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ABSTRACT

In this paper, a matrix method is introduced for numerically solving lincar Fredholm inlegral
equations, This method in based on first taking the Taylor expansions of the functions in the integral
equation and then substituting their matrix forms in the equation. Hence, the matrik equation obtained by a
suitable truncation of the Taylor series can be solved and the unknown coclficients can be found
approximately. The illustration of the methed by numerical examples are given and the results are compaired

with the results in the references.
Eey Words : Integral Equations

OZET

Bu makelede, Fredholm integral denklemlerin sayisal ¢@ziimii igin bir matris yntemi sunulmusgtur,
Yontem, dnce integral denklc'mdei-:i fonksiyonlarin Taylor agilimlanini almaya ve sonra bunlarin matris
formlanim denklemde yerine koymaya dayandintlr. Béylece, Taylor serilerinin uygun bir kesimi ilc elde edilen
matris denklemi ¢éziilebilir ve bilinmeyen katsayilar yaklagtk olarak bulunabilir. Yontemin sayisal omekle
aciklamasi verilir ve sonuclar yaymnlanmig olan sonuglarla kargiagtnler, '

1, INTRODUCTION

The Fredholm, Meumann, Hilbert-Schmidt and Chebyshev expansion approaches to solving integral
equations are well known. Recently, Taylor polynomial or scries solutions of certain classes of ordinary
differentia equations [1] and integral equations [2] have been studied. In this paper, in the wiev of the
mentioned studies, we discuss a Taylor polyromial method, depended on the matrix equation, for solving the
linear Fredholm integral equation of the second kind, which is defined by
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Here g is the unknown function, whil> = "o uons . . LR« Ly) are the ki wuons, and the

limits of integration a and b are constants; ». 15 & funzero, recl oF COMpicx parameter.
2.METHOD OF SOLUTION

We assume that the integral equation (1) has a solution in the form
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B(x) = g, (x=0)" . (2)
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This is the power serics {Taylor series about x = c¢) for the unknown function g(x) with the unknown
cocllicients g;. The Taylor series of the known function f(x) about x = ¢ can be computed as
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£(x) = nzo £, (x=0)" 5 £ = o (3)

Also the kemel function K(x,y) can be expanded in 2 Taylor series about x=c, y=c as follows
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For the approximate solution of the integral equation (1), the infinite series (2), (3) and (4) have to be
truncated after a finite number of terms, say N+1 {(n, m = 0,1,2,..,N). In this case, the functions g(x), f(x)
and K(x,y) arc approximated by " the polynomials of degree N in the forms, respectively,
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K(x,y) = § I B (x-2) (y=c).
n=0 m=0
where
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Each of the functions (5), (6) and (7) can be written in the matrix form as [ollows:
a(x) = X6 £(x) = XF
K(x,y) = XK¥Y"  a(y) = YG
where

X = [(x‘c)u (x—c)l cen (x—c)N]

. N
¥ =[(y-0)® -t .. (5-adM]
‘ . ] f
g6 . i .
G = Bl " l\ = ]\10 l\.ll l\lN M F= fl
Lgn L Ky g ey E

Substituting these matrix forms of the functions g(x), f(x) and K(x,y) into the integral equation (1), we have

b
XG = XF + A IXKY'YGdy
. a

or

G=F+AKHG (9)
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where

i {10)
b (b )n+m+l - C)n+m+1 J
n+m+1

The matrix equation (9) may be written in the form

(I-AKH)G =F : (1)
“where I is the unit rn.al_rix. In the equation (11), if
D)=1T-AKHI=0, ' (12)
we obtain the mz;trix equation

G=(- AKH)Y!F. (13)

Thus the unknown coefficients gg, (n = 0,1,2,...,N) are uniquely determined by the equation (13).

~The matrix equation (11) corresponds to a system of (N+1) algebraic equations for the unknowns g;. The

determinant D(A) = II - AKHI of this system is a polynomial in % of degree at most (N+1). Morever, it is
not identically zero, since, when A = 0, it reduces 1o unity. For all values of A for which D (A) =0, the
matrix equation (11) and thereby the integral equation (1), has a unique solution. This solution is given by
the Taylor polynomial

N
g(x) = ): = {x—c)n. ( 14)

n=o0

On the other hand, for all values of A for which D(}) becomes equal to zero, and with it the integral
equation (1), cither is insoluble or has an infinite number of solutions. In some cases, the matrix equation
can be solved only for some particular values of the quantities fy.

3.NUMERICAL EXAMPLES

The method of this paper is useful in finding approximate and exact solutions of certain integral
equations. We illustrate it by the following exampes:

Exampe 1. Let us first illustrate the method with the help of the integral cquation

!
X 1
+—— o xyely)dy (15)
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g(x) = chx -



S0 that

f(}‘) = chx - _%‘_ 1 K(X,}') =AYy X = ‘L

,B=D, bxl-
= 3

Letc=0 and N =6. Then we evaluate the quantities f;, kym, and hpy . from the relations (8) and (10), as

1 1 . 1
f = 1 S f = - — e ——— _ i _1.
=% s =5 £ 0, g, o o= 0, £ =T
1, if n=m=1
k =
o o, otherwise
h = . S pon,m o= 0,1,..., 6
ah n4m+l -
Substituting these values in the matrix equation (11), we get
1 0 o o o o kT [ |
fi8 1 1 1 1 1 34 .
6 9 12 15- 18 21 24 1 2
1
0 0 1 0 0 0 0 o E
0 0 O 1 0o 0 © g8y | = 9
c o o 0 1 0 O 84 Cril
o 0 0 0 0 1 0 85 C
L 0O 0 0 0 0 0 1 &g L%’ﬁ
we solve it for the quantities g, and get
4909 1
g =1 s i SR R _ 1 1
o 1 g') = to=0 g, = — o= 0 et
15360 4 2 3 47 g, 85 6™ 39
Substituting these values in (5) we obtain
2 6
a(x) =1 = SR x4 —%— 2§ Ag? g e aP {16 )
. 15360 & 24 720



The exact solution of the integral equation (14) is

8(x)

e

-
chx - 2 (1 + = )x
l.

which is given by {4]. The comparison of the solauons (16) and (17) as follows:

Taylor Polynomial Appr. g(x)

X Exact solution g (x)

0.0 - 1

0.1 0.972459
0.2 0.954976
0.3 0.947702
0.4 0.950890
0.5 0.964899
0.6 0.950192
0.7 1.027351
0.8 1.077071
0.9 1.140177
1.0 1.217626

1
0.922458
0.954976
0.947701
0.9508%0
0.964898
0.990191
1.027349
1.077066
1.140165
1.217600

Example 2. Let us now study the integral equation

where

o(x) = e~ Zsinx + [

1

=1

(sinx)e‘y aly) dy

f(x)=cX - 2 sinx, K(x,y) = (sinx) e”¥, A = 1,8=-1, b=1.
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I we choose c=U and N=5, by means of the relations (8) and (10) we obtain the matrices F,Kand'
in the forms

e 14 -1 12 12 1/24 -1/120 ]
0 0 0 0 0 0
1 -1 1/2 -1/6 1/24 -1/120
K= G 0 0 0 0 0
6 1/6 12 136 -1idd 1720
0 0 0 0 0 0
L 1/120 -1/120 1240 -1/720 12880 . -1/14400,

h 0 23 0 2/5 0
0 23 0 50 7
- la2z o 25 0 M0
o %5 0 2/7 0 20
250 %0 2/9 0
Lo 27 0 20 0 211

We s_ubslitu[e them in the matrix equation (11) and solve it for Lhé quantities gy and get
go=1, g1=0.9993'.76, g2=0.5, g3=0.16677, g4=0.041667, g5=0.008327

Thus the Taylor polynomial solftion of (18) is

2(x)= 1+ 0.999376x + 0.5x2 + 0.16677x3+0.0411667x% + 0.008327x5.

By means of the known methods, we can find the exact solution to be g(x) = eX. The comparison of these
solutions is left 1o the reader.
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Example 3. Let us solve the integral equation
!

gx)=2x + 3 !(x+y)gW)dy (19
&

by the method of the Taylor palynomial approximztion.

By taking c=0 and N = 2, we obtain thz matrices F, K and H as

0 0 1 0 1 12 1/3

2 1 0 0 1 i3 14
F = K = H= /2 / /

0 0 0 0 13 14 i

Substituting these martices in (11) and then solving it for the quantities gq, g1, 2nd g3, we get.
_ o 8aA 12 (2-8

= ———— n

g D: .7|0—O
o qocpax (1T 12-12M-0°

r:2"‘

Next we substituie these values in (3) 2nd obtain

o(x) = 8L + 12(2-M)x ¢ 203
12-12 A= A2

which is the exact solution [3]. On the other hand, note [3] that the solution obtained by the method of
successive approximations to the tird order is -

2 2 r 7 2 3 ri3 5
Y = Dy s
g3(x)—_x+)\[m+3]+k [6 x+3]+l [12x+8]

The detcrminant D) =11 - AKH | = 0 gives A2 + 12X - 12 = 0. Thus, the eigenvalues are
Al=-6+413 A2=-6-443.

For these two values of A, the homogenous part of (19) has a nontrivial solution, while the integral equation
(19) is, in general, not soluble. When A differs from these values, the solution of (19) becomes 20

Eample 4. Solve the integral equation

|
glx)= €% -x - f x (-1 g(y) dy
(8]

so that

) =e¥-x, A=-1, K(zy)=x(e"¥-1),a=0,b=1
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Thus we obiain g(x} = 1 which is the exact soiuticmv [2].
Note that the approximate solution of {21) by means of the Taylor series is given by [3] in the form
g(x) = eX- x - 0.5010x2 - 0.1671x3 - 0,0423x%
Eample 5. Let us consider the equation
g(x)=4x-2+6 (x-y)gly) dy.
In this case
{(x)=4x-2, K(xy) =xyk =6,a=1b=2

Ifwetakec=1and N=2, we find

2 B 1 0] 1 1/2° 1/3
F=|4| ., k= ]1 0 ol, ne |1/2 1/3 1/4
0| 0 0 OJ /3 1/4  1/5
and
, i
By 4 2 3/2 2 -3
B 4= |6 -2 -2 4| = 7
82 0 0 1 D 0
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Thereby we find that
| gx}=-3+T7(x-Dorgx)=7x-10
which is the exact solution. In the cases of ¢ = 0 and M > 1, the same result is obtained.
4. CONCLUSIONS

In this paper, the usefulness of Taylor polynomial expansions for the solution of Fredholm integral
equations of the second kind is demostrated. The nonsirigular Fredholm integral equations of the second kind
are chosen o show the accuracy of the method. Also the method can be applied to the intégr'.ﬂ equations of
the first kind and homogenous. A considerable advantage of the method is that the solution is expressed as a
truncated Taylor series. This means that, after calculation of the series coefficients, the solution g(x) of the
equation can be evaluated for arbitrary values of x at low computation effort. This implies that our method is
very efficieat. A disadvantage is that the method is not generally applicable, since it requires a matrix
equation which depzends on the Taylor series expansions of the function f and K about x = ¢, y = c. However
it would éppﬁar that the Taylor polynomial method shows to best advantage when the kemnel K(x,y) and
inhomogenous part {(x) are both infinitely differentiable functions. In this case, g(x) is also infinitely
differentiable, and the results of Section 2 and 3 indicate thai the Taylor series expansion of such a function
will converge fairly rapidly, -

For computational efficiency, some estimate for N, the degree of the approximating polynomial o g

(x), should be available. Because the choice of N determines the precision of the solution g(x). If N is chosen

too farge, unnecessary labour may be done; but If N is taken a small value, the solution will not be

sufficiently accurate. Therefore N must be chosen sufficiently large to get a reasonable approximation. In this
" case computer may be used.

An interesting feature of the Taylor polynomial method is that the method is used in finding exact
solutions in many cases, as demostrated by examples in Section 3. In the case of inlegral equations as well as
in the case of ordinary differential equations, the method gives higher convergence speed than that of the
picard method of successive approximations, provided that the truncation limit N is appropriate (Ex. 3).
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