied in the context of combinatorial 

optimization. Serving to demand points as quickly as possible with consideration of 

minimizing total transportation cost can be seen as main objective in most of the 

routing activities from the viewpoint of product/service supplier; but from the 

viewpoint of the customers, it is also expected from the suppliers to minimize 

waiting time of the customer. As a result, routing problems may have different 

objectives according to how the problem is considered.  

 

In such a case that the priority of importance is given to customers, cost 

minimization stays behind this objective. In some situations, this is a necessity and 

none of the other objectives is considered except minimization of the total waiting 

time. The situation being talked of arises after a natural disaster where the health of a 

human is the main subject. A real life application of such a problem can be seen as 

routing of repairmen under heavy snow conditions. 

 

In severe winter weather conditions, especially in the residential areas located in 

high altitudes, the problem of transporting essential requirements to the residents 

appears frequently. When the roads that link settlements to each other are blocked 

because of snow, it becomes almost impossible to communicate with the residents at 

the region. Sometimes the roads remain closed for a few days; but sometimes it lasts 

for weeks in accordance with the knowledge acquired from an authority.  

 

The main objective in such a situation is to provide essential services such as 

health services as quickly as possible. Another major necessities emerges in this 

situation can be said as; fixing the power cut, the need for clothing, food and animal 

feeds, etc.  
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From one point of view, routing of repairmen under heavy snow conditions can be 

examined as a case study for the TRP; since the significance of such a situation is too 

high in respect to be able to meet human needs. 

 

5.2 Literature Review 

 

During the investigation process about routing of repairmen under heavy snow 

conditions, it is faced that the main problem which arises in heavy snow conditions 

mainly examined as an arc routing problem in spite of node routing problems such as 

TSP and TRP. Some of the studies related with heavy snow conditions are mentioned 

below. 

 

Lemieux & Campagna (1984) examined the snow ploughing problem as a 

Chinese postman problem and proposed a heuristic algorithm. In the study, authors 

accepted that there are two types of streets: main and secondary streets. Therefore, 

priorities of these streets are considered and an itinerary for the snow ploughing truck 

is determined. 

 

In Ghiani & Improta (2000), an exact algorithm for the hierarchical Chinese 

postman problem in which precedence relation is linear and each cluster is 

connected, is proposed. In the study, it is proved that algorithm solves mentioned 

problem in polynomial time. 

 

Korteweg & Volgenant (2006) studied Hierarchical Chinese Postman Problem, a 

Chinese Postman Problem in which the arcs has precedence relation. It is stated in 

that snow ploughing, where streets are divided according to importance and some 

streets must be serviced quickly than others, can be seen as real life application of the 

problem. It is also emphasized that the snow ploughing problem belongs to HCPP 

with traversal costs, because service is required to make the street available for 

traversal.  
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Perrier, Langevin & Campbell (2007) proposed a survey of optimization models 

and solution methodologies for the routing of vehicles for ploughing and snow 

disposal operations. Characteristics of vehicle routing problems for snow ploughing 

operations are classified and it is investigated that in which situations these 

characteristics should be considered. 

 

5.3 A Case Study 

 

The routing of a repairman under heavy snow conditions is examined as a case 

study for the TRP. In the case, Aşkale district of Erzurum province which is located 

in the East Anatolian Region of Turkey is examined. The average height above sea 

level of Aşkale district is about 1650 meters. This value is an expected high as the 

other residential areas in that region and Aşkale has 66 villages which have high 

altitudes geographically (Aşkale Kaymakamlığı, n.d.).  

  

Latitudes and longitudes of the settlements are derived from Yerel Yönetimler 

Portalı (n.d.), Türkiye Haritası (n.d.) and Google Earth software. Table 5.1 is a part 

of the distance matrix of the corresponding nodes with the Aşkale district which is 

thought as a depot. 

 

Due to the terrestrial climate, winter conditions are very troublesome especially 

for residents in the East Anatolian Region. When it snows, it causes closing of the 

roads between settlements and this situation frequently emerges in that region. In the 

case of routing a repairman, minimizing total waiting times of all residents is 

important. In Figure 5.1, the map representation taken from Google Maps (n.d.) of 

the settlements from Aşkale district can be seen.  

 

In the application, it should be noted that, some characteristics related with the 

routing of a repairman under heavy snow conditions are omitted and some important 

assumptions are made. These assumptions are listed below. 
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• Depot. The repairman starts from the Aşkale origin to its tour. 

 

• Customers. In the study, the settlements of Aşkale district are accepted as 

customers; so the repairman will operate to arrive at these settlements as 

quickly as possible. 

 
• Number of repairmen. In the application, it is decided to use only one 

repairman to study the problem as TRP. 

 

• Characteristic of the graph. In such a real situation, some of the roads that 

link settlements with each other may not exist. Therefore in this study, the 

graph is considered as complete, means that for each node it is possible to 

reach all other nodes. Accordingly, the distances between locations are 

computed with the latitude and longitude values of the locations to 

indicate direct connections. 

 
• Velocity of the vehicle on the cleaned road. In a real case, the vehicle of 

the repairman moves forward fast in the cleaned road in comparison with 

the unclean road. This feature affects service time of the vehicle to 

customers; nevertheless it is not considered in the application and it is 

accepted that the vehicle drives with the same velocity on both of these 

roads. 

 

5.4 Computational Study 

 

In the computational study, three different experiments are made. With the help of 

these experiments, it is tried to see the difference of the TSP and TRP. In the 

experiments, latitudes and longitudes of the settlements are used for distance 

computation.  

 

In the computations, Matlab Mapping Toolbox (MathWorks - MATLAB and 

Simulink for Technical Computing, n.d.) is utilized for spherical distance 

computation according to latitudes and longitudes by assuming the Earth as a sphere. 
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A symmetric distance matrix indicating distances between locations is computed. 

Since the size of the distance matrix is (67 x 67), only a small part of it is shown in 

Table 5.1 as an example. In Table 5.1, settlements used in the case are shown with 

the numbers in rows and columns. Here number one represents the origin point and 

Aşkale district is the origin point of this case. Other numbers represents the villages 

of the Aşkale district, and these villages are sequenced alphabetically. 

 

In the first experiment, the study is examined as a TSP and MMAS algorithm 

which is proposed in Chapter 3 is used as the solution approach. It is found that when 

only MMAS algorithm is applied, MMAS produces a solution with length of 296.49 

kilometres and the tour of this solution is shown in Figure 5.2. The axes in Figure 5.2 

display latitudes and longitudes of the settlements. 

 

As the second experiment, MMAS+2-opt algorithm is used in the computational 

study. The algorithm is run for five times and for each run, length of the solution and 

the time for computation are displayed in Table 5.2. The algorithm gives a result in 

56.98 seconds on average. The best found solution in the computation has length of 

267.37 kilometres and Figure 5.3 shows the resulting tour of the solution. 
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Figure 5.2 Best tour found with MMAS experiment 

 
Table 5.2 Results of the MMAS+2-opt experiment 

Number Result in Kilometres Time in Seconds 

1 272.1 55.75 

2 267.37 56.83 

3 272.47 58.97 

4 272.02 56.03 

5 275.09 57.33 

Average 271.81 56.98 
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Figure 5.3 Best tour found in the MMAS+2-opt experiment 
 

The third experiment is the MMAS+3-opt algorithm applied to the case. The 

algorithm is run for five times again and for each run, resulting tour length and the 

time for computation is displayed in Table 5.3. The algorithm results with 74.13 

seconds on average. Best found solution in the computation has length of 265.73 

kilometres and Figure 5.4 shows the resulting tour of the solution. 

 
Table 5.3 Results of the MMAS+3-opt experiment 

Number Result in Kilometres Time in Seconds 

1 268.87 73.03 

2 268.11 73.53 

3 265.73 76.62 

4 269.94 73.84 

5 267.32 73.62 

Average 267.99 74.13 
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Figure 5.4 Best tour found in the MMAS+3-opt experiment 

 

After TSP experiments, the best solution found in these MMAS+2-opt and 

MMAS+3-opt algorithms is examined as if the problem is TRP. In other words, since 

the objective of TSP is different than objective of TRP, the objective function of the 

best tour found in TSP is converted into the objective of minimizing total waiting 

times of the customers situated at different locations. Thus, the best found solution 

which gives a length of 265.73 kilometres in the MMAS+3-opt experiment is 

examined for this purpose. The objective function of the tour becomes the total 

latency of all settlements. The result of the converted objective value of this solution 

is found as 8910.9 kilometres.  

 

In the fourth experiment, the case study is studied as a TRP. Graph of the paths 

between locations is accepted as complete. Therefore it results with the expression 

that there is a path for each village to all of the villages. As the solution approach, 

hybrid GA which is proposed for TRP in the previous chapter is used for the case of 

routing a repairman under heavy snow conditions. Parameters that are used in the 
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computational study are shown in Table 5.4. For this case, parameter values are 

determined as the same with the parameter values for TRP-100 instance set.  

 
Table 5.4 Parameters used in hybrid GA algorithm for the case 

Parameter Value 

Population size (p) 350 

Crossover rate (p*0.8) 

Number of GA iterations  500 

Mutation rate 0.2 
Number of two exchange 
iterations  10 

2-opt rate 0.5 

Number of 2-opt iterations  200 
 

After the computational study, resulting tour of the TRP study is given in Figure 

5.5. After five run, objective function values of the resulting tours and computation 

times are displayed in Table 5.5. The algorithm gives a result in 126.2 seconds on 

average. The best objective function value is found as 8071.1 kilometres. 

 
Table 5.5 Results of the hybrid GA experiment 

Number Result in Kilometres Time in Seconds 

1 8389.1 122 

2 8071.1 136 

3 8127.5 140 

4 8127.5 122 

5 8402.9 111 

Average 8223.6 126.2 
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Figure 5.5 Best tour found in the hybrid GA experiment 

 

5.5 Results and Discussion 

 

In the case, at first, the problem is examined as a TSP and MMAS algorithm is 

applied to the case. After that, to make a local search around the solution, MMAS+2-

opt algorithm is applied to the problem. The length of the solution is decreased when 

MMAS+2-opt algorithm is used. MMAS+3-opt algorithm is then applied to the 

problem to be able to search more space in the solution area. It is seen that 

MMAS+3-opt algorithm gives better results on average in comparison with the 

MMAS+2-opt algorithm. However in MMAS+3-opt experiment, the average 

computational time is higher than MMAS+2-opt experiment.  

 

After these experiments, it is investigated that if the best found solution in the 

TSP experiments will also give a good result in case of the problem is examined as 

TRP. The objective function of the problem is modified to minimize total latency of 
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all customers and after this modification; objective function value of the best found 

solution in TSP experiments is increased as expected. 

 

As a second approach, the case is studied as a TRP and the hybrid GA algorithm 

is applied to the problem. After application, it is found that this approach yields 

better result than the previous assumption of modifying the objective function. 

 

At the end of experimental studies, it can be said that the last experiment in which 

the problem is examined as TRP and hybrid GA is used to solve this problem, is the 

most suitable approach to serve the settlements quickly. 

 

The result means that, if the case was examined as TSP and the solution was used 

for the aim of minimizing total latency of the settlements; it would not be a good 

decision. Because, when the problem is examined as TRP, it gives a solution with 

8071.1 kilometres. Therefore it gives a solution with 8910.9 kilometres in the TSP 

case with modified objective function. 

 

According to the results of these experiments, the assumption of the graph is 

complete will be a useful and faster method to find a solution. In such a situation, the 

only data needed will be the coordinates of the settlements.  

 

On the other hand, in a real case, number of paths that connect settlements with 

each other is not as many as in the complete graph. There may not be a road between 

pair of the villages. Thus, in a real situation, some clustering methods will be useful 

for finding a more practical solution. 

 

The routing operations under heavy snow conditions are common problems for 

many areas in the world. In the literature, proposed approaches for solving a problem 

about such a snow disaster situation have focused on assuming it as an arc routing 

problem - especially as a Chinese postman problem. According to a knowledge 

acquired from an authority, in a real snow removal operation, the main and primary 

objective is to clean the highway and the main transportation road; so it will be easier 
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and faster for each of the villages to reach to the district, or the opposite. However, 

the main objective of this case study is to find out that if TRP is an appropriate 

problem for representing such a situation and if it can be used in other disaster 

circumstances. It is understood that such a case can be seen as a TRP with a few 

modifications and future research will be in this direction. In the future, assumptions 

made in the case will be decreased and the case will be studied according to its 

special constraints. 
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CHAPTER SIX 

CONCLUSION 

 

In general, the main objective for every part of a supply chain is to implement its 

activities from the viewpoint of cost minimization. The cost term used here can be 

thought as the amount of time, money, resource etc. While the aim of a supplier is to 

minimize its total cost that arises from operations of making and delivering the 

product/service to customers; a customer wants to have the corresponding 

product/service as soon as possible, with a low price and high quality. These aims 

may change according to special situations. Although the main objective varies from 

the point of view, in general, it can be said that objectives are in the same direction 

for both of the sides of a supply chain. 

 

To reach the objective of transportation costs minimization, two types of 

transportation problems are examined in this thesis. The first one is the well-known 

traveling salesman problem (TSP). From the research on the TSP literature, it was 

decided to implement an ant colony optimization based algorithm to TSP; because 

the method is relatively new and successful in the context of combinatorial 

optimization. In this study, a MMAS algorithm combined with two local search 

heuristics is proposed. It is seen that while MMAS ensures an initial solution; 2-opt 

and 3-opt local search heuristics effectively improve the solution obtained from 

result of MMAS. Proposed algorithm is applied to well-known TSP instances and the 

performance of the approach is found to be near optimal; percentage deviations from 

optimal solution vary between %0 and %8 according to the results. Therefore, it is 

possible to apply different search algorithms to the problem; better search procedures 

will be also investigated in the future studies.  

  

The second problem examined is the traveling repairman problem (TRP). An 

evolution based meta-heuristic, genetic algorithm (GA), is applied as the solution 

approach for the problem. In the study, a hybrid algorithm which comprises from a 

GA and a 2-opt local search heuristic is proposed to solve TRP. With this study, it is 

aimed to develop an efficient and effective algorithm that can be applicable to real 
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life problems. Proposed algorithm is applied to a set of instances that have been 

studied previously. In general, the performance of the approach can be said to be 

competitive with the previous studies in the literature, from the viewpoint of 

percentage deviations from the lower bounds. Computation time of the algorithm is 

also seems as reasonable according to previous studies. 

 

Since TRP is an adaptable problem to real life examples, a case study for TRP is 

created and examined as the last study. The case study is thought as a snow disaster 

situation. Aşkale district of Erzurum city from the East Anatolian Region in Turkey 

is accepted as the origin point for a repairman and demand points are the villages of 

this district. In this conceptual application, the repairman tries to reach all of the 

villages as soon as possible to meet the residents’ requirements. Such a snow disaster 

situation is mainly studied as a snow removing problem and this problem is 

examined then as an arc routing problem in the literature. Nevertheless in this study, 

the objective is considered as meeting human needs quickly.  

 

In the application, some assumptions are made; therefore TRP is examined with 

the aim of minimizing total latency of the customers located in different settlements. 

At first, the problem is examined as TSP then MMAS algorithm is applied to the 

case. After that, MMAS+2-opt and MMAS+3-opt algorithms are applied. It is found 

that MMAS+3-opt algorithm yields best results on average. The question of “What 

would be the result when the objective function of the best found tour in TSP 

experiments is converted to latency minimization?” is answered then by modifying 

the objective function of the resulting tour. As the last study, the problem is 

examined as TRP and hybrid GA is applied to the case. After evaluation of the 

results, it is seen that the TRP approach is the most suitable approach for the case and 

it yields better results than the converted solution found in the TSP experiment.  

 

In conclusion, this thesis aims to focus on two fundamental problems related to 

transportation that could arise in every stage of supply chain systems. These 

problems are the well-known TSP and a more recent problem, TRP, compared to 

TSP. In the investigation process of these problems, it is realized that these problems 
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are the main transportation problems only differ in the point of view. While TSP 

considers a supplier oriented view; other one TRP considers a customer oriented 

view. Both of two problems have importance in the transportation activities. 

Therefore, in this thesis, solution approaches are proposed for these problems.  
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