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ABDOMINAL IMAGE SEGMENTATION AND VISUALIZATION  

USING HIERARCHICAL NEURAL NETWORKS  

 
ABSTRACT 

 

Medical imaging modalities can provide very detailed and informative mappings of 

the anatomy of a subject. Therefore, diagnostic imaging has become an important tool in 

medicine by increasing knowledge of normal and pathological anatomy, so helping 

diagnosis and planning treatment. These detailed and informative mappings can be 

processed to extract the information of interest instead of dealing with whole data. 

Development of tools and techniques to accomplish information extraction and 

rendering that information can be grouped under the fields of image segmentation and 

visualization. These two fields are strongly related with each other and they play a vital 

role in numerous radiological imaging applications such as the quantification of tissue 

volumes, diagnosis, localization of pathologies, study of anatomical structures, 

treatment planning, computer aided surgery and medical education. 

Segmentation depends highly on the specific application, imaging modality, and 

other factors such as artifacts, motion, partial volume effects and noise. Imaging of 

human abdomen is one of the challenging application areas of segmentation due to the 

highly overlapping intensity ranges of organs of interest. Therefore, selection and 

development of an appropriate segmentation method depends on the requirements of the 

problem and organ of interest.  

On the other hand, the goal of medical visualization is to produce clear and 

informative pictures of the important structures in a data set but simple approaches have 

limited performance on visualization of abdomen. Volume visualization can be used 

either directly with the whole volume data or after a segmentation algorithm. For both 

cases, volume rendering is an important technique since it displays 3-Dimensional 

images directly from the original data set and provides "on-the-fly" combinations of the 

selected image transformations such as opacity and color. The only interactive part 

during the generation of the volume rendered medical images is the Transfer Function 
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specification, therefore it is important to design effective tools for handling this 

parameter.  

For segmentation and visualization tasks discussed above, developing new methods, 

algorithms, and applications that can be used in medical image segmentation is 

necessary to use 3-D volume visualization more effectively in diagnosis, treatment 

planning etc. During the development of these methods, robust and stable query and 

retrieve from different storage media, ability of manipulating 2-D/3-D images and 

proper visualization of the results are necessary. Flexible tools and libraries are needed 

to revisit already-solved problems, to re-develop existing programs, or to rapidly 

implement and test new algorithms which can save these researchers’ time and effort.  

In this thesis, novel studies on segmentation, interactive visualization of medical 

images and studies on their implementation are presented. First of all, a robust and 

patient oriented segmentation algorithm is developed for pre-evaluation of liver 

transplantation donor candidates. For the, enhancement of the visualization of 

abdominal organs, a new domain and a technique for multi-stage approximation to this 

domain, which is then used for transfer function specification for volume rendering, are 

introduced. Finally, the developed liver segmentation algorithm is implemented as an 

application of a more general framework on object based medical image segmentation 

and representation.  

 

Keywords: Abdominal imaging, segmentation, Volume rendering, Transfer function, 

Java, Neural networks. 
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HİYERARŞİK SİNİR AĞLARI İLE ABDOMİNAL GÖRÜNTÜ BÖLÜTLEME 

VE ÜÇ BOYUTLU GÖRÜNTÜLEME  

 

ÖZ 

 

Tıbbi görüntüleme ile anatomi hakkında detaylı bilgiler elde edinilebildiğinden, tanı 

amaçlı görüntüleme bir çok açıdan önemli hale gelmiştir. Görüntüleme cihazları 

tarafından sunulan veriler, tüm veri yerine ilgilenilen dokunun görüntülerde belirlenerek 

ayrılması suretiyle işlenebilir. Sayısal görüntü gösterimi ve işlenmesi alanındaki 

gelişmelerin yardımı ile de bu görüntülerin incelenmesinde yeni tekniklerin kullanılması 

da mümkün olmaktadır. Ayrıca bu sayısal çoklu veri dilimleri, çeşitli görüntüleme 

teknikleri kullanılarak üç boyutlu görüntülerin oluşturulmasında, tanı, ameliyat 

benzetimi ve tedavi planlama gibi alanlarda da kullanılabilmektedir. Bu işlemleri 

gerçekleştirecek yöntem ve araçların geliştirilmesi ve elde edilen verilen sunulması, 

bölütleme ve üç boyutlu görüntüleme başlıkları altında incelenmektedir. Bölütleme ve 

görüntüleme birbirleriyle yakın ilişkili iki alan olup, bir çok radyolojik uygulamada 

kullanılmaktadırlar. 

Bölütlemede kullanılacak teknik, tıbbi uygulama alanına, görüntüleme cihazına ve 

gürültü gibi dış etkenlerden kaynaklanan bir çok faktöre bağlıdır. Örtüşen organ ve doku 

yoğunlukları nedeniyle de, abdominal organ görüntüleme pek çok zorluk içeren bir 

bölütleme uygulama alanıdır. Bu nedenle, uygun bir bölütleme yönteminin seçimi ve 

geliştirilmesi, bölütlenecek organın özelliklerine bağlıdır. Üç boyutlu görüntülemede ise 

amaç önemli doku ve organların en net ve açık olarak gösterilebilmesidir ancak benzer 

nedenlerden ötürü abdominal üç boyutlu görüntülemede temel teknikler yetersiz 

kalmaktadır. Transfer fonksiyonları, üç boyutlu görüntülerle etkileşimde renk ve opaklık 

gibi önemli parametrelerin belirlenmesini etkileşimli olarak sağladıklarından, bu 

parametrelerin belirlenmesinde etkili ve kullanışlı tekniklerin geliştirilmesi önemlidir. 

Hem bölütleme, hem de üç boyutlu görüntüleme için, yeni tekniklerin geliştirilmesi 

kadar, bu tekniklerin uygun ve kullanışlı araçlar haline getirilmesi de önemlidir. Bu tez 

ile, abdominal görüntülerde bölütleme, üç boyutlu görüntüleme ve bunların etkin şekilde 

gerçeklenmesi üzerine yeni çalışmalar sunulmaktadır.  
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Tez kapsamında öncelikle karaciğer donor adaylarının karaciğer hacimlerini ölçmek 

üzere kullanılan bir karaciğer bölütleme yöntemi geliştirilmiştir. Geliştirilen yöntem, 

çok katmanlı yapay sinir ağlarının adım adım eğitimi ve kullanımı ile karaciğer 

bölütlemedeki problemlerle baş edebilen otomatik ve uyarlamalı bir karaciğer bölütleme 

yöntemidir.  

İkinci olarak, abdominal organların üç boyutlu görüntülenme başarımını artırmak 

amacıyla yeni bir teknik önerilmiş ve hacim görüntülemede transfer fonksiyonu 

saptanmasında kullanılmıştır. Geliştirilen yöntemde, abdominal organların, görüntüler 

üzerindeki özelliklerinden yararlanılarak yeni bir fonksiyon tanımlanmış ve bu 

fonksiyona yakınsamada hiyerarşik yapay sinir ağları kullanılmıştır. 

Son olarak, geliştirilen karaciğer bölütleme yöntemi, daha genel bir çalışma olan 

nesne tabanlı bölütleme kapsamında gerçeklenmiştir. Eklenti bir program halinde 

kodlanarak bir tıbbi görüntüleme yazılımına tümleştirilen karaciğer bölütleme yöntemi, 

karaciğerin tüm analizinde yararlı olacak örnek eklenti programlar ile beraber 

kullanılarak,  nesne tabanlı bölütleme ve üç boyutlu görüntülemenin sağladığı 

kazanımlar incelenmiştir. Bu yaklaşım, genel amaçlı bölütleme üzerine hazırlanan başka 

eklenti programlar ile farklı abdominal görüntülere de uygulanarak sonuçları 

sunulmuştur. 

 

Anahtar sözcükler: Abdominal görüntüleme, Bölütleme, Hacim görüntüleme, Transfer 

fonksiyonu, Java, Sinir Ağları 
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CHAPTER ONE 

INTRODUCTION 

 

1.1 General Scope of the Thesis 

Due to the technological developments in medical imaging technology, Computed 

Tomography (CT), Magnetic Resonance (MR) imaging, digital mammography, and 

other imaging modalities can provide very detailed and informative mappings of the 

anatomy of a subject. According to these developments, diagnostic imaging became an 

important tool in medicine by increasing knowledge of normal and pathological 

anatomy, so helping diagnosis and planning treatment. These detailed and informative 

mappings, which are provided by emerging modalities, results in larger data that have 

increased size and number of 2-Dimensional (2-D) images for each study. This 

necessitates the use of computers and algorithms for processing and analysis of these 

data. For assisting and automating specific tasks in radiology, delineation and displaying 

of anatomical structures and other regions of interest are important. The tools and 

techniques to accomplish those tasks are grouped under image segmentation and 

visualization fields. These two fields are strongly related with each other and they play a 

vital role in numerous radiological imaging applications such as the quantification of 

tissue volumes, diagnosis, localization of pathologies, study of anatomical structures, 

treatment planning, computer aided surgery and medical education. 

Segmentation depends highly on the specific application, imaging modality, and 

other factors such as artifacts, motion, partial volume effects and noise. For example, the 

segmentation of brain tissue has different requirements from the segmentation of the 

liver and is also different in CT and MR images. Thus, there is currently no method that 

provides acceptable results for all cases of medical images. Methods that work in a 

wider sense can be applied to a variety of data but the methods that are specialized to 

particular applications can achieve more accurate performances by taking prior 

knowledge into account. Selection of an appropriate approach to a segmentation 

problem, therefore, depends on the requirements of the problem. Abdominal image 

processing is a challenging application area of segmentation due to overlapping 

characteristics of organs and tissues. 
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On the other hand, the goal of medical visualization is to produce clear and 

informative pictures of the important structures in a data set. Several research activities 

addressing the limitations of current visualization systems are aiming to come up with 

new techniques which will carry on volume visualization from research and teaching 

hospitals to routine clinical work. Volume visualization can be used either directly with 

the whole volume data or after a segmentation algorithm, which eliminates the 

redundant data and present the data of interest only. When the whole volume data is 

used, volume rendering (Porter, 1984, Levoy, 1988) is an important technique since it 

displays 3-Dimensional (3-D) images directly from the original data set and provides 

"on-the-fly" combinations of the selected image transformations such as opacity and 

color. The only interactive part during the generation of the volume rendered medical 

images is the Transfer Function (TF) specification, therefore it is important to design 

effective tools for handling this parameter (Pfister et al., 2000). Unfortunately, finding 

good TFs is a very difficult task because of the availability of various possibilities and 

since this flexibility can not be kept in strict bounds, finding an appropriate TF for a 

meaningful and intelligible volume rendering is an active research field.  

For segmentation and visualization tasks discussed above, developing new methods, 

algorithms, and applications that can be used in medical image segmentation is 

necessary to use 3-D volume visualization more effectively in diagnosis, treatment 

planning etc. During the development of these methods, robust and stable query and 

retrieve from different storage media, ability of manipulating 2-D/3-D images and 

proper visualization of the results are necessary but they can take a significant amount of 

time. Moreover, implementation of these tools are out of scope for the researchers 

dealing with segmentation and/or visualization techniques who need to focus on proving 

the reliability and robustness of their algorithms. Thus, flexible tools and libraries are 

needed to revisit already-solved problems, to re-develop existing programs, or to rapidly 

implement and test new algorithms which can save these researchers’ time and effort.  

In this thesis, novel studies on segmentation, interactive visualization of medical 

images and studies on their implementation are presented. The developed methods are 

focused on abdominal image processing and cover three main topics:  
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• The first topic is the development of a robust and patient oriented 

segmentation algorithm for pre-evaluation of liver transplantation donor 

candidates.  

• The second topic is the enhancement of the visualization of abdominal 

organs by introducing a new domain and a technique for multi-stage 

approximation to this domain which is then used for transfer function 

specification for volume rendering.  

• Finally, the third topic is the implementation of the developed liver 

segmentation algorithm as an application of a more general framework on 

medical image segmentation and representation.  

1.2 Specific Aims 

The specific aims of this thesis, which covers the studies to improve the 

segmentation, visualization and analysis of abdominal image processing problems, are 

introduced in the following sections.  

1.2.1 Pre-evaluation of Liver Transplantation Donors 

The first subject of this thesis consists of the study about the development of a 

method for automatic segmentation of liver in contrast enhanced CT images. This is a 

very important procedure since the results are used for the measurement of the liver 

volume and analysis of the liver vasculature that are important stages to decide whether 

a candidate for transplantation is suitable or not. 

Routine preoperative evaluation of donors requires both CT (Flohr et al., 2000) and 

CT with contrast medium injection, namely CT-Angiography (CTA), which are 

currently the most widely used radiographic techniques for the rendering of liver 

parenchyma, vessels and tumors in living liver transplantation donors. However, due to 

gray level similarity of adjacent organs, injection of contrast media and partial volume 

effects; robust segmentation of the liver is a very difficult task. Moreover, high 

variations in liver position, different image characteristics of different CT modalities and 

atypical liver shapes make the segmentation process even harder. The strategy of this 

study for overcoming these difficulties involves a segmentation method which does not 
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utilize a common parameter set found from all patient datasets. Instead, the method is 

capable of adapting the parameter set to each patient. The main reason for this approach 

is that the ranges of the parameter values differ significantly from patient to patient, and 

these wide ranges decrease the efficiency of the method when one utilizes a common 

parameter set for all patients. Thus, a method, which examines and adapts its parameters 

according to each patient, is proposed and the approach is named as patient-oriented 

segmentation. For qualifying ‘patient oriented’, the algorithm learns data set 

characteristics in parallel to segmentation process, and adapts its parameters to these 

characteristics.  

The developed iterative segmentation algorithm combines classification of pixels 

(using an unsupervised clustering method i.e. K-means) with adjacent slice information 

(obtained by skeletonization) via morphological reconstruction. A more complex 

classifier (Multi Layer Perceptron network - MLP) is used for the datasets where the K-

means clustering gives insufficient results. Here, the neural network is designed to 

classify features extracted from the current and adjacent (previously segmented) slices 

and therefore intrinsically robust to gray level and shape variations. The decision 

between using either K-Means or MLP is also done automatically by the algorithm.  

The developed algorithm gives sufficient performance for different modalities, 

varying contrast, dissected liver regions and atypical liver shapes. Results indicate that 

challenging difficulties explained before can be handled properly using the developed 

method and it is also clinically feasible in terms of processing time. 

1.2.2 Transfer Function Specification for Abdominal Visualization 

The medical visualization, which aims to produce clear and informative pictures of 

the important structures in a data set, requires extensive user interaction. One of the 

important advantages of volume rendering (Drebin, Carpenter, & Hanrahan, 1988) is 

that combinations of selected parameters, such as opacity and color, can be determined 

during the rendering pipeline. During the generation of volume rendered medical 

images, TF specification is the step where these adjustments can be done. Therefore, it 

is crucial and important to design accurate TFs to produce meaningful and intelligible 3-

D images. However TF design is a very difficult task because of the availability of 
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various possibilities. Since this flexibility can not be kept in strict bounds, specification 

of an appropriate TF is a challenging problem especially when there is no initial TF 

design prior to the optimization process. 

Volume rendering would be used more often in clinical practice if the complexity of 

interaction (i.e. setting a TF for volume rendering) becomes less. To reduce the 

complexity of TF design, a semi-automatic method for TF initialization and a new, 

effective and interactive domain for TF optimization is introduced in this thesis. The 

proposed method is based on a Volume Histogram Stack, i.e. VHS, instead of 

conventional volume histogram and handles TF specification as a (vector-valued) 

function approximation problem where the domain is the 2-D input space of Hounsfield 

value and slice number and the range variables are opacity and color. The method 

automates and simplifies the optimization of a TF.  

The newly introduced VHS data model allows the detection of tissues both in 

calibrated (i.e. CT) and uncalibrated (i.e. MR) medical datasets. As a consequence of the 

fact that each slice histogram is represented separately, VHS preserves inter-slice spatial 

domain knowledge, so it exploits more priori information. It also demonstrates changes 

in the gray values through the series of slices, thus including information on local 

histogram distributions of the tissues. In other words, VHS can represent the intensity 

values of the tissues as well as their spatial information and local distributions which are 

not available in conventional volume histograms. 

1.2.3 Integrating Developed Methods to a Medical Image Viewer 

Developing new techniques, algorithms, and applications that can be used in medical 

image segmentation is necessary to be able to use 3-D volume visualization in diagnosis, 

treatment planning etc. The development of the complete package, which required 

robust and stable query and retrieve from different storage media, manipulate 2-D/3-D 

images, convert images, and effectively visualize them can take a significant amount of 

time. Moreover, it is out of scope for the researchers dealing with segmentation 

algorithms, who need to focus on proving the reliability and robustness of their 

algorithms. Flexible tools and libraries are needed to revisit already-solved problems, to 
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re-develop existing programs, or to rapidly implement and test new algorithms which 

can save these researchers’ time and effort.  

The goal of this part of the thesis is to present developments and refinements of 

segmentation algorithms in particular applications to abdominal images. The method for 

achieving this is to provide access to the 3-D rendering (i.e. Volume Rendering (VR), 

Surface Rendering (SR) and Maximum Intensity Projection (MIP) (Robb, 1995)) 

capabilities that can be used to visualize the results of new segmentation algorithms. It 

benefits practitioners by allowing them to make use of their advanced algorithms 

developed by different tools (i.e. MatLab, Java, Insight Registration and Segmentation 

Toolkit (ITK) (Ibanez, & Schroeder, 2005; Martin, Ibanez, Avila, Barre, & Kaspersen, 

2005)) with a low learning curve and it can assist algorithm developers by proving a 

simple application. Thus, the developers are enabled to easily and routinely make use of 

their algorithms with little to no learning curve from within a Digital Imaging and 

Communications in Medicine (DICOM) (American College of Radiology, National 

Electrical Manufacturers Association, 2005) application. As opposed to direct use of the 

ITK and Java, researchers do not need to deal or spend time to gain programming 

experience on loading data, displaying images or showing the results in a proper way 

which requires a high experience on Visualization Toolkit (VTK) (Schroeder, Martin, & 

Lorensen, 1998) and Java due to the due to various cases of DICOM format and 

different medical applications. 

The proposed architecture of implementation mechanisms are used to develop plug-

ins for segmentation. These plug-ins consist of general purpose segmentation plug-ins, 

task specific ones and interactive visualization plug-ins. The advantages of using these 

different types of plug-ins are compared using abdominal image processing applications 

and development and programming issues are discussed. 
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CHAPTER TWO 

BACKGROUND 

 

2.1 Anatomy of Abdomen 

The human abdomen is the part of the body between the pelvis and the thorax. It 

stretches from the thorax at the thoracic diaphragm to the pelvis at the pelvic brim 

(Tortora & Anagnostakos, 1984). The pelvic brim stretches from the lumbosacral angle 

(the intervertebral disk between L5 and S1) to the pubic symphysis and is the edge of 

the pelvic inlet. The space above this inlet and under the thoracic diaphragm is termed 

the abdominal cavity. The boundary of the abdominal cavity is the abdominal wall in the 

front and the peritoneal surface at the rear. 

 

(a) 
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(b) 

Figure 2.1 Human Abdomen (a) anterior view (b) posterior view (Moore, & Dalley, 1999). 

Functionally, the human abdomen is where most of the alimentary tract is placed and 

so most of the absorption and digestion of food occurs here. The alimentary tract in the 

abdomen consists of the lower esophagus, the stomach, the duodenum, the jejunum, 

ileum, the cecum and the appendix, the ascending, transverse and descending colons, the 

sigmoid colon and the rectum. Other vital organs inside the abdomen include the liver, 
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the kidneys, the pancreas and the spleen. The abdominal wall is split into the posterior 

(back), lateral (sides) and anterior (front) walls. 

The abdomen contains most of the tube like organs of the digestive tract, as well as 

several solid organs. Hollow abdominal organs include the stomach, the small intestine, 

and the colon with its attached appendix. Organs such as the liver, its attached 

gallbladder, and the pancreas function in close association with the digestive tract and 

communicate with it via ducts. The spleen, kidneys, and adrenal glands also lie within 

the abdomen, along with many blood vessels including the aorta and inferior vena cava. 

Anatomists may consider the urinary bladder, uterus, fallopian tubes, and ovaries as 

either abdominal organs or as pelvic organs. Finally, the abdomen contains an extensive 

membrane called the peritoneum. A fold of peritoneum may completely cover certain 

organs, whereas it may cover only one side of organs that usually lie closer to the 

abdominal wall. Anatomists call the latter type of organs retroperitoneal. 

2.1.1 Liver 

The liver is the largest glandular organ, is located on the right side of the abdominal 

cavity, has a reddish brown color and has a weight of about 1.5 kg (Anthea et al., 1993). 

The liver has lobes of unequal size and shape and it is in connected with two large blood 

vessels. The first one (i.e. hepatic artery) carries blood from the aorta and the second one 

(i.e. portal vein) carries blood containing digested food from the small intestine. These 

blood vessels subdivide into capillaries which then lead to a lobe. 

The liver is necessary for survival and there is currently no technique or machinery 

that can to compensate the absence of liver. It has a wide range of functions, including 

detoxification, protein synthesis, and production of biochemicals necessary for 

digestion. It produces bile, an alkaline compound which aids in digestion, via the 

emulsification of lipids. It also performs and regulates a wide variety of high-volume 

biochemical reactions requiring highly specialized tissues, including the synthesis and 

breakdown of small and complex molecules, many of which are necessary for normal 

vital functions. 
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2.1.1.1 Vasculature 

As mentioned previously, the liver receives a dual blood supply from the hepatic 

portal vein and hepatic arteries (Figure 2.2). Seventy five percent of the liver's blood 

supply is venous blood carried from the spleen, gastrointestinal tract, and its associated 

organs by hepatic portal vein. The rest of the blood is supplied by the hepatic arteries 

which carry arterial blood to the liver. Oxygen is provided from both sources almost in 

equal amount.  

 

Figure 2.2 Internal anatomy and vasculature of the liver (Moore, & Dalley, 1999). 

2.1.1.1 Liver Transplantation 

Liver transplantation is an operation that is applied to people with irreversible liver 

failure (i.e. chronic liver diseases such as cirrhosis, chronic hepatitis C, alcoholism, 

autoimmune hepatitis, rarely fulminant hepatic failure etc.). Living Donor Liver 

Transplantation (LDLT) is a technique in which a portion of a living person's liver is 

removed and used to replace the entire liver of the recipient. Although LDLT is first 
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applied as adult-to-child, today adult-to-adult liver transplantation has been done using 

the donor's right hepatic lobe which amounts to 60% of the liver. Due to the ability of 

the liver to regenerate, both the donor and recipient can have normal liver function 

(Anthea et al., 1993).  

With the recent advances of non-invasive imaging, living liver donors can be 

examined and evaluated prior to surgery to decide if the anatomy is feasible for 

donation. The evaluation is usually performed by Multi Detector row CT (MDCT) 

(Flohr et al., 2005) and MR. MDCT is good in vascular anatomy and volumetry. MR is 

used for biliary tree anatomy. Donors with smaller liver volumes than necessary or very 

unusual vascular anatomy, which makes them unsuitable for donation, could be 

screened out to avoid unnecessary operations. 

2.1.2 Right and Left Kidneys 

The kidneys are paired organs, one on each side of the spine, located behind the 

abdominal cavity at the vertebral level T12 to L3 (Tortora & Anagnostakos, 1984). The 

right kidney sits just below the diaphragm and posterior to the liver, the left below the 

diaphragm and posterior to the spleen. Resting on top of each kidney is an adrenal gland 

(also called the suprarenal gland). The asymmetry within the abdominal cavity caused 

by the liver typically results in the right kidney being slightly lower than the left, and 

left kidney being located slightly more medial than the right. Each adult kidney weighs 

between 125 and 170 g in males and between 115 and 155 g in females (Boron, 2002). 

They are an essential part of the urinary system, but have several secondary 

functions concerned with homeostatic functions. These include the regulation of 

electrolytes, acid-base balance, and blood pressure. In producing urine, the kidneys 

excrete wastes such as urea and ammonium; the kidneys also are responsible for the 

reabsorption of glucose and amino acids. Finally, the kidneys are important in the 

production of hormones including calcitriol, renin and erythropoietin. 

The kidneys receive blood from the paired renal arteries, and drain into the paired 

renal veins. Each kidney excretes urine into a ureter, itself a paired structure that empties 

into the urinary bladder. Despite their relatively small size, the kidneys receive 
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approximately 20% of the cardiac output (Boron, 2002). Each renal artery branches into 

segmental arteries, dividing further into interlobar arteries which penetrate the renal 

capsule and extend through the renal columns between the renal pyramids. The 

interlobar arteries then supply blood to the arcuate arteries that run through the boundary 

of the cortex and the medulla. Each arcuate artery supplies several interlobular arteries 

that feed into the afferent arterioles that supply the glomeruli. 

After filtration occurs the blood moves through a small network of venules that 

converge into interlobular veins. As with the arteriole distribution the veins follow the 

same pattern, the interlobular provide blood to the arcuate veins then back to the 

interlobar veins which come to form the renal vein exiting the kidney for transfusion for 

blood. 

2.1.3 Spleen 

The spleen is located in the left upper quadrant of the abdomen beneath the 9th to 

the 12th thoracic (Tortora & Anagnostakos, 1984), is approximately 11 centimeters in 

length and weighs 150 grams (Spielmann, DeLong, & Kliewer, 2005). It removes old 

red blood cells and holds a reserve in case of hemorrhagic shock, especially in animals 

like horses (not in humans), while recycling iron (Mebius & Kraal, 2005). It synthesizes 

antibodies in its white pulp and removes, from blood and lymph node circulation, 

antibody-coated bacteria along with antibody-coated blood cells (Mebius & Kraal, 

2005) Recently, it has been found to contain, in its reserve, half of the body's 

monocytes, within the red pulp, that, upon moving to injured tissue (such as the heart), 

turns into dendritic cells and macrophages while aiding "wound healing", or the healing 

of lacerations. It is one of the centers of activity of the reticuloendothelial system and 

can be considered analogous to a large lymph node as its absence leads to a 

predisposition toward certain infections. 

2.1.4 Stomach 

The stomach is a muscular organ of the digestive tract and located between the 

esophagus and the small intestine. It is on the left upper part of the abdominal cavity. 

The top of the stomach lies against the diaphragm. It is involved in the second phase of 
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digestion, following mastication (chewing). The stomach churns food before it moves 

on to the rest of the digestive system. 

In a healthy humans, the stomach has a relaxed, near empty volume of about 45 ml. 

It is a distensible organ. It normally expands to hold about 1 litre of food, but will hold 

as much as 2-3 litres (whereas a newborn baby will only be able to retain 30ml). 

2.1.5 Abdominal Aorta 

The abdominal aorta is the largest artery in the abdominal cavity. As part of the 

aorta, it is a direct continuation of the descending aorta (of the thorax). It begins at the 

level of the diaphragm, crossing it via the aortic hiatus, technically behind the 

diaphragm, at the vertebral level of T12. It travels down the posterior wall of the 

abdomen in front of the vertebral column. It thus follows the curvature of the lumbar 

vertebrae, that is, convex anteriorly. The peak of this convexity is at the level of the 

third lumbar vertebra (L3). 

It runs parallel to the inferior vena cava, which is located just to the right of the 

abdominal aorta, and becomes smaller in diameter as it gives off branches. This is 

thought to be due to the large size of its principal branches. At the 11th rib, the diameter 

is about 25 mm; above the origin of the renal arteries, 22 mm; below the renals, 20 mm; 

and at the bifurcation, 19 mm. 

The abominal aorta's venous counterpart, the Inferior Vena Cava (IVC), travels 

parallel to it on its right side. Above the level of the umbilicus, the aorta is somewhat 

posterior to the IVC, sending the right renal artery travelling behind it. The IVC likewise 

sends its opposite side counterpart, the left renal vein, crossing in front of the aorta. 

Below the level of the umbilicus, the situation is generally reversed, with the aorta 

sending its right common iliac artery to cross its opposite side counterpart (the left 

common iliac vein) anteriorly. 
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2.1.6 Pancreas, Gall Bladder and Other Organs 

The pancreas is a gland organ in the digestive and endocrine system of vertebrates. It 

is both an endocrine gland producing several important hormones, including insulin, 

glucagon, and somatostatin, as well as an exocrine gland, secreting pancreatic juice 

containing digestive enzymes that pass to the small intestine. These enzymes help in the 

further breakdown of the carbohydrates, protein, and fat in the chyme.  

The gallbladder is a hollow organ that sits in a concavity of the liver known as the 

gallbladder fossa. In adults, the gallbladder measures approximately 8 cm in length and 

4 cm in diameter when fully distended. It is divided into three sections: fundus, body, 

and neck. The neck tapers and connects to the biliary tree via the cystic duct, which then 

joins the common hepatic duct to become the common bile duct. The adult human 

gallbladder stores about 50 millilitres of bile, which is released when food containing fat 

enters the digestive tract, stimulating the secretion of cholecystokinin (CCK). The bile, 

produced in the liver, emulsifies fats in partly digested food. After being stored in the 

gallbladder, the bile becomes more concentrated than when it left the liver, increasing its 

potency and intensifying its effect on fats. 

2.2 Abdominal Imaging, Acquisition and Display 

Modern imaging modalities and techniques allow acquisition of anatomical and 

physiological information from human body in detail. In radiology, images are primarily 

acquired with these modalities and then processed to enhance the information of interest 

among others. For more advanced analysis, digital image processing techniques can be 

used to extract necessary information or to make measurements which can be used for 

planning treatments, surgeries and other operations. This section focuses on the tools 

used for acquiring and displaying abdominal images. Then, the next section covers 

fundamentals of abdominal image processing.  

2.2.1 Image Acquisition 

Several different modalities are in clinical use for imaging of abdominal anatomy 

and physiology (Bidaut, 2000). These modalities use different properties of human body 
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to acquire data and different techniques to reconstruct them into images. CT uses 

attenuation measure of X-rays to provide information about the absolute density of 

tissues, MR uses proton density and relaxation mechanisms, MR spectroscopy (MRS) 

uses chemical contents of the tissues, single photon emitted computed tomography 

(SPECT), and positron emission tomography (PET) uses the varying type of tracers that 

are injected through a vessel prior to the acquisition. Moreover, different information 

can also be acquired using the same modality through different techniques such as  

injection of contrast agents in CT or MR, different tracers in SPECT and PET, dynamic 

acquisitions, etc.  

2.2.1.1 Computer Tomography 

In radiology, CT scanner is an essential tool because of its useful and fast 

applicability in a wide range of clinical situations. CT scanners measure the attenuation 

of X-rays, which are transmitted by rapid rotation of the X-ray tube 360° around the 

patient, by a ring detectors located on the gantry around the patient (Flohr et al., 2005). 

The cross-sectional, two-dimensional images are then generated from these 

measurements using mathematical techniques that can reconstruct 2-D data from 

multiple 1-D projections. 

Due to the advancements in related technology, various techniques have been 

developed after first CT scanners which acquire single slice at a time (sequential 

scanning). By enabling the X-ray tube to rotate continuously in one direction around the 

patient, helical or spiral CTs are implemented. During the continuous rotation of tube, 

the table on which the patient is lying is also moves through the X-ray beam. With this 

technique, information can be acquired as a continuous volume (Flohr et al., 2005). The 

benefit of this technique is mainly on acquisition speed that allows acquisition of 

volume data without mis-registration that is caused by breath hold time of the patient 

and other patient movements. The most recent CT scanners have the same principles of 

the spiral scanner but in addition to that, they consist of multiple rows of detector rings 

which provide the possibility of multiple slice acquisition for each rotation of the X-Ray 

tube (Flohr et al., 2005). 
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These improvements in CT image acquisition have drastic effects on what can be 

done through volumetric applications such as CTA for vascular analysis, 3-D imaging 

and image processing techniques (i.e. Multi-planar reconstruction, maximum intensity 

projection, surface rendering, and volume-rendering). 

2.2.1.2 Magnetic Resonance Imaging 

Unlike CT that uses radiation, MR uses a powerful magnetic field to align the 

hydrogen atoms in the body which is largely composed of water thus contain hydrogen. 

Inside the magnetic field of the MR scanner, the magnetic moments of hydrogen atoms 

align with the direction of the field (Suetens, 2002). Radio frequency (RF) fields are 

used to alter this alignment which causes the hydrogen nuclei to produce a rotating 

magnetic field when returning to the original magnetization alignment. This field is then 

received by the antennas on scanner and the incoming signal can be used to reconstruct 

cross-sectional images or volume data.  

Although soft tissues are represented in a very narrow scale (i.e. Hounsfield value 

range) in CT, the technique behind MR imaging provides high contrast between 

different soft tissues of the body since it depends on the fact that tissues with different 

amount of hydrogen return to their equilibrium state at different rates. Therefore, it is 

especially useful in neurological, musculoskeletal, cardiovascular, and oncological 

imaging although every part of the body can be imaged. The parameters of the MR 

scanner (i.e. application time and strength of fields etc.) can be changed to create 

contrast between different types of body tissue. Similar to CT imaging, contrast agents 

may be injected intravenously to enhance the appearance of blood vessels, tumors etc. 

Although, development MR compatible versions of implants and pacemakers is an 

emerging field, currently patient with those devices are generally prevented from having 

an MR scan due to effects of the magnetic field. 

2.2.1.3 Ultrasound 

Ultrasound is cyclic sound pressure with a frequency greater than (approximately) 

20 kHz. Ultrasound technology is used in many applications based on penetrating a 

medium and measuring the reflection signal which can reveal information about the 
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inner structure of the medium. In medicine, ultrasonography is one of the most widely 

used and ultrasound-based diagnostic medical imaging technique which is used for 

imaging of many organs, tissues and especially fetuses in real time. Compared to CT 

and MR, ultrasound is relatively inexpensive and portable. 

2.2.2 Image Display 

Digital images are composed from a grid of 2-D elements (i.e. pixels) or 3-D 

elements (i.e. voxels). Although different techniques and pipelines are required for 

generation and display of 2-D and 3-D data, many 2-D processing techniques can be 

extended to 3-D data sets where 2-D pixels expand into 3-D voxels. Depending on the 

modality in use, images are processed to enhance the most important part of the 

dynamic range to emphasize the information of interest prior to display. Some of these 

processing functions, which are presented in the following sub-sections, can 

significantly alter the presentation of the information which can be misleading without 

proper understanding of the technique applied. For this reason, image display should 

always be handled very carefully in clinical practice. 

2.2.2.1 Image Windowing 

Typical digital image types are usually 8 bit images that have 256 (i.e. 28) gray 

levels typically from 0 to 255. Although, this dynamic range is more than the noticeable 

dynamic range of the human eye, clinical imaging equipment mostly produce 12 or 16 

bit images for more accurate representations. This requires a conversion from 12-bit (212 

→ values from 0 to 4095 = 212 - 1) or 16 bit data (216 → values from 0 to 65535 = 216 - 

1) to 8-bit representation to be fed to the display hardware. It is possible to apply a 

proportional scaling (i.e. [0, 4095] → [0, 255] or [0, 65535] → [0, 255]), however, 

because of the under-sampling it becomes very difficult to assess the density variations 

of interest. Since all of the dynamic range contain more than the information of interest, 

windowing can be used to reduce the spectrum of interest prior to scaling. By this way, 

only some part of the input dynamic range is scaled and thus less under-sampled. For 

CT and MR, windows are defined by Window Center (WC) and Window Width (WW) 

which are also the standard tags in DICOM format. Preset windows, which are defined 
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by WC and WW, are commonly used to increase the contrast of specific tissue types, as 

the examples in Fig. 2.3. 

2.2.2.2 Look Up Tables  

In current display systems, the conversion between a digital image and a display 

screen is done through a Look-Up Table (LUT) (Lutz, Pun, & Pellegrini, 1991). An 

LUT is a function that simply converts a value derived from the input data to an output 

value based on its shape. This output value is then used to produce a point, whose 

brightness is proportional to the output of the LUT, on the display (Fig. 2.3). 

By adjusting the shape of the corresponding function, LUTs can be used to enhance 

some part of the dynamic range as it is done in windowing. These shapes can be linear 

and non-linear depending on the enhancement. 

       

(a)                                         (b)                                         (c) 

       

(d)                                        (e)                                         (f) 

Figure 2.3 Different Window Level and window width adjustments for an abdominal CT image (a) 

original (b) square LUT (c) logarithmic LUT (d) square root LUT (e) windowing presets for bones 

(f) windowing presets for mediastinum. 
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2.2.2.3 Interpolation and Re-sampling 

Tomographic images acquired by CT/MR usually have same size (e.g. in 

millimeters) for a pixel in both dimensions (i.e. x and y). However, in volumetric data, 

the third dimension (i.e. z axis), which represents slice thickness; mostly have different 

size than the other two axes. The slice thickness is usually greater than the sizes of other 

axes and these different sizes require interpolations to produce images that adequately 

represent true anatomic proportions and relationships in all three axes. Several 

interpolation techniques exist from simple ones, which use the values of neighbor 

pixels/voxels, to complex ones, which use polynomial or surface approximations, shape 

modeling, and splines. Naturally, as the technique becomes more complex, it requires 

more computation but represents the missing data better (Robb, 1995).  

2.3 Abdominal Image Processing 

Digital image processing techniques can be used to extract any necessary and/or 

important information from complete image to make measurements or other analysis 

which can be used for planning treatments, surgeries and other operations. As mentioned 

in image display, digital image processing techniques, which are presented in the 

following sub-sections, can change the original image data which should carefully be 

handled to prevent misleading results. Therefore, although, very sophisticated 

techniques are available, most of them are still seldom implemented in current clinical 

practice and on commercially available systems. Although some of these techniques, 

which are related with the content of this thesis, are given in the following sections of 

this chapter, many other techniques are available (Gonzalez & Woods, 1992). 

2.3.1 Image Enhancement 

Redistribution of the pixel values in an image is an alternative way of using 

windowing or LUTs to enhance structures of interest. One of the common and simplest 

ways to accomplish this redistribution is using image histogram which shows the sum of 

pixels at the same value for each value in an image. Redistributing the pixel values to 

create a histogram that is uniform or linear is one of the most useful techniques for 

global enhancement and called histogram equalization (Fig. 2.4). This technique can be 
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extended to volumes by summing up the histograms of all images to create a cumulative 

histogram, called volumetric histogram. 

 

Figure 2.4 Result of histogram equalization applied to Fig. 2.3 (a) 

2.3.2 Filtering 

Tomographic images can be processed through filters to modifications or 

enhancements. The application of the filters can be either in the original domain of the 

image (i.e. spatial domain that consists of pixels) or in the frequency domain that covers 

a spectrum of frequency components after 2-D Fourier Transform (FT) (Gonzalez & 

Woods, 1992). Similar to 1D signals, a kernel (i.e. filter mask) is convolved with the 

image where each pixel block that is equal to the kernel size is mathematically 

combined with the kernel to produce the filtered image. The kernel size is mostly an odd 

number (i.e. 3x3, 5x5 etc.) so that there is a pixel in the center and usually only the value 

of this center pixel changes at each step of the process. Thus, one of the main parameters 

of a filter is the size of the kernel that determines the size information to be used at each 
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effect. On frequency domain filtering, the representation of the filter function in 

frequency domain is multiplied with the frequency spectrum, which is calculated via FT, 

of the original image. Then, Inverse FT of the resulting spectrum is taken for obtaining 

the filtered image on spatial domain.  

2.3.2.1 Low-Pass Filtering 

Low-pass filtering (Gonzalez & Woods, 1992) can be used for removing high-

frequency components of an image such as noise. Depending on the strength and type of 

the low-pass filter in use, edges, small details, some kinds of texture can also be 

eliminated. Thus, low-pass filter preserves large structures and enhance homogeneous 

regions in an image. For abdominal images, these homogeneous regions usually 

correspond to parenchyma of the organs or the inner side of the tissues (Fig. 2.5).  

Smoothing is most commonly performed by taking the average a pixel and its 

neighbors. Another technique weighs the filter coefficients according to their distance 

from the center of the filter which is then called a weighted mean filter. The filter 

coefficients can also alter based on a Gaussian shape centered on the middle of the 

kernel. On the other hand, median filtering determines and uses the middle value when 

all the values inside the kernel are ordered from lowest to highest. In spite of the others, 

median filter uses only values from the image and preserves edges better than averaging.  

2.3.2.2 High-Pass Filtering 

In contrast with low-pass filtering, high pass filtering (Gonzalez & Woods, 1992) 

can be used to enhance or extract the detail information in an image. This high 

frequency information can be small features, edges or other sharp/instant changes. To 

detect these changes, high-pass filters are generally based on detecting differences and 

discontinuities that are characterized drastic changes between neighboring pixels in 

spatial domain and by high frequencies in the frequency domain. Since, enhancing 

details can also increase noise, the parameters of filters should carefully be determined 

depending on the specific application (Fig. 2.5).  
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Gradient (i.e. Prewitt, Sobel, etc.), Laplacian and Laplacian of Gaussian (LoG) (i.e. 

Mexican hat) filters are some typical examples of these filters. Gradient filters are based 

on a first-order derivative over a neighborhood of the pixel and produce a vector in the 

spatial domain in which, the largest values correspond to the largest local changes (e.g. 

edge). Laplacian filters are second-order derivatives and they produce null values for 

gradients’ maxima and minima. To decrease the sensitivity of Laplacian filters to noise, 

the result of the filter can be added to the original image (i.e. unsharp masking) to 

enhance high frequency components. In LoG filters, image is first smoothed by a 

Gaussian filter before enhancing edge detection with a Laplacian filter. 

 

Figure 2.5 Effects of high pass filtering (red rectangle) and low pass filtering (yellow 

rectangle) 

2.3.2.3 Morphological (Structural) Filtering 

Morphologic filtering is a process based on the shapes of the objects on an image 

and structuring element of the filter (Watt, 1993). Since shape information can not be 

represented in frequency domain via FT, these filters can only be applied on the spatial 
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domain. The shape of the structuring element is defined in a kernel and the filtered 

image is calculated by convolving this kernel with the original image. Although, its 

application is most effective on binary image processing, morphological filtering can 

also be used for gray-level images. Mainly there are two morphological filters (i.e. 

erosion and dilation).  

Erosion tends to shrink objects, open holes or gaps in binary images (0 for the 

background and 1 for the objects), and takes the minimum value of the image over the 

convoluted shape in gray level images. On the other hand, dilation tends to expand 

objects and close holes and gaps in binary images, takes the maximum value of the 

image over the convoluted shape in gray level images. By combining erosion and 

dilation, two more filters can be derived. Opening filter is the combination of erosion 

followed by dilation and closing filter is the combination of dilation followed by 

erosion. By changing the shape and size of the structuring element, morphologic filters 

can be used to suppress artifacts, select objects with a specific shape, remove small 

objects, connect separated objects and split unwanted connections etc. 

2.3.2.4 Anisotropic Filtering 

As mentioned in previous sub-sections, low-pass filters are necessary to remove the 

noise from digital images; however, they also cause blurring which is not wanted 

because of unclear edges/borders and removal of potentially important high frequency 

data. To reduce image noise without removing significant parts of the image content, 

(i.e. edges, lines or other details), anisotropic diffusion can be used to remove noise 

from digital images without blurring edges (Perona & Malik, 1987). The anisotropic 

diffusion equations are equal to Gaussian blurring when diffusion coefficient is chosen 

to be constant. When the diffusion coefficient is chosen as an edge seeking function 

(Perona & Malik, 1987), the resulting equations encourage diffusion (hence smoothing) 

within homogeneous regions and prohibit it across strong edges. Hence the edges can be 

preserved while removing noise from the image. By running the diffusion with an edge 

seeking diffusion coefficient for a certain number of iterations, the image can be evolved 

towards a piecewise constant image with the boundaries between the constant 

components being detected as edges. 
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In the formulation presented in (Perona & Malik, 1987), the filter depends on the 

image content such that it approximates an impulse function close to edges and other 

structures that should be preserved in the image. As a consequence, the resulting images 

preserve linear structures while at the same time smoothing is made along these 

structures. Consequently, anisotropic diffusion is an iterative process where a relatively 

simple set of computation are used to compute each successive image in the family and 

this process is continued until a sufficient degree of smoothing is obtained. 

2.3.3 Multi-dimensional Image Processing 

Displaying and processing only 2-D slices allow limited analysis on tomographic 

data sets which are in fact series of 2-D images (i.e. slices) that are discrete cuts through 

3-D volume of acquisition. Taking advantage of this fact, advanced image processing 

techniques can be used for further analysis and visualization of the volume data which 

can be used to extract and visualize information or objects in a more realistic way. The 

following subsections cover information about some of these techniques including Multi 

planar reconstruction for detailed analysis in 2-D, and visualization techniques such as 

surface and volume rendering for 3-D. 

2.3.3.1 Multi Planar Reconstruction (MPR) 

Since they are simply some cuts from the actual volume, 2-D images can be stacked 

together to reconstruct the volume at the time of the acquisition. Multi Planar 

Reconstruction (MPR) is a technique that can display non-acquired orthogonal 

orientations of the volume by readdressing the order of pixels and create images of 

orthogonal planes (Gonzalez, & Wintz, 1987) from 2-D slices. For example, when the 

original plane of acquisition was the transaxial plane, orthogonally reformatted coronal 

(from back to front or vice versa) and sagittal (from left to right or vice versa) sections 

can be obtained by MPR. The reconstruction can be done with orthogonal planes 

(standard MPR), with oblique plane extraction which is a cut of the reconstructed 

volume along any arbitrary plane (Robb, 1995), or with curved plane extraction, which 

is a non-planar cut along 3-D curved path inside the reconstructed volume (Robb, 1995). 
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MPR is a very useful tool can for displaying structures that are not “well oriented” 

with regard to the original acquisition’s main axis. In current systems, the user can 

determine an arbitrarily oriented plane at some oblique angle to the axes of the volume 

image which produces corresponding cross section images at the other two planes. 

Reconstructed MPR images can also be process through image processing techniques. 

2.3.3.2 Surface Rendering 

Surface analysis is useful when there is a need to visualize 3-D surfaces of a tissue 

or organ. To represent objects as surfaces, their defining voxels can first be found and 

then joined together by smaller triangular/polygonal surfaces. These surfaces are then 

merged together to represent the outer shell of the structure of interest (Watt, 1993). For 

an informative rendering, the number of small surfaces is very high and finding correct 

representation type for each of these surfaces requires high computational power that 

necessitates usage of efficient algorithms. One of the most efficient algorithms for 

creating surfaces is Marching Cubes (MC) (Lorensen, & Cline, 1987).  

Once surfaces have been created using MC or other algorithms, post-processing 

operations, such as smoothing, can be applied for refinement. Also, for faster display or 

for decreasing storage requirements, surfaces can be simplified by merging tiles or 

facets or suppressing redundant ones (Schroeder, Zarge, & Lorensen, 1992). 

For displaying an extracted surface in a proper way, various properties should be 

adjusted and determined regarding its representation, color, transparency (or opacity), 

and response to external lighting (Watt, 1993). Light and shading models have 

extremely important effects on the visualization of the surface. Several complex models 

are developed for clear and realistic representation of surfaces. As an alternative, 

surfaces can also be textured by projecting images or data on the elementary polygonal 

tiles and this technique is called texture mapping. Due to computational complexity of 

surface based rendering techniques, current systems are supported by appropriate 

hardware (i.e. graphics card) that are responsible for some steps of the rendering 

pipeline. 

 



26 

 

 

2.3.3.3 Volume Rendering 

Compared with surface rendering, volume rendering (Watt, 1993) does not require 

the segmentation of structures but uses all voxels from the volume. In this type of 

rendering, a color and an opacity/transparency is assigned to each voxel through transfer 

functions that link voxel values with an LUT like curve. The volume is then represented 

through ray-tracing (or casting) paradigm (Watt, 1993). In ray-tracing, rays extend from 

infinity to the observer while some of the rays pass through empty space, whereas others 

intercept the object(s). Ray tracing implies that all rays originate at infinity (beyond the 

object) and travel toward the observer. Ray casting goes the other way, from the 

observer to infinity (and beyond).  The individual opacity/transparency parameters can 

be selected to best tune the representation to the observer’s needs. A special (simplified) 

mode of volume rendering is MIP, where only the highest value on a ray is projected to 

the observer. This technique is used mainly for rendering isolated and highly contrasted 

objects such as bones or vascular structures in CT or MR angiography. 

2.3.4 Image Segmentation 

Segmentation in biomedical image processing refers to isolation of objects that 

usually needs to be further analyzed, measured or visualized. Segmentation can be 

divided into three types as manual, semi-automatic and automatic.  

Manual methods should be the most reliable techniques since they involve 

interactive delineation of boundaries by an expert physician. However, they are also 

time consuming, error prone, subjective and not reproducible because they are based on 

operator’s trace using a device for labeling border pixels (i.e. mostly a mouse and a 

computer program). This operation does not only depend on the capabilities and 

interaction mechanisms of the software in use but also affected by external factors such 

as physical conditions of the environment and operator (i.e. room and display lighting, 

time of the day etc.). Within manual techniques, the simplest segmentation method is the 

selection of a Region of Interest (ROI) in 2-D or Volume of Interest (VOI) in 3-D 

depending on the needs of the user (Robb, 1995) but this can only have minor benefit. A 

very common manual method is drawing contours using interactive software tools 

around a structure (e.g. an organ) of interest on each slice, which shows some part of the 
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structure. At the end of the process, these contours can be displayed together on a 

workstation as 3-D representation of the corresponding structure. Depending on the 

capabilities of the software in use, this process can be very time consuming and tedious 

since a single tomographic series usually consist of tens or hundreds of images. 

Semi-automatic methods combine image processing techniques with expert 

intervention. In most of the cases, the expert initializes the process by inserting some 

initial information or boundary. Region growing and active contour techniques are 

widespreadly used examples of semi-automated techniques. In both of these techniques, 

initial seed points and boundaries are inserted. Starting from this initialization, region 

growing technique checks for connectivity of seed pixels based on some criteria (i.e. 

thresholding). Similarly, active contours try to minimize a cost function that is formed 

by the initial boundary. 

Fully automatic techniques are mostly available for a single organ or for a specific 

aim because it is almost impossible to develop an automatic algorithm that can handle 

several different applications. Automatic techniques require determination of several 

parameters without user intervention, however the range of these parameters can not be 

kept in strict bounds due to the high variations in human anatomy, image characteristics 

etc. This high number of parameters and large variations in parameter space prevents the 

usage of automatic methods in a broad sense.  

The segmentation techniques in the following paragraphs can be used both as semi-

automatic and automatic depending on the way of their implementation. These 

techniques include thresholding approaches, classifiers, clustering approaches, Markov 

random field models, artificial neural networks, and atlas guided approaches. Often 

supported and used together with some pre-processing and/or post-processing operations 

(i.e. edge or contrast enhancement), these techniques can be used solely or in a 

combination. 

Thresholding techniques extract only the voxels whose value falls within lower and 

upper threshold value range. A thresholding procedure attempts to determine an 

intensity value, called the threshold, that separates a group of pixels, which are between 

lower and upper threshold values, from the others. Determination of more than one 



28 

 

 

threshold value is a process called multi-thresholding (Sahoo, Soltani, & Wong, 1988). 

Thresholding is a simple but sometimes very effective technique for obtaining a good 

segmentation result when structures of interest have different intensity (or feature value 

in general) range than other tissues. Unfortunately, this is usually not the case for 

medical images, especially for soft tissues. 

Classifier methods are pattern recognition techniques that partitions a feature space 

derived from the image using several feature extraction techniques (i.e. texture, spectral 

etc.) (Schalkoff, 1992). All features in use constitute feature space. A feature space can 

be as simple as image intensities themselves or a histogram, which is an example of a 

1D feature space. Classifiers for medical image segmentation are usually supervised, 

which use a training data that are used as references for adjusting parameters of a 

classifier. Some examples of the classifiers that can be used in image segmentation are 

nearest-neighbor classifiers, where each pixel or voxel is classified in the same class as 

the training datum with the closest intensity, The K -nearest-neighbor (kNN) (Duda, 

Hart, & Stork, 2000) classifier which is a generalization of the nearest neighbor 

approach. Another classifier is the Parzen window (Duda, Hart, & Stork, 2000), where 

the classification is made according to the majority vote within a predefined window of 

the feature space centered at the unlabeled pixel intensity. A commonly-used parametric 

classifier is the maximum likelihood (ML) (Duda, Hart, & Stork, 2000) or Bayes 

classifier that assumes the pixel intensities are independent samples from a mixture of 

probability distributions, usually Gaussian. 

Similar to classifiers, clustering algorithms also perform partitioning using a feature 

space but they do not require training data. Therefore, they are called unsupervised 

methods. To partition the space without any training data, clustering methods work in an 

iterative way in which some parameter (i.e. any kind of cost function) from current 

partitioning is calculated and then used (i.e. tried to be minimized) for changing 

partitions. Some of the well known and commonly used clustering algorithms are the K 

-means (Coleman & Andrews, 1979), the fuzzy C-means algorithm (Dunn, 1973), and 

the expectation-maximization (EM) algorithm (Duda, Hart, & Stork, 2000). The K -

means clustering algorithm clusters data by iteratively computing a mean intensity for 

each class and segmenting the image by classifying each pixel in the class with the 
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closest mean (Jain, & Dubes, 1988). The number of classes should be given prior to 

application. The initial centers of the clusters can be initialized randomly however a 

better initialization would increase the performance of the clustering process. The fuzzy 

C-means algorithm generalizes the K-means algorithm, allowing for soft segmentations 

based on fuzzy set theory (Zadeh, 1965). The EM algorithm applies the same clustering 

principles with the underlying assumption that the data follows a Gaussian mixture 

model. It iterates between computing the posterior probabilities and computing 

maximum likelihood estimates of the means, covariances, and mixing coefficients of the 

mixture model. 

Markov random field (MRF) modeling itself is not a segmentation method but a 

statistical model which can be used within segmentation methods. MRFs model spatial 

interactions between neighboring or nearby pixels. These local correlations provide a 

mechanism for modeling a variety of image properties (Li, 1995). In medical imaging, 

they are typically used to take into account the fact that most pixels belong to the same 

class as their neighboring pixels. In physical terms, this implies that any anatomical 

structure that consists of only one pixel has a very low probability of occurring under a 

MRF assumption. 

Artificial Neural Networks (ANNs) are parallel networks of processing elements that 

simulate biological learning by performing elementary computations. Learning is 

achieved through the adaptation of weights assigned to the connections between these 

elements. A survey on neural networks can be found in (Clark, 1991) and a more 

detailed information can be accessed in (Haykin, 1999). ANNs can be used in a variety 

of ways for image segmentation such as classification (Hall et al., 1992) and clustering. 

In case of classification, the weights of ANN are determined using training data, and 

then adjusted weights are used to segment new data. Because of the many 

interconnections used in a neural network, spatial information can easily be incorporated 

into its classification procedures. In case of clustering, ANNs are used in an 

unsupervised fashion as a clustering method, as well as for deformable models 

(Vilarino, Brea, Cabello, & Pardo. 1998).  
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When a standard atlas or template is available, atlas based approaches can be used 

that are generated by compiling information on the anatomy that requires segmenting. 

Using atlas as the reference, atlas-guided approaches perform a classification task in the 

spatial domain and they treat segmentation as a registration problem (Maintz, & 

Viergever, 1998) such as finding a one-to-one transformation that maps a pre-segmented 

atlas image to the target image that requires segmenting is found.  

Besides the technique to use, the modality of acquisition has also very important 

affects on the segmentation method selection because different modalities provide 

images with very different characteristics. 

Segmentation of abdominal organs, such as the liver, kidneys, and spleen, from CT 

is very important due to the wide use of CT but it also has many challenges. Many 

artifacts can arise in CT scans, such as beam-hardening artifacts, partial-volume 

artifacts, and streak artifacts (Slone, Fisher, Pickhardt, Gutierrez, & Balfe, 2000). These 

artifacts are due low attenuation adjacent to bones; spatial averaging of disparate tissues 

in close proximity and patient motion, respectively. Also, different organs and tissues 

have overlapping Hounsfield ranges which prevent the usage of thresholding. Moreover, 

tissue intensities can change drastically for each instance of operation. Further 

difficulties arise due to lack of organ tissue homogeneity within and among different 

image slices, both in shape and texture.  

In MR images, major difficulty is the intensity inhomogeneity artifact (Condon, 

Patterson, Wyper, Jenkins, & Hadley, 1989, Simmons, Tofts, Barker, & Arridge, 1994), 

which causes a shading effect to appear over the image. This artifact can significantly 

degrade the performance of methods that assume that the intensity value of a tissue class 

is constant over the image. Numerous approaches have been proposed in the literature 

for performing tissue classification in the presence of intensity inhomogeneity artifacts. 

Such as usage of a filter prior to other operations (Meyer, Peyton, & Pipe, 1995). 

Segmentation algorithms have had fairly limited application in ultrasound imaging 

especially due to high levels of speckles Furthermore, the real-time acquisition in 

ultrasound makes it better suited for motion estimation tasks (Mikic, Krucinski, & 

Thomas, 1998) where active contours are usually more suitable because of their 
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dynamic nature. Ultrasound is also often employed in detecting pathology using textural 

classifiers (Mojsilovic, Popovic, Neskovic, & Popovic, 1997) but regions of interest are 

typically obtained through manual interaction.  

2.3.5 Measurements 

Making measurement (i.e. angle, distance, area) in 2-D is a straightforward process 

using pixel values. The extension of these measurements to 3-D is still possible but 

sometimes requires more complicated calculations. Distances and angles can be 

computed within 2-D and 3-D data for providing more accurate measurements of 

complex structures. Distance measurements require two points while angle 

measurements can be calculated with three with a straightforward calculation (Robb, 

1995).  

On the other hand, measurement of an area or a volume can be done in many ways. 

Once a structure has been segmented out, its contents can be analyzed to provide its 

value range or other relevant information such as its total volume. The simplest way of 

calculating a segmented structure’s volume is by multiplying the number of voxels that 

have been identified as belonging to the structure by the volume of a single voxel 

calculated from the acquisition and reconstruction parameters. For DICOM images, 

these parameters are stored in “sliceThickness”, “pixelSpacingX”, and “pixelSpacingY” 

tags. However, neither this technique nor any other can provide the exact value of the 

volume.  

2.4 Neural Networks 

A biological neural network is composed of groups of biologically connected 

neurons, each of which are connected to many other neurons. These connections are 

called synapses and they are formed from axons to dendrites. In used in artificial 

intelligence, simplified models of these neural networks are used for computations as in 

neural processing and ANNs have been applied successfully to speech recognition, 

image analysis and adaptive control etc. The tasks that ANNs can be applied might 

broadly be divided into three categories:  
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i) Function approximation, regression analysis, time series prediction and 

modelling. 

ii) Classification, pattern and sequence recognition, novelty detection and 

sequential decision making. 

iii) Data processing, filtering, clustering, blind signal separation and 

compression. 

2.4.1 Learning Processes 

The learning process for ANN (Haykin, 1999) can be defined as adjustment of the 

free parameters of an ANN based on some measure and the main aim is to improve the 

performance of ANN for a better fitting to its field of application. There exist two major 

learning paradigms each of which corresponds to a particular learning task. These are 

supervised learning and unsupervised learning (Haykin, 1999). In supervised learning, 

which can be expressed also as learning with a teacher, a set of example pairs (i.e. 

training data) are used to adjust the free parameters of the network. This adjustment is 

done not only under the influence of training data but also an error signal that is defined 

as the difference between the desired response and the actual response of the network. 

This adjustment is carried out iteratively in a step-by-step fashion. When the adjustment 

phase (i.e. training) is finished, the performance of the network can be evaluated with 

unseen data. In unsupervised learning, free parameters are adjusted in such a sense that a 

cost function is tried to be minimized (Haykin, 1999). The idea behind the unsupervised 

learning is to tune the network parameters to the statistical regularities of the input data 

and thus developing the ability create a new class automatically. The cost function is 

determined by the task formulation and can be any function of the input data and the 

network's output (Haykin, 1999). 

There are many algorithms for training neural networks; most of them can be viewed 

as an application of optimization theory and statistical estimation (i.e. Back propagation 

by gradient descent (Haykin, 1999)). Evolutionary computation methods, simulated 

annealing, expectation maximization and non-parametric methods are among other 

commonly used methods for training neural networks (Haykin, 1999). 
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2.4.2 Single and Multi Layer Perceptrons 

The perceptron is the simplest form of an ANN that consists of a single neuron with 

adjustable synaptic weights and bias. It is proven with the perceptron convergence 

theorem that the perceptron algorithm converges after a finite number of iterations if the 

data set is linearly separable (Rosenblatt, 1958). Learning occurs in the perceptron by 

changing connection weights after each piece of data is processed, based on the amount 

of error in the output compared to the expected result (Haykin, 1999). This is an 

example of supervised learning, and is carried out through backpropagation, a 

generalization of the least mean squares algorithm in the linear perceptron. 

A multilayer perceptron is a feedforward artificial neural network model that maps 

sets of input data onto a set of appropriate output. It is a modification of the standard 

linear perceptron in that it uses three or more layers of neurons (nodes) with nonlinear 

activation functions, and is more powerful than the perceptron in that it can distinguish 

data that is not linearly separable. The multilayer perceptron consists of an input and an 

output layer with one or more hidden layers of nonlinearly-activating nodes. Each node 

in one layer connects with a certain weight to every node in the following layer (Haykin, 

1999). 

2.4.3 Radial Basis Function Networks 

A radial basis function network is an artificial neural network that uses radial basis 

functions as activation functions. It is a linear combination of radial basis functions. 

They are used in function approximation, time series prediction, and control. In an RBF 

network there are three types of parameters that need to be chosen to adapt the network 

for a particular task:  

i) the center vectors ,  

ii) the output weights and  

iii) the RBF width parameters  

In its simplest form, construction of an RBF network involves three layers. The first 

layer is the input layer which is responsible for receiving input data. The hidden layer 
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comes after the first layer and it applies a non-linear transformation from the input space 

to the hidden space which is usually higher dimensional due to increased likelihood of 

linear separability in higher dimension. The third layer constructs the output by applying 

a weighted sum. 
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CHAPTER THREE 

LIVER SEGMENTATION FOR PRE-EVALUATION OF LIVER 

TRANSPLANTATION 

 

Identifying liver region from abdominal CTA datasets is one of the essential steps in 

evaluation of transplantation donors prior to the hepatic surgery. However, due to gray 

level similarity of adjacent organs, injection of contrast media and partial volume 

effects; robust segmentation of the liver is a very difficult task. Moreover, high 

variations in liver position, different image characteristics of different CT modalities and 

atypical liver shapes make the segmentation process harder. To overcome these 

challenges, a three stage (i.e. pre-processing, classification, post-processing) automatic 

liver segmentation algorithm, which adapts its parameters according to each patient by 

learning the data set characteristics in parallel to segmentation process to address all the 

challenging aspects mentioned above, is proposed. The efficiency in terms of the time 

requirement and the overall segmentation performance is achieved by introducing a 

novel modular classification system consisting of a simple classification system (i.e. K-

Means based) and a complex one (i.e. MLP based) which are combined with a data-

dependent and automated switching mechanism that decides to apply one of them. 

Proposed approach also makes the design of the overall classification system fully 

unsupervised that depends on the given CTA series only without requiring any given 

training set of CTA series. The segmentation results are evaluated by using area error 

rate and volume calculations and the success rate is calculated as %94.91 over a data set 

of diverse CTA series of 20 patients according to the evaluation of the expert 

radiologist. The results show that, the proposed algorithm gives better results especially 

for atypical liver shapes and low contrast studies where several algorithms fail. 

3.1 Introduction and Related Work 

Living donated liver transplantation is a procedure where a healthy voluntary donor 

gives a part of his or her liver to another person. Measurement of the liver volume and 

analysis of the liver vasculature are important stages to decide whether a candidate for 

transplantation is suitable or not. Generally, liver volume information is used to avoid 
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size incompatibility between donor and patient, and vasculature analysis in 3-D is used 

for pre-evaluation of surgery. Thus, the success of liver transplantation depends on the 

patency of liver volume and its supplying vessels and accurate knowledge of the hepatic 

and portal vascular anatomy of donors for living-related transplantation would reduce 

the incidence of vascular complications during and after transplantation.  

Routine preoperative evaluation of donors requires both CT (Flohr et al., 2005) and 

CT with contrast medium injection, namely CTA, which are currently the most widely 

used radiographic techniques for the rendering of liver parenchyma, vessels and tumors 

in living liver transplantation donors. Instead of conventional angiography, CTA offers 

several advantages: it is minimally invasive and has diminished patient morbidity, cost, 

and radiation exposure to patients and staff. Moreover, CTA provides detailed 

information on vasculature due to the injection of contrast media. Before 3-D rendering 

(Ney, Fishman, Magid, & Drebin, 1990) of the vasculature and the measurement of liver 

volume, accurate segmentation of the liver from surrounding tissues and organs is 

necessary. Since the number of image slices used for 3-D rendering is very large, 

manual segmentation of the liver on each slice is time consuming and tedious. Also the 

results highly depend on the skill of the operator. Therefore an automatic segmentation 

procedure to segment the liver in all slices is needed. 

Besides its several advantages over manual segmentation, automatic segmentation of 

the liver is very challenging. These challenges arise from the following difficulties: First 

of all, the gray level values of adjacent organs of the liver are similar to each other (Fig. 

3.1 (a)-3.1 (b)). This similarity reduces the performance of thresholding techniques 

dramatically. Secondly, due to the injection of contrast media and/or different modality 

settings, the liver (and all other tissues) may have different gray-level values for 

different patient datasets, or even in different slices of the same data set (Fig. 3.1 (a)-3.1 

(c)). These effects prevent the usage of the gray level dependent segmentation 

techniques. Finally, the anatomical structure of the liver in different image slices is 

different and its shape can vary significantly from patient to patient (Fig. 3.1). Even two 

or three separate regions can be seen in the same slice (Fig. 3.1 (b)). Moreover, it is 

reported in (Soler et al., 2001) that around %15 of the patients have atypical liver shapes 

(i.e. unusual size or orientation of the liver, liver shape after segmentectomy) (Fig. 3.1 
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(d)). Thus, traditional shape based segmentation techniques are not enough to segment 

the liver efficiently.  

The strategy for overcoming these difficulties involves a segmentation method 

which does not utilize a common parameter set found from all patient datasets. Instead, 

the method is capable of adapting the parameter set to each patient. The main reason for 

this approach is that the ranges of the parameter values differ significantly from patient 

to patient, and these wide ranges decrease the efficiency of the method when one utilizes 

a common parameter set for all patients. 

Thus, a method, which examines and adapts its parameters according to each patient, 

is proposed. We call this approach as patient-oriented segmentation. For qualifying 

‘patient oriented’, the algorithm learns data set characteristics in parallel to segmentation 

process, and adapts its parameters to these characteristics.  

In the literature, different automatic and semi-automatic methods have been 

developed and performed for the segmentation of the liver from CTA series. These 

methods include but not limited to morphological techniques (Bae, Giger, Chen, & 

Kahn, 1993, Gao, Heath, Kuszyk, & Fishman, 1996, Lim, Jeong, & Ho, 2006, 

Masumoto et al., 2003), deformable models (Montagnat & Delingette, 1996, Chou et al., 

1995, Soler et al., 2001, Gao, Kosaka, & Kak, 2000, Heimann, Wolf, & Meinzer, 2006, 

Heimann, Meinzer, & Wolf 2007), and neural networks (Tsai, 1994, Husain, & Shigeru, 

2000, Lee, Chung, & Tsai, 2003). However, neither in semi-automatic, nor in automatic 

algorithms, the problems of atypical liver shapes, different modality characteristics and 

datasets with low contrast adjacent tissues is handled together. Therefore they do not 

deal with the all variations in CTA images at the same time. 

Morphological techniques combined with gray level thresholding are used in (Bae et 

al., 1993) while in (Gao et al., 1996) and (Lim et al., 2006) these are combined with a 

parametrically deformable contour model which is used for boundary refinement. 

Although the method proposed in (Gao et al., 1996) is reported to be successful in most 

of the cases, a mean gray level value assumption is made for the liver at the intermediate 

levels of the algorithm. This assumption limits its use when the liver is more attenuating 

(brighter) due to the contrast media. Deformable contour models are also used by 
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(Montagnat & Delingette, 1996) and (Chou et al., 1995). However the need for setting 

some seed points and parameters such as maximum gradient or time threshold makes it 

hard to use for radiologists. In (Soler et al., 2001), an automatic algorithm is proposed 

using deformable models; however this method does not provide correct results for 

atypical liver shapes. Another automatic technique is proposed in (Heimann, Wolf, & 

Meinzer, 2006), in which a 3-D active shape model is built from 32 samples using an 

optimization approach based on the minimum description length. The combination of 

deformable models and statistical priors (Heimann, Meinzer, & Wolf 2007) seems to be 

effective for fully automatic techniques where initial parameters for the Statistical Shape 

Model (SSM) are determined with an evolutionary algorithm and a modified active 

shape method is used to refine the detected parameters. As in (Heimann, Wolf, & 

Meinzer, 2006), the method of (Heimann, Meinzer, & Wolf 2007) also requires the 

training of the SSM with a data set to model the expected shape and appearance of the 

liver so resulting in a dependency on the set of CTA series used in the training.  

Artificial neural networks are used for gray level classification in (Tsai, 1994) and 

for feature based recognition in (Husain, & Shigeru, 2000) which are discussed in detail 

in this study. The technique proposed in (Tsai, 1994) is semi-automatic and require 

more than one manually segmented image as training data prior to the automated 

process. The method in (Husain, & Shigeru, 2000) is not patient oriented and training is 

done with a limited set of images. Due to the high variation of image characteristics, a 

larger and more diverse database is recommended to generalize this system for reliable 

performance. A contextual neural network with a high segmentation performance is 

proposed in (Lee, Chung, & Tsai, 2003), but the results show that it fails where the gray 

level of the desired region is too close to the adjacent tissues. In (Koss, Newman, 

Johnson, & Kirch, 1999), texture of the abdominal organs is used for segmentation. 

Although this approach is successful in general for abdominal organs, it fails in the 

segmentation of liver and spleen, especially in atypical liver case, since their texture is 

similar in CTA datasets. Recently, Seo et al. (Seo, Ludeman, Park, & Park 2004) 

proposed a fully automatic algorithm by determining the spine first and then by using it 

as a reference point for segmenting the liver using morphological operators, multimodal 

thresholding and a decision rule. However, this approach is tested with a very limited set 

of CT series. 
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algorithm uses classification of pixels (using an unsupervised clustering method i.e. K-

means) together with adjacent slice information. A more complex classifier (MLP) is 

developed for the datasets where the K-means clustering gives insufficient results. The 

efficiency in terms of the time requirement and the overall segmentation performance is 

achieved by introducing a novel modular classification system consisting of a simple 

classification system (i.e. K-Means based) and a complex one (i.e. MLP based) which 

are combined with a data-dependent and automated switching mechanism that decides 

to apply one of them. The switching is based on the detection of “low contrast” data set 

or atypical liver shape. If none of these is detected then K-means based classification 

system is applied on a single feature (i.e. the gray level value of each pixel), otherwise 

MLP based classification system is utilized with three features (i.e. mean, standard 

deviation and distance transform). The developed method gives sufficient performance 

for different modalities, varying contrast, dissected liver regions and atypical liver 

shapes. Results indicate that we have effectively overcome the challenging difficulties 

explained before. This performance is achieved with the proposed modular classification 

system as well as introducing the distance transform as a feature for each slice and then 

using this information in the succeeding slice to reveal three dimensional properties of 

the liver which can not be obtained by the set of slices processed individually. In other 

words, the approach in the paper provides the ability of dealing with the contrast 

variations and atypical liver shapes first by recognizing the existence of these problems, 

by choosing appropriate classification method, and then by solving the segmentation 

problem using inter-slice information provided by the distance transform.  

The rest of this chapter is organized as follows. The properties of the patient datasets 

are presented in Section 3.2. The following steps of the three step segmentation system 

are explained in Section 3.3: 

1) Preprocessing, covers the removal of adjacent tissues to the liver (i.e. fat 

tissue, right kidney, spine and ribs)  

2) The classification of the liver with modular classification system by using 

either k-means or a neural network structure depending on the data set 

properties (i.e. contrast, atypical liver shape) 
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3) The features used for classification are established in Section 4 as the second 

step of the segmentation system.  

4) Post-processing that consists of the removal of the misclassified objects and 

identification of disjointed parts of the liver  

are explained in Section 3.3. The evaluation of the proposed system is given in 

Section 3.4.  

3.2 Patient Datasets 

The datasets were acquired after contrast agent injection at portal phase using a 

Philips Secura CT with 2 detectors and a Philips Mx8000 CTA with 16 detectors, both 

equipped with the spiral CTA option and located in Dokuz Eylül University Radiology 

Department. Spiral CTA acquires data continuously, in a spiral path, as the patient is 

transported at a constant speed through the gantry. This technique scans the entire liver 

in 15 to 30 seconds and offers several advantages for both liver tumor detection and 3-D 

visualization. Its speed also reduces or eliminates respiratory mis-registration between 

slices. 

20 datasets (CTA series), which were obtained by these scanners, consist of 12 bit 

DICOM images with a resolution of 512 x 512. The datasets were chosen randomly 

from the Picture Archiving and Communication System (PACS). All of the 20 CTA 

series have 3 to 3.2mm slice thickness and this corresponds to a slice number around 90 

(minimum 77, maximum 105 slices). 

The segmentation system is designed to work with 8 bit images to support all image 

types. Therefore 12 bit DICOM images are reduced to 8 bit using window center and 

window width information, which are stored in Meta information header of the original 

DICOM images. Although a simple proportional scaling ([0, 4095] → [0, 255]) would 

be the most obvious way of such a conversion, windowing is used to reduce the 

undersampling effect. By using windowing, the full contrast of the output display range 

is expanded over actually useful part of the input density range (Bidaut, 2000). 
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(a) 

 

(b) 

Figure 3.2 Two examples of volumetric histograms (a) Volumetric 

histogram of a ‘high contrast’ CTA series one image of which is shown 

in Fig. 3.1 (c) (three lobes), (b) volumetric histogram of a ‘low contrast’ 

CTA series one image of which is shown in Fig. 3.1 (b) (two lobes) (For 

illustration purposes 0 and 255 are not drawn in the histograms). 
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20 patient datasets are divided into two groups based on their volumetric histograms, 

namely ‘high contrast’ and ‘low contrast’. It is observed that some datasets have three 

lobes in their volumetric histograms (Fig. 3.2 (a)) where these lobes correspond to the 

fat tissue, darker soft tissues (i.e. muscles, stomach, intestines) and brighter soft tissues 

(i.e. heart, kidney, spleen) from left to right, respectively. The liver belongs to both 

second and third lobes with varying ratios due to contrast media it absorbs and modality 

settings. These datasets are called ‘high contrast’ because the gray level value of the 

liver is different than the adjacent tissues and organs (Fig. 3.1 (c)). In ‘low contrast’ 

datasets, dark and bright soft tissues form only one lobe, thus the volumetric histograms 

have two lobes in total (Fig. 3.2 (b)). In these datasets, it is harder to segment the liver 

because of the gray level similarity with adjacent organs (Fig. 3.1 (a)). In 20 patient 

datasets, it is found that 15 datasets belong to ‘high contrast’ group while 5 datasets 

belong to ‘low contrast group. The developed algorithm first determines the group of the 

data set and applies different classification and post-processing methods based on this 

decision. 

3.3 Segmentation of the Liver 

The developed segmentation algorithm is designed to have three stages. The first 

stage is preprocessing which consists of the removal of the irrelevant tissues (the fat 

tissue, the spine, the right kidney and the ribs) from the original images and finding the 

smallest possible ROI, where the liver tissue is known to exist. The second step of the 

segmentation procedure is the segmentation of the liver. This step consists of two parts: 

1. Automatic selection and segmentation of an ‘initial image’ 2. The segmentation of the 

remaining slices one by one starting from the ‘initial image’. The third step, post-

processing, includes necessary operations to remove small mis-segmented objects and to 

smooth boundaries, Moreover, identification of all components of the liver when the 

liver dissects into two or more regions is also done at this post-processing stage. 

Before starting the process, the user selects a slice which is called ‘initial kidney 

image’. The ‘initial kidney image’ is the slice where the liver and the right kidney exist 

together for the last time in the data set. Starting from this image, the algorithm for 
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removing the right kidney runs through the data set until the right kidney disappears in 

all slices. 

In the proposed algorithm, the default selection of ‘initial kidney image’ is the last 

slice of the CTA series. Although this assumption is mostly true, an interface with the 

user is also provided for the cases in which the right kidney does not exist at the last 

slice. This selection can also be done with no need to user interface in an automatically 

yet complicated fashion. For simplicity, it is prefered to use this particular one-touch 

user interface, that is, selection of ‘initial kidney image’. Needless to say, this is a rather 

simple task for the user.  

3.3.1 Pre-processing 

After the selection of the ‘initial kidney image’, the pre-processing starts by 

removing irrelevant tissues and organs including the fat tissue, the spine, the ribs and the 

right kidney. It is worth to point that all steps of the preprocessing stage are applied to 

the original images and the result of each step is removed at the end of the stage. 

3.3.1.1 Removing the Fat Tissue 

To remove the fat tissue from a patient data set that consists of several CTA images 

(Fig. 3.3 (a)), an adaptive thresholding method has been applied. In the volumetric 

histogram of a CTA series, the first lobe of the histogram corresponds to the fat tissue if 

there is enough fat tissue in the patient. To locate this lobe global minimum/minima of 

the histogram have to be found. For this reason, an averaging filter is applied to 

eliminate high frequency components of the histogram. Then the gradient of the 

smoothed histogram is calculated and global minimum/minima are found where the 

gradient histogram changes from negative to positive. Finally, a proper threshold value 

is found as the gray level value of the first global minimum. The tissues, which are 

removed with the application of the determined threshold value, are shown in Fig. 3.3 

(b). 

In young or/and fit patients, the fat tissue might be so less that it does not correspond 

to a lobe in the volumetric histogram. In other words, the first lobes in Fig. 3.2 (a) and 
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the row and column projections are calculated from the thresholded image. The column 

projection is used to find the columns where the ribs start (from left and right) by using 

the first and last non-zero values on it. The row projection is used to determine the row 

where the spine and ribs start (from the bottom) by using the first non-zero value on it. 

The middle point of the corresponding row and the values determined as the starting 

point of the ribs are then used to make a frame through the spine direction (Fig. 3.4 (b)). 

By dilating this frame, the ribs and the spine are excluded (Fig. 3.4 (c)). To segment the 

spine and the ribs by combining these two images, Binary Morphological Image 

Reconstruction (BIMIR) (Vincent, 1993) is used.  

BIMIR is based on two images, a marker and a mask. Processing is based on the 

concept of the connectivity of these images. BIMIR processes the marker image, based 

on the characteristics of the mask image. The high gray level values in the marker image 

specify where the processing begins. The processing continues until the gray level 

values stop changing. If g is the mask and f is the marker, the reconstruction of g from f 

is defined by the following iterative procedure: 

1. Initialization of h1 to be the marker image f, 

2. Creation of the Structuring Element, S, 

3. Repeat: hk+1 = (hk Θ S) ∩ g until hk+1=hk , 

where the dilation operation, Θ, is defined as  

hk Θ S={z │(S)z ∩ A ≠ Ø} 

Conceptually, BIMIR can be thought as repeated dilations of the marker image until 

the contour of the marker image fits under the mask image. In this way, the peaks in the 

marker image "spread out", or dilate. 

By intersecting framed image and the thresholded image using ‘AND’ operation, the 

marker image is generated. Using the thresholded image as the mask in the BIMIR, the 

spine and the ribs are obtained (Fig. 3.4 (d)). The advantage of using BIMIR is that it is 

possible to reconstruct a rib correctly even if some parts of it remain outside the frame 

as in Fig. 3.4 (c). 
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The aim is to minimize the sum, over all clusters, of the within-cluster sums of gray 

level value-to-cluster centers:  

2( )

1 1

k n
j

i j
j i

J x c
= =

= −∑∑
           (3.1)

 

where ║xi
(j) - cj║2 which is a chosen distance measure between a gray level value xi

(j) 

and the cluster center cj is an indicator of the distance of the n data points from their 

respective cluster centers. In the proposed system, Euclidean distance metric and batch 

update method (Haykin, 1999) are used where every iteration consists of re-assigning 

gray level values to their nearest cluster centers, all at once, followed by recalculation of 

cluster centers. 

The initial centers of the clusters are chosen to be 30 (for the background), 255 (for 

the spine and the ribs), threshold found for the fat tissue (generally around 80) and two 

equidistant gray level values between 255 and the threshold found for the fat tissue. 

After the application of the K-means method, it is observed that the kidneys are always 

assigned to the brightest cluster together with the spine and other very bright tissues 

(Fig. 3.6. top right).  

Then, a seed region is generated at the right of the spine, which is found during the 

removal of the spine and the ribs (Fig. 3.6. top left). The seed region is determined at a 

location, where at least some part of the kidney is most likely to exist, by using 

anatomical information. 

To segment the kidney from this result, BIMIR is used. In the ‘initial kidney image’ 

the marker is the seed region and the mask is the image that consists of pixels which 

belong to the brightest cluster The largest connected component after the BIMIR 

operation forms the kidney (Fig. 3.6-Output Image).  

The kidneys at the other slices are then detected iteratively. For each preceding slice, 

the skeleton of the previously segmented kidney is used as the new marker image. And 

the image of the pixels that belong to the brightest cluster of the current slice is used as 
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the mask image. Using BIMIR algorithm gives the kidney structure of the current slice. 

The overall procedure is illustrated in Fig. 3.6. 

 

Figure 3.6 Determination of the kidney: Initially, seed region inside the red 

frame is used as the marker image and the image after K-means clustering 

(brightest cluster) is used as the mask image. Application of BIMIR using these 

images gives the right kidney. Then, skeleton of the detected kidney (marker 

image) and clustering result of the next image (mask image) is used to detect the 

kidney in the next image. 
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The skeleton of a kidney is calculated using iterative skeletonization (thinning), 

which is a method to reduce all objects in an image to lines, without changing the 

essential structure of the image (Blum, 1967). It removes the pixels on the boundaries of 

the objects but does not allow objects to break apart. The pixels remaining make up the 

image skeleton. 

Since the skeleton of the previously segmented kidney can be thought as an 

iteratively eroded image, BIMIR restores exactly the shape of the kidney in the current 

slice without depending on the similarity between the shapes and the structuring 

element. By using this method, kidneys are detected automatically until the kidney area 

drops to a user defined value (default value is equal to 500 pixels).  

This method works efficiently for varying gray level values, shapes and positions of 

the kidney. It also gives sufficient results invariant of contrast and even when the kidney 

has lesions. This method; skeletonization combined with BIMIR, is also used in the 

iterative segmentation of the liver. 

3.3.1.4 ROI Selection 

For reducing the computation complexity and for increasing the performance of the 

segmentation algorithm, as much irrelevant information as possible should be removed 

from the image at the preprocessing. From the anatomy knowledge, it is known that the 

liver is surrounded by the ribs from the left, right and bottom, thus the pixels at the outer 

side of the ribs can be removed. Also the unnecessary parts from the top (starting from 

the first non zero pixel) can be removed. The remaining ROI decreases the image size 

by %40 in average and reduces the computational complexity significantly. 

 These 4 steps of the preprocessing are done for the complete series of CTA images. 

At the end of the preprocessing, the fat tissue, the bones, the ribs, and the right kidney 

are removed from the original images and these images are resized using the ROI 

mentioned above. An example of a preprocessed image is shown in Fig. 3.9 (a). In what 

follows, the segmentation algorithm is applied to these preprocessed images. 
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3.3.2 Classification of the Liver 

The second step of the segmentation procedure is the segmentation of the liver. This 

step consists of two parts: 1.Automatic selection and segmentation of an ‘initial image’ 

2.The segmentation of the remaining slices one by one starting from the ‘initial image’. 

The ‘initial image’ is a slice where the liver boundary does not overlap with any 

adjacent organ boundaries, especially the heart and the right kidney. It is selected 

automatically by choosing the slice that comes just before the first appearance of the 

right kidney which is determined during the kidney removal stage. After the 

preprocessing stage, the segmentation algorithm starts from this ‘initial image’ and then 

runs through the end of the data set. Then starting from the ‘initial image’ again, it runs 

through the beginning of the data set to complete the segmentation process. After the 

segmentation of the initial image, liver structures at other slices are segmented 

iteratively.  

For this purpose, a novel modular classification system is introduced consisting of a 

simple classification system (i.e. K-Means based) and a complex one (i.e. MLP based) 

which are combined with a data-dependent and automated switching mechanism that 

decides to apply one of them. The introduced modular classification system with data-

dependent and automated switching mechanism constitutes a new kind of system of 

classifiers (Fig. 3.7), some of which are simple and therefore efficient in time-memory 

requirements with good generalization ability and the others are complex providing a 

high classification performance, such that depending on the data set, herein the CTA 

series, one of the classifiers become active.  

The switching is based on the detection of “low contrast” data set or atypical liver 

shape. The switching mechanism does indeed perform a classification task that assigns 

the CTA series, based on the histogram evaluation and in some cases also according to 

intermediate results of the K-Means based classifier, into one of the following three 

categories: a) Low contrast (MLP is employed for this category), b) High contrast (K-

means is employed for this category), and c) High contrast- atypical liver shape (MLP is 

employed for this category). In other words, the switching mechanism selects MLP 

classifier instead of the K-Means classifier where the K-means clustering method does 
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not give sufficient results (i.e. if the liver has atypical shape (i.e. Fig. 3.1 (a)) or the gray 

level difference of adjacent tissues is very low (i.e. Fig. 3.1 (d)). For this reason a 

process for automatic detection of an atypical liver shape and a low contrast image 

characteristic is developed (Fig. 3.8). 

 

Figure 3.7 Proposed modular classification system which constitutes a new kind 

of system of classifiers. In our case, “n” is equal to two since only K-Means and 

MLP classifiers are used.  

In this manner low contrast image characteristics are detected by determining the 

number of lobes in the volume histogram (discussed in Section 2 and 3.1). If the 

histogram has three lobes, the algorithm proceeds with K-Means. Otherwise (if it has 

two lobes) the algorithm switches to MLP. 
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Figure 3.8 Switching mechanism and selection of the appropriate classifier for automatic detection 

of an atypical liver shape and a low contrast image characteristic. 

The other criterion in the selection of the classifier to use is the atypical liver case. 

Existence of atypical liver shape means that the liver elongates (stretches) to the left side 

of the abdomen and becomes adjacent to the spleen which has mostly the same gray 

value range as the liver (Fig. 3.1 (d)). In those cases, the boundary between the spleen 
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and the liver is uncertain even for human eye. Therefore the algorithm may not detect 

the boundary between the spleen and the liver and segments them together. This causes 

a dramatic increase in the area of the segmented object. To detect atypical liver shape, 

the area of the segmented object for each slice is found. Since the change in the area 

should be smooth for successive slices the algorithm switches to MLP if there is a 

sudden increase in the area. 

It is worth to point that, the result of both classifiers (i.e. K-Means and MLP) gives 

rough results and these results are refined at the post-processing stage (i.e. removal of 

the small mis-segmented objects, identification of all components of the liver when the 

liver dissects into two or more regions). However, it is worth to point that when MLP is 

used as the classifier, the necessary post-processing operations is significantly less than 

the operations used after K-Means classifier.‘ 

3.3.2.1 Initial Image Segmentation 

As previously mentioned, ‘initial image’ is a slice that should satisfy three 

constraints. First of all, the liver should have a relatively big area in the slice but it does 

not have to be the biggest organ. Second, it should consist of one connected component 

and third, the liver boundary should not overlap with any adjacent organs, (i.e. the heart 

and the right kidney). An example of an initial image is given in Fig. 3.4 (a). After 

preprocessing (Fig. 3.9 (a)), the image can be classified into three clusters: background, 

bright organs and dark organs. Excluding the background pixels from the process, the 

two clusters are found using the Otsu’s method (Otsu, 1979) by finding the optimal 

threshold to separate dark organs (stomach and muscle) and brighter organs (liver, 

spleen, and heart).  

Otsu’s method chooses the threshold value k that maximizes the between-class 

variance σ2
B which is defined as: 

σ2
B=w0.(µ0-µT)2- w1.(µ1-µT)2        (3.2) 

where 



 

 

Here p

the total n

level rq (q=

Selecti

threshold)

results wit

It is i

constraint

slices, whi

series), ar

possible t

‘initial im

         

Figure 

The big

3.3.2.2

After 

slice and t

0w

µ

pq(rq) is the

number of pi

=0,1,,255). 

ing the clu

) (Fig. 3.9 (

th the segm

important to

s given for 

ich are loca

re determin

o select an

age’. 

            (a)  

3.9 Initial im

ggest compon

2 Segmentat

segmenting

then upward

∑
−

=

=
1

0

(
k

q
qq rp

∑
−

=

=
1

0
0 .

k

q
qpqµ

e discrete pr

ixels in the 

 

uster which 

(b)) and the

mented liver 

o point tha

the ‘initial 

ated around 

ned to be s

ny slice in t

 

                  

mage segmenta

nent in the slic

tion with K-

g the initial 

ds to the firs

) , ∑
=

=
255

1
kq

pw

0/)( qq wr , a

robability d

image, and

has the fo

en taking th

structure (F

at this meth

image’. Co

the one thir

suitable for

the series, 

 

                 

ation (a) The 

ce. 

-Means 

image, the

st slice start

)( qq rp , Tµ

and ∑
=

=
255

1
kq

µ

density func

d nq is the nu

oreground o

he biggest c

Fig. 3.9 (c)).

hod gives 

onsidering t

rd of the ser

r being ‘ini

which satis

   (b)          

preprocessed

e algorithm 

ting from th

∑
=

=
255

0

(.
q

qpq

∑
5

/)(.
k

qq rpq

ction, as in 

umber of pix

organs (i.e.

connected c

. 

sufficient r

the datasets 

ries (i.e. 30t

itial image’

sfies the ne

   

                  

d ‘initial imag

first runs 

he initial im

)qr , 

1w  

pq(rq)=nq/n

xels that ha

. the right 

component 

results only

used in thi
th slice of 90

’. However

ecessary con

           (c) 

ge’ (b) Cluster

downwards

age (Fig. 3.

56

n where n is

ave intensity

side of the

in the slice

y under the

is study, the

0 slice CTA

r, it is also

nditions, as

ring result (c)

s to the last

10 (a)). 

6 

s 

y 

e 

e 

e 

e 

A 

o 

s 

 

) 

t 



57 

 

 

It is clear that the preprocessed images contain the liver, the tissues and the organs 

that have similar or darker gray level values than those of the liver because the brighter 

tissues and organs are removed at the preprocessing phase (except the bright tissues 

inside the liver). 

By using the K-means method an unsupervised clustering is applied to these 

preprocessed images for classifying the organs into two clusters. At this step, the initial 

cluster centers are determined as follows: For the ‘initial image’, the first cluster center 

is given as the minimum gray level value of that image (excluding the background). The 

second cluster center is determined as the mean value of the segmented initial image. 

Then for the other slices, the centers found in the preceding slice are used as the initial 

centers.  

The brighter cluster at the clustering result is preserved since it always consists of 

the liver. The identification of the liver including its dissected parts and removal of the 

incorrectly segmented objects is done at the post processing stage. 

3.3.2.3 Segmentation with MLP 

Although segmentation of the liver using the K-means clustering method generally 

gives sufficient results, it fails when the liver has atypical shape (Fig. 3.1 (d)) or the gray 

level value difference between the liver and the adjacent tissues are very low (Fig. 3.1 

(a), 3.1 (d)). To obtain acceptable results also for these cases, a feature based 

segmentation process is developed.  In feature based segmentation, first, K-Means is 

tested as the classifier. However, the segmentation results were not adequate hence a 

more complex classifier, Multi Layer Perceptron (MLP) is used instead. The overall 

structure of the segmentation process using MLP is shown in Fig. 3.10. 

In segmentation with the MLP, the preprocessed ‘initial image’ and the segmented 

‘initial image’ are used for initial training of the network. From the preprocessed ‘initial 

image’ two features (Mean and standard deviation) are calculated. Then, the distance 

transform is applied to the segmented ‘initial image’ and the pixel values after the 

transform are taken as an additional (third) feature. 
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(a) 

                     

                                 (b)                                                         (c) 

Figure 3.10 (a) Segmentation process by using MLP. (b) Preprocessing of all images is 

followed by the selection and segmentation of the initial image. The initial training is done by 

using the segmented initial image as the desired output and the feature vectors obtained from 

initial and segmented initial images as training data, (b) Then, the algorithms proceeds to 

next slices and at each slice previously found weights are used for classification with MLP. 

The weights are updated using the current segmented image as the desired output and the 

feature vectors obtained from the current slice as training data. In the figure µi,σi, and di 

corresponds to mean, standard deviation and the distance transform features obtained from 

slice I, respectively where i = j-1, j-2, , 2, 1 for up-segmentation and i = j+1, j+2,, N-1, N for 

bottom segmentation with N is the number of slices. 
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The features are calculated in a window of size 9x9 centered for a given pixel. 

Although some sudden changes in the image (i.e. edges) can be identified more 

accurately with a smaller window size, the optimal size for identifying the liver region is 

decided to be 9x9 after extensive experimentation by concerning to prevent finding 

details inside the liver area and to get better information about the orientation of the 

liver. Also in (Tsai, 1994, Husain, & Shigeru, 2000), 5x5 window size is presented to be 

optimal for 256x256 and 240x320 images, therefore using 9x9 for 512x512 images is 

appropriate.  

To represent the homogeneous regions (i.e. Liver parenchyma) in the current slice, 

the mean feature is used (Fig. 3.11 (a)). For a pixel the mean gray level value is 

calculated by 
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To represent the edges (i.e. liver boundary) the standard deviation feature is used 

(Fig. 3.11 (b)) which is calculated as: 
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(3.4) 

where ijx is the mean value of the pixel x located at the position i, j and σij is the 

standard deviation of the pixel located at the same position. N is the total number of 

pixels in the window which is equal to 81 in the proposed approach. 
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(a) 

 

(b) 

Figure 3.13 Feature space from two different views, (a) The 

most discriminative feature is the distance transform since 

most of the data is separable along the distance transform 

space. (b) However, it is not sufficient to discriminate the 

data inside the circle and additional features (i.e. mean, 

standard deviation) are required. 

After this initial training, weights are updated and iteration proceeds to the next 

slice. Mean and standard deviation features are calculated for the preprocessed next slice 
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(which is the current slice to be segmented) and the distance transform is calculated 

from the previously segmented image. By using these features and the weights (obtained 

from the previous slice), the current slice is segmented. After the segmentation of the 

current slice, the network is trained again by using the features (mean, standard 

deviation and the distance transform calculated for the segmented images of current 

slice) as the input and the new segmented image as the desired output. After the training 

and calculation of the weights, the algorithm proceeds with the next slice and this 

iterative procedure continues until all images are processed. Using the previously 

adjusted weights as the initial weights of the next training phase, the training time is 

reduced significantly.  

The MLP structure used for the segmentation consists of 3 neurons at the input 

layer, which corresponds to the number of input features. There are 8 neurons at the 

hidden layer, each of which has a bias input that ranges between +/- 1. The biases are 

updated along with weights during error backpropagation (Haykin, 1999). The output 

layer consists of l neuron. The output of the network lies between 0 and 1 for each pixel 

and it is thresholded by 0.5. Then, for an input region belonging to the liver class, the 

output is designed to be unity whereas for all other the output is designed to be zero. 

This network structure is determined to be the optimum after extensive experimentation 

and due to a compromise between efficiency and reliability. 

3.3.3 Analysis and Classification of Features and Classifiers 

In (Husain, & Shigeru, 2000), five optimum features are reported as follows: mean 

gray level, standard deviation, skewness, entropy, homogeneity. However, these 

statistical descriptors are not sufficient to differentiate two organs/tissues that have 

similar texture and/or statistical properties. This drawback limits the usage of these 

features in atypical liver shapes where the border between the spleen and the liver 

vanishes. Since the spleen has almost the same texture and statistical properties as liver, 

it becomes very difficult to segment the liver without the spleen. Moreover, in ‘low 

contrast’ CTA series, the statistical properties of muscle tissues and vasculature (i.e. 

aorta, inferior vena cava) get closer to the liver which also hardens the correct 

segmentation of the liver by only using these features without any spatial information. 
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To overcome these problems, the distance transform is selected as an additional 

feature. The approach in the selection of the distance transform is to simulate the 

decision process of a radiologist. For instance, in the case of atypical liver shapes, the 

unclear border between the liver and the spleen is determined by the radiologist by 

following the slices (especially the ones just before and after) where the border is more 

visible. Similarly, the distance transform feature provides a metric to represent the liver 

at the previously segmented slice which gives information about the liver location at the 

adjacent (preceding/succeeding) slice. Although this feature is affected by the slice 

spacing of CTA data, the Slice Thickness (ST) of the datasets used in this study is 3.2 

mm, which is a rather big value considering the emerging technology of CT modalities. 

Even with this thick ST, the information provided by the distance transform is enough to 

handle atypical liver shapes and ‘low contrast’ datasets. 

In the following figure, an example case is presented to show the advantages of 

using distance transform for detection of the liver. Fig. 3.14 shows a set of images that 

are selected from a CTA series where the liver has atypical shape (Fig. 3.1 (a)). Fig. 

3.14 (a)- (d) shows the outputs of the K-Means classifier while Fig. 3.14 (e)- (h) 

represents the outputs of the MLP classifier. The slice numbers are 33, 31, 28, and 24 

from left to right where the slice 33 is the initial image to be segmented. As shown in 

Figures 3.14 (a), 3.14 (e); both MLP and K-means are successful in classifying the liver 

without any connectivity with other objects. However, as the segmentation process 

continues through the beginning of the CTA series, the liver gets closer to the spleen 

(Fig. 3.14 (b), 14 (c)) and they finally they merge (Fig. 3.14 (d)). Since the texture and 

gray level variation of the liver and the spleen are very similar, it is necessary to use the 

information obtained from the previously segmented slices. The distance transform 

allows the usage of this information as it limits the search area to a region that is slightly 

bigger than the previously segmented liver region. As shown in Fig. 3.14 (f) - 3.14 (h), 

the distance transform prevents the spleen to appear at the output of the classifier.  
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for automated processes. In (Husain, & Shigeru, 2000), training is done with a limited 

set of images and due to the high variation of image characteristics, a larger and more 

diverse database is recommended to generalize this system for reliable performance. 

After the adjustment of the network weights using the training set, these fixed weights 

are used for segmentation of other datasets. However, this approach is error prone and 

needs new training sets for the datasets with new image characteristics such as different 

modalities and modality settings. Moreover, simulations show that using a fixed hyper-

plane (network weights) to segment all images in a CTA series, decreases the 

segmentation performance. This means that a new set of weights for each image 

increases the segmentation performance and the weights should be adjusted during the 

segmentation of different slices of the same CTA series. To provide this adjustment, the 

weights of the proposed network are updated at each slice. This is done by using the 

original form of a slice as the input and the segmentation result as the desired output of 

the training. Initialized by the “initial image”, the previously adjusted weights are used 

in the segmentation of the next slice. The same weights are also used as the initial 

weights of the next training phase which reduce the training time significantly. A similar 

training methodology is proposed in (Lee, Chung, & Tsai, 2003), where a contextual 

neural network with a high segmentation performance is proposed. But the results show 

that it fails where the gray level of the desired region is too close to the adjacent tissues 

since the proposed method is designed for the segmentation of all abdominal organs. 

3.3.4 Post-processing 

The results obtained from the segmentation algorithms are roughly segmented liver 

structures (Fig. 3.15 (a)). To remove small mis-segmented objects and for boundary 

smoothing, a post-processing is needed. Moreover, identification of all components of 

the liver when the liver dissects into two or more regions is also done at the post-

processing stage.  

Post processing is handled differently for the slices before and after the “initial 

image” slice because of the different image characteristics.  

In the post processing phase of the slices after the ‘initial image’, a series of 

nonlinear filtering and morphological operations is applied to separate weakly connected 
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Algorithm (RSA) and the Region Segmented Manually (RSM). Defining a union region 

RU as RSA U RSM and an intersection region RI as RSA ∩ RSM, AER is equal to: 

%100×
−

=
RM

RIRUAER
         

(3.5)
 

AER is similar to the criteria Volumetric Overlap Error (VOE) which is used in 

(Van Ginneken, Heimann, & Styner, 2007). VOE is defined as: 

100%RU RIVOE
RU
−

= ×
         

(3.6) 

VOE is equal to 0 for a perfect segmentation and has 100 as the lowest possible 

value, when there is no overlap at all between segmentation and reference. AER also 

takes 0 values for a perfect segmentation however the lowest possible value is not 

limited to 100. For evaluation, AER is calculated directly (without any boundary 

modification) between the manually and automatically segmented images. The manually 

segmented images are segmented by an expert radiologist from Dokuz Eylül University 

Radiology department.  

The slice by slice average AER for 20 datasets (‘5’ low contrast and 15 ‘high 

contrast’, 3 of which have atypical liver shape) with the K-means algorithm is shown in 

Fig. 3.17 (a). It is observed that the algorithm shows better performance for the slices at 

the middle and at the end of the datasets. The high AER values for the slices at the 

beginning of the datasets are due to unclear boundary between the heart and the liver. 

The average AER for the complete data set is calculated as % 12.15 by using the K-

Means algorithm.  

As explained in Section 3.2 the overall algorithm switches automatically from K-

Means to MLP when it is needed. To illustrate the effect of this switch on the 

segmentation performance several experiments are performed. Fig. 3.17 (b) shows the 

average AER for each patient data set when the system just uses the K-Means. The high 

AER values in datasets 8, 9 and 15 are due to atypical liver shapes. 
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(a) 

 

(b) 

Figure 3.17 (a) AER for 20 datasets (b) Average AER 

calculated for each data set if just K-Means algorithm is used. 

As mentioned above, the main points where the K-means algorithm fail are the first 

slices where the heart and the liver can hardly be segmented even with the human eye, 

the patient datasets with atypical liver shapes (Fig. 3.18 (a)) and the separation of the 

tissues in ‘low contrast’ data set where the gray level value of the adjacent tissue (organ 

or vessel) is very close to the liver (Fig. 3.18 (c), 18.e). The algorithm with the neural 
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network, MLP, classifier solves these problems and performs better segmentation in 

those cases (Fig. 3.18 (b), 3.18 (d), 3.18.f). These high AER values are reduced from 

%41.20 to %12.73 in data set 8, %18.20 to % 9.95 in data set 9, and %29.8 to %11.30 in 

data set 15 by using MLP. The high AER values in 2, 12 and 13 are due to low contrast 

between the liver and its adjacent tissues, organs. These high AER values are reduced 

from %14.7 to %10.16 in data set 2, %17.40 to % 11.6 in data set 12, and %17.1 to 

%10.24 in data set 13 by using MLP.  

However, the time required for the algorithm with K-Means classifier is less than 

MLP. Therefore, it is necessary to use the overall system, which takes the advantage of 

both classifiers, to obtain the optimum results. 

Moreover, it is clear that, AER is very sensitive to the pixel differences between 

automatically and manually segmented images. Therefore even 1 or 2 pixel difference 

between these images increases the error rate significantly especially at the boundaries 

even when no modification is needed. Therefore, a qualitative evaluation is also made 

by an expert radiologist. The evaluation of the expert is based on his idea if a slice needs 

modification or not. Then the AER is calculated for the slices that need modification. 

Fig. 3.19 shows the average AER calculated for the slices that need modification for 

each patient data set by using the overall system. The results show that the average AER 

is reduced significantly to %5.09 with a minimum of %2.4 and a maximum of 7.63. 

As a last analysis we calculated volume measurement of the liver for comparing the 

segmentation performances of the algorithms (K-Means, MLP and overall) and the 

success rate of the proposed approach is (Fig. 3.20 (a)). To measure the volume of the 

segmented parts, pixel spacing and slice thickness values are used from DICOM Meta 

information. The error range of the volumes obtained with the K-Means algorithm is 

between 20 mm3 to 210 mm3. The percentage errors of these measurements are found 

between 0.7% and 16.26% with a mean error of %4.7. The same analysis for MLP show 

that the error range of the volumes obtained with the K-Means algorithm is from 40 

mm3 to 160 mm3 and from 2% to 12.8% with a mean of %7.5. The results again show 

that the MLP shows better performance at the datasets with a typical liver shape (8, 9, 
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and 15) and low contrast adjacent tissues (2, 12, and 13) although the K-Means is better 

in overall average error. 

    

(a)                                                           (b) 

    

   (c)                                                          (d) 

    

   (e)                                                          (f) 

Figure 3.18 a) Segmentation results for Figure 3.1 (a): Algorithm result with K-Means (b) 

Algorithm result with MLP (c) Segmentation results for Figure 3.1 (d): Algorithm result with 

K-Means (d) Algorithm result with MLP (e) Segmentation results for Figure 3.1 (c): 

Algorithm result with K-Means (f) Algorithm result with MLP. 
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Figure 3.19 AER calculated for the slices that are determined by the expert as further 

modification is needed.  

The overall system performance is shown in (Fig. 3.20 (b)). The error range of the 

volumes obtained with the algorithm is from 20 mm3 to 140 mm3. The percentage 

errors of these measurements are found between 0.7% and 12.8% with a mean error of 

%6.4. 

The Java version of the program with the K-means algorithm runs for 5 to 7 minutes 

in a standard PC with 2GB Ram and 3GHz processor and requires 750 MB of memory. 

The Matlab® version runs more slowly and takes around half an hour with K-means 

classifier. The algorithm with the MLP classifier ends approximately in 45 minutes both 

in Matlab® and in Java. On the other hand it takes around 60 to 90 minutes for an 

experienced user to segment liver from 100 slices manually and it requires user 

experience both on the liver and the software which should consist of the necessary tools 

for manual segmentation of the liver. In comparison with manual segmentation tool that 

is currently in use, the proposed algorithm is clinically feasible and much more efficient 
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in terms of time and efficiency. Moreover, it produces the output data in a form that is 

suitable for volume rendering and thus for further analysis in 3-D (Fig. 3.21). 

 

(a) 

 

(b) 

Figure 3.20 Volume measurement results of segmented parts 

(a) Comparison of volumes obtained by MLP and K-Means 

with manually segmented. (b) Overall system performance.  
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(a)                                                           (b) 

    

   (c)                                                          (d) 

Figure 3.21 (a, b) 3-D visualization of segmentation results (c, d) visualization of inner liver 

using transfer functions in volume rendering (transparent parenchyma in yellow color, 

opaque vessels in red color) 
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CHAPTER FOUR 

TRANSFER FUNCTION SPECIFICATION FOR ABDOMINAL 

VISUALIZATION  

 

As being a tool that assigns optical parameters, used in interactive visualization, TFs 

have very important effects on the quality of volume rendered medical images. 

Unfortunately, finding accurate TFs is a tedious and time consuming task because of the 

tradeoff between using extensive search spaces and fulfilling the physician’s 

expectations with interactive data exploration tools and interfaces. Therefore, it is 

necessary to integrate different features into the TF without losing user interaction. By 

addressing this problem, a semi-automatic method for initial generation of TFs is 

introduced. The proposed method uses a fully Self Generating Hierarchical Radial Basis 

Function Network (SEG-HRBFN) to determine the lobes of a Volume Histogram Stack 

(VHS) which is introduced as a new domain by aligning the histograms of the image 

slices of a CT/MR series. The new self generating hierarchical design strategy applied 

on RBFN allows for recognizing suppressed lobes corresponding to suppressed tissues 

in VHS and also for representing the overlapping regions which are parts of the lobes 

but can not be represented by the Gaussian bases associated to the lobes due to the 

overlapping. Approximation with a minimum set of basis functions using SEG-HRBFN 

provides the possibility of selecting and adjusting suitable units to optimize the TF. The 

proposed method allows the integration of spatial knowledge, local distribution of the 

tissues and their intensity information into the TF while preserving the user control. Its 

applications on different CT and MR data sets show enhanced rendering quality in 

abdominal studies which are presented in Chapter 5. 

4.1 Introduction and Related Work 

The medical visualization, which aims to produce clear and informative pictures of 

the important structures in a data set, requires extensive user interaction. One of the 

important advantages of volume rendering (Drebin, Carpenter & Hanrahan, 1988) is that 

combinations of selected parameters, such as opacity and color, can be determined 

during the rendering pipeline. During the generation of volume rendered medical 
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images, TF specification is the step where these adjustments can be done. Therefore, it 

is crucial and important to design accurate TFs to produce meaningful and intelligible 3-

D images. However TF design is a very difficult task because of the availability of 

various possibilities. Since this flexibility can not be kept in strict bounds, specification 

of an appropriate TF is a challenging problem especially when there is no initial TF 

design prior to the optimization process. 

To overcome this difficulty generally a number of predefined TF presets are used as 

starting point (so called initial TF design). The main idea behind this approach is that 

certain types of volume data are standardized in the range of data values and special 

sub-ranges are assigned to the same type of tissue (Thus, predefined TFs are adjusted 

due to these ranges). However, depending on different modality settings, injection of a 

contrast media or environmental circumstances, these sub-ranges may vary significantly. 

For these reasons, a limited number of TF presets can not be enough to cover all 

possible cases and to provide useful initial TFs. In order to create a useful initial TF that 

provides a good basis prior to optimization, an automatic tissue detection method that 

finds the intensity range for each tissue of interest is needed. 

As clearly stated in (Lundström, Ljung, & Ynnerman, 2006), the usual TF design 

procedure for a user, i.e. physician, is tissue based: The user first defines the tissues, 

determines their locations and then assigns visual properties (i.e. opacity, color) to them. 

However, this design procedure is a very time consuming, tedious and operator 

dependent task. The first difficulty is to detect tissues in an unknown data set which is a 

problem far from being trivial. Another major problem is to separate tissues with 

overlapping intensity distributions. 

Current approaches for TF specification can be divided into three groups as: manual, 

data centric and image centric. The manual approach addresses the need for expert 

intervention alone in generating the final image (Pfister, 2000) while the data-centric 

approaches are based on measuring the data set properties. Bajaj et al. (Bajaj, Pascucci, 

& Schikore, 1997) have used iso-value determination to find the contours that are 

hidden behind another. Kindlmann et al. (Kindlmann & Durkin, 1998) have introduced 

multi-dimensional TFs and have used edge detection concept from computer vision. 
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Other data centric techniques use topology analysis (Fujishiro, Azuma, & Takeshima, 

1998), stochastic properties of datasets (He, Hong, Kaufman, & Pfister, 1996), and 

multidimensional data analysis (Kniss, Kindlmann, & Hansen, 2002). The image-centric 

approaches, on the other hand, are based on evaluating TFs on the basis of images they 

produce where the physician can select one of these rendered images (Shiaofen, Tom, & 

Mihran, 1998, Kniss, Kindlmann, & Hansen 2001, Konig, & Gröller, 2001, Marks, 

Andalman, Beardsley, & Pfister, 1997). 

Recently, local properties are used in some successful applications for TF 

generation. In (Lundström, Ljung, & Ynnerman, 2006), histogram contents for local 

neighborhoods are used to detect and separate tissues with similar intensities. In 

(Lundström, Ynnerman, Ljung, Persson, & Knutsson, 2006), an enhancement that 

amplifies ranges corresponding to spatially coherent materials by using alpha-

histograms, which are individually retrieved by dividing the data set into local regions, 

is implemented. In (Roettger, Bauer, & Stamminger, 2005), spatialized transfer 

functions are introduced as one- or more-dimensional transfer functions, where spatial 

information has been used to derive the color, whereas statistical (and/or spatial 

information) is used to setup the opacity. These studies show the importance of local 

information in solving major problems in TF generation such as the classification of 

overlapping tissues. In (Sato et al., 2000), 3-D filters, based on gradient vector and 

Hessian matrix, are used to enhance specific 3-D local intensity structures. Filter banks 

are utilized for considering local texture and other characteristics in (Lum, Shearer, & 

Ma, 2006).  

Machine learning is introduced for transfer function specification in (Tzeng, Lum, & 

Ma, 2005). In that system, the physician works in the volume data space by directly 

painting on sample slices where the painted voxels are used in an iterative training 

process and the trained system can then classify the entire volume. All process is 

hardware accelerated, thus providing immediate visual feedback. A fuzzy classification 

based system is used by (Kniss et al. 2005) which provide the user access to the 

quantitative information computed during fuzzy segmentation. The decision making step 

of classification is deferred until render time, allowing the user finer control of the 

importance of each class. To avoid the artifacts of binary classification, semantic values 
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are defined (Rautek, Bruckner, & Groller, 2007) using fuzzy sets, enabling a linguistic 

specification of renderings. A high level semantic model with a simple user interface to 

improve the usability of direct volume rendering applications is introduced in (Salama, 

Keller, & Kohlmann, 2006).  

For time-varying medical data, several methods are pro-posed and compared in 

(Fang, Möller, Hamarneh, & Celler, 2007) while an interface is de-signed based on 

cascading the histograms of all time steps in (Akiba, Fout, & Ma 2006). 

All of these techniques produce informative images and offer more degrees of 

freedom; however generated TF models are also more difficult to setup by the user. 

Since data exploration is an essential element of creating a TF to fulfill the physicians’ 

expectations, this reduction should be done effectively. Therefore, a physician 

interaction mechanism that is informative, easily understandable and highly interactive 

should be provided after the initialization of a TF using a (semi) automatic method.  

Using the similarity of the lobes to the Gaussian functions in the volume histogram; 

a 2-step TF specification method for 1-D volume histogram is introduced in (Selver, 

Fischer, Kuntalp, & Hillen, 2007). That method is capable of determining the hidden 

lobes by removing the main lobes which are already recognized in the first step.  

In this paper, a semi-automatic method is developed to shorten the design process by 

creating an initial TF for the tissues of interest. This initialization is realized with a fully 

Self Generating Hierarchical Radial Basis Function Network (SEG-HRBFN) that 

approximates to a Volume Histogram Stack (VHS). A VHS is a two dimensional (2-D) 

histogram which is constructed by aligning the histograms of each slice in a data set 

(Fig. 4.1). Thanks to its properties, VHS incorporates spatial domain knowledge with 

local distributions of the tissues and their intensities.  

The TF specification is then, posed as a two-stage procedure: The lobes 

corresponding to different tissues in VHS data is characterized by a Gaussian based 

function approximation (or say Gaussian expansion) in the first stage. Then, in the 

second stage a physician exploits Gaussian spectrum, i.e. the centers and widths of 

deter-mined Gaussian basis, to assign different opacity and color for each point in the 2-
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D input space of Hounsfield value and slice number. So, the overall TF specification is 

considered as a (vector-valued) function approximation problem where the domain is 

the 2-D input space of Hounsfield value and slice number and the range variables are 

opacity and color. Thus, the method presented in the paper changes the search space 

from 1-D to 2-D (i.e. from 1-D gray/Hounsfield value domain to 2-D gray/Hounsfield 

value and spatial location domain, i.e. the slice number) which contains more priori 

information and domain knowledge for representation of the tissues.  

The SEG-HRBFN, which is designed by a hierarchical learning strategy, is 

employed to approximate to 2-D VHS. The SEG-HRBFN provides a multi-step 

procedure; i) for capturing all suppressed lobes of importance in a successive manner by 

associating the lobes with the Gaussian bases and also ii) for representing the overlap-

ping regions, which can not be represented by the Gaussian bases associated to the 

lobes, by assigning additional Gaussians for them in the residual VHS, that is the 

remainder after removing the already obtained approximation from the original VHS. 

SEG-HRBFN allows an approximation with a minimum set of basis function that can be 

further adjusted by the physician to optimize the TF in an interactive way. Due to the 

requirement of small number of neurons, the construction of SEG-HRBFN is done in 

quasi real time. 

At each layer, the SEG-HRBFN contains a number of Gaussian units that are used to 

approximate to the lobes in VHS. The number of these units and their structural 

parameters (i.e. centers, widths) and linear weights are determined automatically. 

Finally, a combination of the user selected units is used to create an accurate initial TF. 

The application of the proposed method to several medical datasets shows its 

effectiveness, especially in visualization of abdominal organs. The proposed method 

allows the integration of spatial knowledge, local distribution of the tissues and their 

intensity information into the TF while providing an effective and user friendly 

interaction mechanism which preserves the possibility of using it in clinical applications.  

According to the organization of this chapter, the VHS data and its properties are 

explained in Section 4.2. Approximation with SEG-HRBFN is established in Section 4.3 

and its comparison with RBFN and HRBFN algorithms are presented in Section 4.4. 
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Representation of the results of initial TF generation algorithm is given in Section 4.5. 

The application of the proposed method to several medical datasets and comparison of 

the results of the proposed method with different techniques are presented in the next 

Chapter.  

4.2 Volume Histogram Stack (VHS) Data  

In CT datasets, the same type of tissues may have different gray value distributions 

and may appear at different locations in a histogram depending on the patient, 

environmental circumstances, injection of a contrast media, and certain modality 

parameters although there is a calibrated intensity scale, i.e. Hounsfield Values (HV). 

Moreover, volume rendering is not commonly used for MR data sets since there is no 

calibrated intensity scale. In conventional approach, both for CT and MR data sets, the 

volume histogram is the main guide to find the tissues of interest. However, the tissues 

do not always correspond to visible peaks since they might be suppressed by dominant 

peaks of unimportant tissues. Especially in abdominal CT/MR datasets, soft tissues and 

organs (i.e. liver, kidney, spleen, aorta, muscle tissue etc) exist in a very narrow range of 

HV/gray values. This overlap hardens the usage of transfer functions in the visualization 

of abdominal organs, hence complex and time-consuming segmentation methods are 

needed to be employed prior to the visualization. 

One of the attractive advantages of the medical datasets is that some of the 

tissues/organs have small size in the initial slices where they begin to appear, slightly 

expand in the successive ones and finally disappear. This causes a lobe like histogram 

distribution for a tissue/organ which has usually a shape similar to a radially asymmetric 

(elliptical) Gaussian. However, the effect of having a lobe like distribution is visible for 

most studies and cases but not for all. One of the frequently used CT/MR studies 

showing this characteristic is the abdominal study. The organs of interest in these 

datasets (i.e. liver, kidneys, spleen etc.) are quite large so that they dominate a number 

of slices. Therefore, it is possible to get additional and important information by using 

the z-dimension (orthogonal to the slices) as exploited in the 2-D VHS introduced by 

this paper. Organs that are spatially separated in the z-dimension get separate lobes 

whereas they have intersecting lobes if they are spatially non-separated.  
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This approach can also be extended to x- and y- dimensions. For example, if the 

major slicing axis is z-dimension, the histograms can be generated for axial images (x-y 

dimensions) and aligned through z-dimension to construct VHS. Furthermore, VHS can 

also be generated by using the histograms of coronal images (y-z dimensions) and 

aligning them through x-dimension or the histograms of sagittal images (x-z 

dimensions) aligning them through y-dimension. Thus, the VHS can be generated based 

on the organ to be visualized and independent of slicing axis without an additional 

scanning procedure. With this opportunity, VHS can distinguish structures which are 

separated in any of x-, y- and z-dimensions. Traditional volume histograms can not take 

this advantage as they represent cumulative gray level distribution over all data set. 

Therefore, a data format is necessary to represent the spatial range of the tissues, their 

local properties as well as gray level distributions.  

For this purpose, the newly proposed data model, namely VHS, is generated by 

aligning histograms of all slices (images) (Fig. 4.1 (a)) in a data set (Fig. 4.1 (b) and Fig. 

4.2 (b)). The VHS data exploits more priori information as saving inter-slice spatial 

domain knowledge since each slice histogram is represented separately. It demonstrates 

changes in the gray values through the series of slices, thus includes information on 

local histogram distributions of tissues. For example, when a tissue appears larger in an 

image, the number of pixels representing this tissue also increases and vice versa. The 

VHS demonstrates these changes much better than the volume histogram since the data 

distribution is shown in a continuous way through the series. Thus, it can represent the 

intensity values of the tissues as well as their spatial information and local distributions 

which are not available in conventional volume histograms. The tissues which are at 

different slices but with similar gray level distributions can clearly be distinguished by 

using this spatial information.  

When two or more tissues have overlapping gray values and share a set of slices, 

where some parts of them appear, they construct suppressed lobes and overlapping 

regions (intersecting lobes). The suppressed lobes are defined as the hardly recognizable 

minor lobes due to the domination by the major ones. The overlapping regions indeed 

do not correspond to the lobes but they are parts of these lobes and can not be 
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represented by the Gaussians associated to these lobes as a consequence of overlapping 

(Fig. 4.2 (a) and Fig. 4.6). 

 

(a)  

 

(b) 

Figure 4.1 (a) Planes used in this paper for constructing VHS which are orthogonal to a 

particular axis (z in this figure) (b) Volume Histogram Stack (VHS) data for a CT 

Angiography data set of 326 slices. 

x

y

z
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(a) 

 

(b) 

Figure 4.2 (a) 0-100 range of VHS data obtained from the PANORAMIX data set and plotted 

from the top view. Muscle tissue that goes through the whole volume with almost the same 

amount of pixels in each slice is shown by the vertical line. Two tissues that overlap with this 

tissue but have wider range of Hounsfield values, which are shown by the horizontal lines, 

can be recognized by SEG-HRBFN using local distribution information obtained from the 

VHS data. (b) VHS data obtained from the BEAUFIX data set. (Figure is mirrored on 

“Intensity Value” axis for better illustration of the lobes.)  
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Even in such cases, the proposed method can detect suppressed lobes and 

overlapping regions and an efficient classification can be achieved by assigning a 

Gaussian basis function of SEG-HRBFN to each of these partially intersecting lobes 

where the dominant lobes are first approximated by the associated Gaussians and then 

the minor lobes which remain in the residual VHS, i.e. the difference between the 

former approximation and the original, are approximated by newly assigned Gaussians. 

As explained in the previous paragraphs, VHS can be generated not only for the slicing 

axis but also for an arbitrary axis (i.e. x-, y- or z- dimensions) depending on the organ to 

be visualized. 

To design an effective initial TF by using VHS in the shortest amount of time, an 

automatic and lobe detection based TF design method is needed. SEG-HRBFN 

introduced in this paper provides such a method. 

4.3 Self Generating Hierarchical Radial Basis Function Network 

Among all artificial neural networks, RBFN seems to be a good choice for 

approximating VHS data due to the almost perfect matching of the Gaussian basis to the 

lobes. Choosing Gaussian basis for representing each lobe not only provides a good 

approximation but also, indeed more importantly, gives the possibility of optimizing the 

TF by the physician via adjusting the Gaussian parameters in an interactive way. During 

simulations, it is observed that determining the Gaussian parameters (i.e. centers, widths 

and heights) in an appropriate way is quite important because capturing all suppressed 

lobes of importance and representing the overlapping regions are critical in the quality 

of rendering result.  

The basic strategy of using fixed centers and/or the same width for all units in RBFN 

design can not guarantee the determination of suppressed lobes and overlapping, and 

therefore the proper determination of Gaussian centers and a different width for each 

Gaussian unit is necessary. Even if an appropriate number for hidden neurons is chosen 

together with appropriate center locations and widths, simulations show that the RBFN 

approximation (Section 4.3.1) tends to fit only major lobes and skip the suppressed 

information carried by the minor lobes. To overcome this drawback, the HRBFN (Ha, 

1998, Cerveri, Forlani, Borghese, & Ferrigno, 2002, Ferrari, Frosio, Piuri, & Borghese, 
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2005), would be an appropriate choice since it assigns Gaussians in all scales to 

represent all details of the function to be approximated. However, simulations show that 

(Section 4.3.2) the original HRBFN produces a huge number of hidden neurons when it 

is applied to approximate VHS. This is not a desired property for TF design since the 

physician should deal with a small number of units to obtain an efficient interaction 

mechanism.  

Considering the above reasons, HRBFN is used as the network for approximating to 

VHS data but with a new learning strategy, called as self generating hierarchical 

learning strategy. The developed SEG-HRBFN (Section 4.3.3) provides a procedure for 

capturing all suppressed lobes of importance in a successive manner by associating the 

lobes with a minimum number of Gaussian bases. 

4.3.1 Radial Basis Function Networks (RBFN)  

As shown in Fig. 4.3, single-output RBFN consists of three different types of 

neurons: Input neurons which are used just for feeding the input data to the hidden 

neurons, nonlinear neurons having a Gaussian transfer function at the hidden layer and a 

linear neuron performing a weighted sum at the output layer. Such an RBFN defines the 

following function: 

1
( ) . ( ; )

N

j j j
j

f w g
=

=∑x x - c σ
         (4.1)

 

Where { }D
j R∈c  corresponds to the center of jth Gaussian unit, { }j R∈σ to the width, 

and { }jw R∈  to the jth linear weight. 

4.3.2 Hierarchical Radial Basis Function Networks 

As observed in the simulations done at the beginning phase of the research of which 

the results are presented in this paper, the back-propagation method and also the hybrid 

methods suffer from the following drawback in approximating to VHS data: Even if an 

appropriate number for hidden neurons is chosen, the RBFN approximation tends to fit 

only major lobes skipping the suppressed information carried by the minor lobes which 
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also correspond to the whole or some part of the other tissues desired to be rendered. To 

overcome this drawback, one can exploit the idea of (Selver, Fischer, Kuntalp, & Hillen, 

2007) where the minor lobes are determined after removing the main lobes which are 

already recognized in a first step. In this sense, the Hierarchical Radial Basis Function 

Network (HRBFN) (Ha, 1998, Cerveri, Forlani, Borghese, & Ferrigno, 2002, Ferrari, 

Frosio, Piuri, & Borghese, 2005), which is originally proposed for noise elimination in 

face reconstruction, would be an appropriate choice since it assigns Gaussians in all 

scales to represent all details of the function to be approximated. It constructs the 

approximation layer by layer in a hierarchical way beginning with the coarsest 

information (i.e. low frequency components which correspond to major lobes in VHS) 

and continues with the more detailed information (i.e. high frequency components 

which correspond to minor lobes in VHS).  

 

 

Figure 4.3 Multi-input single-output RBFN with N hidden neurons  

4.3.3 Implementation of Self-Generating Hierarchical Radial Basis Function Networks  

The original HRBFN produces a huge number of hidden neurons when it is applied 

to approximate VHS. This is not a desired property for TF design since the physician 

has to deal with small number of units to obtain an efficient interaction mechanism. 

Considering all of the cited reasons, HRBFN is used as the network for approximating 

to VHS data but a new learning strategy, called as self generating hierarchical learning 
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strategy, is developed and used for the design of RBFN in this paper. The developed 

Self Generating HRBFN (SEG-HRBFN) provides a multi-step procedure for capturing 

all suppressed lobes of importance in a successive manner by associating the lobes with 

a minimum number of Gaussian bases. The HRBFN and the newly developed self 

generating hierarchical learning strategy are explained in the sequel. 

SEG-HRBFN performs a mapping f(·): RD→R, as the sum of K approximations 

{ } 1,2,...,
( )i i K

l
=

⋅ : 

1
( ) ( )
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i
i

f l
=

= ∑x x
            

(4.2) 

Herein, approximation layers, ( )il ⋅ ’s, are RBF sub-networks; they are indeed not 

structural layers but just functional layers, i.e. approximation layers, constructed in a 

successive manner along the training phase by self generating hierarchical learning 

strategy. Hence, each ( )il ⋅  is a linear combination of Gaussian units. The jth Gaussian 

unit at ith layer is defined by, ( )( ), ,
2

,( ) exp ( ) . 1/ .( )i j i j
T

ij i jg ⋅ = − x - c x - cσ  which is capable of 

producing radially asymmetric Gaussians. 

Each ( )il ⋅  is composed of Mi Gaussian units found, 
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So the network has totally 
1

K

i
i

M M
=

=∑  units. 

The complete output of the HRBFN is the combination of all approximation layers. 

At each layer, SEG-HRBFN searches the required number of Gaussian units and 

calculates all necessary parameters in an automatic way. Starting from the VHS data f(•) 

(Fig. 4.4 (a)), first a peak detection algorithm is used to determine Mi and the locations 

of the centers for each layer as explained in Section 4.3.4. Then, for each Gaussian unit, 

a width is calculated by considering the topology of the other units (Section 4.3.5). 

Finally, the linear weights are calculated (Section 4.3.6).  
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(b)                                                           (b) 

    

   (c)                                                          (d) 

    

   (e)                                                          (f) 

Figure 4.4 Finding the lobes of VHS data: (a) Original VHS data in Figure 2 is reduced to 

range (-200)-(+300) HV for illustration purposes. (To be approximated by the first layer.) (b) 

Lobes found for the first layer. (c) Residual VHS data obtained from the difference of (a) and 

(b). (To be approximated by the second layer.) (d) Lobes found for the second layer. (e) 

Residual VHS data obtained from the difference of (c) and (d). (To be approximated by the 

third layer.) (f)  Lobes found for the third layer. (Illustration Notes: 1)Very small lobes found 

by the SO-HRBN are left out for clarity 2) For best representation of  the 3-D nature of the 

VHS data, all illustrations are prepared with the same camera position, [x y z] = [186.0 -

361.72 11380.64] by using Matlab® 7.0 R14 ) 
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After reconstructing the surface by using the Gaussian units found for a layer (Fig. 

4.4 (b)), a residual is calculated point-wise, i.e. for each point xn used in the training 

(Fig. 4.4 (c) for an illustration of the process.): 

1 1( ) ( ) ( )r f l= −n n nx x x            (4.4) 

The next approximation layer considers the residual VHS found in the previous layer 

as the new function to be approximated (Fig. 4.4 (d)) and the number of Gaussians and 

their parameters are calculated now for that residual (Fig. 4.4 (e)-(f)). The general 

expression of a residual VHS to be approximated at ith layer is given as: 

1

1 2 2
1

( ) ( ) ( ) ( ) ( )
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i j i i
j

r f l r l
−

− − −
=

= − = −∑n n n n nx x x x x
     

(4.5) 

To approximate VHS data, this procedure continues for four layers by default since 

it is observed in the simulations that four layers are found sufficient in most cases (Fig. 

4.5). Of course, it can be further iterated if the generated Gaussian units are not found 

enough to construct an appropriate TF by the user and until satisfactory number of units 

are obtained. 

 

Figure 4.5 HRBFN construction chart  

4.3.4 Determination of Mi and Centers of a Layer 

As cited before, a common method to determine the centers of RBF networks is 

using a clustering algorithm (Hartigan, 1975) (i.e. K-Means (Duda, & Hart, 1973)) 

which is applied only to input training sample vectors. However, in our case, such an IC 

method produces incorrect results since the VHS data is uniformly sampled at all 
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dimensions. To overcome this difficulty an IOC method (Uykan, Güzeliş¸ Çelebi, & 

Koivo, 2000) or a method for non-uniform re-sampling of the data prior to clustering 

process can be used, however such methods have high computational complexity and 

can prevent the realization of the network in a short time. Since then, a peak detection 

algorithm is used for the determination of Mi and the centers. In this manner, first, the 

VHS data is smoothed with a 7x7 average filter to remove high frequency components 

and then its gradient is calculated in both directions of x, say x1 and x2. The size of 7x7 

for the filter is found to be optimum after extensive experimentation with different 

scales. 

2
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(4.6) 

If a data point at the gradient of the f(•) is a crossing point (from positive to 

negative) for both directions, then that point is selected as a peak. Finally, the projection 

of that data point to x (x1-x2 coordinates) determines the center location for the 

corresponding lobe. (The peak detection procedure may also be realized by any other 

peak detection method. The above method is found to be sufficient in the simulations.)  

4.3.5 Determination of the Widths of the Gaussian Units 

In medical visualization, one of the hardest problems is to distinguish the 

overlapping tissues, and therefore representing an overlapping region (between two 

intersecting lobes of VHS) in a clear way is very important. Identifying minor lobes are 

also highly important in the representation of suppressed tissues as cited. To handle both 

of these challenges effectively, determining the widths of the Gaussian units in an 

appropriate way is as important as correct determination of unit locations. Although the 

use of the same width for all units has been proved to be sufficient to obtain a universal 

approximator (Park, & Sandberg, 1991), it can produce inefficient results due to the 

insufficient number of neurons or else learning difficulties in TF specification problem 

since the distribution of a tissue (lobe) is discarded. Since assigning a different width for 

each Gaussian improves the model performance (Musavi, Ahmed, Chan, Faris, & 

Hummels, 1992, Rojas et al., 2000), the width values for each Gaussian have been 
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calculated using a modified version of the closest RBF heuristic (Park, & Sandberg, 

1991) as explained in the next paragraph.  

An overlapping region generally occurs between the closest lobes, so it can be 

represented by a Gaussian unit at a succeeding layer coming after the one where these 

lobes are already approximated by the SEG-HRBFN (Fig. 4.6). To leave the overlapping 

region to be approximated in next layer, the width of a Gaussian unit is determined as 

the half of the distance between its center and the closest center(s) to it. Since the 

Gaussians used in SEG-HRBFN are not restricted to be radially symmetric, the width 

search is capable of finding different values for dimensions x1 and x2. One constraint to 

be considered in the selection of widths is: If a point xi,j at which VHS is zero or almost 

zero is closer to the considered center than the closest center to that center, then the 

distance to that data point is chosen as the width. After the selection of the ‘initial 

simple task for the user.  
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This constraint is used to prevent the construction of wide Gaussian units that can 

possibly suppress the detection of the minor lobes. Extensive experimentation on 

different types of datasets has shown that, similar to overlapping regions, this method is 

useful in representing suppressed lobes (Fig. 4.6) such that these suppressed lobes are 

fitted by Gaussian units after the approximation to the major lobes. 
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(a) 

 

(b) 

Figure 4.6 Representation of the overlapping region and suppressed lobes 

using SEG-HRBFN: (a) two lobes are determined at the first layer and 

SEG-HRBFN generates two units for these lobes, (b) at the second layer 

(residual signal), the overlapping region and suppressed tissue appear as 

new lobes which will be represented by new Gaussian units at that layer (A 

2-D representation is used instead of 3-D for illustration purposes)  
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4.3.6 Determination of the Linear Weights 

After determining all the parameters concerning the Gaussian units, the network 

becomes a linear model and the linear weights can then be calculated by using pseudo-

inverse methods, e.g. singular value decomposition (Chen, Billings, & Luo, 1989) and 

orthogonal least squares (Kanjilal, & Banerjee, 1995), or the Least Mean Squares (LMS) 

rule or any other gradient descent method (Haykin, 1999). LMS rule is chosen in the 

paper because of its speed in convergence process and relatively less computational 

complexity. 

Here, it is worth to point that, the height of the Gaussian units is a minor concern 

since not the height but the position and width of a unit are used for TF construction. 

(Note that the heights of Gaussian units in an approximation layer are actually needed to 

be calculated for the determination of the optimal values of the centers and widths of the 

units in the succeeding layer.) In other words, the main concern is to find the lobes of 

f(•) data rather than reconstructing them exactly. Therefore, negative parts of residual 

signals are set to zero to prevent the production of negative lobes resulting in confusion 

and to prevent the complexity at the interactive optimization level. 

4.4 Comparison of SEG-HRBFN with HRBFN 

The main advantage of SEG-HRBFN compare to HRBFN in TF design is its 

capability of capturing all suppressed lobes and overlapping regions of importance in a 

successive manner as associating the lobes with a minimum number of Gaussian bases. 

This subsection is devoted to demonstrate the effectiveness of SEG-HRBFN in 

approximation with a minimum number of units and also without losing any details, as 

comparing it with HRBFN (Ferrari, Maggioni, & Borghese, 2004) and also with Fast-

HRBFN (Ferrariet al., 2005) in 3-D reconstruction of range data presented in (Ferrari, 

Maggioni, & Borghese, 2004) which is known to be a successful application of HRBFN.  
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(a)                                                           (b) 

    

   (c)                                                          (d) 

    

   (e)                                                          (f) 

Figure 4.7 Reconstruction of the baby doll face by using multilayer SEG-HRBFN 

reconstruction. (a) Auto-scan range data that consist of over 61.000 data points to represent 

the doll face, (b) First layer alone, (c) Reconstruction up to layer 8, (d) Reconstruction up to 

layer 14, (e) Reconstruction up to layer 22, (f) Reconstruction up to layer 29. 
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HRBFN model of (Ferrari, Maggioni, & Borghese, 2004) is of course not claimed to 

be optimal since it creates an increasing number of Gaussians with fixed width (i.e. 

arbitrarily doubled) for each layer without considering the signal characteristics at that 

layer. It checks for the necessity of several Gaussians most of which are indeed not used 

in the reconstruction of the original data. Nevertheless, it is a good starting point for 

optimization and it allows building an effective network in a very short time. The price 

to be paid for a high speed in the configuration is the huge number of units. Therefore, 

such an approach is not suitable for the construction of a TF from VHS data since 

merging a large number of Gaussian units generated by the physician to reach an 

optimal TF is a very hard (almost impossible) task to accomplish. If the number of 

Gaussian units is high, the physician’s control over the parameter space would be lost 

which hardens the optimization of the TF by the physician.  

SEG-HRBFN differs from HRBFN as preventing the above mentioned redundancy 

by choosing small numbers of appropriate basis functions. SEG-HRBFN is able to 

obtain a reconstruction of the function to be approximated in a similar quality but with 

fewer units.  In order to compare SEG-HRBFN with HRBFN (Ferrari, Maggioni, & 

Borghese, 2004) and Fast-HRBFN (Sherstinsky, & Picard, 1996) in terms of the 

numbers of units required to construct a signal, a typical ensemble of range data points 

obtained through the auto-scan system (Ferrari et al., 2005) from a baby doll face is used 

(Fig. 4.7 (a)). In the reconstruction of this data, connecting the points to form a 

triangular mesh produces an undesirable wavy mesh and traditional linear filtering 

cannot be applied to clean the surface since data are not equally spaced. Moreover, the 

highly variable spatial frequency content of a face requires an adaptive approach. This 

requirements make the HRBFN based approaches suitable for that problem since the 

quality of the network output increases with the number of layers by adding details 

mainly in the most difficult regions like the nose, the eyes, and the lips (Fig. 4.7). These 

details are obtained by means of Gaussian clusters at smaller scales in the higher layers. 

In the HRBFN and Fast HRBFN approaches, these clusters are created by the network 

itself at the configuration period by inserting a Gaussian only where the local 

reconstruction error (Ferrari, Maggioni, & Borghese, 2004) is larger than the 

measurement error. However, these local operations produce a huge number of units.  
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The results in Table 1 show the effectiveness of SEG-HRBFN compared to HRBFN 

and Fast HRBFN in the reconstruction of a 3-D signal with a similar quality but using 

less number of units which is an important issue in TF initialization problem. The 

disadvantage of SEG-HRBFN comes from iterative machinery which is much slower 

than the method proposed in (Ferrari, Maggioni, & Borghese, 2004). The required time 

to obtain the results in Table 4.1, are 5.26 seconds for HRBFN, 1.78 seconds for Fast-

HRBFN and 142.14 seconds for SEG-HRBFN. Although, there is a significant 

difference between approximation times due to the need for high number of Gaussian 

units for suitable representation of the range data; in the problem of TF initialization, the 

number of generated Gaussian units is not high and using minimization algorithms (i.e. 

Gradient Descent) for such a small number of units still allows building a network in a 

reasonable time (Discussed in Chapter 7). 

Table 4.1 Comparison of HRBFN, FAST-HRBFN and SEG-HRBFN NETWORKS in terms 

of, the number of units and layers required to construct the AUTO-SCAN baby doll range data. 

 HRBFN FAST HRBFN SEG-HRBFN 

Layer Grid Size 
(# Units) ε RMS 

Error
Grid Size 
(# Units) ε RMS 

Error
# 

Units ε RMS 
Error

1 14x15 
(175) 4.66 5.91 14x15 

(175) 4.61 5.76 1 49.16 76.24 

2 27x29 
(635) 1.89 2.73 27x29 

(635) 1.77 2.56 14 41.78 66.94 

3 53x57 
(2133) 0.796 0.32 53x57 

(2133) 0.756 1.26 36 32.11 51.38 

4 105x113 
(4962) 0.397 0.76 105x113 

(4962) 0.411 0.748 38 20.45 39.67 

 
10       142 7.56 9.51 

 
16       410 0.402 0.81 

 
29          

Total 
Units 7205   8087   2044   
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4.5 Representation and Adjustment of the Units Produced by SEG-HRBFN  

After the determination of Gaussian units by SEG-HRBFN, the user selects the 

useful ones among all units to construct the initial TF design. For this selection process, 

the Gaussian units found by the network are listed together with the information on their 

centers, widths and the slice range they exist. User selected components (Gaussian units) 

from this list are then merged for making N groups, each of which will represent a tissue 

(Fig. 4.8). In the reconstruction phase of a group, the user can add any units to any 

groups and can change the structural parameters (i.e. widths, centers) of the units of a 

group. 

 

Figure 4.8 Building an appropriate TF by using the user 

selected Gaussian units. First the physician groups the suitable 

units together to represent a tissue. Then, these groups (tissues 

of interest) are combined to build an initial TF.HRBFN 

construction chart  

Supposing that the user wants to visualize N tissues, let a TF be specified by a 

combination of S Gaussian units that are selected among 
1

K

i
i

M M
=

= ∑  units where each 

Mi units are generated by ith approximation layer, i.e. ( )il ⋅ , of SEG-HRBFN. In other 

words, the suitable ones among M Gaussian units, which are generated by SEG-
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HRBFN, are selected by the user and then assigned to one of the N groups (i.e. color and 

opacity) each of which represents a tissue of interest. Thus each group is constructed by 

Si units which might be chosen from K different layers. 
1

K

i
i

S S
=

= ∑  Gaussians for N 

groups can be defined with different center and width ranges and they define the TF 

when combined in an appropriate way. So, the actual shape of the TF depends on the 

number S of selected Gaussian units, their centers { }D
i, j i, j R∈c c , their widths { }i, j i, j R∈σ σ   

and the linear weights { }, ,i j i jw w R∈  where i, j denotes the jth Gaussian unit at ith layer. 

A group, which is composed of user selected Gaussian units, has two main 

properties: opacity and color. Thus, the voxels belonging to a group are rendered with 

the group’s opacity and color values. Fig. 4.9 (a) shows the selected Gaussian units for 

the VHS data in Fig. 4.4. This approximation consists of the algebraic addition of 

physician selected Gaussian units among the ones found by SEG-HRBFN up to the third 

layer of reconstruction. As clearly seen from the figure, no grouping has been done yet 

and no color or opacity values have been assigned to any units. 

After the initialization is finished, the optimization process controlled by the 

physician begins. The optimization process includes the change of free parameters of the 

TF (i.e. centers and widths) and the grouping of Gaussian units. By adjusting these free 

parameters, the user can change the location or spread of a unit, thus control the number 

and appearance of voxels represented with that unit. An example of grouping the 

Gaussian units by the physician is given in Fig. 4.9 (b). 

Each group represents a tissue of interest and thus each unit takes the opacity and 

color value of the group it belongs to. Finally, a combination of the groups (tissues) 

constructs an initial TF design (Fig. 4.9 (b)). One of the important advantages of the 

proposed TF initialization process over 1-D TF design is also shown in Fig. 4.9 (b) 

where it is clear to see that the projection of the VHS data to the Hounsfield Value axis 

would result in an overlapping of separate tissues as in volume histogram. However, 

these tissues can be individually classified using the VHS data. 
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(a) 

 

(b) 

Figure 4.9 Building an appropriate TF by using the user selected Gaussian units. First the 

physician groups the suitable units together to represent a tissue (Figure 4.8). Then, these groups 

(tissues of interest) are combined to build an initial TF, (a) Selected Gaussian units for the VHS 

data in Fig. 4.4, (b) Each lobe (Gaussian unit) is assigned to a group, which represents a tissue, 

and takes the opacity and color of that group.  

Unlike typical TFs having many parameters that have to be set by the user by hand 

or through by an interactive exploration of the volume data, Gaussian units have simple 

expressions relying on a limited number of free parameters, i.e. centers and widths. 

Thus, using 3-D Gaussian units as the components of the initial TF design does not 
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increase the memory requirements exponentially as most of the other types of 

components do and this makes Gaussian units practically useful and realizable in quasi 

real time. 

This method can easily be extended to produce an initial TF where each Gaussian 

unit has its own opacity and color values. However, this would make the physician’s 

intuition process more tedious and time consuming due to the need for determining 

color, opacity and structural parameters for each Gaussian unit. Since the data 

exploration is an essential element of creating a TF in medical visualization and the 

images have to fulfill the physician’s expectations, the grouping of Gaussian units 

provides a physician’s intuition that is both robust and requires less parameter 

adjustments to get a result. 



 

102 

CHAPTER FIVE 

APPLICATION OF SEG-HRBFN BASED TRANSFER FUNCTION 

INITIALIZATION TO ABDOMINAL DATASETS 

 

The method, which is introduced in Chapter 4, is applied to four challenging 

abdominal datasets. The first application is a CTA study acquired after the operation of 

stent implantation in the treatment of Abdominal Aortic Aneurysms (AAA). The second 

application is a contrast-enhanced renal MR Angiography (MRA) series acquired on a 

3T scanner, namely the BEAUFIX data set from OsiriX database (Osirix). The third 

application is the PANORAMIX data-set (Osirix) which also belongs to OsiriX database 

and is again an abdominal CTA acquired on a 16 detector scanner for a patient with 

AAA. The fourth application is another abdominal CT series taken at the venous phase 

for the evaluation of a liver transplantation donor (one of the patient series that is used in 

Chapter 3). Different challenging visualization problems and tasks are handled using 

these datasets and presented in the following sections. 

5.1 Application to Abdominal Aortic Aneurysms 

AAA is a chronic degenerative disease with life threatening implications. It is 

thought to arise through a localized form of arterial wall injury superimposed on various 

predisposing factors which result in progressive aortic dilatation accompanied by 

alterations in vessel geometry, redistribution of hemodynamic wall stresses, and 

diminished tensile strength. 

About 5–6% of the male population above 65 years is diagnosed with AAA each 

year. A common treatment for AAA consists of the insertion of a vascular graft (stent) 

that creates a barrier between the blood flow and the weakened vascular wall of the 

aneurysms. Imaging the patient before and after the graft (stent) insertion is fundamental 

for controlling the efficacy of the procedure. 

The images considered in this study correspond to CTA scans acquired with a 16 

detector scanner after the graft has been implanted where the network-like structure of 

the graft should be visible. There are 326 images each of which is 12 bit. The main 
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objective of the 3-D rendering is to represent the stent and vessels clearly. However, 

vessels with contrast agent have significantly overlapping HV range with the bones and 

the stent material. Fig. 5.1 (a) shows the rendering result of a conventional 1-D TF 

prepared by the software in (Selver et al., 2007) as a combination of trapezoids 

optimized by a radiologist depending on the volume histogram. 

The colors chosen for rendering are white for the stent material, yellow for bones 

and red for the vessels. With a 1-D TF, some red voxels are included in bones and stent 

material. Moreover, a lot of yellow is included in stent material. These variations and 

mixtures in the structures of interest are evaluated as higher than the acceptable level. 

Fig. 5.1 (b) shows the rendering result of a TF prepared by SEG-HRBFN from VHS 

data. VHS data exhibits more distinctly separated lobes corresponding to the tissues of 

interest although these tissues cannot be segregated in a volume histogram.  

The 28 Gaussian units produced by the SEG-HRBFN are adjusted through the 

centers and widths and are grouped. Then, a color is assigned to each group by a 

radiologist. The proposed method makes the vessel stand out from the bones and makes 

the bones stand out from the graft (stent). Also an additional group with purple color is 

found to represent outer surface of kidneys which improves the rendering quality. This 

result is also illustrated in Fig. 5.1 (c) and 5.1 (d). A small part of the volume in Fig. 5.1 

(a) where the colors assigned to the bones, stent material and vessels are overlapping is 

shown in Figure 5.1 (c). The smearing effect due to the overlapping HV range is 

removed by the usage of VHS together with the SEG-HRBFN and the texture of these 

three tissues are rendered much smoother in Fig. 5.1 (d). 

Another important criterion for evaluating the visualization result is the objectivity 

of the rendered images. When a physician is extracting the tissues of interest manually, 

the rendered images become operator-dependent and the risk of overlooking important 

information (i.e. suppressed features) significantly increases. Since the SEG-HRBFN 

automatically finds and represents all potential lobes like data with Gaussian units, the 

physician only needs to select and groups the useful ones, thus more objective 

classification is realized.  
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(b)                                                           (b) 

    

   (c)                                                          (d) 

Figure 5.1 Rendering results of optimized TF designs (a) using volume histogram and 1-D 

TF (b) using VHS data and SEG-HRBFN (c) Separation of graft and spongy bone from aorta. 

With a 1-D TF, spongy bone and graft material can be visualized only with a smearing effect 

coming from the aorta, (d) the usage of VHS data and SEG-HRBFN make the aorta stand out 

from the spongy bone and graft material. 

Finally, application of HRBFN instead of SEG-HRBFN for approximation of VHS 

data in this data set produces 198 units for the same error criterion. Due to the high 

number of units generated by HRBFN, an efficient user interaction is not possible in 

terms of assigning color and opacity to the units produced by the network. This result 

shows the need for SEG-HRBFN which provides an approximation with a minimum 

number of units.  
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5.2 Application to Magnetic Resonance Angiography 

The second case of application is the BEAUFIX data set (Osirix), which is a 

contrast-enhanced renal MRA series acquired on a 3T scanner. One of the main 

difficulties in visualization of this data set is presented in Fig. 5.2. When the tissues of 

interest are right kidney, liver and liver vasculature, it is not possible to obtain a clear 

rendering using 1-D TFs due to the overlapping of intensity value ranges of these 

tissues. In Fig. 5.2 (a), a 1-D TF is adjusted to render the liver with purple (semi-

transparent), right kidney with green (semi-transparent) and the liver vasculature with 

red (opaque). The overlapping of these tissues is clearly visible in 3-D rendering. The 

surface of the liver is rendered with a mixture of purple and green while the vasculature 

significantly overlaps with kidney. Next, Fig. 5.2 (b) shows the results for the rendering 

where the 1-D TF used to obtain the rendering in Fig. 5.2 (a) is further adjusted by 

narrowing the liver vasculature range and by making the kidney opaque. Now, the 

kidney is rendered in a clear way, however the vasculature has missing branches. So, the 

vasculature is not clearly visible due to the overlapping with the right kidney and liver 

parenchyma.  

Fig. 4.2 (b) shows the VHS data that is generated for the BEAUFIX data set. SEG-

HRBFN approximation results in 19 Gaussian units. When these units are combined in a 

suitable way by an expert radiologist, the final rendering result becomes as shown in 

Fig. 5.2 (c). As seen from the figure, the overlapping effects are minimized and all the 

three tissues (liver parenchyma, liver vasculature and right kidney) can be visualized 

clearly at the same time. This application also shows that the proposed method is 

applicable to the datasets not only acquired by CT modalities, which are standardized in 

the range of data values, but also to the datasets acquired by MR or any other modalities.  

Other domains using intensity and gradient magnitude also yield good results for the 

datasets used so far (Fig. 5.2 (d)). In these methods, material boundaries can be 

visualized with 2-D opacity maps due to the inclusion of the gradient magnitude. 

Angiographic datasets are appropriate for such an operation since the boundaries are 

intensified due to the contrast media. 
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(b)                                                           (b) 

    

   (c)                                                          (d) 

Figure 5.2 The results of optimized 1-D TF designs aiming to render (a) liver (purple, semi-

transparent) and  the liver vasculature (red, opaque), (b) liver (purple, semi-transparent), right 

kidney (green, opaque) and liver vasculature (red, opaque), (c) rendering results of optimized 

TF design using the SEG-HRBFN approximation and the VHS data, (d) rendering results of 

optimized TF design using the intensity/gradient magnitude domain based TF, see the text for 

details. 

The material boundaries correspond to a scatter plots (Kindlmann, & Durkin, 1998, 

Kniss, Kindlmann, & Hansen, 2002) or arcs (Roettger, Bauer, & Stamminger, 2005) 
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which connect the footprints of the materials. The application of this 2-D domain results 

in with a clear rendering of kidney and liver vasculature (Fig. 5.2 (d)). There exist less 

misclassified voxels both for liver vasculature and kidney. However, these footprints 

can be indistinguishable depending on the imaging quality of the scanner, reconstruction 

and quantization artifacts of the scanner and the density distribution of the scanned 

object. In certain types of abdominal studies, the density of the boundaries between soft 

tissues (i.e. liver, spleen, kidneys, muscle tissues and bottom half of the heart) usually 

overlap significantly or even become inseparable which hardens the usage of gradient 

based methods. In the third and fourth medical applications, this limitation has been 

demonstrated and discussed. 

5.3 Application to Computer Tomography Angiography 

The third case of application is the PANORAMIX data-set (Osirix) which is an 

abdominal CTA acquired on a 16 detector scanner for a patient with AAA. Although, a 

very high rendering quality can be obtained in visualizing aorta together with kidneys 

and bones, it is not possible to render the liver with these tissues using 1-D TF approach. 

This data set is very suitable to show the performance of the VHS data since the 

kidney and liver are separated in z-direction (orthogonal to the slices). This means that 

they are spatially separated in the z-dimension and they get separate lobes when the 

VHS is generated thorough z-dimension. (Note that it is not the case in conventional 

volume histograms.). This gives the possibility of separating the kidney and liver by 

assigning different Gaussian units (using SEG-HRBFN) with different colors to the 

lobes that correspond to these organs. The VHS data constructed for PANORAMIX data 

set is similar to Fig. 4.1 (b) and Fig. 4.2 (a) shows the 0-100 range of this VHS data and 

plotted from the top view. Fig. 5.3 (a) shows the rendering result obtained after the 

optimization of the units found by SEG-HRBFN. Although the liver can not be 

classified alone (i.e. it is classified together with inferior vena cava and gall bladder) the 

smearing effect of the muscle tissue is prevented and the overlapping with the right 

kidney is removed which provides rendering with higher quality. 
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(a) 

 

(b) 

Figure 5.3 (a) Rendering results of optimized TF designs for rendering liver 

together with aorta, bones and kidneys using VHS data and SEG-HRBFN 

(b) using intensity/gradient based TF domain. 
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The rendering result obtained with the usage of intensity/gradient based TF domain 

is presented in Fig. 5.3 (b). The advantage of using gradient information over VHS is 

that the visualization result excludes inferior vena cava (See the green circle in Fig. 5.3 

(a)) due to the density difference at the boundary between the liver and vena cava which 

can be determined by gradient information mainly because of the thin white outer border 

of the vena cava. 

On the other hand, the disadvantage of using intensity/gradient based TF domain is 

the density overlapping between the boundary of muscle tissue and the liver results with 

local visualization artifacts where the muscle tissue is rendered together with the liver. 

(See the green circle in Fig. 5.3 (b).) This effect also blocks the rendering of the ribs and 

can result with incorrect determination of liver volume and size. This effect is further 

discussed and demonstrated in the fourth application example. 

This application shows that, important information that is provided by the VHS data 

is the representation of the local distribution of the tissues. In this application, the 

advantage of using local distribution of the tissues is used to differentiate muscle tissue 

from the liver. The muscle tissue goes through the whole volume with almost the same 

amount of pixels in each slice. The distribution of the muscle tissue is shown in Fig. 4.2 

(a) by the vertical line. In addition to the separation of the organs (i.e. liver and kidney), 

the VHS data also represents the local distribution of the tissues. The liver does not exist 

in all slices hence its HV range dominates only a local region in VHS data (i.e. 

horizontal lines). Therefore, these overlapping tissues can be classified in an optimal 

manner using the self-generating hierarchical design strategy of the SEG-HRBFN where 

the lobe that goes through the whole volume is approximated with units different than 

the units that constructs the lobes corresponding to the liver. 

5.4 Application to Computer Tomography Angiography 

The fourth application is another abdominal CT series taken at the venous phase for 

the evaluation of a liver transplantation donor. This application demonstrates that the 

VHS can be generated independent of major slicing axis which is z-dimension (axial) 

for this data set. The aim of the visualization is the rendering of the liver and spleen with 

different colors and without rendering the muscle tissue. The liver and spleen appears in 
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the same slices for axial and coronal images (Fig 5.4 (a)-c). Therefore, it is not possible 

to visualize them individually using VHS data. However, in sagittal images, they appear 

in different slices (Fig. 5.4 (d), (e)) thus they get separate lobes in VHS data generated 

for sagittal view. Fig. 5.5 shows the rendering results obtained with VHS and 

intensity/gradient based TF domains.  

    

(c)                                                           (b) 

    

   (c)                                                          (d) 

    

   (e)                                                          (f) 

Figure 5.4 CT image examples acquired for the evaluation of a liver transplantation donor 

(liver: red, spleen: blue) (a) Axial image (original slicing axis), it is clear that the liver and 

spleen have the same density distribution and texture (b), (c) Reconstructed coronal images 

where liver and spleen appear together (d), (e) Reconstructed sagittal images where liver 

appears and ends before the spleen. 
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Similar to the previous application, the usage of intensity/gradient based TF domain 

results with a rendering in which artifacts from the muscle tissue are rendered attached 

to  liver and spleen especially where the boundary between the liver, spleen and the 

muscle tissue overlap significantly and prevent a high gradient magnitude. The same 

effect may also arise between the boundary of liver and spleen if their boundaries 

intersect as in the case of atypical liver shapes (Selver et al., 2008). On the other hand, 

sagittal VHS data allows the determination of liver and spleen since they get separate 

lobes. The muscle tissue has also been eliminated from the rendering result by using the 

local distribution effect of liver and spleen which is a similar distribution to Fig. 4.2 (a). 

    

(a)                                                           (b) 

Figure 5.5 Rendering results of optimized TF designs using (a) SEG-HRBFN and VHS data 

(b) intensity/gradient based TF domain result with artifacts coming from the muscle tissue 

where the boundary between liver/spleen and muscle tissue overlaps significantly and do not 

produce a high gradient. 
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CHAPTER SIX 

INTEGRATING DEVELOPED PROGRAMS INTO A VISUALIZATION 

SOFTWARE USING AN OBJECT BASED PLUG-IN INTERFACE 

 

Developments in computer technology, high speed networking and the widespread 

acceptance of DICOM standard have enabled many improvements in the way hospitals 

view their images. In this manner, volume visualization (Kaufman, Sobierajski, 1995) 

and analysis is a key tool in a variety of health care applications. It is widely used in 

radiation oncology, surgical planning, and education. Thus, there are several commercial 

(Amira, Analyze, Advanced Visual Systems AVS, Upson et al., 1989, The Data 

Visualization & Analysis Platform, IRIS Explorer, MatLab, VisiQuest Visual 

Framework, VolView: A Volume Visualization System, MeVisLab: A Development 

Environment for Medical Image Processing and Visualization, Mevis) and open-source 

(Image Processing and Analysis in Java, ImageJ, Medical Image Processing, Analysis 

and Visualization, MIPAV, A Free Scientific Software Package, Scilab, Vis5d, VisAD 

Java Visualization, Osirix, Tian, Xue, Dai, Chen & Zheng 2008) frameworks with 

medical image processing and visualization capabilities. In most of these applications, 

proper segmentation of medical data is critical for producing informative results (Pham, 

Chenyiang, & Jerry, 2000). Since segmentation is an important step prior to rendering, 

there also exist several descriptive (Hahn, Link, & Peitgen, 2003, Brodlie et al., 1991, 

Hansen, 2005) and comparative (Bitter, Van Uitert, Wolf, Ibanez, & Kuhnigk, 2007) 

reviews of visualization frameworks which provide segmentation tools and algorithms. 

However, it is also a difficult procedure because of the restrictions imposed by 

variations in image characteristics, human anatomy, and pathology. Moreover, what is 

interesting from clinical point of view is usually not only an organ or tissue itself but its 

properties together with adjacent organs or related vessel systems that are going in and 

coming out (i.e. volume measurements, vasculature analysis and lobe determination in 

pre-evaluation of liver transplantation donors). For an informative rendering, these 

necessitate the usage of different segmentation methods in a single application, and 

combining/representing the results together in a proper way. One way to achieve this 

goal is using the following mechanism: 
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i) A host platform that is capable of loading, representing and visualizing 

medical image (i.e. DICOM) series and flexible enough to allow integrating 

different segmentation methods for advanced data processing. 

ii) A plug-in system and data transfer protocol to establish the communication 

between the host and plug-in that provides the possibility of using different 

segmentation tasks by integrating them to the host. 

According to this approach, this chapter introduces: 

iii) Implementation of such an interface which can be used to plug-in and then to 

apply a segmentation method to a DICOM series. 

iv) Developed plug-ins, which are semi-automatic (general purpose medical 

image segmentation) and/or automatic (specifically designed for an 

application), and their integration to the host. 

The design of the interface is based on handling each segmentation procedure as an 

object where all parameters of each object can be specified individually. Therefore, it is 

possible to use different plug-ins with different interfaces and parameters on the 

segmentation of different tissues in the same data set while rendering all of the results 

together is still possible. The design allows access to ITK, Java and MatLab 

functionality together, eases sharing and comparing segmentation techniques, and serves 

as a visual debugger for algorithm developers.  

The plug-ins for the proposed segmentation and transfer function initialization 

methods, which are introduced in Chapter 3 and 4, are implemented according to the 

programming system that is described in this chapter. During this chapter, first, the 

properties of the host program, the idea behind the object based segmentation approach 

is described. Then, integration of a plug-in to the host is introduced by using the plug-in 

that is developed for liver segmentation as an example. 

6.1 Introduction 

There are mainly three issues that should be handled properly in the field of medical 

image segmentation: 
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1) Segmentation is generally considered to be the most challenging step prior to 3-D 

rendering because of the restrictions imposed by variations in image characteristics, 

human anatomy, and pathology. Due to these large variations, the design of a 

segmentation routine is extremely challenging in the medical context. Even if a routine 

works efficiently in normal subjects, they typically fail in pathologic cases which often 

are more interesting from clinical point of view. Hence, there is a strong need for a high 

number of segmentation methods that can be used in different clinical studies and cases. 

Moreover, in most of the cases, what is interesting from clinical point of view is usually 

not only an organ or tissue itself but its properties together with adjacent organs or 

related vessel systems that are coming into and going out of it. For an informative 

rendering, these necessitate the usage of different segmentation methods in a single 

application, and combining/representing the results together in a proper way. 

2) In these segmentation methods, operator interaction should always be possible 

although it introduces a subjective element to image processing and analysis 

(Olabarriaga, & Smeulders, 2001). Providing user interactions in the early stages of the 

design process may considerably decrease failure rates. On the other hand, a high degree 

of automation is required in order to achieve high accuracy and precision. Thus, a user-

friendly implementation of interaction tools should combine intuitive and easy handling 

together with acceptable performance.  

3) In segmentation of medical volumes, another important criterion is the 

representation of segmentation results. A slice by slice representation, which is often 

more accurate and complementary with 3-D rendering, can easily be provided. On the 

other hand, volumetric visualization of segmentation results gives more information to 

the user for further analysis (Caban, Joshi, & Nagy, 2007). However, 3-D visualization 

is another area of research considering that the image quality, memory usage and 

interaction mechanisms should be provided in an advanced level. This area of study is 

mostly out of scope and time consuming for the researchers who are focused and 

studying on segmentation. 

Considering these three issues, in this chapter, two main topics are introduced: 
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i) the implementation of a medical volume visualization software that can be 

used as a host program to integrate plug-ins that might be written using 

several different applications such as ITK (Ibanez, & Schroeder, 2005)., 

MatLab (MatLab) and Java. 

ii) Programming and development of a plug-in that is based on the liver 

segmentation method introduced at chapter 3. 

By developing a plug-in interface to the host medical visualization software, 

researchers can access their new image processing algorithms from within a full-

featured visualization application and allow algorithm developers to quickly verify and 

improve their new processing techniques. 

The design of the plug-in interface is based on handling each segmentation 

procedure as an object where pre-processing, post-processing and rendering parameters 

of each object can be specified individually as well as the method and parameters of 

segmentation. In a more general sense, the goal of the approach presented in this study 

is to drive the segmentation from a visualization viewpoint. Each segmentation process 

follows the typical visualization pipeline, consisting of the modules ‘Pre-processing’, 

‘Segmentation’, ‘Post-processing’ and ‘Rendering’ where the module ‘Segmentation’ 

can be provided by the user with a plug-in. Appearance of each visualized object (or, in 

other words, result of each segmentation procedure) can be modified by adjusting the 

parameters of the above mentioned modules Thus, the proposed strategy creates a direct 

link between the object manager used for visualization and the segmentation interface 

used to obtain a specific object.  

This approach aims and allows the application of different methods (and/or same 

method with different parameters) to the same data set by assigning an object to each. 

Rendering all of the objects (segmentation results) together or individually and handling 

the appearance of each is possible using the object manager. Although similar studies 

are reported in the literature (Martin, Ibanez, Avila, Barre, & Kaspersen, 2005), using 

more than one plug-in in order to visualize different tissues with different segmentation 

methods at the same application has not been discussed. Moreover, no handling 

mechanism (such as the object manager in this study) or interface has been proposed or 
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designed for handling multiple organs/tissues to visualize. During this study, different 

plug-ins developed by using ITK, MatLab and Java are integrated into the visualization 

software and applied to various medical cases to show the effectiveness of the proposed 

method and design. 

The rest of this chapter is organized as follows. Section 6.2 gives information about 

the host medical image viewer in general. Then, Section 6.3 explains the plug-in 

architecture and life-cycle while Section 6.4 introduces different plug-in applications 

that are developed based on the proposed architecture. The comparison of the developed 

liver segmentation plug-in with the general purpose plug-ins is also given. 

6.2 Features of the Host Visualization Software 

6.2.1 Software Capabilities in General 

Even it supposes to work as a main application for segmentation plug-ins, as a 

medical image viewer, the host software should provide some basic functions 

(Hoffmann, 2000). Therefore, the following functionalities are provided by the host: 

1) Image query and receive from any image source (i.e. PACS, local hard drive, CD 

or any other storage medium) is possible using the host software. It can decode and 

display most common image formats (i.e. jpg, jpeg, png, bmp, tiff etc.) including 

DICOM. DICOM images can be received via the DICOM protocol or using a 

DICOMDIR file. If not available, the host software creates a DICOMDIR file by 

searching through the files at the selected folder. DICOM services for image display and 

PACS connection are implemented in detail and tested with images of several vendors 

including Siemens, Sectra, Agfa, and GE. 

2) Being Java based, it is platform independent and usable via web which is 

important due to the heterogeneous environments of hospitals and wide acceptance of 

different operating systems (i.e. Windows, Linux etc.) that require the software 

programs to be able to run on these platforms. Contrary to expectations, the performance 

issues in Java are comparable to C++ as shown by several studies (Vivanco, & Pizzi, 
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2004, Prechelt, 2000), where the performance of the virtual machine optimization is 

similar to C++, especially in loops. 

3) Several basic image manipulation and processing tools (i.e. filters, LUT 

operations, rotation, measurements etc.) are implemented. A user friendly navigation 

method and interface for displaying different datasets of the same or different patient(s) 

have been designed. The GUI (Fig. 6.1 and 6.2) is designed to look like readily learned 

and used (e.g. require a manual as less as possible), yet it is flexible enough to meet the 

varied needs of different healthcare professionals. 

4) Advanced imaging techniques including MPR, Oblique Sectioning, Curved MPR, 

(Robb, 1999) volume and surface rendering capabilities have been implemented. 

 

Figure 6.1 User Interface of the host software. The GUI layout is given in Fig. 6.2. The software is 

capable of displaying single images, image series, or other sequences. The 3-D rendering based 

visualization of DICOM series is integrated and supported by VOI selection, seed point insertion 

and segmentation plug-ins. 
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6.2.2 Software Capabilities in 3-D Visualization 

A 3-D imaging software should have functions to provide the ability to gain desired 

information from 3-D images (Tory, & Torsten, 2004). First requirement is speed which 

should be fast enough to avoid user frustration. However, this performance should not 

only be provided by the hardware, which would drive the costs to impractical levels, but 

also with effective software design and programming. The host software provides high 

performance rendering on standard PC hardware and works minimum with a standard 

Pentium III processor, 100MB free hard disk space and for 3-D visualization a graphics 

card that supports OpenGL. To make the software run efficiently on different hardware, 

the most important parameters that determine the time and memory needs of 

visualization (i.e. interpolation type, rendering method etc.) can also be determined by 

user. For example, if an advanced graphics card is available, texture mapping can be 

used instead of ray-casting. For slower computers, shading and high quality 

interpolation can be turned on after adjusting other parameters. 

 

Figure 6.2 Layout of the user interface of the host software in 3-D mode (MPR: Multi 

Planar Reconstruction). 

Second, it is important to have the opportunity to visualize more than one image 

series at the same time for comparison of different studies which can be done with the 

host viewer. As the capabilities provided by imaging modalities (CT, MR etc.) are 

increasing, software tools, which can visualize this data independent of modality type, 

are needed. Different rendering techniques should also be supported and be selectable 
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by the user since each can be used in different cases. In host software, SR, VR and MIP 

are integrated and can be used independent of the modality type. In the implementation 

of these techniques, VTK has been used in addition to Java. Tools for adjustment of 

important parameters (shading, interpolation, TF etc.) are integrated to enhance 

structural understanding. 

During development, different formats were evaluated to store 3-D rendering 

information. For performance reasons, the binary (uncompressed) raw format was 

chosen. For formats like Virtual Reality Modelling Language (VRML) data has to be 

encoded in ASCII, which takes a lot of time and also space on the hard drive. It is not 

efficient for large datasets, especially if they are not stored within databases, but 

transported only. 

6.2.3 Interaction Mechanisms for Supporting Segmentation  

Except fully automatic ones, segmentation techniques require adjustment of 

parameters and/or other kind of interactions (i.e. insertion of seed points) by the 

clinician. This dictates that the plug-in mechanism must provide for a GUI so that the 

user can select parameters, adjust values or seed points. Some of these interaction 

mechanisms are hard to be implemented in a plug-in interface. For example, it would be 

inefficient to determine seed points on a plug-in interface instead of the doing it directly 

over the images.  

Therefore, some basic interaction mechanisms are implemented to support plug-in 

interface of the host software which are: i) Possibility of selecting a VOI using MPR 

images (i.e. axial, sagittal, coronal), ii) Possibility of inserting seed points on MPR 

images (i.e. axial, sagittal, coronal), iii) Interactive cropping of the volume by adjusting 

the size of a bounding cube. The viewer provides necessary buttons and other 

mechanisms automatically if the above mentioned interaction mechanisms are requested 

by the plug-in. 
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6.3 Plug-in Architecture and Workflow 

Each segmentation object, which is responsible for handling a segmentation 

procedure (i.e. pre-processing, post-processing and rendering parameters), can be 

controlled by an interface element called “Object Manager” (OM) (Fig. 6.3). The OM is 

designed to provide flexibility in application of different segmentation methods and 

rendering their results together. Thus, any number of different segmentation methods 

can be applied to a data set and/or the same segmentation method can be applied several 

times with different parameters and all of the segmentation results can be rendered 

together using OM. As shown in Fig. 6.3, each segmented object (i.e. segmentation 

result) have its own name, color, visibility (i.e. Boolean: Visible or not) and opacity. 

User can change any of these parameters easily using the OM and can determine which 

segmented objects should be visible and rendered with which color and opacity. 

Moreover, each object has a default TF, which is a useful tool that assigns optical 

parameters, (i.e. color, transparency) to the voxels in interactive visualization (Selver et 

al., 2007).  

Since TF specification provides an interactive classification step, where on the fly 

combinations of these selected parameters (i.e. opacity, color) can be determined during 

the rendering pipeline, it is always important to provide a powerful TF specification tool 

on the GUI. In the host software, TFs can either be used as individual objects or at the 

final classification step of an object. A TF of an object covers the whole range of 

histogram of that object after the segmentation process. For each object, defining any 

number of TF is also possible for further classification of segmented data based on 

volume histogram (Selver et al., 2007) and/or intensity-gradient graphs (Kindlmann, & 

Durkin, 1998). More advanced strategies are also being host to create a more powerful 

tool (Selver, & Güzeliş, 2009). 
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Figure 6.3 Object Manager (OM). Each 

segmentation procedure (i.e. provided by a plug-

in), which applied to the data set, is presented as an 

object (i.e. Tissue #1, #2 and #3). The 

abbreviations in the parenthesis refer to plug-in 

name (i.e. FM: Fast Marching, CoT: Connected 

Threshold, TF: Transfer Function). Each object 

can also have a number of TFs as sub-objects. 

Each sub-object has its own color and opacity 

values. V (at the right most of the panel) refers to 

the visibility of an object (i.e. boolean). ‘Size’ 

label is used to display the volume of a segmented 

object using DICOM info and number of voxels. 

Layout of the user interface of the host software in 

3-D mode. 

6.3.1 Visualization and Plug-in Workflow 

One of the most interesting aspects of the mechanism used for integrating Java, ITK 

or MATLAB based plug-in capabilities into the visualization software is the fact that 

communication between the visualization program and the plug-in tool do not have to be 

exposed to the internal structure of the visualization software. Instead, the plug-in 
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interface has been defined in the host visualization software that allows very generic 

methods to interface with the internal data representation. The overall workflow of the 

segmentation process, which is explained in detail in the following paragraphs, is 

illustrated in Fig. 6.4. 

When the 3-D mode of the viewer is initiated, the visualization software detects if a 

plug-in is available or not by searching the corresponding directory automatically. Then, 

it adjusts the GUI and rendering techniques to accommodate the new data and shows a 

list of available plug-ins in the plug-in selection panel (Fig. 6.5 (a)). Among all, the user 

selects the segmentation method (plug-in) to use together with the rendering type of the 

resulting data (i.e. VR, SR)  

Another interesting aspect of the software-design is that the plug-ins can be attached 

at run-time. Although the plug-in itself has its own specified and optimized algorithm 

for the segmentation process, the user can still use a high number of ITK method during 

the pre-processing and post-processing stages of the segmentation process. Together 

with the pre- and post-processing parameters, segmentation parameters can be defined 

by using the “algorithm interface” or in other words “plug-in GUI” (i.e. shown at bottom 

right part of Fig. 6.1 and Fig. 6.2 and in Fig. 6.10). The “algorithm interface” for the 

determination of the segmentation parameters is loaded dynamically from the plug-in. It 

might inherit some predefined buttons form the plug-in library (i.e. button that allows 

inserting seed points over MPR images) as well as any other kind of GUI elements (i.e. 

sliders, text fields etc.) to adjust and determine the parameters for the corresponding 

segmentation algorithm. 
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Figure 6.4 The overall workflow of the segmentation process. 

Then, the user can press the “Start” button to apply all stages (i.e. Pre-processing, 

algorithm and post-processing) to the data set. After the segmentation result is rendered 

at the 3-D Panel, the user can adjust the parameters of all steps and re-start the 

procedure until obtaining a satisfying result. At any moment of this process, the user can 

also adjust the global properties (Fig. 6.5 (d).) and the rendering parameters (Fig. 6.5 
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(e)) to change the appearance of the rendering result. All of these elements are explained 

in the following sub-sections. 

6.3.2 Plug-in Interface 

Most segmentation techniques require that the clinician specify a number of 

parameters or seed points for the segmentation which necessitates that the plug-in 

mechanism to provide a GUI to adjust these parameters. These parameters differ from 

one plug-in to other so a plug-in specific interface with pre- and post-processing 

operations. Moreover, segmentation results of different tissues might be better 

visualized with different rendering parameters such as the position of the light source, 

type of shading, type of projection etc. 

Hence there are global parameters that can be adjusted for all plug-ins and plug-in 

specific parameters that are needed for the segmentation method in use. Considering that 

the space to handle all these parameters should be small enough to prevent inefficient 

usage of screen space, an efficient and still intuitive interface should be designed. In this 

study, such an interface is implemented with a tabbed panel system. 

The main two (upper) tabs (shown inside the dashed red circle on Fig. 6.1) can be 

used to determine “Segmentation specific” or “Global” properties. In Global properties, 

user can determine intensity, ambient color, diffuse color, specular color and position of 

the light source together with the projection type (i.e. parallel or perspective with 

projection angle). On the other hand, “Segmentation” properties consists of four other 

tabbed panels (Fig. 6.5 (b)-(d)) that are arranged based on the assumed workflow of a 

segmentation process (Fig. 6.4).  

These tabbed panels include Pre-processing, Algorithm, Post-processing and the 

Rendering tabs. The idea behind this arrangement is that a segmentation procedure starts 

with the determination of pre-processing operations, continues with the execution of the 

main algorithm, then followed by post-processing operations and finished by the 

determination of the rendering parameters. The mentioned Pre/Post-processing (i.e. ITK 

functions) and the Rendering tabs are integrated in the base application. In the tabbed 

panel, the plug-in specific GUI reserves a tab (i.e. Algorithm). The tab before that is the 
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pre-processing and the tabs after that are the post-processing and rendering parameters. 

So the user can determine and use pre/post processing operations provided by the host 

on the runtime (using their GUIs). For any other pre/post-processing operations, the 

programmer should include them inside the plug-in during the development phase. 

Pre-processing tab (Fig. 6.5 (b)) includes smoothing filters (i.e. Gaussian and 

anisotropic diffusion), threshold determination and sampling rate selection which can be 

used to reduce data to be processed for computationally expensive plug-ins. The default 

selection is automatic in which the visualization software estimates how much memory 

will be required to run the plug-in. This option prevents crushes for segmentation 

techniques that require a large amount of memory for intermediate results which can 

easily exceed the computer’s memory for a large medical data set. 

Algorithm tab includes GUI elements that are needed to determine the parameters 

required for an algorithm. Developing plug-in GUI in Algorithm tab is an easy task, 

which is done on the Java-side. One panel has to be provided, which can be created 

either with a Visual Editor (e.g. Net Beans) or manually. Any kind of GUI elements can 

be used to increases the intuitiveness of the GUI (Fig. 6.10). The Algorithm tab, 

especially the data exchange between GUI and algorithms is explained in detail in part 

C. 

Post-processing operations include smoothing filters and anti-aliasing binary image 

filter from ITK which can be used to enhance the rendering quality of a segmented 

object if surface rendering is chosen. 

Finally, the Rendering tab (Fig. 6.5 (d)) includes volume rendering parameters such 

as algorithm selection (i.e. ray-casting or texture mapping), interpolation methods (i.e. 

nearest neighbor or tri-linear) and sampling rate. It is also possible to adjust shading 

type, reflection (i.e. diffuse and specular) and specular power using this tab. 
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(a) 

 

(b) 

 

(c) 
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(d) 

 

(e) 

Figure 6.5 User Interface of the developed tabbed panels, (a) Selection of the plug-in and 

rendering method to be used (The square shapes are designed for possible icons of the plug-ins. An 

icon representing the corresponding plug-in can be inserted inside that area) (b) Pre-processing 

options (c) Global properties tab and (d) Rendering tab that includes sliders and checkboxes to 

determine some of the rendering parameters (e) Global properties of the object to be visualized. 

6.3.3 Plug-in Life Cycle and Writing a Plug-In 

The life-cycle of a plug-in consists of five key functions: Registration, Initialization, 

GUI Update, Data Processing and Destruction (Fig. 6.6). In this section, the steps of 

writing a plug-in is described by using examples from an existing plug-in developed for 

liver segmentation (Selver et al., 2008).  
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Figure 6.6 Plug-in life cycle. 

When the visualization software is executed, it checks the “plug-ins” folder for the 

available plug-ins. Then it creates a plug-in factory by assigning a number to each 

available plug-in. Transfer of the data between the host and the plug-ins is always 

handled on the Java side. There are two ways of communication: 1.) Memory based, 2.) 

Disk based. The advantage of 1 is the high speed, but the disadvantage is that the whole 

data set has to be stored twice in memory. Approach 2 is slightly slower than 1 but the 

data is stored only once in memory. This is important in Windows, because there the 2 

GB RAM limit exists. Mac OS X and Linux do not have such memory limitations. The 

plug-in factory stores the information about the data that will be needed by the plug-in, 

such as, seed point locations (i.e. for Fast Marching), if the plug-in uses the whole 
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volume or only a defined VOI etc. The plug-in can receive a full description of the input 

data it needs, including aspects such as dimensions, spacing, data type, window level, 

window width units, volume histogram as well as specifying some those properties for 

the output it will produce. Fig. 6.7 shows that the liver segmentation plug-in, namely 

“KMeans Algorithm”, which has an embedded GUI, does not need seed points, uses 

whole volume data etc., and extends PluginFactory. 

 Plug-in Property Plug-in Value
1 KEY_NAME KMeans Algorithm 
2 KEY_TYPE VALUE_TYPE_SEG_JAVA 
3 KEY_GUI_MODE VALUE_GUI_MODE_EMBEDDED 

4 KEY_GUI_ISVISIBLE 
INPLUGINMENU Boolean.FALSE 

5 KEY_SEGMENTATION_MEMORY_CO
NSUMPTION_FACTOR 5 

6 KEY_SEGMENTATION_ 
SEED_POINTS_NEEDED Boolean.FALSE 

7 KEY_SEGMENTATION_USE_ 
WHOLE_DATASET_ALWAYS Boolean.TRUE 

8 KEY_SEGMENTATION_ 
PREFERRED_RESULT_TYPE 

VALUE_SEGMENTATION_ 
PREFERRED_RESULT_TYPE 
_SURFACE_NOT_FIXED 

Figure 6.7 A plug-in (i.e. K-MeansPlugin) needs to extend PluginFactory and determine the 

plug in properties for initialization. The figure shows the parameters for the initialization 1) 

Name and 2) type of the plug-in 3-4) The plug-in can be shown as a panel in the 3-D view (like 

KMeans). Alternatively, a plug-in can open an own window (if there are a lot of parameters for 

example and a lot of space is needed for the GUI). The the plugin window can be activated in 

the "Plugin Menu bar". 5) For the automatic scaling of the data the host has to know how much 

memory one plug-in needs. This can not be detected automatically, since the host can not know 

the internal data structures of the plug-in (e. g. level sets are much more complex than region 

growing). So this value represents the factor of memory. A value of 8 means that the plug-in 

needs 8 bytes for 1 input byte (so it needs 8 times the memory of one data set). 6) Seed point 

usage 7) VOI or whole data set usage 8) Here, the result type can be set to VR or SR. 

Plug-in class files can be placed in the ‘plug-in’ directory of host to be recognized. 

The format is always a Java class file, which implements a special Interface (so it can be 

recognized by host as a plug-in). When the user wants to start a segmentation process by 

creating a new object using the OM, a new instance of the corresponding plug-in is 

generated by the Plug-In Factory. This approach provides the possibility of using the 

same plug-in (with different objects) for the same data set or studying in parallel with 
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different datasets. Then, the visualization software registers the created instance and 

assigns an ID to it. An example is given in Fig. 6.8. 

 

Figure 6.8 Next, the GUI of the plug-in function is called to handle the elements of the plug-in 

such as creating and updating the GUI and defining the properties of the output data. 

There are some additional features that the plug-in architecture provides which 

significantly enhance what can be done through a plug-in. The architecture supports 

plug-ins to send the resulting data in binary form, in indexed form or with gray values 

that can be original or defined by the plug-in. Returning of resulting (multiple) objects is 

done with indexed data together with a lookup-table, which assigns each index value a 

color and opacity. This way the ITK algorithms has to be executed only once, even if 

several objects are created (e. g. liver segmentation: vasculature and parenchyma). Some 

plug-ins may produce surfaces (or meshes) instead of an output volume. A plug-in may 

require more than one volume of input data. This is common for many level set 

segmentation techniques that require a feature image as well as an initial segmentation 

in order to operate. 

These processes are not dynamic but object based which allows the usage of same 

the technique and interface more than once. Construction of the GUI elements is also 

performed through a generic Application Programming Interface (API) to facilitate 

changes in the data. For instance, the range of a slider in the segmentation GUI is based 

on the actual scalar range of the current volume. If a new volume is loaded or an 

operation such as thresholding is applied, then the range of the scale will change to 

match the new volume.  

In the segmentation process, the values of the GUI elements are typically used to 

control the processing. The GUI elements can be text fields, sliders or any other 

public class KMeansPluginInstance extends Plugin { 
KMeansAlgorithm algKMeans= new KMeansAlgorithm(); 
KMeansGUI guiKMeans = new KMeansGUI(); 
public void init() { 
ExploreDicom.registerObject(algKMeans, getID());  

  this.pluginPanel = new JPanel(); 
  this.pluginPanel.setLayout(new BorderLayout()); 
} 
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interaction mechanisms. If the user interaction mechanisms (i.e. inserting and removing 

seed points) are needed to be used, then these buttons appear at the top left of the plug-in 

GUI.  

The plug-in interface provides methods for exchanging data and parameters between 

the GUI and the algorithm implemented in ITK. For this, a C++ class was developed 

which makes use of Java Native Interface (JNI) (Liang, 1999). The developed ITK class 

extends an abstract basic class (belonging to the plug-in interface), which contains 

methods and data structures for the data exchange. Internally, a hash-table is used as 

data structure. From the Java (GUI) side, data can be transmitted by the method 

putParameter(String name, Object value), e. g. putParameter(“UpperThreshold”, 120.0). 

The ITK algorithm (written in C++) has access to this parameter by calling the method 

getParameter(“UpperThreshold”) in the same class. The plug-in interface also creates 

the necessary instance of itkImage, which is passed to the ITK algorithm. As a result, 

the algorithm outputs an instance of itkImage as well (if no segmentation is performed, 

the output corresponds to the input). The visualization (including the creation of VTK 

data structures) is completely done by the plug-in interface. 

For the plug-ins implemented in Matlab, there are two ways for the data exchange: 

The first way is to build a standalone application and the second way is to convert a 

Matlab function into a library file (i.e. Java Archive - JAR) and call that function like 

native Java libraries. In the first way, the pre-processed data is written to a storage 

medium (i.e. hard disk) and the plug-in is executed with the necessary parameters. After 

the execution of the plug-in, the segmented data is again written to disk where the host 

visualization program reads it. The read-write operations are done in less than a 

millisecond and an instance of “Runtime” class are used to make Java (i.e. host 

visualization program) waits for the plug-in to execute. The advantage of this method is 

that the plug-in does not share the memory with host visualization program but it 

requires the installation of Matlab Compiler Runtime (MCR). The second way uses the 

Matlab Builder, by using which M-code functions from the Matlab can be wrapped into 

one or more Java classes. When deployed, each MATLAB function is encapsulated as a 

method of a Java class and can be invoked from within a Java application. However, to 
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do this, Matlab Builder and Java Runtime Environment must be the same versions 

(releases). 

 

Figure 6.9 Setting the required parameters for the plug-in and starting it by sending the necessary 

data asked by the plug-in. When the user starts the segmentation by pressing ‘Start’ button in the 

user interface, the host program informs the plug-in (for this, the ID of the plug-in is important, 

see Fig. 8) that data is ready and waiting, together with segmentation parameters. The plug-in 

then collects data and parameter from the host program and then starts the segmentation process. 

For the example plug-in, namely “K-Means Algorithm”, the parameters to be 

defined prior to segmentation is the slice numbers where the kidney and liver have 

distant borders and the border of the liver does not intersect with the heart. Two text 

fields are used to get these parameters from the users and set as given in Fig. 6.9. After 

all segmentation parameters are set, the plug-in is initialized and the start( ) function is 

invoked with the start button when the user requests that the plug-in to be executed. This 

function processes the input volume to produce the resulting surface and/or output 

volume. The resulting volume appears on the 3-D panel and the plug-in is placed to the 

OM. If the user wants to remove an object (and corresponding segmentation result), 

“Delete” button can be used to destroy the plug-in. The plug-in then can do some 

cleaning work, like freeing memory (Fig. 6.10). 

public void processCommandCall(Command command, String name, Object 
argument) { 
        if (argument == Command.CALL_SEGMENTATION_START) { 
            

// 1. Setting parameters (GUI -> algorithm).  
this.algKMeans.setKidneyStartValue(this.guiKMeans.getKidne
yStartValue()); 
            
this.algKMeans.setReferenceImageValue(this.guiKMeans.getRe
ferenceImageValue());             

 
           // 2. Initialize algorithm 
           this.algKMeans.init(); 
 
           // 3. Start algorithm 

this.algKMeans.start((short[][])command.getData(Command. 
PROPERTY_VOI_IMAGE_DATA),     
 
command.getDataIntArray(Command.PROPERTY_VOI_IMAGE_EXTENT
)); 

       }  
} 
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Figure 6.10 Destruction of the plug-in. 

6.4 Application to Medical Datasets  

The capabilities of ITK, MatLab and Java based plug-ins for solving real medical 

image problems are demonstrated in this section with three challenging applications. 

The first application shows the advantages of plug-in communications where each step 

of the transplantation donor evaluation (i.e. liver segmentation, vasculature extraction, 

lobe determination) can be done in a cascaded way. The second application shows 

varying cases of tumor segmentation which necessitates the use of different methods, 

thus different plug-ins, for the same clinical problem. Finally, the last application 

presents how the aorta-graft visualization problem can be solved by applying different 

segmentation methods individually and visualizing their results together. 

Here, it is worth to point that VR and SR objects can be displayed simultaneously, if 

desired. In other words, some segmented objects can be rendered with SR while others 

with VR at the same time. MIP is not possible on per-object-base, since it is camera-

based which means that it affects all objects. But it is important that the graphics board 

supports multiple objects with different styles (i.e. VR, SR).  

The segmentation accuracy of CT/MR imaging–based volumetric techniques 

depends on the type and quality of the imaging data, as well as on the segmentation 

algorithm used. The DICOM data for these experiments were provided from the PACS 

of Dokuz Eylül University, School of Medicine, Department of Radiology. Four plug-

ins were prepared for the tests one of which is based on TF specification, two of which 

are ITK based general purpose methods and the last one is a Java/MatLab based 

algorithm for liver segmentation (i.e. named KMeans Algorithm). As previously stated 

public void destroy() { 
        ExploreDicom.unregisterObject(algKMeans); 
        algKMeans = null; 
        guiKMeans = null; 
        if (this.pluginPanel != null) { 
         this.pluginPanel.removeAll(); 
         this.pluginPanel = null; 
     } 
 } 
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in Section 3.A, the selection of the algorithm to be used is done at the beginning of the 

process (Fig. 6.5 (a)). 

6.4.1 Developed Plug-Ins 

The first plug-in is designed for VOI supported TF specification based on volume 

histogram and/or gradient intensity map. The two ITK based plug-ins are named as Fast-

Marching (FM) and Connected Threshold (CoT) (i.e. Region Growing) referring to the 

algorithms behind. ITK toolkit expands the possibilities with extensive segmentation, 

and image filtering techniques, but does not provide GUI or methods for visualizing 

data. Thus, established processes are used to integrate the power of ITK with the 

robustness of VTK for visualization. Developed and implemented in C++, ITK 

guarantees cross-platform support by relying on C-Make for the compilation and 

configuration process. By using this advantage, ITK wrapper for Java is used for 

integration.  

FM plug-in uses the fast marching level set method which is described in 

(Adalsteinsson, Sethian, 1995) and (Sethian, 1996). It was selected for performing semi-

automatic segmentation because it usually has a reasonable computational time. This 

method is implemented in ITK in the FastMarchingLevelSet- ImageFilter. The fast 

marching method makes the simplifying assumption that the contour evolves in a 

monotonic pattern. In terms of level sets, this means that only speed functions can be 

used, which assure, that the curve passes any pixel only once during the evolution 

process. Among several parameters, the adjustment of maximum gradient and the time 

threshold is chosen to be the two of the most intuitive and important parameters. 

Therefore, the GUI is designed with a slider bar controlling the maximum gradient and a 

field for “Time Threshold” selection which is a parameter only for limiting the 

execution time of the algorithm in case of a false gradient determination (Fig. 6.11 (a)). 

Since the method also need seed points, the buttons for inserting and removing seeds are 

automatically located at the top of the plug-in (Fig. 6.11 (a)). 

The second ITK based plug-in is the CoT, which is basically an implementation of 

well-known region-growing technique, starts from one or more seed points. The 

neighbors of the seed points are visited and the ones, which fulfill the criteria, are added 



135 

 

 

to the same region as its corresponding seed point. Pixels which satisfy the predicate of 

more than one region are added to one of them arbitrarily (Adams, 1994). The interface 

of the “Connected Threshold” plug-in consists of seed point buttons, upper and lower 

threshold fields which constitutes the selection criteria of the algorithm (Fig. 6.11 (b)). 

The fourth plug-in, namely K-Means plug-in, is based on the algorithm presented in 

(Selver et al., 2008) and developed specifically for segmenting liver from CTA images 

of liver transplantation donor candidates. The algorithm follows a pipeline that includes, 

pre-processing (i.e. removal of the right kidney, removal of the ribs and bones), 

classification and post-processing (i.e. morphological opening, skeletonization and 

connected component analysis). All steps are implemented in Java except removal of the 

bones and ribs which is implemented in MatLab due to computational efficiency and the 

difference in the time required. This kind of interactions left to the developer’s 

responsibility. As mentioned before, a plug-in can be Java, C++ or Matlab based. If it is 

C++ based the interface consists of an entry point of a DLL. From there, the developer 

can called ITK, Matlab or other functions. However, this is not directly supported by the 

host but this way the concept is more flexible and lets the developer decide, which 

toolbox to use. 

The fifth plug-in, namely Hessian plug-in, is based on the algorithm presented in 

(Dogan, Dicle, & Guzelis, 2009) and developed for extracting vasculature of liver from 

segmented liver images or from series of CTA images. This is also a purely ITK based 

plug-in which uses Hessian based vessel filter for extracting liver vasculature and 

labeling the main vessels (hepatic and vein). 

All of the applications presented in this section are done using Pentium 4 PCs with 

4GB memory, 3GHz processor and a 256 MB graphics accelerator. No differences other 

than processing time and number of slices to process are observed in configurations 

between the base requirements (Section 6.2) and test configuration mentioned above. 

However, the operating system has an important effect on the size of the data to be 

processed since there is 2 GB RAM limit in Windows (up to 300 slices (512x512) in 16 

bit) while Mac OS X and Linux do not have such memory limitations. 
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(a) 

 

(b) 

 

(c) 

Figure 6.11 GUIs of (a) Fast-Marching plug-in (b) Connected Threshold plug-in (c) Liver 

segmentation plug-in. 
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6.4.2 Liver Segmentation Plug-in for Donor Evaluation 

Living donated liver transplantation (Wachs et al., 1998) is a procedure where a 

healthy voluntary donor gives a part of his/her liver to another person. Measurement of 

the liver volume, analysis of the liver vasculature and determination of the liver sub-

lobes are important stages to decide whether a candidate for transplantation is suitable or 

not. Thus, this application requires segmentation of three challenging problems where 

each of these problems should be initiated with the result of the previous one. 

CTA is currently the most widely used technique for the rendering of liver 

parenchyma, vessels and tumors in living liver transplantation donors. Before 3-D 

rendering of the vasculature and the measurement of liver volume, accurate 

segmentation of the liver from surrounding tissues and organs is necessary. 

Since the number of image slices used for 3-D rendering is very large, manual 

segmentation of the liver on each slice is time consuming and tedious. Also the results 

highly depend on the skill of the operator. Therefore an automatic segmentation 

procedure to segment the liver in all slices is needed.  

Besides its several advantages over manual segmentation, automatic segmentation of 

the liver is very challenging and requires complicated algorithms (Selver et al., 2008). 

These challenges arise from the overlapping Hounsfield range of adjacent organs, from 

varying gray-level value range of organs due to the injection of contrast medium or 

different modality settings and varying anatomical structure/shape of the liver in 

different image slices and from patient to patient. 

To cover all necessary steps of liver analysis, an exemplary pipeline is given in Fig. 

6.13 (a). Starting from original CTA series; one can use a plug-in for liver segmentation 

(i.e. KMeans or Fast-Marching plug-in) that gives liver volume (segmented liver) as its 

output (Fig. 6.13 (b) and Fig. 6.13 (c)). Then, a plug-in for liver vasculature extraction 

(i.e. Hessian plug-in) can be initiated with previous output and can be used to obtain 

liver vasculature (Fig. 6.13 (d)). The results of two plug-ins can be rendered together 

(Fig. 6.13 (e)) or separately. If the data set is appropriate, the vasculature can be 

analyzed using only the result of segmentation plug-in and interacting with it via 
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transfer functions (Fig. 6.13 (f)). The same procedure (i.e. from segmented liver to liver 

vasculature) can be repeated for hessian plug-in (i.e. from segmented liver and liver 

vasculature to lobe determination), thus it can call a plug-in for lobe determination and 

initiate it with its output. 

Each of these three plug-ins (i.e. segmentation, vasculature extraction and lobe 

determination) can also be used solely and independent of each other while using them 

together provides a more complete analysis. For instance, one can use the hessian plug-

in for analysis of original CTA series and can obtain the vasculature of the liver. But it 

might probably cause mis-segmented objects (i.e. bronchus at lung) and increase 

processing time since all volume is included. 

Considering the effectiveness of such an approach in liver analysis, the following 

conclusions can be made. In liver segmentation, FM plug-in should be used instead of 

CoT plug-in since it is determined to be the one that can successfully segment the 

complex borders of the liver. Even when FM is used, the volumetric measurements of 

the livers are found less than the correct volumes, although the visual appearances of the 

segmented livers are found out to be satisfying by the physicians. 

A detailed analysis showed that, in most of the cases, the volume of the 

segmentation result appears to be smaller than the reference value. The internal analysis 

of the segmented liver shows that FM method does not include contrast enhanced liver 

vessels and some parts of the parenchyma, where contrast media leaks from the vessels, 

in segmentation result. As we see here, the challenges in liver segmentation require the 

usage of complicated algorithms designed especially for liver segmentation.  

Since the proposed plug-in interface allows the integration of such specific and 

complicated methods, the K-Means plug-in (i.e. the fourth plug-in), which is based on 

the algorithm presented in (Selver et al., 2008), is integrated and used for segmenting 

the liver. The results obtained for this automatic method, which were around 90% 

success rate, are introduced in (Selver et al., 2008).  All steps of the algorithm in (Selver 

et al., 2008) are implemented in Java except removal of the bones and ribs which is 

implemented in MatLab. The disadvantage of such a usage is the time required for file 
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exchange between MatLab and Java and the advantage is that MatLab does not share the 

same memory with Java, thus the application is not limited to 2 GB.  

 

Figure 6.12 Liver analysis pipeline. 

Other than success rates, the usage of automatic and semiautomatic plug-ins for liver 

segmentation can also be compared at the user level. When semi-automatic, general 

purpose plug-ins are used, the segmentation of the liver highly depends on the selection 

of the VOI and on the insertion of the seed points, since its position and shape change 

drastically along the slices of a series (Fig. 6.13 (b) and 6.13 (c)). Therefore, the user 

should search through the series for locating seed points and to make sure that the VOI 

covers the liver at all slices. The preparation of seed points and the VOI takes around 3 

minutes and the FM plug-in runs around 4 minutes for an average of 90 images. On the 

other hand, K-Means plug-in works in a fully automatic manner and requires 

approximately 5 minutes. 

As mentioned previously, the segmentation and the analysis of the liver can further 

be done using a second plug-in for vessel extraction by rendering only the vessel system 

(Fig. 6.13 (d)), the vessel system together with the liver parenchyma (i.e. indexed data to 

represent liver and different vessel systems) (Fig. 6.13 (e)), and the vessel system with 

lobes (Fig. 6.13.h). It is also possible to use TFs (i.e. pixel classification) for on-the-fly 

analysis of a segmented object at any step of the process (please compare Fig. 6.13.g 

and 13.h where lobes are rendered with only 2% opacity to allow vasculature visibility). 
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   (a)                                                           (b) 

    

   (c)                                                          (d) 

    

   (e)                                                           (f) 

Figure 6.13 (a) Fast-Marching plug-in result, inferior vena cava might be included (see the 

red circle) in the final rendering and/or inner vasculature vanishes if the maximum gradient 

value is not high enough, (c) The output of K-Means plug-in is more accurate since it is 

designed especially for liver segmentation, (d) The result of the ITK based vasculature 

extraction (i.e. hessian) plug-in that proceeds after K-Means plug-in, (e) Visualization of the 
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liver and its vasculature using indexed data, (f) Visualization of the liver and its vasculature 

using transfer function specification,(g) visualization of liver lobes and labeled vessels (i.e. 

hepatic, vein) together by rendering lobes as opaque,  

 

Figure 6.14 Visualization of abdominal organs and tissues together using different plug-ins 

together: Liver (K-Means plug-in, purple), Kidney (yellow) and gall bladder (green) (FM plug-in), 

Lesion (CoT plug-in, brown).  

6.4.3 Segmentation of Kidney Tumors and Lesions 

Determination of the volumes of abdominal solid organs and focal lesions/tumors 

has great importance in clinical analysis. Monitoring the response to therapies, the 

progression of diseases and preoperative examination of the patients are the most 

common clinical applications of tumor evaluation. CT and MR imaging all have been 

used for solid organ volumetry, which has been performed by using different 

measurement techniques and yielded variable results. Volumetric information about 

abdominal organs is not routinely generated for clinical use mainly because accurate, 
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reliable, and operationally practical segmentation algorithms are not readily available. 

Thus, the purpose of our study was to compare kidney lesion/tumor volumes calculated 

by using semi-automated segmentation techniques with the volumes calculated by using 

the standard manual contour-tracing technique. 

Researchers in this field need a graphical interface with volume visualization 

features to quickly check the results of volume data processing. The developed 

framework has such an interface that allows it to be used as a visualization platform for 

evaluation of advanced image processing algorithms. In this work, the volume 

measurement algorithm involves voxel counting.  

The study group has used all of the segmentation methods provided by the 

developed software. The plug-ins show satisfactory performances in the segmentation of 

kidneys (Fig. 6.15 (a)). Sometimes, the combinations of these methods are used also in 

segmentation of heterogeneous tissues. `Tumor and lesions` are generally segmented 

with FM plug-in except the cases in which the CoT plug-in is successful (usually the 

homogeneous lesions/tumors). Several pre and post processing operations (i.e. filters) 

has been used to improve the segmentation results (Fig. 6.15 (b)) and these processes are 

applied both to CT and MR series (Fig. 6.15 (c)). 

     

(a)                                          (b)                                  (c) 

Figure 6.15 User Interface of the developed software. The GUI layout is given in Fig. 6.2. 

The software is capable of displaying single images, image series, or other sequences. The 

3-D rendering based visualization of DICOM series is integrated and supported by VOI 

selection, seed point insertion and segmentation plug-ins. 
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The results show that the homogeneous tumor and lesions can be segmented using 

one of the techniques offered by the program. The level of interaction and required time 

strongly depend on the application. However, a strong limitation arises in organ 

boundaries. When only a particular part of the organ’s boundary overlaps with another 

organ/tissue, the gradient parameter itself is not enough. `Time threshold` also has a 

very limited role in the refinement of the problem. Then, increasing the gradient 

increases the overlapping problem and decreasing the gradient results with the loss of 

correctly segmented parts of the organ or tumor. 

6.4.4 Abdominal Aortic Aneurysm and Graft Segmentation 

As mentioned before, AAA is a chronic degenerative disease with life threatening 

implications (Steinmetz, Buckley, & Thompson, 2003). One of the pathologic processes 

contributing to the changes observed in AAA is the depletion of vascular smooth muscle 

cells. This change results in progressive aortic dilatation accompanied by alterations in 

vessel geometry and redistribution of wall stresses. 

A common treatment for AAA consists of the insertion of a vascular graft that 

creates a barrier between the blood flow and the weakened vascular wall of the 

aneurysms. Imaging the patient before and after the insertion of the graft is fundamental 

for controlling the efficacy of the procedure. The images considered here correspond to 

CT scans acquired after the graft has been implanted in which the network-like structure 

of the graft should be visible. The aim of this application is to illustrate how a non-

trivial problem in medical image analysis can be solved by application of different 

segmentation methods together with application of the same method with different VOIs 

and parameters.  

For the segmentation of aorta and aneurysm ITK based 3-D segmentation methods 

are used. Both, FM and CoT plug-ins produce acceptable results (Fig. 6.15 (a), 6.15 (b)) 

however, the result of CoT plug-in is found more realistic by the physicians due to the 

inclusion of small vascular trees. TF plug-in can also produce useful results in 

segmentation of aorta, but their use is limited because at some parts of the volume, the 

VOI cannot be adjusted enough to separate vertebra and aorta which have overlapping 

Hounsfield range.  
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Due to its network like structure and overlapping Hounsfield range, the graft is very 

hard to segment by using segmentation methods. Therefore, graft material is visualized 

by several TF plug-ins instead of using a single segmentation method. By using different 

TF objects, the developed software allows the selection of different VOIs for each TF 

(Fig. 6.15 (c), 6.15 (d)). Thus, the graft material is visualized by four different TFs with 

different VOI selections each of which is used to render a part of the graft without 

rendering the bones and the ribs (Fig. 6.15 (c), 6.15 (d)). All of the objects (i.e. plug-

ins), which are used to segment aorta, aneurysm and graft, are listed in the OM. 

The time required for the insertion of the seed points FM and CoT is around 2 

minutes since the insertion should be done in several slices to prevent mis-segmentation 

of thin vessels. At the slices with thin vessels, the seed points are inserted with the help 

of zoom functionality. The required time for both algorithms to segment the aorta is also 

around 2 minutes. The only parameters to define in CoT are the upper-lower thresholds 

and gradient in FM which are clear due to the known intensity range of contrast media. 

The TF objects, which are used to render the graft, have almost the same functions (i.e. 

trapezoids) and ranges. But the VOIs, which they are applied, are different to represent 

different parts of the graft. The adjustment of the four TF objects takes around 15 

minutes and the rendering is completed approximately in 20 minutes. 

       

                  (a)                           (b)                            (c)                                (d) 

Figure 6.15 Segmentation of aorta using (a) Connected Threshold, (b) Fast-Marching plug-ins. 

Segmentation of the graft using a VOI and transfer function for visualizing the graft (c) at the 

bottom half (d) at the upper half of the aorta. 
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This application demonstrates that the 3-D rendering of organs/tissues of interest are 

not only a matter of segmentation (i.e. CoT or FM for representing aorta), which 

prepares the interested part of the volume data for visualization, but also depend on 

visualization techniques and their adjustable/interactive parameters (i.e. multiple TF 

specification for graft visualization). These conclusions agree with the studies (Tiede, 

1990, Schiemann, 1992) which are based on implementation of combined interactive 

segmentation and visualization tools and claim that visualization and more especially 

volume rendering can still provide information about the scene even if segmentation 

reaches its limits. Thus, aortic aneurysm with graft insertion provides a good 

demonstration of mixing the segmentation and the visualization capabilities. 
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CHAPTER SEVEN 

DISCUSSIONS AND CONCLUSIONS 

 

In this thesis, three novel studies on abdominal image processing and visualization 

are presented. The first study is the development of a segmentation algorithm for pre-

evaluation of liver transplantation donor candidates based on their CTA images. The 

second is on the enhancement of the visualization of abdominal organs by introducing a 

new domain and a technique for multi-stage approximation to this domain which is then 

used for transfer function specification. Finally, the third one is on the implementation 

of the liver segmentation plug-in that is developed for the first topic (i.e. liver 

segmentation). The following sections of this chapter cover discussions and conclusions 

on these three studies, details of which are introduced in previous chapters. 

7.1 Discussions and Conclusions on Liver Segmentation 

In Chapter 3, a robust and efficient method, which can automatically segment the 

livers of transplantation donor candidates in any CTA series, is proposed. The success 

rate is calculated as %94.91 over a data set of diverse CTA series of 20 patients 

according to the evaluation of the expert radiologist experienced on pre-evaluation of 

transplantation donors for more than 100 cases. 

The robustness of the method follows from its capability of dealing with the contrast 

variations and atypical liver shapes and this capability is provided by the patient 

oriented structure of the algorithm. For qualifying ‘patient oriented’, the algorithm 

learns the data set characteristics in parallel to segmentation process, and adapts its 

parameters to these characteristics. This strategy involves a segmentation method which 

does not utilize a common parameter set found from all patient datasets. Instead, the 

method is capable of adapting the parameter set to each patient. So the wide ranges of 

the parameter values are covered and the developed system is sensitive to all variations 

in a data set by adopting its parameters due to the data set characteristics. 

The ability of dealing with the contrast variations and atypical liver shapes is 

provided first by recognizing the existence of these problems and then by solving the 
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segmentation problem using inter-slice information provided by the distance transform. 

This ability is gained:  

i) by introducing the distance transform as a feature for each slice and then using this 

information in the succeeding slice to reveal three dimensional properties of the liver 

which can not be obtained by the set of slices processed individually,  

ii) by devoting different (MLP) classifiers for different slices each of which is fed by 

three features such as mean, standard deviation and distance transform as opposed to the 

automatic organ segmentation methods available in the literature which use a single 

classifier for the whole set of slices, some uses statistical features extracted from three 

dimensional data (Koss et al., 1999) and some uses five features for each slice (Husain, 

& Shigeru, 2000),  

iii) by reducing the number of features and by initializing each (MLP) classifier’s 

weights with the weights of the previous one, so getting a good efficiency in terms of 

time and memory requirements, 

iv) firstly by segmenting the initial slice in an unsupervised way, secondly by using 

the segmented image as the target in the (supervised) training of the classifier devoted to 

the initial slice, and finally by segmenting each slice in a supervised way with its 

associated classifier whose weights are obtained via training the classifier of the 

preceding slice which uses the segmented image of that slice as the target. (Such an 

approach makes the design of the overall classification system fully unsupervised that 

depends on the given CTA series only without requiring any given training set of CTA 

series. This is a very interesting feature of the overall classification system preventing 

the generalization errors originated from the dependence of the classifiers’ performance 

on the used training set of CTA series.) 

Results show that several problems in liver segmentation are addressed including 

gray level value similarity of adjacent organs, partial volume effects, atypical liver 

shapes and different modality settings. The method’s ability of adaptation to data set 

characteristics increases the tolerance capability of the system and makes it feasible for 

clinical usage.  
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Although some of them produce very effective results in CT series, the deformable 

model based and gray level value based techniques generally produce segmentation 

results with holes inside the liver volume in CTA series even when the outer border is 

found correctly, because of the fact that the internal structure of the liver is acquired 

heterogeneous due to contrast media injection in CTA series. This results with incorrect 

measurement of the liver volume which is also handled properly with the proposed 

method. 

The proposed algorithm has also been applied to the datasets provided in (Van 

Ginneken, Heimann, & Styner, 2007). Although these datasets are acquired with CT, the 

series obtained for patient datasets with no tumors are segmented with high performance 

(Fig. 7.1). This result also shows the benefit of patient oriented approach which is 

affected minimally from modality settings and does not need a training set prior to the 

application. In the datasets with tumors, it is observed that the segmented area generally 

includes the liver without including the tumor area (Fig. 7.2). This is an expected result 

since the proposed algorithm is designed to segment healthy liver parenchyma for the 

evaluation of transplantation donors who should not have any tumors in their liver. 

Together with the datasets provided in (Van Ginneken, Heimann, & Styner, 2007) 

and in (Rosset, Spadola, & Ratib, 2004), the proposed method has been tested with the 

CT and CTA series acquired from four different modalities. The successful results 

obtained by all these modalities also show that the proposed method does not have 

dependence on the modality. 

The disadvantage of the proposed method is its dependency to the correct 

segmentation of the ‘initial image’. If the automatically selected initial image does not 

satisfy the necessary requirements, the user should select an appropriate slice or might 

need to manually segment the initial image.  

Since the algorithm is developed for the pre-evaluation of the transplantation donor 

candidates, the series that are acquired with rotated patient position (i.e. datasets 1 and 2 

in (Van Ginneken, Heimann, & Styner, 2007)) can not be segmented. 
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First of all, it is observed that the performance of the algorithm is much more 

dependent on the selection of initial slice when compared to its importance in CTA 

series. Also, the increase in slice thickness (i.e. 6-10 mm) sometimes results with drastic 

changes in appearances (i.e. size and shape) of liver between adjacent slices. Such 

changes can not be represented completely by three features (i.e. mean, standard 

deviation, distance transform), therefore more features and/or series with less slice 

thickness might be used to increase segmentation accuracy. Also the pre and post 

processing steps should be revisited since the organ boundaries and parenchyma of the 

liver is not as separable as they are in CTA series. Thus, anisotropic filter etc. can be 

used to improve the smoothness of the liver while preserving its boundary. 

Areas that may further be examined include speeding up the process by improving 

the programming structure and supporting the system with hardware accelerators or 

DSP boards, more robust detection of the ‘initial image’ and the ‘initial kidney image’. 

7.2 Discussions and Conclusions on Transfer Function Initialization 

Volume rendering would be used more often in clinical practice if the complexity of 

interaction (i.e. setting a TF for volume rendering) becomes less. To reduce the 

complexity of TF design, a semi-automatic method for TF initialization and a new, 

effective and interactive domain for TF optimization is introduced in this thesis. The 

proposed method is based on a volume histogram stack, i.e. VHS, instead of 

conventional volume histogram and handles TF specification as a (vector-valued) 

function approximation problem where the domain is the 2-D input space of Hounsfield 

value and slice number and the range variables are opacity and color. The method 

automates and simplifies the optimization of a TF.  

The newly introduced VHS data model allows the detection of tissues both in 

calibrated (i.e. CT) and uncalibrated (i.e. MR) medical datasets. As a consequence of the 

fact that each slice histogram is represented separately, VHS preserves inter-slice spatial 

domain knowledge, so it exploits more priori information. It also demonstrates changes 

in the gray values through the series of slices, thus including information on local 

histogram distributions of the tissues. In other words, VHS can represent the intensity 
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values of the tissues as well as their spatial information and local distributions which are 

not available in conventional volume histograms. 

Moreover, VHS can be constructed not only for the major slicing axis, but also for 

an arbitrary axis. As illustrated in Figure 5.5 and corresponding application, the VHS 

can be generated based on the organ to be visualized and a suitable axis to differentiate 

it from the other organs. This provides an independency from slicing axis and ability to 

distinguish structures which are separated both x-, y- and z-dimensions. 

Here, it is worth to point that this method can further be generalized in such a way 

that the VHS may be calculated on arbitrary aligned axis (i.e. a slice plane with an 

arbitrary normal vector, not aligned with x, y or z as given in (7.1)) which can be 

obtained with the help of not only MPR (as presented in Fig. 5.4) but also of Curved 

MPR or Oblique sectioning techniques. More general, 2-D VHS can be constructed by 

using 2-D surfaces as expanding the current approach (i.e. orthogonal directions of slice 

planes (Fig. 4.1 (a)) defined by x=δ , y=δ or z=δ ) with more general surface equations 

φ(x, y, z) = 0 (Fig. 7.4 (a)). In particular, nested diamond shape surfaces (Fig. 7.4 (b) for 

a 1D version) are obtained by 

           (7.1) 

for different  values and nested spherical shape surfaces around a specified center point 

(Figure 7.4 (c) for 1D version) are obtained by 

22 2
2yx z

x y z

y cx c x c R
d d d

⎛ ⎞−⎛ ⎞ ⎛ ⎞− −
+ + =⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠ ⎝ ⎠

       (7.2) 

for different R values.  

The geometry to generate the VHS data can be selected depending on the nature of 

the organ to be visualized. From mathematical point of view, arbitrary surfaces should 

be simple, closed and bounded. Selecting x, y and z as continuous variables would 

require interpolation to determine the pixel coordinate values among existing ones. It 

1 2 3. . .w x w y w z δ+ + =
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should be noted that selecting these parameters as integers and surfaces such as in (7.2) 

does not need interpolation. 

 

 (a)                                (b)                                (c) 

Figure 7.4 Examples of (a) arbitrary surfaces (b) diamond shaped, (c) spherical 

surfaces that can also be used in future studies to generate VHS data (Diamond and 

spherical surfaces are illustrated in 1-D for simplicity). 

Although extending the implementation to work along an arbitrary axis or with an 

arbitrary surface would pro-vide many advantages, it would still be not enough to 

address the studies where the object of interest does not follow a single axis such as 

intestines. Simulations show that the main problem of the proposed method in transfer 

function generation for intestines, which is filled with air, is the presence of adjacent 

organs in all directions of abdominal region that are also filled with air (i.e. lungs, 

stomach and small intestine) and/or have similar HU value range, thus faking the lobes 

belonging to the intestines. Consequently, selecting one axis can only differentiate some 

of the overlapping tissues while others remain (Fig. 7.5). In this case, using a single axis 

is not enough and our approach can further be extended in such a way that different 

approximations (i.e. a number of VHS data generated using different directions) are 

combined with a method to produce a better differentiation of organs. Depending on the 

application, this method can be on collecting the results obtained for each VHS or 

rendering only the areas that are found in all VHS. 

xy 

z

xy

z

xy

z
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(d)                                                           (b) 

    

   (c)                                                          (d) 

Figure 7.5 CT image examples for visualization of intestines (a) image from (Bakker et al. 

1999) shows a typical 2-D CT slice. The rectangular frames show thin walls with air on both 

sides. Moreover, colon can be buried in the residue fluid and some parts might be collapsed 

in sigmoid colon, (b) Axial image (original slicing axis), the outer walls of intestines with 

stomach both of which are filled with air. Selecting more units results in overlapping with 

spleen, (c) Reconstructed coronal images where the overlapping with has been solved but 

intestines and stomach can not be differentiated, (d) Reconstructed sagittal images where the 

same affect still exists. 

The proposed improvements on arbitrary selection of surfaces and combination of 

the results obtained by different approximations would push the task of picking the axis 

even more to the user. Two possible methods to overcome this drawback can be 

implemented to guide the user in picking an appropriate axis. The first method would be 

the construction of a look-up table providing the information to the user about which 

axis is the best for a given organ and a study type (i.e. CT, MR, Angio etc.). The 

construction of a reliable look-up table requires an extensive study that should be carried 

out in close co-operation with expert physicians. The second method would be based on 

automatic selection of an appropriate axis among several arbitrary axes not only 
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including x-, y-, z- axes, which are considered in the current paper,  but also including 

the rotated ones of them with a  determined angle (i.e. 45, 22.5 degrees) and even 

including any direction defined by a plane as its normal vector. The selection here might 

consider a predefined criterion such as choosing the one with the highest number of 

lobes in a specified HU value range.  

An approximation to VHS data done by SEG-HRBFN detects the tissues to be 

visualized and provides an informative spectral representation for them in terms of 

centers and widths of the Gaussians associated to the lobes of these tissues. The 

hierarchical learning (design) strategy that is carried out with SEG-HRBFN allows the 

recognition of suppressed lobes corresponding to sup suppressed tissues and the 

representation of overlapping regions where the intensity ranges of the tissues overlap. 

Unlike the previous HRBFN models, SEG-HRBFN determines the number of necessary 

Gaussian units, their locations and widths, in an automatic way. This approach 

significantly reduces the number of Gaussian units produced at the end of 

approximation, so allowing user interaction at the optimization level. Hence, the 

physicians work on a spectral domain so they deal with the width and position of the 

Gaussian distributions (basis functions) instead of dealing with a complex function 

itself. Approximation to VHS with a minimum set of basis functions (i.e. Gaussian 

units) also provides the construction of the network in a reasonable time. 

The effectiveness of the VHS data is demonstrated in the paper via different 

abdominal studies where rendering results show that it generates a proper 

multidimensional space for clear classification of the tissues that overlap in conventional 

volume histograms. It is shown in the paper that SEG-HRBFN constructs an effective 

initial TF representing the feature space and also that SEG-HRBFN is very successful 

also in the reconstruction of 3-D range data, such as the data obtained through the auto-

scan system from a baby doll face (Ferrari, Maggioni, & Borghese, 2004). 

All of the applications presented in this paper are done in a Pentium 4 PC with 4GB 

memory, 3GHz processor and a 256 MB graphics accelerator. The smallest data set is 

the fourth application (i.e. 92 images) and the biggest data set is the first application (i.e. 

326 images). The time required for the initial generation of the VHS data is between 
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0.91 and 3.26 seconds for all of these four applications. No preprocessing is done before 

the generation of the VHS data, however a smoothing filter can be used or the peak 

detection kernel can be enlarged to prevent the false detection of the spikes instead of 

lobe maxima. Also, the range of the VHS data can be reduced to a range which covers 

the all density distribution of the organ(s) to be visualized. 

As demonstrated in the comparison with HRBFN (See Table 5.1), SEG-HRBFN 

requires more time but needs less number of units to reach the same approximation. 

However, the required number of units is much less for TF specification application. 

The time required for the generation of sufficient number of units depends on the 

number of lobes as well as the number of determined overlapping regions and 

suppressed lobes, which in-crease the required number of layers, rather than the size of 

the data set. The application of SEG-HRBFN results with 45, 36, 51 and 49 units for the 

four applications presented in this paper, respectively. The required time for the 

generation of these units is 28, 19, 35 and 42 seconds respectively. It is worth to point 

that these times are required for once at the initial calculation made by SEG-HRBFN. 

The algorithmic complexity difference between HRBFN and SEG-HRBFN mainly 

comes from two points. The first one is the determination of the centers and widths of 

the Gaussians. In HRBFN, the center locations and widths are pre-determined and need 

no other computation. However, SEG-HRBFN requires a peak detection algorithm 

based on gradient calculation to determine the centers. The second difference comes 

from the number of units used for approximation. The HRBFN inserts fixed Gaussians 

at each layer producing a high number of units. On the other hand, SEG-HRBFN, which 

usually has around four times less units, uses a gradient descent based weight 

determination algorithm to determine the heights of the Gaussian basis. 

Later on, the useful units among all are selected and adjusted by the user (i.e. the 

physician). This selection and adjustments (i.e. position/width of the units, grouping, 

opacity and color selection) take around 10 to 15 minutes before completing the 

adjustment of the TF. Considering the time required to segment challenging organs, 

such as liver, manually or with semi-automatic/automatic segmentation methods (Selver 
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et al., 2008), the time reported in this study can be found acceptable from the clinical 

point of view. 

The overall goal of this part of the thesis is to improve the rendering quality for 

visualizing the tissues of overlapping intensities and also to shorten the physician 

controlled optimization stage in TF design. The proposed method is capable of 

representing the Gaussian like lobes in a histogram very efficiently and it also provides a 

good framework for the physicians to optimize TF in an interactive way. This ability 

makes the method promising especially for abdominal studies because the tissues of 

interest in abdominal images are large enough in a number of slices, so producing 

Gaussian like lobes in volume histogram stack.  

The selection of the Gaussian units produced by SEG-HRBFN to construct groups 

corresponding to the tissues is the only stage which is not held in a fully automatic way. 

The grouping in the proposed method is left to the physician since the optimality of 

initial TF is subjective which differs from one physician to another and depends on the 

physician’s interest in a practical application. It is possible to perform grouping stage in 

an automatic way if objective criteria for optimal initial TF are determined by a future 

work surely in collaboration with a group of radiologists, surgeons and other physicians. 

7.3 Discussions and Conclusions on Programming and Implementation 

According to reasons mentioned in Chapter 6, the goal of this part of the study is to 

develop a plug-ins for the techniques presented in Chapter 3 and 4. Thus, chapter 6 

introduced the proposed interface via the plug-in that is developed for the liver 

segmentation algorithm proposed in Chapter 3. This plug-in program is implemented in 

an object based segmentation frame that aid in the development, deployment, and 

refinement of segmentation algorithms to benefit heath care delivery, education, and 

research.  

The method for achieving this aid is to provide access to the 3-D rendering (i.e. 

volume rendering, surface rendering and MIP) capabilities that can be used to visualize 

the results of new segmentation algorithms. By doing so, it benefits practitioners by 

allowing them to make use of their advanced algorithms developed by different tools 
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(i.e. MatLab, Java, ITK) with a low learning curve and it can assist algorithm developers 

by proving a simple application. Thus, the developers are enabled to easily and routinely 

make use of their algorithms with little to no learning curve from within a DICOM 

application. As opposed to direct use of the ITK and Java, researchers do not need to 

deal or spend time to gain programming experience on loading data, displaying images 

or showing the results in a proper way which requires a high experience on VTK and 

Java due to the due to various cases of DICOM format and different medical 

applications. Compared to other visualization software, which can be used to integrate 

segmentation plug-ins, the developed software has the following advantages. First of all, 

it is specialized for medical DICOM images. That means the software supports decoding 

12-bit DICOM images of all flavors, rotates the volume data to the x-, y- and z-axis if 

necessary, provides support for setting markers in three multi-planar planes, which can 

be defined arbitrarily by the user. The Graphical User Interface (GUI) is designed like in 

typical medical workstations with which the user (i.e. radiologist) is already familiar. 

Loading and displaying the 2d-data is done automatically, thus the user starts directly in 

the 3d-layout. The data set can be explored immediately by defining a TF (Selver et al., 

2007) (or selecting among the predefined ones). Currently, the number of plug-ins is 

limited however; all the elements required for creating new plug-ins are available. 

Creation of plug-ins for new medical image processing applications is possible without 

having to expose the source code of the main visualization software.  

The segmentation follows the typical visualization pipeline, consisting of the 

modules ‘Pre-processing’, ‘Segmentation’, ‘Post-processing’ and ‘Rendering’. The 

module ‘Segmentation’ can be provided by the user with a plug-in. Thus, the direct link 

between the object manager used for visualization and the segmentation interface used 

to obtain a specific object. Therefore, the advantage of the proposed method is to drive 

the segmentation from a visualization viewpoint.  

The application of the developed plug-ins to different medical datasets show that the 

object based segmentation approach is suitable for measurements such as the organ 

volumes as well as for observing anatomical and/or physiological examinations using 

suitable algorithms for each organ/tissue of interest. In this manner, different plug-ins 

can be used one after another (or the same plug-in can be used for many times) to 
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segment and then render several organs and tissues together (Figure 6.14). This is a very 

important advantage of the proposed approach since in most of the cases, what is 

interesting from clinical point of view is not only an organ or tissue itself but its 

properties together with adjacent organs or related vessel systems. Therefore, the usage 

of different segmentation methods in one application and then a proper combination and 

representation of the results together provides an informative rendering.  

By taking the advantages of the object based segmentation approach, a plug-in is 

developed for the segmentation of liver from CTA images. As presented in Chapter 6, 

the developed plug-in can be used for automatic calculation of the liver volume. If 

automatic result is not good enough, user can use the GUI of the plug-in to adjust some 

parameters (i.e. defining initial kidney image, reference image etc.) which would 

possibly increase the performance. The developed plug-in can also be used as an 

element of a more general system that consists of other plug-ins which are followed by 

the developed plug-in and initialized by the resulting segmented data of the developed 

plug-in. which can extract the vasculature and determine the individual volumes of the 

lobes of the liver. 

The programming and integration to a host medical visualization software of the 

implemented plug-in is done according to the steps presented in Chapter 6.  After using 

several programming techniques that are applied for improving the performance of the 

plug-in, the resulting program completes the segmentation process in 4.5 to 6 minutes 

and requires 600 MB memory for series that 80 to 100 images. For the series that have 

100 to 130 images, the software requires 1 GB of memory and completes the process in 

6.5 to 8.5 minutes. 

Manual manipulation of the segmentation results, removal of selected object or 

preserving selected object and removal of the others are necessary functions that should 

be provided in the future. This is due to the fact that even in a very efficient 

segmentation result, a minor part might be wanted to be modified by the physician. 
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