

DOKUZ EYLUL UNIVERSITY

GRADUATE SCHOOL OF NATURAL AND APPLIED

SCIENCES

RESEARCH OF MIND SHIFT IN TESTING

METHODOLOGIES AND APPROACHES IN THE

WORLD OF CLOUD TECHNOLOGIES

By

Tufan ERDİNÇ

March, 2013

İZMİR

RESEARCH OF MIND SHIFT IN TESTING
METHODOLOGIES AND APPROACHES IN THE

WORLD OF CLOUD TECHNOLOGIES

A Thesis Submitted to the

Graduate School of Natural and Applied Sciences of Dokuz Eylul University

In Partial Fulfillment of the Requirements for the Degree of Master of Science

in Computer Engineering, Computer Engineering Program

by

Tufan ERDİNÇ

March, 2013

İZMİR

iii

ACKNOWLEDGEMENTS

I would like to thank to my advisor Asst.Prof.Dr. Adil Alpkoçak for his

continuous help, suggestions, patience, guidance and support throughout all the

phases of this thesis.

I would like to also thank my wife, and my two little sons, Emir and Ruzgar, who

supported me all through this thesis preparation and for believing in me and being

always with me.

Furthermore I would like to thank my family, my father, my sister who helped me

registering for each semester, delivering documents and forms to school and being a

power of attorney for me on these matters

Finally, I would like extend my sincere gratitude to all the staff and academic

personnel of the Computer Engineering Department and Graduate School of Natural

and Applied Sciences for their understandings and support in this, one of the longest

lasting Master of Science degrees of the school history.

Tufan ERDİNÇ

iv

RESEARCH OF MIND SHIFT IN TESTING METHODOLOGIES AND

APPROACHES IN THE WORLD OF CLOUD TECHNOLOGIES

ABSTRACT

The cloud platform is getting more and more attractive to the computing world,

enterprises and software developers. Existing software development frameworks and

methodologies are being reshaped to fit this mind shift in computing world. Software

development lifecycle activities are being morphed into actions that will support this

mind shift. Testing tasks that are being placed within the software development

methodologies should comply and support this new world of cloud computing.

This is intended to be a survey of existing test methodologies for cloud-based

applications and services with pros and cons of each approach. We will touch base to

cloud computing by telling the importance of cloud computing for enterprises, the

types of cloud computing platforms used commonly and their attributes. Tools that

can be used for cloud-based application testing are reviewed under different

categories of testing. A sample Windows Azure application is also being tested with

Visual Studio Web Test environment and Selenium Test Suite components to

demonstrate the capabilities of these tools.

Finally, suggestions will be proposed in the conclusion chapter. New approaches

such as Testing in Production (TiP), Synthetic Testing of Production code will be

proposed as a better way to verify quality of cloud applications. Big enterprise

software development companies, such as Microsoft is already integrating TiP

methodologies into their cloud based service development cycles and this is

suggested throughout the research.

Keywords: Cloud computing, Testing in cloud, Windows Azure, Visual Studio Web

Testing, Selenium Testing Framework

v

BULUT BİLİŞİM TEKNOLOJİLERİNDE DEĞİŞEN TEST

METODOLOJİLERİ VE YAKLAŞIMLARININ ARAŞTIRILMASI

ÖZ

Bulut bilişim platformları günümüz şirketleri ve yazılım geliştiricileri için gittikçe

önem arz eden bir mahiyet kazanmaktadır. Var olan yazılım geliştirme yöntemleri ve

kalıpları bu düşünce yapısına uygun olarak yeniden şekillenmektedir. Yazılım

geliştirme hayat döngüleri bu yeni anlayışı destekleyecek biçimde değiştirilmekte ve

uyarlanmaktadır. Yazılım geliştirme yöntemlerinin içerisinde geleneksel anlamda yer

alan yazılım kalite kontrol uygulamaları da bu değişen ve yeniden şekillenen anlayışa

göre hareket etmelidir.

Bu çalışmada, bulut bilişim tabanlı uygulamaların kalite kontrol yöntemlerinin ve

yaklaşımlarının, her bir yaklaşımla elde edilen faydaların ve eksikliklerin

incelenmesi hedeflenmiştir. Bu yaklaşımları desteklemek üzere yazılım kalite kontrol

araçlarının nasıl kullanılabileceği, neleri karşılayıp, neleri karşılayamadığı, Windows

Azure örnek bulut uygulaması üzerinden incelenerek, söz konusu araçları kapsayan

örnek test uygulamaları ile beraber değerlendirilmiştir.

Anahtar sözcükler: Bulut bilişim, Yazılım kalite kontrol yönetimi, Bulut

uygulamalarının kalite kontrolü, Windows Azure, Visual Studio Web Tools,

Selenium Test Suite

vi

CONTENTS

 Page

M.SC THESIS EXAMINATION RESULT FORM ii

ACKNOWLEDGEMENTS iii

ABSTRACT iv

ÖZ v

LIST OF TABLES ix

LIST OF FIGURES x

CHAPTER ONE- INTRODUCTION 1

1.1 What’s Cloud Computing? 1

1.1.1 Benefits of Cloud Computing and Architecture 1

1.1.2 Example Cloud Platforms 3

 1.1.2.1 Google Web Services 3

1.1.2.1.1 Google App Engine 4

 1.1.2.2 Amazon Web Services 4

1.1.2.3 Windows Azure 6

1.1.2.3.1 Windows Azure Components 7

1.2 Goal of This Work 10

1.3 Thesis Organization 11

CHAPTER TWO – DESIGNING AND TESTING FOR CLOUD 12

2.1 Designing for Cloud Computing 12

2.1.1 Scalable Data Storage Techniques 12

2.1.2 MapReduce Programming 13

2.1.3 Rich Internet Applications (RIA) 15

2.1.4 Summary 17

2.2 Testing for Cloud Computing 18

2.2.1 Functional Testing 20

vii

2.2.2 Non-Functional Testing 22

2.3 Testing in Production (TIP) 25

2.4 Challenges of Testing Cloud Applications 27

2.5 Conclusion 28

CHAPTER THREE - TOOLS AND METHODS FOR CLOUD TESTING 29

3.1 A Sample Cloud Application to Be Tested 29

3.1.1 Preparing Development Environment 29

3.1.1.1 Install Windows Azure SDK for .NET 29

3.1.1.2 Set up a Windows Azure Account 30

3.1.1.3 Create a Windows Azure Storage Account 30

3.1.1.4 Creating Cloud Service in Windows Azure 33

3.1.1.5 Creating a Web Site in Windows Azure 35

3.1.2 Developing Windows Azure Application 37

3.1.3 Deploying Windows Azure Application 39

3.2 Testing the Sample App with Visual Studio 41

3.2.1 Web Performance Tests 41

3.2.2 Creating and Configuring Web Tests 42

3.2.2.1 Recording a Web Performance Test 43

3.2.3 Running and Observing Results for Web Performance Tests 46

3.2.4 Coded Web Performance Tests 46

3.2.4 Load Tests 48

3.2.4.1 Creating and Configuring Load Tests 48

 3.2.4.1.1 Scenarios and Think Times 49

 3.2.4.1.2 Load Patterns 50

 3.2.4.1.3 Test Mix Model 51

 3.2.4.1.4 Test Mix 52

 3.2.4.1.5 Network Mix 53

 3.2.4.1.6 Browser Mix 53

 3.2.4.1.6 Performance Counter Sets 54

 3.2.4.1.7 Run Settings 54

viii

3.2.4.2 Executing Load Tests and Viewing Results 56

3.3 Summary for Visual Studio Tools 57

3.4 Testing the Sample App with Selenium 58

3.4.1 Brief history of the Selenium Project 58

3.4.2 Selenium RC Architecture 59

3.4.2.1 Proxy Injection 60

3.4.3 Building a Web Test with Selenium IDE 62

3.4.4 Example of Selenium Web Driver API 65

3.4.5 Creating and Running Selenium Test 66

3.5 Summary for Selenium Suite 71

CHAPTER FOUR - CONCLUSION 73

REFERENCES 75

ix

LIST OF TABLES

 Page

Table 2.1 Silverlight XAML code for “Hello World” application 16

Table 2.2 Code Behind for “Hello World” application 17

Table 2.3 Test environment in cloud 24

Table 2.4 TiP methodologies 25

Table 2.5 Main Testing challenges for Cloud applications 27

Table 3.1 XML code behind for web performance test 45

Table 3.2 Coded Web performance test in Visual Studio 47

Table 3.3 Sample Selenium WebDriver code 65

Table 3.4 Selenium WebDriver code to test cloud application 69

x

LIST OF FIGURES

 Page

Figure 1.1 Six phases of computing paradigm 2

Figure 1.2 Windows Azure platform 7

Figure 1.3 Windows Azure provide compute and storage services in the cloud 8

Figure 2.1 RIA technologies 15

Figure 2.2 RIA technologies fill the gap between rich and reach applications 16

Figure 2.3 A new approach required to testing cloud applications 20

Figure 3.1 Web Platform Installer to install Windows Azure SDK for Visual

Studio 30

Figure 3.2 Storage screen on Windows Azure 31

Figure 3.3 Creating storage account in Windows Azure 32

Figure 3.4 Managing keys for storage account in Windows Azure 32

Figure 3.5 “Primary/Secondary Storage Keys” in Windows Azure 33

Figure 3.6 Creating a cloud service in Windows Azure 34

Figure 3.7 Options for creating cloud service in Windows Azure 35

Figure 3.8 Creating a new web site in Windows Azure 36

Figure 3.9 Create web site options in Windows Azure 36

Figure 3.10 Creating a Web Application in Visual Studio 2012 37

Figure 3.11 Internet project template selections in Visual Studio 2012 38

Figure 3.12 Sample application home screen 38

Figure 3.13 Screenshot of the “Web Sites” tab in Windows Azure 39

Figure 3.14 Screenshot of the “Web Site Dashboard” in Windows Azure 40

Figure 3.15 Screenshot for Visual Studio publish web wizard 36

Figure 3.16 Creating new Test Project in Visual Studio 43

Figure 3.17 Result of Web Performance Test recording in Visual Studio 44

Figure 3.18 Results of the execution of Web Performance Test 46

Figure 3.19 First page of “New Load Test Wizard” 49

Figure 3.20 Load Pattern options in “New Load Test Wizard” 50

Figure 3.21 Test mix model in “New Load Test Wizard” 52

Figure 3.22 Network mix selection in “New Load Test Wizard” 53

xi

Figure 3.23 Browser distribution page for New Load Test Wizard 54

Figure 3.24 Run settings page for “New Load Test Wizard” 55

Figure 3.25 Test Results for Load Test 56

Figure 3.26 Load Test monitor in Visual Studio 56

Figure 3.28 Selenium RC Architecture 61

Figure 3.29 Selenium Project download page 63

Figure 3.25 Test Results for Load Test 56

Figure 3.26 Load Test monitor in Visual Studio 56

Figure 3.28 Selenium RC Architecture 61

Figure 3.29 Selenium Project download page 63

Figure 3.30 Snapshot of Selenium IDE 63

Figure 3.31 Available commands for Selenium context-menu 67

Figure 3.32 Selenium IDE after the recording stopped 68

Figure 3.33 Running tests in Selenium IDE 69

1

CHAPTER ONE

INTRODUCTION

1.1 What's Cloud Computing?

Cloud computing is the new way of presenting services over the Internet in a

dynamically scaled and mostly virtualized way (Furht & Escalante, 2010). It is most

of the times recognized as resources are virtual and limitless and the details of the

physical systems on which software runs are abstracted from the user. The term

"cloud" makes reference to the two essential concepts as described by Sosinsky (chap

1, 2011).

Abstraction: Cloud computing abstracts the details of system implementation

from users and developers. Applications run on physical systems that aren't

specified, data is stored in locations that are unknown, administration of systems is

outsourced to others, and access by users is ubiquitous.

Virtualization: Cloud computing virtualizes systems by pooling and sharing

resources. Systems and storage can be provisioned as needed from a centralized

infrastructure, costs are assessed on a metered basis, multi-tenancy is enabled and

resources are scalable with agility.

1.1.1 Benefits of Cloud Computing and Architecture

Basically two types of cloud computing is identified, one based on where the

services are deployed and the other based on the type of the service model.

According to the deployment model, the type of cloud is defined on where the cloud

is located and for what purpose, i.e. public, private and hybrid clouds.

The service model defines the type of service that the service provider is offering,

best known are Software as a Service, Platform as a Service and Infrastructure as a

2

Service. The service model builds on one another and defines what a vendor must

manage and what the client's responsibility is (Sosinsky, 2011).

Cloud computing has been an umbrella term to describe a category of

sophisticated on-demand computing services. Figure 1.1 shows six phases of

computing paradigms as described by Furht & Escalante (chap. 1, 2010).

Figure 1.1 Six phases of computing paradigm

3

In the first phase users shared powerful mainframes using dummy terminals, in

phase 2, stand-alone PCs became so powerful that it met majority of users' needs. In

the next phase, PCs, laptops and servers were connected together through local

networks to share resources and increase performance. In Phase 4, local networks

were connected to other local networks forming a global network such as the internet

to utilize remote applications and resources. In Phase 5, grid computing provided

shared computing power and storage through a distributed computing system. In

phase 6, cloud computing further provides shared resources on the Internet in a

scalable and simple way.

1.1.2 Example Cloud Platforms

There are a couple of illustrative examples of cloud computing services which

will be referred throughout this thesis. These examples illustrate the fact that ‘cloud

computing’ is becoming a mode of IT delivery. The cloud stack comprises layers

from infrastructure up to business process in the same way the IT stack does.

The aim is to direct the aim of this work thesis towards tangible examples and to

enable a quicker understanding of cloud computing by examining these services.

1.1.2.1 Google Web Services

Google is the prototypical company of cloud computing services and supports

some of the largest web sites and services in the world. At the center of Google’s

core business is the search technology. Google uses automated technology to index

the Web and makes the search service available to users as a standard search engine

and to developers as a collection of special search tools limited to various areas of

content.

Google is offering Google Apps for Business which includes a bundle of services,

such as e-mail and cloud storage and operates services such as Google Maps, Google

Finance, Google Voice and Google App Engine.

4

Google App Engine lets you host your own web applications on Google’s

infrastructure. However your application is not hosted on a single server and there

are no servers to maintain. The background of hosting task is invisible to the user so

that the user is free of the infrastructure, capacity manager, and load balancing tasks

that enterprise typically have to manage. You can serve your app from your own

domain name and share your application or limit access to members of your

organization.

As with most cloud-hosting services you pay for what you use in terms of storage,

bandwidth and computational resource.

1.1.2.1.1 Google App Engine. Google App Engine lets you run your own web

application on Google’s infrastructure. Application doesn’t run on a single server, it

might even involve more than one server. The infrastructure is totally abstracted

from the application and Google App Engine is totally free of the infrastructure,

capacity management, and load balancing tasks that enterprise typically has to

manage. Application can be served from owned domain name using Google Apps or

served from a free sub-domain owned by Google. It supports applications written in

several programming languages. Application developers have access to persistent

storage technologies such as the Google File System (GFS) and Bigtable, a

distributed storage system for unstructured data. The Java version supports

asynchronous non-blocking queries using the Twig Object Datastore interface.

1.1.2.2 Amazon Web Services

Amazon.com is one of the most important and heavily trafficked Web Sites in the

world. It provides a vast selection of products using an infrastructure based on Web

services. As Amazon.com has grown, it has dramatically grown its infrastructure to

accommodate peak traffic times. Over time the company has made its network

resources available to partners and affiliates, which also has improved its range of

products.

5

Starting in 2006, Amazon.com made its Web service platform available to

developers on a usage-basis model. Through hardware virtualization on Xen

hypervisors, Amazon, com has made it possible to create private virtual servers that

you can run worldwide. These servers can be provisioned with almost any kind of

application software you might envisage, and they tap into a range of support

services that not only make distributed cloud computing applications possible, but

make them robust. Some very large Web sites are running on Amazon.

Amazon Web Services is based on SOA standards, including HTTP, REST, and

SOAP transfer protocols, open source and commercial operating systems, application

servers, and browser-based access. Virtual private servers can provision virtual

private clouds connected through virtual private networks providing for reasonable

security and control by the system administrator.

AWS has a great value proposition: You pay for what you use. While you may not

save a great deal of money over time using AWS for enterprise class Web

applications, you encounter very little barrier to entry in terms of getting your site or

application up and running quickly and robustly. It represents the largest pure

Infrastructure as a Service (IAAS). It is comprised of the following components.

Amazon Elastic Compute Cloud (EC2): It is the central application in the AWS

portfolio and enables the creation, use and management of virtual private servers

running the Linux or Windows operating system over a Xen hyper-visor. Amazon

Machine Instances are sized at various levels and rented on a computing/hour basis.

Spread over data centers worldwide, EC2 applications may be created that are highly

scalable, redundant and fault tolerant.

Amazon Simple Storage System (S3): It is online backup and storage system and

allows you to store data objects ranging in size from 1 byte up to 5GB in a flat

namespace.

6

Amazon Elastic Block Store (ESB): It is a system for creating virtual disks

(volume) or block level storage devices that can be used for Amazon Machine

Instances in EC2.

Amazon SimpleDB: It is a structured data store that supports indexing and data

queries to both EC2 and S3. SimpleDB isn’t a full database implementation; it stores

data in “buckets” and without requiring the creation of a database schema.

Amazon Relational Database Service (RDS): It allows you to create instances of

the MySQL database to support your Web sites and the many applications that rely

on data-driven services. RDS provides features such as automated software patching,

database backups and automated database scaling via an API call.

Amazon CloudFront: It is an edge-storage or content-delivery system that caches

data in different physical locations so that user access to data is enhanced through

faster data transfer speeds and lower latency.

1.1.2.3 Windows Azure

Windows Azure is a cloud services operating system that serves as the

development, service hosting, and service management environment for the Azure

Services Platform, which provides developers with on-demand compute and storage

to host, scale, and manages Web applications on the Internet through Microsoft data

centers.

It is an operating system in the cloud providing services for hosting, management,

and scalable storage with support for simple blobs, tables, and queues, as well as a

management infrastructure for provisioning and geo-distribution of cloud-based

services, and a development platform for the Azure Services layer.

7

Figure 1.2 Windows Azure platform

As Figure 1.2 shows The Windows Azure platform today can be seen as having

four parts:

 Windows Azure: A Windows environment for running applications and

storing data on computers in Microsoft data centers.

 SQL Azure: Relational data services in the cloud based on SQL Server.

 Windows Azure-based Services: Cloud-based infrastructure for

application running in the cloud or on premises.

 Windows Azure Marketplace: An online service for finding and

purchasing cloud-based applications and data.

1.1.2.3.1 Windows Azure Components. At a high level it runs windows

applications and stores data in the cloud. Figure 1.3 shows basic components.

8

Figure 1.3 Windows Azure provide compute and storage services in the cloud

Compute: The Windows Azure compute service runs applications on a Windows

Server foundation. These applications can be created using the .NET Framework in

languages such as C# and Visual Basic, or they can be built without .NET in C++,

Java and other languages. Developers can use Visual Studio or other development

tools, and they are free to use technologies such as ASP.NET, Windows

Communication Foundation (WCF), and PHP.

Storage: This service allows storing binary large objects (blobs) provides queues

for communication between components of Windows Azure applications and even

offers a form of tables with a simple query language. Both Windows Azure

applications and on-premises applications can access the Windows Azure storage

service, and both do it in the same way: using a Restful approach.

Fabric Controller: Windows Azure runs on a large number of machines. The

fabric controller’s job is to knit the machines in a single Windows Azure data center

into a cohesive whole. The Windows Azure compute and storage services are then

built on top of this pool of processing power.

Caching: It’s common for applications to access the same data over and over.

One way to speed up this kind of application is to cache frequently accessed

information in memory, reducing the number of times the application must query a

9

database. The caching service provides this—and the performance boost it brings—

for Windows Azure applications.

Connect: It’s often useful for organizations to interact with cloud applications as

if they were inside the organization’s own firewall. Windows Azure Connect allows

this, making it easier for, say, a Windows Azure application to access an on-premises

database.

Content delivery network (CDN): Caching frequently accessed data closer to its

users speeds up access to that data. The Windows Azure CDN can do this for blobs,

maintaining cached copies at sites around the world.

Windows Azure is a general platform that can be used in a broad set of scenarios.

Here are a few examples.

 An independent software vendor (ISV) creating a software-as-a-service

(SaaS) version of an existing on-premises Windows application might

choose to build it on Windows Azure. Because Windows Azure mostly

provides a standard Windows environment, moving the application’s

business logic to this cloud platform won’t typically pose many problems.

And once again, building on an existing platform lets the ISV focus on

business logic—the thing that makes them money—rather than spending

time on infrastructure.

 An enterprise creating an application for its customers or employees might

choose to build it on Windows Azure. Because Windows Azure supports

.NET, developers with the right skills aren’t difficult to find, nor are they

prohibitively expensive. Running the application in Microsoft data centers

frees the enterprise from the responsibility and expense of managing its

own servers, turning capital expenses into operating expenses. And

especially if the application has spikes in usage, letting Microsoft maintain

the large server base required for this can make economic sense.

10

 A start-up creating a new Web site could build its application on Windows

Azure. Because the platform supports both Web-facing services and

background processes, the application can provide an interactive user

interface as well as executing work for users asynchronously. Rather than

spending time and money worrying about infrastructure, the start-up can

instead focus solely on creating code that provides value to its customers

and investors. The company can also start small, incurring low costs while

its application has only a few users. If the application catches on and usage

increases, Windows Azure can let the application scale as needed.

1.2 Goal of This Work

In this study a research around methodologies and tools for testing cloud-

computing applications will be carried out. In the broader terms, software testing

refers the activities carried out in order to ensure a higher quality, fully-functional

and free of most of the bugs software is being shipped. It is part of the software

lifecycle development and there are different methodologies developed over the

years for the classical software testing notion.

However in most of the cases, software is being developed for a pre-defined time

period with all engineering processes being applied. On the other side, in case of

cloud-computing applications, the release cycle is shorter, therefore the process,

including all testing activities must be agile and generating results in a shorter time.

And also due to nature of cloud computing, mainly as a result of abstraction and

virtualization, the environment where the software will be run cannot be predefined.

Adding up all these, it is obvious that classical testing processes and notions

should be tweaked to better apply to cloud-computing.

Main idea behind this study is investigating existing methodologies and

presenting different researches which target testing of cloud-computing software.

11

Different tools, ideas and frameworks will be presented including applications where

possible.

We will be mostly focusing Windows Azure applications and also tools from

Visual Studio family. But we will also be touch basing other cloud platforms and

other testing tools.

This is not intended to be a comprehensive, deep-dive research of all cloud

platforms and the tools required to test applications on cloud platforms. But rather it

serves as a starting point to open up that discussion, as testing cloud-based

applications is still a new area and we are expecting more tooling and framework

support coming in the future.

1.3 Thesis Organization

This thesis is organized as follows.

In Chapter 2, in classical software development terms software testing is

explained. It starts overviewing different types of software testing and how each

traditional type of software testing can be applied to testing cloud based applications

In Chapter 3, existing tools and methodologies will be evaluated in terms of

testing cloud based applications. These tools are mainly targeting testing software in

the traditional way of software development. Strength and weaknesses of each tool

will be presented in terms of testing cloud based applications

In Chapter 4 some of the open issues and current and future developments will be

concluded for testing cloud based applications

12

CHAPTER TWO

DESIGNING AND TESTING FOR CLOUD

2.1 Designing for Cloud Computing

There are new design paradigms that have evolved for cloud computing

applications; it requires different concepts and theoretical knowledge to develop

efficient cloud applications on these new platforms. New methodologies such as

enabling scalable data storage using database partitioning and key-value stores are

required for this kind of application development. Platform as a Service (PaaS)

technologies enabled developers to create efficient, scalable applications to be hosted

on the Web.

New concepts such as handling large scale data storage during application

execution use of both relational databases and NoSQL data stores to store cloud-

hosted data, The Hadoop platform – which brings a new notion of MapReduce

programming etc. requires rethinking on the application design.

2.1.1 Scalable Data Storage Techniques

Cloud Applications may have data storage requirements that exceed those of

enterprise applications. High capacities of this kind far exceed the needs of enterprise

storage systems. In addition high throughput may also be a reason why conventional

technologies cannot scale to the cloud. The basic technique to scale storage systems

to cloud-scale is to partition and replicate the data over multiple independent storage

systems. Partitioning and replication increases the overall throughput of the system,

since the total throughput of the combined system is the aggregate of the individual

storage systems.

The other technology for scaling storage is known as NoSQL. NoSQL was

developed as a reaction to the perception that conventional databases, focused on the

need to ensure data integrity for enterprise applications, were too rigid to scale to

13

cloud levels. As an example, conventional databases enforce a schema on the data

being stored, and changing the schema is not easy. However, changing the schema

may be a necessity in a rapidly changing environment like the cloud. NoSQL storage

systems provide more flexibility and simplicity compared to relational databases.

The disadvantage, however, is greater application complexity. The applications have

to be written to deal with data records of varying formats.

Partitioning and replication also increase the storage capacity of a storage system

by reducing the amount of data that needs to be stored in each partition. However,

this creates synchronization and consistency problems.

2.1.2 MapReduce Programming

MapReduce is a popular paradigm of programming for the Cloud, which

particularly works well for large-scale data processing. It is very effective for

massively data-parallel applications that can be parallelized to crunch data on

hundreds or thousands of CPUs. Traditional ways of writing parallel and distributed

programs require the developer to explicitly split the tasks as multiple processes,

deploy these processes on multiple CPUs and also manage the communication

among the processes (through communication APIs) to exchange intermediate data

values or final results. Writing such distributed applications is not very easy for a

developer who has programmed for sequential machines. The MapReduce

programming model makes development of such parallel applications very easy. The

programmer just specifies a map function and a reduce function for the application

and the MapReduce framework does automatic parallelization and distribution of

data to result in efficient parallel execution of the Cloud application. Furthermore,

the platform ensures that the application is fault tolerant. (Sitaram & Manjunath,

2012)

The Map function takes as input a key-value pair and generates a set of

intermediate key-value pairs. The MapReduce platform then collates all the

intermediate values from parallel Map function execution into groups that

14

correspond to a single key and sends them to the Reduce function. The reduce, on the

other hand, takes this intermediate key and the set of values corresponding to that

key and combines these values to form a smaller number of key value pairs (typically

one or zero values) as the overall result of the computation.

The processing flow for a MapReduce program is as follows:

 The input data is split into chunks, each of which is sent to different

Mapper processes to execute in parallel. The parallel execution is achieved

when the Map function just reads the relevant key-value pairs given to it.

 The result of the Mapper process is partitioned based on the Key and is

sorted locally. The user can also provide the comparator operator here.

This sorting is done by the MapReduce platform and is referred to as

Shuffle.

 Result from the different Mappers that have the same key will be given as

input to the same Reduces instance. The Reduce function (provided by the

user) processes this sorted key-value data to generate the output.

From the programming model perspective, the MapReduce abstract model is

based on the following simple concepts:

 Iteration over the input;

 Computation of key/value pairs from each piece of input;

 Grouping of all intermediate values by key;

 Iteration over the resulting groups;

 Reduction of each group.

The MapReduce paradigm provides a clean abstraction for programmers to easily

develop data parallel applications. However, developers need to learn this new

paradigm of programming that borrows a lot from functional programming concepts.

15

2.1.3 Rich Internet Applications (RIA)

Since cloud computing services have to be accessed over the internet, end user

applications need to have good interface that is user friendly and rich in experience.

Such applications are called Rich Internet Applications (RIA). These provide very

good user experience rather than just presenting the desired information.

A traditional application may display data in tables, for example sales figures. For

any statistical computation or displaying charts etc., the application needs to go back

to the server. With RIA, these all can be done right on the client side which makes

the webpage look “rich” in content and has lower delays during interaction (Sitaram

& Manjunath, 2012).

RIA applications can either run within a web browser with client-side scripts

(JavaScript) and a browser plug-in or execute within a secure sandbox as desktop

applications (e.g. Flash applications). RIA platforms have their own runtime

libraries, execution engines and rendering mechanisms. For example, Flex by Adobe

runs on the Flash runtime and Microsoft Visual Studio runtime is Silverlight. These

runtimes run on the client side independent of the server.

Figure 2.1 RIA technologies

The development of an RIA starts with an Integrated Development Environment

(IDE) such as Flash Builder or Microsoft Visual Studio. The developer uses this IDE

to develop the application using design view and code view of the IDE. Generally,

16

the code is written in some extension of XML, in the case of Flex this is MXML or

in case of Silverlight this is XAML. However the source code can contain

ActionScript code in Flex case, or any .NET language in Silverlight case. In the case

of AJAX (Asynchronous JavaScript and XML), the script is written in JavaScript,

which is directly interpreted by the browser which doesn’t require any browser plug-

ins.

Figure 2.2 RIA technologies fill the gap between rich and reach applications

In the following table there is a simple example RIA application using Silverlight

as an illustrative platform. This code builds a simple Hello World application which

uses a TextBlock control to display the message. The code behind for this changes

the text in TextBlock in C#.

Table 2.1 Silverlight XAML code for “Hello World” application

1. <UserControl x:Class="HelloWorld.MainPage"
2. xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
3. xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
4. xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
5. xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
6. mc:Ignorable="d"
7. d:DesignHeight="300" d:DesignWidth="400">
8.
9. <Grid x:Name="LayoutRoot" Background="White">
10. <TextBlock x:Name="HelloMessage" Text="Hello World!" FontSize="30" />
11. </Grid>
12. </UserControl>

17

The code behind for the above Silverlight application is shown in Table 2.2. In

this code behind, the contents of the “TextBlock” is set to another value at run time.

Table 2.2 Code Behind for “Hello World” application

1. namespace HelloWorld
2. {
3. public partial class MainPage : UserControl
4. {
5. public MainPage()
6. {
7. InitializeComponent();
8. this.HelloMessage.Text = "Hello Universe!";
9. }
10. }
11. }

2.1.4 Summary

As described in the sections above there are multiple deep technical concepts that

will aid in writing efficient cloud applications. All these technical concepts deviate

from traditional concept of designing and developing software applications. For

example, instead of traditional, heavily-regulated strict-consistent ruled relational

databases an alternative flexible schema, simple interface storage systems are

evolving. An emerging paradigm of developing cloud applications using the

MapReduce technique helps with basic concepts of data parallelism and functional

programming. There is need to develop new types of algorithms to leverage the data

parallel computation platform enabled by MapReduce platforms.

Finally, Rich Internet Technology relies on running the application either within

the sandbox of the browser or as a desktop application which eases the load on

server. Therefore this results both in richer applications which costs less to run

against cloud platforms and still has very enhanced user experiences.

All these new techniques of developing code also requires newer and adopted

notions of testing which will be covered in the next section.

18

2.2 Testing For Cloud Computing

With all the benefits of Cloud Computing, it also presents risks which must be

mitigated effectively if Cloud Computing is to be a viable option for businesses.

 Lack of control: When IT infrastructure is outsourced to an external third

party, how does the business control their data, impact down time, drive

technology change or influence decisions which may impact their

solution?

 Security: How can business ensure the potentially sensitive information

which traverses the cloud is safe and secure?

 Privacy: What can business do to maintain the privacy of their users and

information when using the cloud?

 Data Integrity: With flexible NoSQL storage how does businesses assure

their valuable data remains intact?

 Availability: Cloud computing solutions relay on the availability of their

infrastructure to be able to function. Should a business critical Cloud

solution be unavailable for any time, what is the business impact?

 Business acceptability: How sure can a business be that their third party

solution is suitable for its intended use?

Testing is important to enhance user agreement and reduce the maintenance and

cost. With the applications running on a diverse set of platforms, from mobile

devices, to tablets, to desktops and virtual environments, validating applications

based on functional and non-functional aspect on a broad range of devices requires a

variety of tools.

19

Testing of cloud services has some familiar aspects and some new challenges. The

quality of the business services being build and deployed in cloud should be assured.

There are some factors to be considered in this sense.

 Software performance on the application, and the way it’s hosted in the

client environment

 Database performance

 Network performance

 Server performance

The advantage of application development testing in the cloud allows you to more

closely mirror a production environment to a staged/test system so that risk is

mitigated when applications are deployed live. The use of cloud computing means

lower cost and lower capital expenditure.

The challenges that surround testing applications in cloud environments include.

 Testing cloud applications and networks demands a wide mix of

application traffic, current security coverage and incredibly high-

performance and throughput.

 There is a need to create a realistic testing environment with an ever-

changing mix of applications and increasingly sophisticated security

attacks. This makes delivering high performance a moving target.

 Traditional testing tools were simply not designed for this dynamic,

complex and high performance computing environments.

 Predictability of software becomes more important.

 Functional testing using tools like Selenium, Windmill, twill, Visual

Studio setup and execution is another hallmark of using the cloud for

application testing.

All of these challenges results in an outcome of a new approach to testing. We

need a good understanding of what makes a cloud computing application and

20

distributed architecture. We also need to better understand what testing tools are

available, what their strengths and weaknesses are for testing different types of cloud

applications.

Figure 2.3 A new approach required to testing cloud applications

2.2.1 Functional Testing

Functional testing refers to gathering more in-depth information to deconstruct the

product’s feature sets and test the discrete functional attributes and capabilities of the

various components. Functional testing techniques increase the effectiveness of

testing and gather important information about certain aspects of the product. They

are systematic procedures that can help to perform a comprehensive investigation of

the software’s functional attributes and capabilities.

Some main functional testing techniques involve boundary value analysis,

equivalence class partitioning, combinatorial analysis, and state transition testing.

21

Equivalence Class Partitioning is a tool that enables the tester to evaluate input or

output variables systematically for each parameter in a feature. It requires that a

comprehensive analysis of the variable data for each parameter in the context of the

specific system is performed. Before designing the ECP tests, variable data for each

input/output parameter in discrete subsets of valid and invalid classes should be

decomposed and modeled. Then ECP tests are derived from creating unions of valid

class subsets until all valid class subsets have been used in a test, and then each

invalid data subset is evaluated individually.

Boundary value analysis is a technique that targets data values at immediately

above and immediately below a specific boundary condition. Historical experience

and root cause analysis of recurring problems demonstrate that anomalies are

common occurrences at or near the boundary conditions of independent input or

output parameters.

With cloud computing technologies emerging, traditional approach to functional

testing and software testing life cycle processes are likely to be impacted. Test

requirements, test planning and test data management aspects of functional testing

are will need to revisited in the context of cloud software testing.

Test Requirements: Applications and systems are expected to be hosted in a

private, public or hybrid clouds which may present a dependency on the third party

vendors.

Test Planning: An environment which represents similar characteristics to the one

in which it will be accessed when it goes live is required for sake of completeness.

Testing should scrutinize the application’s performance, reliability, speed, security

and functionality. Software testing tools that are used for testing of conventional

applications have to be re-evaluated when applied to testing application which is

hosted in the cloud, as there is a need for tools to allow test engineers to analyze the

network, desktop and implications of changes within the cloud.

22

Test Data Management: Testing should be covering data encryption and doubly

scrutinized while testing in cloud. Data obfuscation takes a big precedence and

synthetic data has increasing importance while testing cloud based applications.

Due to nature of the cloud computing applications, as an addition to traditional

testing methods/techniques the following additional components should be included

in the scope.

Support for Multiple browsers: Since the applications residing on cloud are

targeted by different types and vendors of browsers, any incompatibility should be

tested before going live. Browser types such as Internet Explorer, Firefox, Safari,

Google Chrome, Opera and also environments such as mobile/handheld devices;

personal computers etc. should be evaluated.

Availability: Availability is the verification of the redundancy of individual

modules, including the software that controls these modules (Naik & Tripathy,

2008). Since there is a build in dependency on 3rd party cloud platform vendors,

availability plays a critical role on the software. Most vendors have published service

level agreements (SLA) for availability. Along with these SLA, high-availability

should be main aspect of testing. The concept is also known as fault-tolerance. The

goal is to recover quickly and gracefully from failures and continue execution by

minimizing the downtime.

Data Security: These types of tests should include verifying that sensitive

information which travels through cloud is safe and secure. Any sniffing, man-in-the-

middle attacks should only get encrypted data.

2.2.2 Non-Functional Testing

Where functional testing involves positive and negative testing of the

functionality in the application under test, non-functional testing include

23

performance, load, security, reliability and many other areas. It is referred as

behavioral tests or quality tests (Page et.al. 2009).

Reliability is a measure of how well software maintains its functionality in

mainstream or unexpected situations. It might also include the ability to recover from

a fault.

Usability measures how easy it is for users of the software to understand learn and

control the application to accomplish whatever they need to do. Usability studies,

customer feedback and examination of error messages and other dialogues all

support usability.

Maintainability is the effort needed to make changes in software without causing

errors. Product code and test code alike must be highly maintainable. Knowledge of

the code base by the team members, testability, and complexity all contribute to this

attribute.

Portability is the ability for code to be modified easily to be able to run on

different platforms, including different architectures, environment, operating system

etc.

Unlike the traditional non-functional testing techniques, where scalability is

limited to certain number of users within the network, in cloud applications

scalability scope is much wider. In order to sustain the attributes mentioned above

for cloud applications, the following types of testing types should be carried over.

Performance Testing: Measuring response times and isolating issues related to

specific steps or actions while system is subjected to increasing load from different

locations and multi user operations is critical for cloud based applications.

Load/Stress Testing: Application / system stability is a major factor as the user

count is expected to be many. The application should be able to handle unexpected

24

loads, and depending on what type of cloud system, should be able to respond by

dynamically adding more processing power/bandwidth etc. Due to nature of cloud

systems, it is definitively must to identify issues to find out breaking points. Software

should be ready to handle 2x, 3x, nx of the maximum expected load.

Failover Testing: Being in cloud environment, a mission critical application must

be running in multiple data-centers to accommodate outages for a single datacenter.

The software should be able to switch instances quickly with minimal downtime and

start running on another instance (datacenter, vm, geo location etc.) without too

much manual intervention.

In table 2.1 you can find some characteristics of test environment in Cloud with

attributes of cloud-based systems and how testing can benefit from these attributes.

Table 2.3 Test environment in cloud

Attributes of Cloud

Solutions

Characteristics Benefits

Advanced virtualization Test resources are pooled

and virtualized

Providing efficient

implementation of

independent infrastructure

Rapid provisioning Test resources are

provisioned on demand

Reducing test setup and

execution time, and

eliminating errors

Service catalog ordering Test environment are

readily available

Enabling visibility, control

and automation

Elastic scaling Test environment can be

scaled up or down by large

factor as the need emerges

Optimizes infra and

software license usage

25

2.3 Testing In Production (TiP)

With the current nature of cloud applications, the current approach for testing in

the classical sense, which is the big up-front testing in a test lab, can only be an

attempt to approximate the true complexities of the operating environment. Testers

try best to anticipate the edge cases and understand the environments, but in cloud

driven world they cannot anticipate everything users do and data centers are hugely

complex systems unto themselves with interactions between servers, networks,

power supplies and cooling systems.

TiP is not about throwing an untested code directly to all users. The risk needs to

be controlled while improving quality. As an emerging trend, TiP is still new and the

taxonomy is far from finalized. However, some methodologies can still be identified

reviewing the publicly available documentation and practices, as shown in Table 2.4.

Table 2.4 TiP methodologies

Methodology Description

Ramped Deployment Launching new software by first exposing it to

subset of users then steadily increasing user

exposure. Purpose is to deploy, may include

assessment. Users may be hand-picked or aware they

are testing a new system

Controlled Test Flight Parallel deployment of new code and old with

random unbiased assignment of unaware users to

each. Purpose is to assess quality of new code, then

may deploy. May be part of ramped deployment.

Experimentation for Design Parallel deployment of new user experience with old

one. Former is usually well tested prior to

experiment. Random unbiased assignment of

unaware users to each. Purpose is to assess business

impact of new experience

26

Table 2.4 Continued.

Dogfood/Beta User-aware participation in using new code. Often

by invitation. Feedback may include telemetry, but it

is often manual/asynchronous.

Synthetic Test in

Production

Functional test cases using synthetic data and

usually at API level, executing against in-production

systems. “Write once, test anywhere” is preferred;

same test can run in test environment and

production. Synthetic tests in production may make

use of production monitors/diagnostics to assess

pass or fail.

Load/capacity Test in

Production

Injecting synthetic load onto production systems,

usually on top of existing real-user load, to assess

systems capacity. Requires careful (often automated)

monitoring of back-off mechanisms.

User Scenario Execution End-to-end user scenarios executed against live

production system from (or close to) same point of

origin as user-originated scenarios. Results then

assessed for pass/fail. May also include manual

testing.

Data Mining Test cases search through real user data looking for

specific scenarios. Those that fail their specified

oracle are filed as bugs.

Destructive Testing Injecting faults into production systems (services,

servers, and network) to validate service continuity

in the event of a real fault.

Production Validation Monitors in production check continuously (or on

deployment) for file compatibility, connection

health, certificate installation and validity, content

freshness etc.

27

With these methodologies cloud applications can be verified in place in a

controlled fashion, or totally invisible to users. Therefore it will be possible to

accurately measure quality and impact of new code before making it widely available

to public.

2.4 Challenges of Testing Cloud Applications

Cloud applications will be characterized by high level of dynamism. Most

decisions, normally made at design time, are deferred to execution time, when the

application can take advantage of monitoring (self-observation as well as data

collection from the environment and logging of the interactions) to adapt itself to a

changed usage context. The realization of this vision involves a number of

technologies, including observational reflection and monitoring, dynamic discovery

and composition of services and asynchronous communication.

Such features pose several challenges to testing, summarized in Table 2.5.

Table 2.5 Main Testing challenges for Cloud applications

Challenge Description

Self modification Rich clients have increased capability to dynamically

adapt the structure of the Web pages; server-side

services are replaced and recomposed dynamically

based on Service Level Agreements (SLA), taking

advantage of services newly discovered in the cloud;

components are dynamically loaded

Low observability Cloud applications are composed of an increasing

number of 3rd-party components and services running

in the cloud; accessed as a black-box, which are hard

to test

28

Table 2.5 Continued

Asynchronous Interactions Cloud applications are highly asynchronous and

therefore hard to test. Each client submits multiple

requests asynchronously; multiple clients run in

parallel; server-side computation is distributed over

the cloud and concurrent

Ultra-large scale Since these applications are running in the cloud;

traditional testing adequacy criteria cannot be applied,

since even in good testing situations low coverage will

be achieved.

2.4 Conclusion

Test Lifecycle Management is an important aspect of traditional Software

Development Lifecycle practice. It involves many topics and areas of software

quality management, which needs a well-structured and carefully designed with a

comprehensive execution effort in order to stamp a software product to be ship

ready. Some of these areas include functional testing, performance/load/stress

testing, security testing, usability testing, reliability/failover testing.

Challenges involved in testing Cloud applications can be addressed by resorting to

a combination of advanced testing technologies, including model-based testing,

combinatorial testing, concurrent testing, regression testing etc.

There are various tools available to make cloud testing easier. There will be a

couple of these tools explained in Chapter 3, along with a simple cloud based

application, a web service which resides on the sample cloud platform and sample

tests will be developed in order to test this web service application.

29

CHAPTER THREE

TOOLS AND METHODS FOR CLOUD TESTING

3.1 A Sample Cloud Application to Be Tested

In order to compare different tools for testing cloud applications, a sample

application will be designed and developed on a selected cloud platform. The sample

application will be an e-mail sending application and will be developed on Windows

Azure. In order to get ready for development, a couple of steps required in order to

prepare development environment. Visual Studio 2012 with Windows Azure SDK

will be used as the development environment.

3.1.1 Preparing Development Environment

In order to start developing Windows Azure application, the following steps

should be carried on.

 Install Windows Azure SDK for .NET

 Set up a free Windows Azure account

 Create Storage account in Windows Azure

 Create a Cloud Service in Windows Azure

 Creating a Web Site in Windows Azure

3.1.1.1 Install Windows Azure SDK for .NET

First of all Windows Azure SDK for .NET should be installed on the machine. If

there is no Visual Studio 2012 installed, the SDK installs the free Visual Studio 2012

for Web Express version. The SDK can be installed from

http://go.microsoft.com/fwlink/?LinkId=254364&clcid=0x409

30

When prompted, click “Run” to install vwdorvs11azurepack.exe. In the Web

Platform installer click “Install” to proceed with installation

Figure 3.1 Web Platform Installer to install Windows Azure SDK for Visual Studio

When the installation is complete everything is ready to start development.

3.1.1.2 Set up a Windows Azure Account

In order to be able to deploy the application a free Windows Azure account is

required. This can be obtained from www.windowsazure.com by clicking on the

“Free trial” link and following the instructions.

3.1.1.3 Create a Windows Azure Storage Account

When running the sample application in Visual Studio, tables, queues and blobs

are accessed in Windows Azure development storage or in a Windows Azure Storage

31

account in the cloud. Development storage uses a SQL Server Express LocalDB

database to emulate the way Windows Azure Storage works in the cloud. Following

are the steps on how to create the Windows Azure Storage account.

From Windows Azure Management Portal (http://manage.windowsazure.com/)

after logging in, clicking on the “Storage” and then “New” will display as in the

Figure 3.2.

Figure 3.2 Storage screen on Windows Azure

Click “Quick Create” as shown in Figure 3.3.

32

Figure 3.3 Creating storage account in Windows Azure

After this, selecting a URL prefix, which uniquely identifies a storage account and

the region to the area where the application will be deployed, clicking on “Create

Storage Account” will be completing this step. A storage account with the URL

testingcloud.core.windows.net will be created. Once this is created, a primary or

secondary key will be required in Azure connection string to be able to access this

storage. This can be obtained by clicking on “Manage Keys” in the storage screen as

shown in Figure 3.4 and Figure 3.5.

Figure 3.4 Managing keys for storage account in Windows Azure.

There are two keys “Primary Access Key” and “Secondary Access Key” as shown

in Figure 3.5 in order to obtain an uninterrupted service in live application when

33

there is a need to change the keys, or if periodic change of keys is followed for

security purposes. One of these two keys will be needed during the application

development and will be used within the connection string to connect to the tables,

queues and blobs on Windows Azure.

Figure 3.5 “Primary/Secondary Storage Keys” in Windows Azure.

3.1.1.4 Creating Cloud Service in Windows Azure

While on Windows Azure Management Portal, clicking on “Cloud Services” and

then “New” will display the “Quick Create” window as shown in Figure 3.6.

34

Figure 3.6 Creating a cloud service in Windows Azure.

A unique URL prefix and region for the cloud service is required. The region has

to be same as the storage account, otherwise latency will increase and an extra charge

will incur for bandwidth outside the data center. Bandwidth within the same data

center is free. In Figure 3.7 a cloud service named aescloud.cloudapp.net is created

for this purpose.

35

Figure 3.7 Options for creating cloud service in Windows Azure.

3.1.1.5 Creating a Web Site in Windows Azure

On the Windows Azure Management Portal clicking on “Web Sites” and then

“New” initiates the process of creating a new Windows Azure web site as shown in

Figure 3.8.

36

Figure 3.8 Creating a new web site in Windows Azure

After this step, in “Quick Create” screen, as shown in Figure 3.9, a unique URL

will be required to identify the Windows Azure web site. After selecting the data

center region and clicking “Create Web Site”, a web site will be created which will

be used for the sample application.

Figure 3.9 Create web site options in Windows Azure

37

After this step, all the prerequisites for developing a Windows Azure application

are completed. The next step is to create a Visual Studio 2012 solution for the sample

Windows Azure Application.

3.1.2 Developing Windows Azure Application

In order to upload content to Windows Azure web site created in section 3.1.1 a

Visual Studio Web Application will be developed which can be published to

Windows Azure.

Within Visual Studio 2012, from the “File” menu, clicking on “New”, and then

“Project”, the project type selection screen is shown as in Figure 3.10.

Figure 3.10 Creating a Web Application in Visual Studio 2012

Inputting name “MyExample” as project name and clicking “OK” will display the

project template selection screen as in Figure 3.11.

38

Figure 3.11 Internet project template selections in Visual Studio 2012

After the project is created, pressing Ctrl+F5 runs the application locally which

shows the application home page in the default browser as in Figure 3.12.

Figure 3.12 Sample application home screen

39

3.1.3 Deploying Windows Azure Application

After the sample application is created, it needs to be deployed to Windows

Azure. This can be done using Windows Azure Management Portal. After logging in

to the portal, on the “Web Sites” tab, there will be the site previously created as in

Figure 3.13.

Figure 3.13 Screenshot of the “Web Sites” tab in Windows Azure

Clicking on the web site displays “Dashboard” tab, where under “Quick Glance”

section there is a link for downloading publish profile as shown in Figure 3.14.

40

Figure 3.14 Screenshot of the “Web Site Dashboard” in Windows Azure

After downloading .publishsettings file on the local computer, the Visual Studio

project can be configured to use this file to publish the web site application. This can

be done via “Publish Web” wizard in Visual Studio as shown in Figure 3.15.

Figure 3.15 Screenshot for Visual Studio publish web wizard

41

After configuring Visual Studio for publishing to Windows Azure, clicking on

“Publish” will start copying all required application files to Windows Azure and

browsing to the Windows Azure Web site URL will show the cloud application.

This will be the application that will be used by testing tools including Visual

Studio and Selenium to be tested. Next section will be describing step by step how to

use these tools and what type of testing can be accomplished using these tools.

3.2 Testing the Sample App with Visual Studio

Visual Studio can be used to simulate user activity on the cloud application. Web

performance tests can be used to build a suite of repeatable tests that can help

analyze the performance of the cloud applications and identify potential bottlenecks.

Visual Studio enables to easily create Web performance tests by recording actions as

web application is being used.

Verifying that a cloud application is ready to be published involves additional

analysis. How will the application behave when many people begin using it

concurrently? The load testing features of Visual Studio enables to execute one or

more tests repeatedly, tracking the performance of the target system. It can also be

used to configure the environment to run distributed load tests. A distributed load test

enables to spread the work of creating user load across multiple machines, called

agents. Details from each agent are collected by a controller machine, which can be

used to see the overall performance of the application under stress.

3.2.1 Web Performance Tests

Web performance tests enable verification that a Web application’s behavior is

correct. They issue an ordered series of HTTP/HTTPS requests against a target cloud

application, and analyze each response for expected behaviors. Integrated “Web Test

Recorder” can be used to create a test by observing the interaction with a target cloud

42

site through a browser window. Once the test is created, the recorded actions can be

consistently replayed against the target cloud application.

Web performance tests offer automatic processing of redirects, dependent

requests, and hidden fields, including “ViewState”. In addition, coded Web

performance tests can be written in Visual Basic or C#, enabling to take the full

advantage of the power and flexibility of these languages.

Web performance tests can be used primarily for performance testing, and can be

used as the basis for generating load tests.

3.2.2 Creating and Configuring Web Tests

There are three ways to create Web Tests in Visual Studio. The most common

way is using the “Web Test Recorder”. The second way is to create a test manually,

using the “Web Test Editor” to add each step. This is time consuming and error-

prone, but allows more fine-tuning Web performance tests. Finally a coded Web

performance test can be created, that specifies each action via code, and offers a

great deal of customization.

To create a new Web performance test, a new test project needs to be created as

shown in Figure 3.16.

43

Figure 3.16 Creating new Test Project in Visual Studio

Web performance tests are stored as XML files with a “.webtest” extension.

3.2.2.1 Recording a Web Performance Test

In Visual Studio, after creating test project right-clicking on test project node in

“Solution Explorer” window and selecting “Add-Web Performance Test” menu, the

Web Test will be added to the project and the default browser will be loaded to start

the web recording. Double-clicking on the existing Web Performance Test and then

clicking on the “Add Recording” button will also load the default web browser.

After this navigating to the cloud application created in section 3.1.3 will display

the application on the browser window. Using the web browser, running normal

usage scenarios will let Visual Studio to record the actions and save them to the web

performance test as in Figure 3.17. The Web Test Recorder provides several options

that may be useful while recording. The “Pause Button” in the upper-left corner

temporarily suspends recording and timing of the interaction with the browser. “Add

a comment” button enables to add documentation to the Web Performance test which

is very useful when the recorded test is converted to coded Web Performance test.

44

Figure 3.17 Result of Web Performance Test recording in Visual Studio

It is possible to configure the test for advanced settings. “Fix run count” setting in

the “Test Settings” window enables to specify number of times the Web performance

tests will be executed when included in a test run. Running the test a few times can

help eliminate errant performance timings caused by system issues on the client or

server, and can help derive a better estimate for how the cloud application is actually

performing. However, this should not be set to a large number to simulate load.

Instead a load test should be created referencing this web performance test.

The browser type setting enables to simulate using a number of browsers as Web

performance test’s client. This will automatically set the user agent field for requests

sent to the Web performance test to simulate the selected browser. However this will

not help to determine if the cloud application will render as desired in a given

browser type, since Web performance tests only examine HTTP/HTTPS responses

and not the actual renderings of pages. Changing the browser type is only important

if the cloud application responds differently based on the user agent sent by the

client. For example, a cloud application may send a more lightweight user interface

to a mobile device than it would to a desktop computer.

The final option, “Simulate think times”, enables the use of delays in the Web

performance test to simulate the normal time taken by users to read content, modify

values, and decide on actions. When the web test is recorded, the time it took to

45

submit each delay will occur between the requests sent by the Web performance test

to the cloud application. Think times are disabled by default, causing all requests to

be sent as quickly as possible to the cloud application, resulting in a faster test. Think

times are important for load tests.

Visual Studio also allows emulating different network speeds for the tests. From

within “Test Settings” the option “Data and Diagnostics” on the left will bring this

window. Enabling the network emulation adapter and clicking configure, a variety of

network speeds (such as dial-up 56K connection) can be selected to examine the

effect that slower connection speeds have on the cloud application.

The XML output of the generated Web performance test is shown in Table 3.1.

Closely observing the Web performance test XML code there will be <request> tags

with the methods and the URL value for each tag.

Table 3.1 XML code behind for web performance test

<?xml version="1.0" encoding="utf-8"?>
<WebTest Name="WebTest1" Id="6e65ba0d-2b50-4ac0-9fe3-2b90db7adcd8" Owner="" Priority="2147483647"
Enabled="True" CssProjectStructure="" CssIteration="" Timeout="0" WorkItemIds=""
xmlns="http://microsoft.com/schemas/VisualStudio/TeamTest/2010" Description="" CredentialUserName=""
CredentialPassword="" PreAuthenticate="True" Proxy="" StopOnError="False"
RecordedResultFile="WebTest1.6ea15a9e-cdea-4605-9515-82989a55b442.rec.webtestresult">
<Items>
<Request Method="GET" Guid="54b611f3-442c-4895-8574-bb23106fe2a5" Version="1.1"
Url="http://testingcloud.azurewebsites.net/" ThinkTime="4" Timeout="300" ParseDependentRequests="True"
FollowRedirects="True" RecordResult="True" Cache="False" ResponseTimeGoal="0" Encoding="utf-8"
ExpectedHttpStatusCode="0" ExpectedResponseUrl="" ReportingName="" />
<Request Method="GET" Guid="08d0962b-e483-4e3a-8fb1-a8b54d4b7b66" Version="1.1"
Url="http://testingcloud.azurewebsites.net/About" ThinkTime="4" Timeout="300" ParseDependentRequests="True"
FollowRedirects="True" RecordResult="True" Cache="False" ResponseTimeGoal="0" Encoding="utf-8"
ExpectedHttpStatusCode="0" ExpectedResponseUrl="" ReportingName="" />
<Request Method="GET" Guid="377ebb5a-39b3-4422-bbbc-af6a6378528a" Version="1.1"
Url="http://testingcloud.azurewebsites.net/Contact" ThinkTime="0" Timeout="300"
ParseDependentRequests="True" FollowRedirects="True" RecordResult="True" Cache="False"
ResponseTimeGoal="0" Encoding="utf-8" ExpectedHttpStatusCode="0" ExpectedResponseUrl=""
ReportingName="" />
</Items>
<ValidationRules>
<ValidationRule Classname="Microsoft.VisualStudio.TestTools.WebTesting.Rules.ValidateResponseUrl,
Microsoft.VisualStudio.QualityTools.WebTestFramework, Version=10.0.0.0, Culture=neutral,
PublicKeyToken=b03f5f7f11d50a3a" DisplayName="Response URL" Description="Validates that the response URL
after redirects are followed is the same as the recorded response URL. QueryString parameters are ignored."
Level="Low" ExectuionOrder="BeforeDependents" />
<ValidationRule
Classname="Microsoft.VisualStudio.TestTools.WebTesting.Rules.ValidationRuleResponseTimeGoal,
Microsoft.VisualStudio.QualityTools.WebTestFramework, Version=10.0.0.0, Culture=neutral,
PublicKeyToken=b03f5f7f11d50a3a" DisplayName="Response Time Goal" Description="Validates that the response
time for the request is less than or equal to the response time goal as specified on the request. Response time goals of
zero will be ignored." Level="Low" ExectuionOrder="AfterDependents">

46

3.2.3 Running and Observing Results for Web Performance Tests

Selecting Web Performance Test and clicking “Run” on the toolbar will simply

execute the Web performance test, and re-run all the steps recorded in the Web

performance test. When the test run is started, a window specific to that Web

performance test execution will appear. The results will automatically be displayed

as shown in Figure 3.18. Web performance test can also be debugged, running it one

request at a time. The results will be summarized in the “Test Results” window

docked at the bottom of the screen. Double-clicking on the Web performance test’s

entry in the “Test Results” window will display the test’s execution details.

Figure 3.18 Results of the execution of Web Performance Test

3.2.4 Coded Web Performance Tests

In order to control over the actions that are taken, coded web performance tests

can be developed. Recorded Web performance tests are stored as XML files with

.webtest extension as shown in Table 3.1. Visual Studio uses this XML to generate

the code that is executed when the Web performance test is run.

47

Coded Web performance test enables to perform actions not possible with a

standard Web performance test. For example, branching can be performed based on

the responses received during a Web performance test or based on values of a data-

bound test. A coded Web performance test inherits from either a base with

“WebTest” class for C# tests, or from a “ThreadedWebTest” base for Visual Basic

tests. These classes are in the “Microsoft.VisualStudio.TestTools.WebTesting”

namespace. A coded Web performance test can be developed from the scratch, or it

can be generated using an existing recorded Web performance test. In Table 3.2 there

is the code generated for the Web performance test which was created in the previous

section.

Table 3.2 Coded Web performance test in Visual Studio

public override IEnumerator<WebTestRequest> GetRequestEnumerator()
 {
 // Initialize validation rules that apply to all requests in the
WebTest
 if ((this.Context.ValidationLevel >=
Microsoft.VisualStudio.TestTools.WebTesting.ValidationLevel.Low))
 {
 ValidateResponseUrl validationRule1 = new
ValidateResponseUrl();
 this.ValidateResponse += new
EventHandler<ValidationEventArgs>(validationRule1.Validate);
 }
 if ((this.Context.ValidationLevel >=
Microsoft.VisualStudio.TestTools.WebTesting.ValidationLevel.Low))
 {
 ValidationRuleResponseTimeGoal validationRule2 = new
ValidationRuleResponseTimeGoal();
 validationRule2.Tolerance = 0D;
 this.ValidateResponseOnPageComplete += new
EventHandler<ValidationEventArgs>(validationRule2.Validate);
 }

 WebTestRequest request1 = new
WebTestRequest("http://testingcloud.azurewebsites.net/");
 request1.ThinkTime = 4;
 yield return request1;
 request1 = null;

 WebTestRequest request2 = new
WebTestRequest("http://testingcloud.azurewebsites.net/About");
 request2.ThinkTime = 4;
 yield return request2;
 request2 = null;

 WebTestRequest request3 = new
WebTestRequest("http://testingcloud.azurewebsites.net/Contact");
 yield return request3;
 request3 = null;
 }

48

The “GetRequestEnumerator” method uses “yield” statement to provide

“WebTestRequest” instances, one per HTTP request, back to the Web test system.

Visual Basic test projects generate slightly different code than C# tests because

Visual Basic does not currently support iterators and the “yield” statement. Instead of

having a “GetRequestEnumerator” method that yields “WebTestRequest” instances

one at a time, there is a “Run” subroutine that uses the base

“ThreadedWebTest.Send” method to execute each request.

3.2.4 Load Tests

Load tests are used to verify that the application will perform as expected while

under the stress of multiple concurrent users. Configuring the levels and types of

load that is targeted to simulate and then the test is executed. A series of requests will

be generated against the target cloud application, and Visual Studio will monitor the

system under test to determine how well it performs.

Load testing is used with Web performance tests to conduct smoke, load and

stress testing of cloud applications.

3.2.4.1 Creating and Configuring Load Tests

In order to create a load test, “New Load Test Wizard” can be used. When a new

load test is added, the “New Load Test Wizard” is started. This wizard guides

through the many configuration options available for a load test.

49

3.2.4.1.1 Scenarios and Think Times. A load test is composed of one or more

scenarios. A scenario is a grouping of Web performance and/or unit tests, along with

a variety of preferences for user, browser, network, and other settings. Scenarios are

used to group similar tests or usage environments. When the “New Load Test

Wizard” is launched, the first screen describes the load test creation process.

Clicking “Next” will prompt to assign a name for the load test’s first scenario as

shown in Figure 3.19.

Figure 3.19 First page of “New Load Test Wizard”

The second option on this page is to configure think times. Think time is a delay

between each request, which can be used to approximate how long a user will pause

to read, consider options, and enter data on a particular page. These times are stored

with each of a Web performance test’s requests. The think time profile panel enables

to turn these on or off.

If it is enabled, think times can be used as is, or apply a normal distribution that is

centered around recorded think times as a mean. The normal distribution is generally

recommended if simulation of the most realistic user load is wanted, based on what

to expect the average user does. Think times can also be configured between test

50

iterations to model a user who pauses after completing a task before moving to the

next task.

3.2.4.1.2 Load Patterns. The load pattern enables simulation of different types of

user load. There are two load pattern options in the wizard: Constant and Step, as

shown in Figure 3.20.

Figure 3.20 Load Pattern options in “New Load Test Wizard”

A constant load enables to define a number of users that will remain unchanged

throughout the duration of the test. In order to analyze the performance of the cloud

application under a steady load of users this is the option to use.

A step load defines a starting and maximum user count. Step duration and step

user count can also be assigned. Every time the number of seconds specified in the

step duration elapse, the number of users is incremented by the step count, unless the

maximum number of users has been reached. Step loads are very useful for stress-

testing the cloud application, finding the maximum number of users the cloud

application will support before serious issues arise.

51

A third type of load profile pattern called “Goal Based” is available through the

“Load Test Editor” after the load test is created. The goal-based pattern is used to

raise or lower the user load over time until a specific performance counter range has

been reached. This is useful when the peak loads of the cloud application can

withstand is needed. It has similar options as step pattern, where there is initial and

maximum user count. But there is also a maximum user count increment and

decrement and minimum user count. The load test will dynamically adjust the current

user count according to these settings in order to reach the goal performance counter

threshold.

By default, the pattern will be configured against the % Processor Time

performance counter. To change this, enter the category (for example, Memory,

System, and so on), the computer from which it will be collected (leave this blank for

the current machine), and the counter name and instance which is applicable if there

are multiple processors.

Then the test must be informed about the performance counter selected. First,

identify the range to reach using the High-End and Low-End properties. Set the

Lower Values Imply Higher Resource Utilization option if a lower counter value

indicates system stress. For example, this needs to be set to “True” when using the

system group's Available M Bytes counter. Finally, the load test can be configured to

remain at the current user load level when the goal is reached with the Stop

Adjusting User Count When Goal Achieved option.

3.2.4.1.3 Test Mix Model. The test mix model determines the frequency at which

tests within the load test will be selected from among other tests within the load test

as shown in Figure 3.21. The test mix model allows several options for realistically

modeling user load.

52

Figure 3.21 Test mix model in “New Load Test Wizard”

The options for test mix model are as follows.

 Based on the total number of tests: This model assigns a percentage to

each test that dictates how many times it should be run. Each virtual user

will run each test corresponding to the percentage assigned to that test.

 Based on the number of virtual users: This model assigns a percentage of

virtual users who should run each test.

 Based on user pace: This model executes each test a specified number of

times per virtual user per hour. When using this model, the think time

between iterations value from the Scenario page of the wizard is ignored.

 Based on sequential test order: If users are performing steps in a specific

order (for example, logging in, then finding an item to purchase, then

checking out) you can use this test mix model to simulate a sequential test

behavior for all virtual users. This option is functionally equivalent to

structuring tests as ordered tests.

3.2.4.1.4 Test Mix. This page of the wizard enables to select the tests to include in

the scenario, along with the relative frequency with which they should run.

53

3.2.4.1.5 Network Mix. Network mix specifies kinds of network connectivity the

users expected to have, such as LAN, DSL, Cable and Dial-up as shown in Figure

3.22.

Figure 3.22 Network mix selection in “New Load Test Wizard”

Sliders can be used to adjust the percentages, lock a particular percent, or clicking

on “Distribute” button resets to an even distribution. As with the test mix settings,

each virtual user will select a browser type at random according to the percentages

you set. A new browser type is selected each time a test is chosen for execution. This

also applies to the browser mix.

3.2.4.1.6 Browser Mix. The next step in the wizard defines the distribution of

browser types that will be simulated. Visual Studio then adjusts the headers sent to

the target application according to the selected browser for that user. As shown in

Figure 3.23, different types of browsers can be selected with a percent distribution

for their use.

54

Figure 3.23 Browser distribution page for New Load Test Wizard

3.2.4.1.6 Performance Counter Sets. A vital part of load testing is the tracking of

performance counters. Load test can be configured to observe and record the values

of performance counters, even on remote machines. If target application is hosted on

a different machine, which is the case for cloud applications, counters from these

machines can be collected and stored by Visual Studio. However this requires that

the cloud-application be deployed on IAAS (Infrastructure as a Service) type cloud

system, not PAAS (Platform as a Service). With IAAS, a virtual machine is hosted

on cloud system, along with the application, for example IIS Web Site, where Visual

Studio can collect counters.

A counter set is a group of related performance counters. All of the contained

performance counters will be collected and recorded on the target machine when the

load test is executed.

3.2.4.1.7 Run Settings. As the final step in the “New Load Test Wizard”, test run

settings can be specified as shown in Figure 3.24.

First the timing detail for the test is selected. "Warm-up duration" specifies a

window of time during which (although the test is running) no information from the

test is tracked. This gives the target application a chance to complete actions such as

just-in-time (JIT) compilation or caching of resources. Once the warm-up period

55

ends, data collection begins and will continue until the "Run duration" value has been

reached.

Figure 3.24 Run settings page for “New Load Test Wizard”

The "Sampling rate" determines how often performance counters will be collected

and recorded. A higher frequency (lower number) will produce more detail, but at the

cost of a larger test result set and slightly higher strain on the target machines.

Any description entered will be stored for the current run settings. “Save Log on

Test Failure” specifies whether or not a load test log should be saved in the event that

tests fail.

Finally, the "Validation level" setting indicates which Web performance test

validation rules should be executed. This is important, because the execution of

validation rules is achieved at the expense of performance. In a stress test, raw

performance might be more interesting than a set of validation rules pass. There are

three options for validation level:

- Low – Only validation rules marked with “Low” level will be executed.

- Medium – Validation rules marked “Low” or “Medium” level will be

executed.

56

- High – All validation rules will be executed

3.2.4.2 Executing Load Tests and Viewing Results

In order to execute load tests, various windows in Visual Studio can be used,

“Load Test Editor”, “Test Manager” and “Test View”, or command-line tools can be

used.

If the test is executed from either “Test Manager” or “Test View”, the status of the

test can be seen in the “Test Results” window as shown in Figure 3.24.

Figure 3.25 Test Results for Load Test

Once the status of the test is in Progress or Complete, the “Load Test Monitor” is

shown as in Figure 3.25.

Figure 3.26 Load Test monitor in Visual Studio

The progress of the test can be observed and then same window can be used to

review results after the test has completed. There are four graphs which are selected

57

by default. These graphs plot a number of selected performance counters over the

duration of the test.

The tree in the left-hand (“Counters”) pane shows a list of all available

performance counters, grouped into a variety of sets – for example by machine. As

the load test runs, the graph is updated at each snapshot interval. If the value of a

performance counter exceeds a predefined threshold then the corresponding node in

the “Counters” pane is marked with a red error or yellow warning icon. The list at the

bottom of the screen is a legend that shows details of the selected counters. Those

that are checked appear in the graph with the indicated color. If a counter is selected,

it will be displayed with a bold line.

3.3 Summary for Visual Studio Tools

Visual Studio delivers strong and integrated tooling support for testing cloud

based applications. As discussed in the sections above, below are the testing

highlights that are performed by Visual Studio test tools suite on cloud applications

for better performance and availability:

 Validation and verification test: Visual Studio tools can be used to help

verifying the inputs or the expected entries that satisfy the requirements.

 Web page usability test: Visual Studio test tools can be used to simulate

the user’s way of experiencing the application in production, and testing

the same as per requirement.

 Security testing: Visual Studio test tools can help verifying the application

response for different end users based on the credentials and different

other resources required from the local system or a server in the network.

 Performance testing: Visual Studio test tools can help verifying web page

responses as per expectations based on the environment. This also includes

stress testing and load testing of the application with multiple user

scenarios.

58

 Application compatibility testing: Visual Studio test tools can help testing

the application with multiple browsers based on user requirements.

 Application testing using different networks: Visual Studio test tools can

help verifying the applications behavior depending on the network

involved in providing the cloud application to the user.

However there are also limitations where Visual Studio testing tools doesn’t

support out of the box when considering data security testing as described in Section

2.2. Verifying the sensitive data travelling through cloud is safe and secure requires

additional tools or framework.

Failover testing is another type of testing which is not supported out of the box by

Visual Studio.

3.4 Testing the Sample App with Selenium

Selenium is a set of different software tools each with a different approach to

supporting test automation. The entire suite of tools results in a rich set of testing

functions specifically geared to the needs of testing of web applications of all types.

These operations are highly flexible, allowing many options for locating UI elements

and comparing expected results against actual application behavior.

3.4.1 Brief history of the Selenium Project

Selenium first came to life in 2004 when Jason Huggins developed a JavaScript

library that could drive interactions with a web page, allowing to automatically

rerunning tests against multiple browsers. That library eventually became Selenium

Core, which underlies all the functionality of Selenium Remote Control (RC) and

Selenium IDE. Selenium RC was ground breaking because no other product allowed

a developer to control a browser from a language of choice.

59

However, because of the security limitations browsers apply to JavaScript

different things became impossible to do. To make things worse, web apps became

more and more powerful over time, using all sorts of special features new browsers

provide and making these restrictions more and more painful.

In 2006, an engineer from Google, Simon Stewart, started working on a project

called WebDriver. Google had long been a heavy user of Selenium, but testers had to

work around the limitations of the product. Simon wanted a testing tool that spoke

directly to the browser using the native method for the browser and the operating

system, thus avoiding the restrictions of a sandboxed Javascript environment. The

WebDriver project began with the aim to solve the Selenium pain points.

In 2008, Selenium and WebDriver projects merged which provided a common set

of features for all users.

With this Selenium 2, also known as Selenium WebDriver, provides features like

including more cohesive and object oriented API as well as an answer to the

limitations of the old implementation.

Selenium 1, also known as Selenium RC or Remote control, provides some

features that may not be available in Selenium 2, including support for several

languages (Java, Javascript, Ruby, PHP, Python, Perl, and C#) and support for

almost all types of browsers.

3.4.2 Selenium RC Architecture

The main restriction that Selenium faces is the “Same Origin Policy”. This

security restriction applied by every browser in the market and its objective is to

ensure that a site’s content will never be accessible by a script from another site. It

cannot perform actions on another website. This is to prevent Cross-site scripting

(XSS) so that a malicious site opened on one tab of the browser cannot read the

information of a bank account opened on another tab.

60

To work within this policy, Selenium-Core and its JavaScript commands must be

placed in the same origin (URL) as the application under test. Selenium-Core was

limited by this problem since it was implemented in JavaScript. Selenium RC is not,

however, restricted by the “Same Origin Policy”. Its use of the Selenium Server as a

proxy avoids this problem. It, essentially, tells the browser that the browser is

working on a single “spoofed” website that the Server provides.

3.4.2.1 Proxy Injection

The first method Selenium used to avoid the “Same Origin Policy” was Proxy

injection. In Proxy Injection Mode, the Selenium Server acts as a client-configured

“HTTP Proxy” that sits between the browser and the application under test. It then

masks the AUT under a fictional URL, embedding Selenium-Core and the set of tests

and delivering them as if they were coming from the same origin. Figure 3.27 shows

an architecture diagram for Selenium RC

61

Figure 3.28 Selenium RC Architecture

As a test suite starts, the following happens:

1. The client/driver establishes a connection with the Selenium RC server.

2. Selenium RC server launches a browser with a URL that injects Selenium

Core JavaScript library into the browser-loaded page.

3. The client driver passes a Selenium command (Selenese) command to the

server.

4. The server interprets the command and then triggers the corresponding

JavaScript execution to execute that command within the browser.

5. Selenium Core instructs the browser to act on that first instruction, typically

opening a page of the AUT.

62

6. The browser receives the open request and asks for the website’s content

from the Selenium RC server (set as the HTTP proxy for the browser to use)

7. Selenium RC server communicates with the Web server asking for the page

and once it receives it, it sends the page to the browser masking the origin to

look like the page comes from the same server as Selenium Core.

8. The browser receives the web page and renders it in the frame/window

reserved for it.

3.4.3 Building a Web Test with Selenium IDE

The Selenium IDE (Integrated Development Environment) is the tool used to

develop Selenium test cases. It is an easy to use Firefox plug-in and is generally the

most efficient way to develop test cases. It also contains a context menu that allows

selecting a UI element from the browser’s currently displayed page and then

selecting from a list of Selenium commands with parameters pre-defined according

to the context of the selected UI element.

Selenium IDE can be installed from Selenium Project download page

(http://seleniumhq.org/download/) using FireFox browser. The download page is

shown in Figure 3.29

63

Figure 3.29 Selenium Project download page

After installing Selenium IDE, there will be a menu item under “Tools” to start

the IDE. It loads with an empty script-editing window and a menu for loading or

creating new test cases.

Figure 3.30 Snapshot of Selenium IDE

64

There are three primary methods for developing test cases. Frequently, a test

developer will require all three techniques.

Many first time users begin by recording a test case from their interactions with a

web application. When Selenium-IDE is first opened, the record button is on by

default. During recording, Selenium IDE will insert commands into the test case

based on the actions. Typically, this will include:

 Clicking on a link – “click” and “clickAndWait” commands.

 Entering values – “type” command.

 Selecting options from a drop-down list – “select” command.

 Clicking checkboxes or radio buttons – “click” command.

Test case also needs to check properties of a web page. This requires “assert” and

“verify” commands. This can be done via Selenium context menu items. When a

block of text is selected on a Web page, the context menu displays

“verifyTextPresent” command and suggested parameter should be the text itself.

Right-clicking and image, or a user control like a button or a checkbox, there will be

extra menu options displayed on the context menu, such as “verifyElementPresent”.

Verifying UI elements on a web page is probably the most common feature of

automated tests. Selenium commands, “Selenese”, allow multiple ways of checking

for UI elements. Choosing between “assert” and “verify” comes down to

convenience and management of failures. There is no point checking that the first

paragraph on the page is the correct one if the test has already failed when checking

that the browser is displaying the expected page. If it is not the correct page, aborting

the test case is probably the best option, so that the cause can be investigated. On the

other hand, many attributes of the web page might be checked without aborting the

test case on the first failure, as this will allow reviewing all failures on the page and

taking the appropriate action. An “assert” will fail the test and abort the current test

case, whereas “verify” will fail the test and continue to run the test case.

65

3.4.4 Example of Selenium Web Driver API

WebDriver is a tool for automating web application testing, and to verify that they

work as expected. It aims to provide a friendly API that’s easy to explore and

understand, which will help to make tests easier to read and maintain. It is not tied to

a particular test framework, so it can be used equally well in a unit testing or any

other type of testing.

For example, in Table 3.3 there is code to search for a term on Google and then

outputs the result page’s title to the console.

The first thing done is to navigate to a page by calling

“driver.Navigate().GoToUrl()”. After navigation the test tries to find an element by

name “q”. Then a search query “Cheese” is sent to this text box. After calling

“submit” method on the text box, the test waits for 10 seconds or until the page loads

for the results to load and checks for the title of the page starts with the keyword.

And then it quits by writing an informational message to the console with the result

page title.

Table 3.3 Sample Selenium WebDriver code

using OpenQA.Selenium;
using OpenQA.Selenium.Firefox;

// Requires reference to WebDriver.Support.dll
using OpenQA.Selenium.Support.UI;

class GoogleSuggest
{
static void Main(string[] args)
{
// Create a new instance of the Firefox driver.

// Notice that the remainder of the code relies on the interface,
// not the implementation.

// Further note that other drivers (InternetExplorerDriver,
// ChromeDriver, etc.) will require further configuration
// before this example will work. See the wiki pages for the
// individual drivers at http://code.google.com/p/selenium/wiki
// for further information.
IWebDriver driver = new FirefoxDriver();

//Notice navigation is slightly different than the Java version
//This is because 'get' is a keyword in C#

66

Table 3.3 Continued

driver.Navigate().GoToUrl("http://www.google.com/");

// Find the text input element by its name
IWebElement query = driver.FindElement(By.Name("q"))
// Enter something to search for
query.SendKeys("Cheese");

// Now submit the form. WebDriver will find the form for us from the element
query.Submit();

// Google's search is rendered dynamically with JavaScript.
// Wait for the page to load, timeout after 10 seconds
WebDriverWait wait = new WebDriverWait(driver, TimeSpan.FromSeconds(10));
wait.Until((d) => { return d.Title.ToLower().StartsWith("cheese"); });

// Should see: "Cheese - Google Search"
System.Console.WriteLine("Page title is: " + driver.Title);

//Close the browser
driver.Quit();
}
}

3.4.5 Creating and Running Selenium Test

After reviewing Selenium components and tools, and looking at sample code,

Selenium IDE can be used to create a test for the cloud application created in section

3.1.

As soon as Selenium IDE is started Firefox browser is started with recording

mode. Navigating to the sample cloud application

(http://testingcloud.windowsazuresites.net) the home page is loaded. Right-clicking

on the title “Home Page” and selecting “verifyTitle Home Page – My ASP.NET Web

Page” as shown in Figure 3.31 will create a verification step in Selenium IDE.

67

Figure 3.31 Available commands for Selenium context-menu

After that clicking on the “About” link will create two more steps in the test case,

“clickAndWait” and “open” which will navigate the test to the specified page. The

test can be concluded by right-clicking on the browser and selecting “assertTitle

About – My ASP.NET Web Page” which will also add another command in the

Selenium IDE as shown in Figure 3.32

68

Figure 3.32 Selenium IDE after the recording stopped

Clicking on “Stop Recording” button will end the recording and the test can be

saved. After saving the test, it can be re-run as many as time requested which will

result in executing the steps and running through verification steps as shown in

Figure 3.33

The results will be displayed in the “log” pane below the IDE window. The

summary will be shown under “Test case” pane. If there are more than one test case

in the test suite, the overall report can also be observed here.

69

Figure 3.33 Running tests in Selenium IDE

It is possible to add more commands and extend the test case using Selenium IDE.

The other option is also to export this test case as a WebDriver or RC test case with

whatever language is preferred. This way the test case can be added to source control

systems and re-run automated using WebDriver libraries. The sample test case is

exported as C# WebDriver test which is shown in Table 3.4

Table 3.4 Selenium WebDriver code to test cloud application

using NUnit.Framework;
using OpenQA.Selenium;
using OpenQA.Selenium.Firefox;
using OpenQA.Selenium.Support.UI;
namespace SeleniumTests
{
 [TestFixture]
 public class SeleniumCsharp
 {
 private IWebDriver driver;
 private StringBuilder verificationErrors;
 private string baseURL;
 private bool acceptNextAlert = true;
 [SetUp]
 public void SetupTest()
 {
 driver = new FirefoxDriver();
 baseURL = "http://testingcloud.azurewebsites.net/";

70

Table 3.4 Continued

 verificationErrors = new StringBuilder();
 }
 [TearDown]
 public void TeardownTest()
 {
 try
 {
 driver.Quit();
 }
 catch (Exception)
 {
 // Ignore errors if unable to close the browser
 }
 Assert.AreEqual("", verificationErrors.ToString());
 }
 [Test]
 public void TheSeleniumCsharpTest()
 {
 driver.Navigate().GoToUrl(baseURL + "/");
 try
 {
 Assert.AreEqual("Home Page - My ASP.NET Web Page", driver.Title);
 }
 catch (AssertionException e)
 {
 verificationErrors.Append(e.Message);
 }
 driver.FindElement(By.LinkText("About")).Click();
 Assert.AreEqual("About - My ASP.NET Web Page", driver.Title);
 }
 private bool IsElementPresent(By by)
 {
 try
 {
 driver.FindElement(by);
 return true;
 }
 catch (NoSuchElementException)
 {
 return false;
 }
 }
 private string CloseAlertAndGetItsText() {
 try {
 IAlert alert = driver.SwitchTo().Alert();
 if (acceptNextAlert) {
 alert.Accept();
 } else {
 alert.Dismiss();
 }
 return alert.Text;
 } finally {
 acceptNextAlert = true;
 }
 }
 }
}

The code starts by running method “SetupTest” which loads a “FirefoxDriver”. It

is also possible to run tests with other drivers, such as “InternetExplorerDriver”,

“ChromeDriver” etc., which can be downloaded from Selenium Project’s web site.

The “baseURL” is set to home page of the cloud application.

71

The main method “TheSeleniumCsharpTest” method is called next which

navigates to the base URL. Then verification steps are run followed by finding

elements on the web page and executing actions on them.

3.5 Summary for Selenium Suite

Selenium tools suite is an open-source project which is based on JavaScript and

browser API. It presents many different ways of testing browser based applications

including cloud applications.

However, it is not as integrated as Visual Studio. It requires combining different

tools, drivers and scripts to be able to develop test cases. But this also presents a

higher level of extensibility alongside strong customization support to tooling.

During the tests in this project, the lack of support for load/performance testing

for Selenium test suite is observed. In order to load test the cloud application, other

tools such as JMeter, Grinder or httperf should be used.

Also for security testing, Selenium test suite can be used but not in full-fledged

fashion. Security testing in Selenium requires embedding security testing concepts

within Selenium tests and executing those tests. Selenium doesn’t come with a ready

to use security testing framework which can fill in the gaps and make this a more

constructive, well-thought approach, rather than leaving it to the tester to come up

with all scenarios.

Selenium is a very powerful framework for functional and UI based testing,

however it lacks a couple of important features for testing cloud applications, such as

load/performance, security etc.

72

CHAPTER FOUR

CONCLUSION

Software development especially in enterprise organizations is facing challenges

of developing software more agile and with higher quality and less cost. Businesses

are required to respond changing environment quicker than ever before, otherwise

they risk losing money and customers if they don’t.

As described in previous chapters, cloud computing can help companies deal with

changes quickly and cost effectively.

However there are challenges designing and testing these applications which will

be running in the cloud. Designing and developing applications which will be

running on cloud has still some distance to go, the software lifecycle management

and design patterns for developing cloud applications are still not an agreed upon

topic. There are many methodologies and frameworks existing for managing such

development activities. They are far from where the traditional software development

methodologies are.

Having this scattered approach for designing and developing cloud applications

also has adverse effects on agreeing upon testing framework and methodologies for

testing cloud applications. Challenges involved in testing cloud applications can be

addressed by resorting to a combination of advanced testing technologies and tools.

Thus, it will result a level of automation that will enable testing in a continuous

mode.

We expect the traditional software testing tools, especially targeting Web

application testing can be adjusted to run against these cloud applications. Also new

approaches, such as “Testing in Production” (TiP) will become more and more

important, since the tests will be running as part of the deployed code, maybe in an

isolated context, helping to reduce the cost of testing efforts for cloud platforms.

73

After all, everything that targets the cloud application results in

bandwidth/cpu/storage charges.

However there are still challenges to be resolved. The cloud applications will have

the ability to adapt to continually changing environmental conditions, but they will

also have components which test themselves to ensure that software adaptations do

not introduce faults into the system at runtime.

There will be tools, probably offered by the cloud platform vendors, integrated

into their cloud management tools, which will present automated test generation of

all types including unit, functional, stress, performance and load, and security test

cases. And the existing test tools will have tight integrations with cloud platforms, so

that the tests can be published to cloud to run in cloud.

New concepts such as “Software Testing as a Service”, “Testing in Production”,

“Automatic Software Testing”, and “Improving testability of Cloud Applications”

should be researched further within this topic.

74

REFERENCES

Chappell, D. (December, 2009). Introducing the Windows Azure Platform.

 Retrieved December 2012, from

 http://www.davidchappell.com/writing/white_papers/Windows_Azure_Platfo

 rm_v1.3--Chappell.pdf

Eliot, S. (Jun 7, 2011). Testing in Production (TiP) - It Really Happens–Examples

 from Facebook, Amazon, Google, and Microsoft. Retrieved January, 2013 from

 http://blogs.msdn.com/b/seliot/archive/2011/06/07/testing-in-production-tip-

 it-really-happens-and-that-s-a-good-thing.aspx

Eliot, S (November 15, 2011). The Future of Software Testing Part One –

 Testing In Production. Retrieved January, 2013 from

 http://www.thetestingplanet.com/2011/11/THE-FUTURE-OF-SOFTWARE-

 TESTING-PART-ONE-TESTING-IN-PRODUCTION

Furht, B. & Escalante A. (Eds.). (2010). Handbook of Cloud Computing. New York,

 NY: Springer

Kumar N.S. & Subashni S. (2010). Software Testing using Visual Studio 2010: A

 Step-by-Step Guide to Understanding the Features and Concepts of Testing

 Applications Using Visual Studio. Birmingham: Packt Publishing

Naik S. & Tripathy P. (2008). Software Testing and Quality Assurance: Theory

 and Practice. Hoboken, NJ: John Wiley & Sons

Page A., Johnston K., Rollison B. (2009). How We Test Software at Microsoft.

 Redmond, WA: Microsoft Press

Sarna, D.E.Y. (2011). Implementing and Developing Cloud Computing

 Applications. Boca Raton, FL: Auerbach Publications

75

Sitaram D. & Manjunath G. (2012). Moving to the Cloud: Developing Apps in

 the New World of Cloud Computing. Waltham, MA: Syngress

Sosinsky, B. (2011). Cloud Computing Bible. Indianapolis, IN: John

 Wiley&Sons

Subashni S. & Kumar N.S. (2008). Software Testing with Visual Studio Team

 System 2008: Birmingham: Packt Publishing

Tiller S. & Parveen T. (Eds.) (2013). Software Testing in the Cloud:

 Perspectives on an Emerging Discipline. Hershey, PA: IGI Global

Selenium Documentation. (n.d.). Retrieved January, 2013, from

 http://seleniumhq.org/docs/

Windows Azure .NET Developer Resources and Tutorial, (n.d.). Retrieved

 January, 2013, from http://www.microsoft.com/windowsazure/windowsazure

	OnKapak
	Ilk_Bolumler
	tufan_yl_tez_cikti

