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WAVE PROPAGATION IN COMPOSITE MATERIALS

ABSTRACT

The system of anisotropic elasticity with piecewise constant coefficients is considered in
this thesis. The main object of the thesis is to model an initial value problem (IVP) and an
initial boundary value problem (IBVP) for the considered system. The main results are explicit
formulae for solutions of initial value problem and initial boundary value problem. Using these
formulae the simulation of elastic waves have been obtained. Results of the simulations have

clear physical interpretation of wave propagation in layered medium from the point source.

The method of characteristics has been used for constructing explicit formulae and MAT-

LAB codes has been successfully applied for the simulation of the waves.

Keywords: anisotropic elastic system, elastic layered medium, initial value problem, initial

boundary value problem, modeling, simulation, wave propagation.

v



BILESIK MATERYALLERDE DALGA YAYILIMI

0z

Bu tezde parcali sabit katsayili, anizotropik elastik sistem calisildi. Bu tezdeki ana hedef
calisilan sistemin baglangi¢ deger problemine (BDP) ve baslangi¢ sinir deger problemine (BSDP)
modellenmesidir. Bu baglangic deger ve baglangi¢c sinir deger problemlerinin temel sonucu
formiillerle belirtilen ¢oziimleridir. Bu formiiller kullanilarak elastik dalgalarin simulasyonlar1
elde edilmis ve sonuglart katmanli elastik ortamlarda olusan dalga yayiliminin fiziksel yorum-

lartyla uyum gostermistir.

Coziimleri elde edebilmek icin karakteristikler metodu kullanilmig ve dalgalarin simulasy-

onlar1 icin MATLAB kodlar1 basaril bir gekilde uygulanmasgtir.

Anahtar Sozciikler: Anizotropik elastik sistem, elastik katmanl ortam, baglangi¢ deger prob-

lemi, baglangi¢ sinir deger problemi, modelleme, simulasyon, dalga yayilimi.
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CHAPTER ONE
INTRODUCTION

Anisotropic elasticity has been mostly studied in different applied sciences such as engi-
neering sciences, geophysics, solids and structures sciences etc. for the last thirty years due to

its applications to composite materials. [(Ting, 2000), (Yahkno & Akmaz, 2005)]

The propagation of elastic waves in anisotropic media is governed by a system of second
order partial differential equations.[see, for example, (Dieulesaint and Royer, 1980), (Fedorov,
1968), (Ting, 1996), (Ting & Barnet & Wu, 1990)] Here, we formulate shortly the problems

which are considered in this thesis.

1.1 Equations of Anisotropic Elasticity

Let x = (x1,x2,x3) € R? x [0,0) and ¢ € R be variables. The displacement of the point x is

the vector u(x,7) = (u1,uz,u3) with components

u(x,t) =uj(x,t), foreach;j=1,2,3.

Initial value problem (IVP) of anisotropic elastic layered medium is described by the fol-

lowing differential equations,

0%u; 303 0 du
p(x3) =5 = 7(C]k[m(x3) >,
0<x3 <, < x3 < oo, teER, j=1,2,3,
with initial data Py
”
uj(x’o):(pj(x)v TIJ(XJ) 7021/11'()6)7
= (1.1.2)
0<x3 <, l < x3 < oo, j=1,2,3,
and matching conditions
i(x3,1 =uj(x3,t 1.1.3
u](X?” ) x3=0—0 uj(x37 ) X3:€+0’ ( )
3 3 au 3 3 au
ou; ou;
= 1.1.4
E’ ; ¢j3tm(¥3) Xy lx3=0—0 E ; ¢j3tm(¥3) 0%y lx3=+0 ( )
3
where / is given number, {c jktm ()Cg)} o are the elastic moduli of the medium; p(x3) >0
Jjktm=



is the density of the elastic medium; @;, y; and F; are smooth functions for each j =1,2,3.

For initial boundary value problem (IBVP) of anisotropic elastic layered medium, we add

the following boundary condition to the system (1.1.1) — (1.1.4), the boundary condition

duy

3 3
ZZZI mgl e3tm Txm

=F;(t), teR. (1.1.5)

x3=0

The elastic moduli of the medium is positive definite and satisfy the symmetry property

Ciktm(X3) = Comjk(X3) = Ckjem(x3)

so that the system of anisotropic elasticity can be written as Cauchy problem of second order
partial differential equations (Yahkno & Akmaz, 2005). The assumptions and detailed expla-

nations can be found in the Chapter 2.

1.2 Problems and Methods for Equations of Anisotropic Elasticity

In the recent years, there exists substantially modern methods for solving initial and bound-
ary value problems [(Boyce & DiPrima, 1992), (Dieulesaint & Royer, 1980), (Courant &
Hilbert, 1989), (Cohen & Heikkola & Joly & Neittaan, 2003)] so that many researchers get
a great chance to study more about the phenomena of the elastic wave propagation. And the
developments of computer facilities-applications of analytical methods [(Rand & Rovenski,
2005), (Pavlovic, 2003)], special softwares such as Mathematica, Maple, Matlab etc.-provide

better understanding of invisible elastic waves.

In this section, we mention some approaches for constructing solutions of IVPs and IBVPS.

1.2.1 Plane Wave Formalism-Stroh Formalism

Stroh formalism (Stroh, 1958) is a well-known approach for the system of elasticity in

material sciences, applied mathematics and Physics community (Ting, 2000). In the method

of plane wave approach, the system of elasticity is considered in a unbounded domain and the



solution of the systems have the form
u(x,t) =af(x.n—cr). (1.2.1)
where n, a, ¢ are values to be determined. Substitution of (1.2.1) into the system, gives us
(A—Ala=0, (1.2.2)

where A = ¢? and A is second-order tensor with components

3
Aj = Z C jkimMiMm
k,m=1

for all n; and n,,. The construction of a solution is reduced to eigenvalues and eigenfunctions

problem for A.

1.2.2 Green’s Functions Method

A different method to obtain the solution of the system is Green’s functions method. The
main idea of applying this method is Fourier transforms. The system is firstly solved in the
Fourier-transformed domain. Then the solution of the system is derived by using Fourier-
inverse transform (Yang, 2004). In the article of Yang (2004), after applying 2-D Fourier trans-

form with the variables (ki,k,), the solution in Fourier-transformed domain is the following

ii(k1,k2,y3) ://”()’1,)’27y3)€ik“)'°‘dy1dy2,

where e stands for exponential function, i is the imaginary number for both variables y;,y».

Fourier-inverse transform yield the solution of the system in the domain.

1.2.3 Finite Element Method

Besides the analytical approaches, the numerical methods can be applied to solve the sys-
tems. Finite element and finite difference methods are mostly used for some problems de-
scribed by partial differential equations including system of elasticity. This approach is based
on converting partial differential equations into an approximating system of ordinary differen-

tial equations.



1.2.4 Polynomial Solution Method

Polynomial Solution method (PS-method) is an analytical method for constructing solution
of partial differential problems with the special form of initial data and inhomogeneous term
[(Yakhno & Akmaz, 2005), (Yakhno & Akmaz, 2007)]. In the article of Yakhno & Akmaz
(2005), it is proved that if the initial data are polynomials with respect to the lateral variables
(x1,x2), then the solution of the problem which has coefficient functions depending on the other
variable x3, is in the form of polynomials depending of the same variables. The system in the
article (Yakhno & Akmaz, 2005) can be written as follows
82143-/ 3 0

Y
O

Pon )3 axjk, j=123,xeR >0

k=1 k

ul(x,0)="(x), j=1,2,3, xeR?

78”3' Y i=1,2.3 R’
7t - b) - b 1~ E
S| =), x
where
1/0u’ ou’
Y of — Y. wl — DY ol — oY oy _ 19U Olm
uj =D"uj, ] =D"¢;, y] =Dy, q/k_émzztlcjkgmsfm, €m = 3 <3xm + aﬁ).

By applying Polynomial Solution method (PS-method), the solution can be written in the

form
wj(xy,x2,x3,0) =Y Y U;’k(XSJ)XAiXIE
k=05=0
where
ok 1 o5tk .
Uy (x3,1) = ﬁmuj(xhxz,x%t) im0’ j=12.3; sk=0,1,2.

1.3 Plan of the Thesis

The system of anisotropic elasticity with piecewise constant coefficients is a mathematical
model of elastic wave propagation in layered media (composite elastic materials). The main
goal of the thesis is to construct explicit formulae for the solutions of the considered problems
and using these formulae to obtain the simulation of the elastic waves. The thesis is organized

as follows.



In Chapter 1, we describe initial value problem (IVP) and initial boundary value problem
(IBVP) of anisotropic elastic layered medium. We mention about other studies and approaches
for solving the system of anisotropic elasticity and the way of finding solutions. In addition,

the main goal of this thesis is given.

In Chapter 2, we reformulate initial boundary value problem of anisotropic elasticity in
two layered half space. The following section deals with the reduction of the system to the
Cauchy problem of the wave equation. For solving this problem, we separate the half space
into different subregions. By using the method of characteristics, the solution of IBVP
is investigated in these subregions. The explicit formula of a solution is constructed. The

simulations of wave propagation are obtained and analyzed.

Chapter 3 starts with the formulations of initial value problem (IVP) of the wave equation
with piecewise constant coefficients. IBVP in Chapter 2 is reformulated as IVP in three lay-
ered medium. Similarly, we separate the space into different subregions and the solution of
the problem is investigated independently. By using the explicit formula of the solution, the

simulations of wave propagation are obtained and analyzed.

Chapter 4 starts with initial value problem (IVP) that is formulated in Chapter 3 with two
layered space. The techniques of finding solution is described in detail. Analysis of the formu-
lations and the results of the simulations are dealed extensively. In addition, the Matlab codes

of IVP in two layered medium are given.

Chapter 5 is related with the conclusion of the thesis.



CHAPTER TWO
INITIAL BOUNDARY VALUE PROBLEM OF ANISOTROPIC LAYERED ELASTIC
HALF SPACE

Let x = (x1,x2,x3) €R}, t€R and let

e 0= (01,0,03) and YW= (y,yr,y3) be given vector functions

depending on x;
e F = (F},F,,F3) be given vector function depending on ¢;

e u = (uj,uy,u3) be unknown vector function depending on x and ¢.

2.1 Statement of the Problem

Initial boundary value problem of anisotropic elastic half space is to find unknown function

u = (uy,up,u3) satisfying the following system of differential equations

() 2L izia( ( )a”) O<xy<l, (<x3<es, tER  (211)
X3)—=—= = —|c X X X3 < oo, 1.
px3) 55 Ll oy, ktm\X3) 5 3 3
with initial data
auj
uj(x,0) = @j(x) , W(x,t) O:I//j(x), 0<x3<l, £<x3<oo, (2.1.2)
t=
the boundary condition
33 duy
30m=— =Fi(t), teR 2.1.3
Zzzlmgl €3t X 1x3=0 J( ) ( )
and matching conditions
i(x3,1 =u; 2.14
MJ(X37 ) X3:€70 u](x:;’ ) X3:Z+O ( )
303 33 du;
= ; — 2.1.5
E;mglcjym x3) axm =00 Z:Zlmglcj?’gm(x:”)axm 3=l 40 ( )

where / is given number, (x1,x;) € R® and for each j =1,2,3 u j(x,1) is jth component of

the displacement vector u(x,1) = (u;(x,t),uz(x,1),u3(x,1)) ; p(x3) is the density of the elastic

6



3
medium and {c.,-kgm (x3)} o are the elastic moduli of the medium.
Jjktm=

2.2 Assumptions

The elastic moduli ¢ jks, (x3) satisfy the symmetry properties

Cjktm(X3) = Comjk(x3) = Ckjem(x3)

and also cjym(x3) is positive definite for each j,k,¢,m =1,2,3 i.e. there exists a positive

constant M such that

3 3
Z Cikem(X3)Ejk€pm = M - Z gfk
J.klm=1 Jiklm=1

for all € such that € = &; .

There exists a real, symmetric, positive definite 6x6 matrix C = (cy5(x3))6xs Which includes
Cjkem(x3) as its entries by relating the pair (j,k) of indices j,k = 1,2,3 to a single index

y=1,2,...,6 and the pair (¢,m) of indices £,m = 1,2,3 to asingleindex 6 =1,2,...,6.

(1,1) =1, (2,3),(3,2) < 4,
(2,2) =2, (1,3),(3,1) < 5, (2.2.1)
(3,3) =3, (1,2),(2,1) < 6.

cii(x3) c2(x3) c3(x3) cia(x3) cis(x3) cie(x3)
c21(x3) c2(x3) c3(x3) c2a(x3) c25(x3) c26(x3)
Clos) = c31(x3) cxn(x3) c33(x3) c3a(x3) cas(xs)  cae(xs) — (e (63))oxs
ca1(x3) can(x3) caz(x3) caa(xs) cas(x3) cas(x3)
cs1(x3) cs2(x3) es3(x3) csa(xs3) ess(x3)  cselx3)
co1(x3) cea(x3) ce3(x3) coa(x3) ces(x3) cos(x3)



In this work, we assume that

che 0<x3 <t pl, 0<x3<d;
o) =4 17 p(x3) = (22.2)
cjz,o, < x3 < oo, pz, < x3 < oo,

where c},o_, 072,0_, p! >0 and p? > 0 are given constants.

2.3 Reduction to IBVP for Wave Equations in Two Layered Half Space

Under these assumptions, the equations (2.1.1) —(2.1.3) can be written as follows

2%u 0%u 3 0%u

—A Ajj———o, , oo 2.3.1
p o2 33 a2 +i:#;i.j:1 P O<x3<l, <x3< (2.3.1)
du
u(x,0) = o(x) , E(x,t)‘t:() —y(x), O<xz<fl, (<x;<oo (23.2)
A Ju 3 ou =F(t), teR (2.3.3)
33 8)C3 x3=0 i=1 laxl‘ X3:0_ ’ o

where u is the vector u(x,r) = (ul (x,1),uz(x,1),u3 (x,t)) under the assumption that u does

not depend on the variables x; and x; i.e. u(x,t) = u(x3,). And where the matrices are

as follow,
ci1(x3) cie(x3) ci5(x3)
An(xs) = | cielxs) coolxs) cse(x3) |
ci15(x3) cse(x3)  cs55(x3)
| 2c16(x3) c12(x3) +co6(x3)  cra(x3) +cs6(x3)
AIZ(XB)ZE ce6(x3) + c12(x3) 2¢26(x3) ca6(x3) +co5(x3) |
cs6(x3) +cra(x3)  c25(x3) + ca6(x3) 2c45(x3)

ce6(x3) c26(x3) ca6(x3)
An(x3) = | cx(x3) c(x3) calxs) |

ca6(x3) c24(x3)  caa(x3)



2c15(x3) c1a(x3) +es6(x3)  c13(x3) +c55(x3)
A3(x3) = | cs6(x3) +c1a(x3) 2¢46(x3) c36(x3) +cas(x3) |

css(x3) +c13(x3)  cas(x3) +c36(x3) 2¢35(x3)

css(x3) cas(x3)  c3s5(x3)
A33(x3) = | cus(x3) can(xs) cal(xs) |

c35(x3) c3a(x3)  c33(x3)

2¢56(x3) ca6(x3) +cas(x3)  c36(x3) +cas(x3)
A23(x3):% 25(x3) + ca6(x3) 2¢24(x3) c23(x3) +caa(x3) |
ca5(x3) +c36(x3)  caa(x3) +c23(x3) 2c34(x3)
c15(x3) cse(x3)  cs5(x3) cs6(x3) c2s5(x3)  cas(x3)
A1(a) = | cra(xs3) caplxs) cas(xz) | A2(x3) = | cus(xs) coa(x3) caa(x3)
c13(x3) c36(x3)  €35(x3) c36(x3) c23(x3)  c3a(x3)

We assume that
ca5(x3) =0, c35(x3) =0, cu(x3)=

Y

0
cs4(x3) =0, c¢53(x3) =0, ca3(x3)=0.

Under these assumptions, A33 has diagonal form,

cs5(x3) 0 0
Az (X3) = 0 C44 (X3) 0 (2.3.4)
0 0 c33(x3)

Then the equations (2.3.1) —(2.3.3) can be written as

92 02
8; (x3)W3MZ’ O<x3<l, £<x3<oo,teR,
du
u(x,0) = @(x), E(x,) O:l//(x), O<x3<l, l<x3<oo
1=
du
A(XZ;)TXSX:%:O—F(t)? teR
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where A(x3) = As3(x3), p(x3)>0.

1
p(x3)
Consider the matching conditions (2.1.4) — (2.1.5), The equation (2.1.4) is obvious. Un-

der the above assumptions and notations in (2.2.1) , the equation (2.1.5) has the form,

au 2

Z 8xl

x3=0+0 -1

du
aX3

=A
x3=0—0 33( aX3

A
33(x3) e O—I—Z 8x,

i=1 x3=(+0

Since there is no dependence on x; and x; . So the equation (2.2.1) has the following form,

du du
A(x3)=— =A(x3)=—
(X3)(9X3 x3=(—0 (X3 aX3 x3=0~+0
1
where A(x3) = ol )A33(X3) ,  Pp(x3) >0 where A33(x3) is defined in (2.3.4).
X3

Notice that the matrix A is diagonal. Since the matrix C is positive definite and p(x3) > 0,

then
di(x3) 0 0
A= 0 d%2 (JC3) 0 (2.3.5)
0 0 di(x3)
where % — 055(X3)’ B = C44(X3)’ 2, = c33(x3)
px3) px3) Px3)
The initial and boundary value problem of anisotropic elastic half space is for each k=1,2,3,
12U, ,, 9
W:dkk()@)m, 0<x3 <£, E<X3<°°, IER, (236)
with initial and boundary conditions,
AUy
Uk(x,0) = Py (x) , W(x,t) .= Yi(x) 0<x3<l, {<xz<eoo (2.3.7)
t=
AUy
dg(x3)5—| =F(), teR 2.3.8
i (x3) 93 la=0 k(1) , (2.3.8)
and the matching conditions,
Uy (x3,t =U, 2.3.9
k(X3 ) x3=f—0 k( 3 ) x3=(+0 ( )
o, U,

(2.3.10)
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2.4 1IBVP Of Isotropic Elastic Half Space

Let @y (x3), WPi(x3) and dig(x3) fork =1,2,3 are in the form,

Ol 0< x3 < Z;
dkk(X3) = (2.4.1)
Br, £ <x3<oo.
(pk(X3), 0<X3 </ l[/k(X3), 0<X3 </
Dy (x3) = Yi(x3) = (24.2)
(Pk(X3), < x3 < oo,

wi(x3), £ <x3<eoo.

In our further consideration, we consider the scalar equation with fixed k together with initial

data and boundary condition. We will omit the index k for simplicity writing.

Far n=3

Figure 2.1 The Regions for n=2,3,4,...

Initial boundary value problem (2.3.6) — (2.3.10) may be written in the form of

ur(xs,t), 0<x3<{;

Uk(xz,t) =
vi(x3,1), £ <x3<oo.
as follows,
%:ag%";, 0<x3</l, teR, (2.4.3)
v 9% (<xy<o. 1E€R (2.4.4)

W:ﬁkma
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with initial and boundary data,

du
Mk(X3,0) = (pk(X3), 7;()63,I> o = l[/k(X3), 0< x3 < 67 (2~4-5)
8vk
k(x3,0) =wils), = 70,1)| = lis),  £<az <o, (2.4.6)
2% Ry, fork=123, (2.4.7)
8)(3 x3=0
and the matching conditions,
= 248
i x3=(—0 k x3=0(+0 ( )
du av
2 YUk 20Vk
ot~ =BF=—= 249
k a)g x3=(—0 Bk aX?, x3=(+0 ( )

2.5 Construction of the Solution

To find the solution, we separate half space into subregions and the formulation of the
solution of the problem (2.4.3) — (2.4.9) is constructed for each subregions, independently by

using the method of characteristics.

wmﬁ:{wmmm if (x3,1) € Ry, (2.5.1)

Here, k denotes the the component of the matrix u(x3,#) and m denotes the index of subre-

gion.

2.6 Zero Step

Zero step includes the regions R1 and R2 (see, Figure 2.1) Let us consider the problem
(2.4.3) — (2.4.9) for zero step. Notice that in this step there is no

boundary, so we use only initial conditions.

Theorem 2.6.1. Let @y(x3), Wi(x3), wi and ¢ (x3) be given continuous
functions depending on x3; uy(x3,t) is unknown function in the form (2.5.1). Then the solution

of the problem (2.4.3) — (2.4.9) for zero step is the following,
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1
3 [0 (3 + 0xt) + @ (3 — Ot )]

1 X3+t _
+T/ vi()dY, if (x3,1) € RI;
ak X3 — Oyt
Uk(X3,l) = (2.6.1)
1
5 Wiles + i) = wloxs — it )]
L vy f e 1) € R2
—f-i/ w(v)av, if (x3,t) € R2.
2Bk x3—Pt
where
X3 f{—x3
Rl = (X3,t)‘O<X3<f, < — At<
O O
x3—4
R2 = (X3,t)‘E<X3 <o, 1<
Br
foreachk=1,2,3.
Proof. Let us consider the problem (2.4.3) — (2.4.4) with initial conditions
(2.4.5) — (2.4.6) in the regions R1 and R2, respectively.
2.6.1 The Region R1
Let us consider the problem (2.4.3) —(2.4.9) in the region R1,
X3 {—x3
Rl = (X3,t)‘O<X3<f, < — AN t<
O O
for k=1,2,3.
The equation (2.4.3) can be written
dgr _ dqr
- —0=—=0 t) ER1 2.6.2
o %oy 0 (x3,7) €RI, (2.6.2)
8uk 8uk

5 —I—Otka—x3 = qi(x3,1), (x3,t) ERL. (2.6.3)
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For the solution of the problem, we use the method of characteristics. So, the characteristics of

the equations (2.6.2) — (2.6.3) are respectively,

d
di“o‘k, Et)=x3 : E=-ouT+x3+ou,
d
dizak, EM)=x3 ; E=ouT+x;3— oyt

By integrating along the characteristics, we get the following

qi(x3,1) = Wi (o3 + ogt) + e p. (x3 + ot

and
t a ot
/ — [uk(xg — oyt — 1), r)} dt = / Wi (x3 — oyt +2047)dT
0 dT 0
t
+ock/ O (x3 — oyt + 204 T)dT
0
Let
X3 — oyt +204T =7, 2opdt =dy
Yiow = X3 — Okt , Yup = X3+ Ot
So, we get

1
(03, 1) — (03 — 04t 0) = [i(x3 + 0t) — (s — 0yt )]

1 X3+ Ot J
+7/
206 ) o vi(y)dy

By substituting the initial conditions (2.4.5), we have the solution

1 1 X3+ 0t
ue(x3,1) = = [@rc(3 + ot ) + @i (3 — o)) + 7/ Vi(y)dy, (x3,t) €RI.
2 2ak X3 — Ot

2.6.2 The Region R2

Let us consider the problem (2.4.3) — (2.4.9) in the region R2, for each k= 1,2,3.

The equation (2.4.4) can be written

gk Iqx o
W— kai_xg —O, (X3,t) ER27 (264)
8vk 8vk

o5 T Bkg =qr(x3,1), (x3,1) €R2. (2.6.5)
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The characteristic of the equation (2.6.4) — (2.6.5) are respectively,

Zizﬁk, E(z)=t  &=Pt+xs—Pu.

Then by the same argument, we integrate along the characteristics so we get,

1 1 x3+ Bt
(1) = 5 B+ Bet) —wlos — Bun)] + 35 / By, () er

2.7 The First Step

The first step includes the regions R3, R4 and R5 (see, Figure 2.1). In this step, we consider

initial boundary data and also matching conditions defined on the boundary x = ¢.

Before finding the solution for the first step, we must define the following
functions,

8uk

ur(0,1) = gi(t), w(,t) = fi(t) and = Gi(1) . (2.7.1)

ax3 x3={
We must construct these functions by initial and boundary data and also by the matching

conditions.

Theorem 2.7.1. Let @y(x3), Wi(x3), wi and @ (x3) be given continuous
functions depending on x3; Fi(t) be given continuous function depending on t; uy(x3,t) is
unknown function in the form (2.5.1). Then the solution of the problem (2.4.3) — (2.4.9) for

the first step is the following,



16

X 1
8k <t — 3) +5 [k (23 + o) — Qr(—x3 + 04t)]

(04
1 x§+akt .
tao [ wlwdn, i) € R:
O J —x3+oyt

-/ 1
Ji <t+x3a )+2[‘Pk(xz»—akf)—(l’k(—xs—Olkl+2€)]
Ur(x3,1) = \ /m’&kt (2.7.2)

e vi(u)du,  if (x3,t) € R4;
Ol —x3—oyt+20

fi (f - X3B; 6) + % Wi (x3 + Bit) — wi(—x3 + Bit +20)]

Lo s dv,  if (o) €S
+7/ v)dv, if (x3,t) € RS.
2Bk J—xs B+t P ’

where

g_
RS:{(x3,t)‘O<X3<€, )(;—3<t< x3},

R4:{(x3,t)‘O<X3<€, e;x3 <t<x3} ,

x3—4 x3—/ 5}
R5 = x,t‘€<x < oo <t < +— >,
{imn]e< B B

and the functions defined in (2.7.1) are constructed by initial-boundary data and the matching

conditions as follows

k(1) = (oc(aut) — @i (0)) +/Ot Vi(out)dT — olzk/ot Fi(t)dt (2.7.3)
Gi(t) = ai fi() + @p(0 — oyt) — iyfk(e — oyt) (2.7.4)
k O
{— oyt
70 = s ot — o)~ 00— o [ s
B 1 (+But
+ %+ Be Wi (€ + Brt) —w(0)] + B // O (z)dz (2.7.5)

foreachk=1,2,3.

Proof. Let us consider the problem (2.4.3) — (2.4.4) with initial-boundary data (2.4.5) — (2.4.7)
and the matching conditions (2.4.8) — (2.4.9) in the regions R3, R4 and RS respectively.
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Now, we analyze the regions, independently.

2.7.1 The Region R3

Let us consider the problem (2.4.3) — (2.4.9) in the region R3 (see, Figure 2.1), for k =
1,2,3.

{—
R3:{(x3,t)‘0<x3<£, B o< x3}
O O

The equation (2.4.3) can be written as in the form,

Iqk dqr
W—(Xkaix3 —0, (X},t) €R37 (276)
8uk 8uk _
W+ak87)g = qr(x3,1) , (x3,1) €R3. (2.7.7)

The characteristic of the equation (2.7.6) — (2.7.7) are respectively,

d

diz_o‘k, EW)=x3 ; C=-uT+x+ou,
ﬂ:otk, EW)=x3 ; E=qT+x3—oyt and if £=0; T2
dt oY

By integrating along the characteristics,

qr(x3,1) = Wi (o3 + o) + 0y (x3 + Ot )

Then by integrating along the characteristic,

!
uk(X3,t) — Uy <O,t — Zs> — / . lllk(X3 — Oth+2(Xk’L')dT
k =2
%

t
+ak/ . O (x3 — oyt +2047)dT
o

Let
X3 — 0t +204T=V, 204dt =dv

Viow = —X3+ 04t Vup = X3+ Ot



By substituting the initial conditions (2.4.5), we have the solution

1
ur(x3,1) = gk <f - X3> + 3 [0k (x3 4 0t) — P (—x3 4 042

O

1 X340yt
+ / vi(u)du ,  (x3,t) € R3,

2(Xk —X3+0t

and the function g (¢) defined in (2.7.1) is the following,

ult) = (pulan) - 0u0) + [ we(aweidz— o [ (e,

2.7.2 The Region R4
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Let us consider the problem (2.4.3) — (2.4.9) in the region R4 (see, Figure 2.1), for k =

1,2,3.
/—
R4:{(x3,t)‘O<X3<€, ok
O

The equation (2.4.3) can be written as in the form,

dgi | Igx

L= =0, 1) ER4,

o "% (1)

Juy Juy,

X3

O

—— — Oy = t t R4 .
at kaX3 Qk(x37 ) ) (X}, )e

The characteristics of the equations (2.7.8) — ((2.7.9)) are respectively,

d
jzaky S(t)=x3 : E=muT+x3—out,
dt

d§

E:—(Xk, E=—oyT+x3+oyt, when§ =1 ;

By integrating along the characteristics, we get

qi(x3,1) = Wi (3 — o) — oy (x3 — Ot

|

(2.7.8)

(2.7.9)
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Similarly, we integrate along the characteristic and by using the boundary data (2.4.7), we get

the following formula

X3 —/¢
Ol

up(x3,t) = fi <l+ ) + % [k (x3 — o) — Qr(—x3 — ot +-20)]

1 X3 — Ot
~5 [ V()i . (x3.1) € R4
ak 7)(370@1‘4»21@

2.7.3 The Region R5

Let us consider the problem (2.4.3) — (2.4.9) in the region R5 (see, Figure 2.1), for k =
1,2,3.

Rsz{(x3,t)(e<x3<oo, %= 3t E}

<t<
B Be = o

The equation (2.4.4) can be written as in the form,

Iqk Iqr
o Pgn T 0, (x3,t) ERS, (2.7.10)
avk 8vk .
§+Bka73 = qi(x3,t) , (x3,t) €RS. (2.7.11)

The characteristics of the equations (2.7.10) — ((2.7.11)) are respectively,

Zi—ﬁk, E(t)=x3; &= PeT+xs—Put, when & =£; f:f—”ﬁf

So

qr(x3,1) = O (x3 + Bet) + Brew) (x3 + et

Similarly, by integrating along the characteristics and by using initial conditions, we get the

following formula

vi(x3, 1) = hy <f - X3ﬁ;€> + % [wi(x3 + Bit) — wi(—x3 + Bit +20)]
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Lo dv. () €RS
—1—7/ v)dv, (x3,t) €RS.
2B )y Butar ’

To find the functions fi(¢) and G (z) defined in (2.7.1), we must use the matching conditions

in (2.4.8) — (2.4.9).

2.7.4 Matching Conditions Between R4 and R5

The formula for the region R4 is in the form,

ug(x3,t) = fi (l - é_m) + %[(Pk()% — Ot ) — Pr(—x3 — oyt +20))]

O
1 /x3—ockt
- Vi(v)dv

204 J—x3—oyr+20 ’

and the formula for the region RS is in the form,

Vk(X3,t) =hy <l+ E;:S) + %[Wk()g —i—ﬁkl) —wi(—x3 +ﬁkl+2£)]

L
"‘7/ v)dyv .
2ﬁk —x3+ Pt +2¢ ¢k

By the first matching condition (2.4.8), we have,
Mk(é_ovt) = Vk(€+0at) = fk(t)

To use the second matching condition (2.4.9), we must differentiate the formulas for the regions
R4 and RS, and substitute x = £. Then we get the function Gy (r) defined in (2.7.1),

0 1 1
Gilt) = 2= = o O+ O o) — (0~ )

N a)@ x3=(—0 -

By using the second matching condition (2.4.9) and by integrating the resulting formula from

0 to t, we get the function f;(z) defined in (2.7.1) as follows,

{— oyt
70 = 52 lot—an - a0l - o [ wids

B 1 C+Byt
+O¢k+ﬁk [wi(0+ Bet) —w(£)] + ai B /K ¢(2)dz
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In zero and the first step, we have constructed the formulations of uy (x3,2), v¢(x3,7) and

the functions gx(¢), fx(¢), Gk(t) defined in (2.7.1) for n = 0 and n = 1. After the first step, we

generalize the number of the step with index n, for n =2,3,... So, we reformulate the initial

boundary value problem.
Initial boundary value problem is to find u,(x3,¢) in the form

Upk(X3,1 0<x3 <t
Unk(x37t) = " ( ’ )’
Vnk(X3,l‘), < x3 < oo,

foreachk=1,2,3and n=2,3,... satisfying

2 2
OUpe 507Uy

O0<x3<t, teR,

orr k8x32’
82vk 821/
2 k
az; — kax:w f<x3<o, teR,

with initial and boundary data,

u k
unk(x,0) = @r(x3) , (9; (x,1) 0T Vi(x3), 0<x3</,
ov k
vk (x,0) = wie(x3) 8: (x,1) o Pi(x3), £<x3<oo,
du
2 nk
= Fi(t teR
k ax3 x3=0 k( ) ’
and the matching conditions,
Unk - = Vnk
x3=0—0 x3=(+0
2 aunk _ ﬁz avnk
K 0xz ly=t—0 K 9x3 lxy=040

(2.8.1)

(2.8.2)

(2.8.3)

(2.8.4)

(2.8.5)

(2.8.6)

(2.8.7)

The General case includes the regions R(4n—2),R(4n—1),R(4n) and R(4n+1) (see, Fig-

ure 2.1). Notice that, unlike in the first step, in the general case we have an additional subregion,

namely the region R(4n-2).

However, similar to the first step, in the general case we consider initial boundary data and
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also matching conditions defined on the boundary x = /.

Before finding the solution for the general case, we must define the following

functions,

8 Unk

ul’lk(ovt) = gnk(t)v unk(‘gat) = fnk(t) and = Gnk(t) (2.8.8)

(9)(3 x3={

We must construct these functions by initial-boundary data and also by the matching conditions.
Similar to (2.5.1), the solution of the problem (2.8.1) — (2.8.7) for the general case will be

found in the following form by using the method of characteristics.

Ukn (X3,1) z{ Weam (x3,1),  if (x3,¢) € Rm (2.8.9)

Here, the index k denotes the component of the vector function u(x3,7), the index n denotes

the number of the step and the index m denotes the number of subregion.

Theorem 2.8.1. Let @y(x3), Wi(x3), wi and ¢ (x3) be given continuous
functions depending on x3; F(t) be given continuous function depending on t; uy(x3,t) is
unknown function in the form (2.5.1). Then the solution of the problem (2.8.1) — (2.8.7) for

the general case is the following,

X3 1 x3—4 1 X340
s (1 )+ o (455 ) e (-5
oy, H_% -
+75 | _qu Go-ox()d, if (x3,1) € R(4n—2);
O
X3 1 x3— 4 X340
8nk <t_06k>+2 |:f(n—1)k <t+ o > _f(n—l)k <t— % >:|
O H‘% .
T ) un Glu-ni(p)dp, if (x3,t) € R(4n—1);
%
Ol = (2.8.10)
x3—/ 1 x3 X320
Sk <f+ o > + 5 |:g(nl)k (l - ;k> —&(n—1)k <t+ % >:|
Ol [_% '
_7 [_;,_é F(nil)k(/)/)d’y’ Uc(x37t) S R(4n),
O
—/ 1
Sk <t_x3 > + = [wi(x3 + Bit) — wi(—x3 + Bit +20)]
N
X3 k
+7/ $(V)dv, if (x3,t) € R(4n+1).
2 —x3+ Pt +2¢
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where

k O O

—1)e 0
R(4n—1):{(x3,t)‘0<x3<€, Bptm-DE_ _n x3}

O O

O

— —1
R(4n):{(x3,t)’0<X3<€, nt x3<t<x3+(g)£}
k
B (n—1)¢ x3—0 nl
R(4n+1) = {(J@,t)‘ (< x3<oo, P <t B ”

for each n =23, ... and the functions defined in (2.8.8) are constructed by initial-boundary
data and the matching conditions as follows

L L ¢ ¢
Gnk(t) = ;kfnk(t) - Ekg(n_l)k (l — (Xk) +F(n71)k (t — ) ,

(2.8.11)
O
0= () e (] vt
Enk\l) = | J(n—1)k o (n—1k o X _aik k(Y
1 t
"o Jo DT (2.8.12)
Oy Jo
O l > < ¢ ) ﬁk
k() = n— t—— | —gm- = N+ we(l Bt
T (t) ak+ﬁk[g( l)k( o) "8k T ] i 0+ Bt
B 0‘/3 /toﬁk
— E _ F ) d
ock+[3ka() ot B ) (n—1)k(s)ds
1 O+Pyt p s
+ak+ﬁk/g 0c(2)dz o83

foreach k=1,2,3 and n=2,3,...

Proof. 1f we notice the subregions in 0 < x3 < ¢, namely the regions R(4n—2),
R(4n—1) and R(4n) (see, Figure 2.1), we do not use the initial conditions. Instead, we use

the functions, defined in (2.8.8). As a result of this situation, the formulation of the defined

functions (2.8.11) — (2.8.13) is in the form of recurrence relations.

Now, we analyze the regions, independently.
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2.8.1 The Region R(4n-2)

The region R(4n—2) has a different form (see, Figure 2.2). We use the boundary

condition Fi(¢) and the functions f(n,l)k(t), gn—1)k and G(,_1);, which we must find in the

previous step.

14
In this region, we assume that there is a jump at x = 7 We will apply the following matching

conditions when the speeds are the same.

(e~ 0,6) = (- 4 0,1) (2.8.14)
2 2
du du
2 nk 2 nk
= 2.8.1
(ak) ax3 X3:%—O ((Xk) 8X3 X3:%+0 ( 8 5)

—

—

Jin-1)k Jin—1)k
Fi G in 1)k
L L3

Figure 2.2 The Region R(4n-2)

Let us consider the problem (2.8.1) — (2.8.7) in the region R(4n-2), for k =1,2,3. and
n=23,...
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The equation (2.8.1) can be written as in the form,

aan aan o

G g =0, (u1) ER(n-2), (2.8.16)
At Otk .

ot _akaS _an(x37t) ) (X3,l) GR(4n_2)' (2817)

The characteristics of the equation (2.8.16) — (2.8.17) are the following,

d

—‘::ak, é(l):)@; §:akr+x3—akt,when§:0; T:l—xi,

dt O

a8 oy, (1) & 04T +x3 + oyt ,when & ‘ T t+2x3_€
Jz k 5 3 k 3+ 0 5 20,
By integrating along the characteristic £ = x3 — o4 (¢ — 1), from 7 — )(;—3 tot,
k
X3
1) =gt — =
qnk(X351) = g(n—1)k( ak)

) ) . 2x3—4

Then by integrating along the characteristic & = x3 4 04 (t — 1), from 7+ o
k
tot,
4 0 4 X3
— o (t—1),7 d‘c:/ dl2t—t—=2)dr
[y gttt —aoae= [ o (200 32)
Let .
Zr—t—izu, 2dt=du
k
x3—F X3
Hiow =1+ y .uup:t_i

14
By letting unk(i,t) = my(t), we get

2x3—4 1 X3 x3—4
Ui (X3,1) = My (l‘—l— 20, ) + 5 [g(nl)k <l— OCk> —&(n—1)k <t+ % >:| . (2.8.18)

Similarly, the equation (2.8.1) can be written as in the form,

8an 8an . .
o %on =0, (x3,7)€R(4n—-2), (2.8.19)
Pk 5 Pk _ g (x5,1) ) () € R(dn—2) (2.8.20)

ai
ot %o
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The characteristics of the equation (2.8.18) — (2.8.19) are the following,

d —/
—éz—(xk, Et)=x3; E=—uT+x3+oyt, when§ =/, T=r4 3 ,
dt O
ds oy, E(1) E=yt+ oyt, when & ! T t+€_2x3
== =x3; &= X3 — Oty W =—; T= .
it k s 3 k 3 0% > 20
. . .. X3 —/
By integrating along the characteristic & = x3 + oy (7 — 7), from ¢+ m tot,
k
o X3 —/ —6
an(X3,l) —f(nfl)k <[+ 70% ) + (XkG(n 1)k <[—|— &% >
Similarly, by letting M”k(i +0,7) = r(¢) and integrating along the characteristic
£ —2x3
& =x3—0y(t—1), from 7+ (x to 7, we get
k
f— ZX3 1 X3 — J4 X3
Unk(X3,1) =1 (“r 20 ) +§ [f(nl)k <f+ % ) — fin—1)k (t— a}{)]
o [
7" Y Glp(z)dz (2.8.21)

If we use the first matching condition (2.8.14), we get

+ [f<t_2ik> ( 2ak)

If we substitute the function m(¢) into the formulation (2.8.21),

X3 x3—¥ 1 x3+4
unk(x37t) 8(n—1)k <t o >+ fn 1)k ( o >_2f(nl)k <t— ) >

x3—t
O oy,
+7 t,xﬂf Gn-1(M)du, (x3,t) €R(4n—2).

O

we get
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2.8.2 The Region R(4n-1)

Let us consider the problem (2.8.1) — (2.8.7) in the region R(4n-1), for k=1,2,3. and
n=2,3,...

—1)e 0
R(4n—l):{(X3,t)‘0<X3<€, prm-DE_ _n x3}

O O

The equation (2.8.1) can be written in the form,

aqmc o aan o

5 I o 0, (x3,)ER(4n—1), (2.8.22)
utyi Oty o
o + Otka—x3 = gu(x3,1), (x3,1) ER(4n—1). (2.8.23)

The characteristics of the equation (2.8.22) — (2.8.23) are the following,

d —L
—‘S:—ak, é(t)ZJQ; gz—(XkT+X3+O¢kt,When£:€; ’L'Zl—l—xs ,
drt Qi
d& ) X3
— =0 t) = ; =T — oyt dif §=0; 7=1t——.
it ko E(t)=x3 € xT+x3—oyt and if & o
-4
So, by integrating along the characteristic & = x3 + o4 (t — 7) from 7+ B ,tot,

O

x3— 10 x3—/4
G (x3,) = flu_ 10 <t+ 3ak >+ockG<n1>k <t+ 3ak > ,

By integrating along the characteristic, & = x3 — oy (t — 7) we get the solution

X3 1 x3—F x3+ 4
Unk (X3,1) = gnk (f—ak>=2[f(n1)k <f+ o >_f(nl)k <f— o ﬂ

x3—¢
O I+ o

2 ¢ x3+
e

+ G(,,,l)k(u)du , <X3,l‘) ER(4n—l).

And the function g, defined in (2.8.8) is in the form,

0 l I
gnik(t) = [f(n—l)k (t— Otk) — fin—1)k <_06k>] +0¢k/7i Gu—1(Y)dy

%

1 !
—— | Fy(t)drt.
O Jo nk(7)
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2.8.3 The Region R(4n)

Let us consider the problem (2.8.1) — (2.8.7) in the region R(4n), for k= 1,2,3. and
n=2,3,...

(— —1)¢
R(4n):{(X3,t)’O<x3<€, & x3<t<x73+(n ) }
O O

The equation (2.8.1) can be written as in the form,

8an aan -
> + 0y s =0, (x3,¢) €R(4n), (2.8.24)
Aty Jutpy
o1 - OCkT)% = an(X3,t) y ()C},t) € R(4n) (2825)

The characteristics of the equations (2.8.24) — (2.8.25) are the following

=0, S =xn 5 f=art+m—ou and if §=0; T:t—)(;—i,
d —/
jI—OCk, 5(1‘)2)63 E=—oyT+x3+oyt, whené =1/, T:t—I—X3
dt o
So, by integrating along the characteristic & = x3 — 0 (t — 7) from ¢ — )(;—3 tot,
k
X3 X3
antes) =g (1= 50 ) ~ouFenn (151 )
. . ) . x3— /4
Similarly, by integrating along the characteristic & = — 04T + x3 + o from 7 + p tot, we
k
get
x3—4 1 X3 x3—2/0
Unk (X3,1) = fuk <t+ % > + 5 [g(,,_l)k (l — E[{) —g(n_l)k<t+ % )
o ["a
Fou—k()dy,  (x3,t) € R(4n). (2.8.26)

A
2. S
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2.8.4 The Region R(4n+1)

Let us consider the problem (2.8.1) — (2.8.7) in the region R(4n+1), for k=1,2,3.andn=
2,3,...

— 1) -0 nl
R(4n+1):{(X3,t)’€<x3<00, (nak) <t—x3ﬁk <Zk}

The equation (2.8.2) can be written as in the form,

aan aan .
Y — B s =0, (x3,1) €ER(4n+1), (2.8.27)
8vnk 8v,,k _
o +Bka—xs—an(x3,t), (x3,t) €R(4n+1). (2.8.28)

The characteristics of the equation (2.8.27) — (2.8.28) are the following,

d
%o B E)=r s &= Batntha,
d —/
—ézﬁk, E(xs)=t ; E=Pt+x3—Pur, whené =1/, T=1- 3
dt ﬁk
So, by integrating along & = B, T+ x3 — it from O to t,
Gk (x3,1) = G (x5 + Bit) + Bew (43 + But),
- . : - x3—{
Similarly, by integrating along the characteristic & = BT +x3 — it from 7 =1¢— B tot,
k
we get
x3—¥ 1
Vak(X3,1) = fuk (t R ) +3 Wi (x3 4 Brt) — wi(—x3 + Bt 4 20)]
1 X3+t
T / 0c(V)AV , (x3,1) € R(4n+1). (2.8.29)
2P J—x3+pur+2t

2.8.5 Matching Conditions Between R(4n) and R(4n+1)

Consider the formulations in (2.8.26) — (2.8.29) for the regions R(4n) and R(4n+1).

By the first matching condition (2.8.6), we get the relation

Unk(£—0,1) = i (£ +0,1) = fru(2) (2.8.30)



30

To apply the second matching condition (2.8.7), we must differentiate the formulations in

(2.8.26) — (2.8.29), then by substituting x3 = ¢, we get the function G, (¢) defined in (2.8.8)

Dt 1 1 0 ¢
p— == — —_ _— F -
G (1) I et o akfnk(t) B0k (P~ ) F e (1=

and by the second matching condition (2.8.7), we get the function f(¢),

(07 ! !
Sk (t) = akaBk[g(nfl)k <t - O£k> —8(n—1)k (-(xk)]

Br 1 O+ Byt
o (B ]+ o [ auadds

o [
— Fo_ni(s)ds .
Wﬁk/;k e

2.9 Examples of Simulations of Wave Propagation in Two Layered Medium

In this section, we deal with examples of simulations of wave propagation in two layered
elastic half space. As the mathematical model of wave propagation, we study IBVP of wave

equations in two layered medium.,

We took a pulse point source in different positions in half space: Between the boundaries
x3 =0 and x3 = ¢, outside the boundary x3 = £. In each case, the half space has two layers
with different speed. The speed of the first layer is ¢ = 1 and the speed of the second layer

is B =2. We considered the matching conditions (2.4.8) —(2.4.9) only on the boundary x3 = ¢.

For all examples, we omit the index k for simplicity writing.

2.9.1 Example 1 - The Pulse Point Source is Between the Boundaries x3 =0 and x3; ={

Let us consider initial boundary value problem (2.4.3) —(2.4.9) with its general form
(2.8.1)—(2.8.7) fork=1and n=2,3,... The initial conditions ¢(x3), y(x3), w(x3), ¢(x3)

have the following form

0(x3) = 8(x3—1x3), W(x3)=0,
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w(x3) =0, ¢(x3)=0.

where & (x3) is Dirac delta function, the boundary ¢ = 40, the point source is located at xJ = 10
and the boundary condition

F(x3) =0.

By the properties of Dirac delta function and the assumptions, the solution of IBVP can be

written as follows:

% [5(x3+at—x(3))+5(x3—at—x(3))] , if (x3,¢) € R1;
U(X3,l):
0, if (x3,1) € R2.
X3 1
g(1 —a>+i'5(X3+O£t—x3)
—§~5(—X3+O{t—x(3)), if (x3,1) € R3;
x3—4 1
U(xs,t) = f(t—i— 3a >+2-5(X3—(Xt—x(3))
—%'5(—x3—at+2€—xg), if (x3,1) € R4;
f(t—x3ﬂ_£>, if (x3,¢) € R5.

Here, the function g(r), f(z) and G(¢), constructed in Theorem 2.7.1, can be also written as

g(1) = 8(ar —5),

G(r) = oc(a[:-ﬁ)'gt [6(6—ar —3)]
£(0) = aiﬁ S0 — at— )

Forn=2,3,...
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X3

1 X3—€ 1 X3—i—€
&(n—1) (t_a>+§'f(n71) <l+ p” >_2f(nl) (f— o )

x3—L

o (T i
+§/t e C-n()du, if (x3,1) € R(4n—2);

1 53—/ +/
8n (t_%> +§ |:f(n1) <t+xga ) _f(nfl) (I_XB)OC >:|

a [(t~a _
Ulxs,t)=4 T3 A Gur)(1)dp, if (x3,¢) € R(4n—1);
x3—24 .
) 'g(n—l)<t+ s ), if (x3,¢) € R(4n);

Jn <t—x3_€>, if (x3,7) ER(4n+1).

Here, the function g, (¢), f,(t) and G,(t) are constructed in Theorem 2.8.1, can be also written

asforn=2,3,...

with
B e, 0
G (1) a(atp) o [6(0— ot —x3)]
Gn1)(1) = é Sy (8) = 82 <f_ i) ;
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By using Matlab codes, we simulate the solution of IBVP (2.8.1) — (2.8.7)

02

g 018
06 016
04 014
02 o 0.12
01
0m 008
006

004 004

005 o 002

% m W 4 % @ @ @ i 10 2 0 40 50 e 70 80 o 100 0 10 220 3 40 5 60 70 80 9 100

(@t=0 by t=5 (c) =20

| E 0.1
Mo wm @ wm e 70 s @ o m w a@ B ® 70 e @ m 0 0 0 30 4 & B0 70 81 90 100

(d)t=35 (e) t =55 )t =75

Figure 2.3 Uy(x3,7) in two layered medium

In these figures, we simulate the wave propagation in two layered elastic half space that
is the first layer is located 0 < x3 < 40, while the second layer is located 40 < x3 < oo (the
boundary ¢ = 40).

In the figures, the horizontal axes x and the vertical axes y show the location and the mag-
nitude of the wave front, respectively. In figure (a), we can see the fluctuation arising from
the pulse point source xJ = 10, described by the function ¢(x3) = §(x3 —x3). In the figure
(b), the separated waves began to move to the opposite sides along the characteristics. In the
figure (c), The wave front that is moving to the left, touches the boundary x3 = 0, while time
is passing. Then it turns back and starts to move to the right. This time, they both move to
the right. In the figure (d), the reflected and transmitted waves can be seen after the wave front
touched the boundary x3 =40 . Notice the magnitudes of the reflected and transmitted waves,
The substraction of reflected wave form the transmitted wave, gives us the previous magnitude
of wave front in. And the magnitude of the reflected wave in the figure(d) has the negative sign,
this is the result of that the speed of the second layer is bigger than the first one. (For more

details, chapter 4)

In the figure (e), similarly the other wave front is separated into the reflected and the trans-
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mitted waves. When the reflected waves are moving to the left, the transmitted waves are
moving to the right. In the figure (f), the reflected wave touches the boundary x = 0, it turns
back and starts to move to the right similar to the figure (c). And one of the transmitted waves

disappears by the time is passing.

2.9.2 Example 2 - The Pulse Point Source is between { and -

Let us consider initial boundary value problem (2.4.3) —(2.4.9) with its general form
(2.8.1)—(2.8.7) fork=1and n=2,3,... The initial conditions ¢(x3), y(x3), w(x3), ¢(x3)

have the following form

(P(X3) = Oa

v(x3) =0,

where 9 (x3) is Dirac delta function, the boundary ¢ = 40, the point source is located at xg =060
and the boundary condition

F(x3) =0.

From the properties of Dirac delta function and the assumptions, the solution U (x3,7) of IBVP

can be written as follows:

0, if (x3,¢) € R1;
U()C3,l‘) =
1
5[5(X3—|—ﬁt—xg)—5(x3—ﬁt—xg)] , if (x3,7) € R2.
0, if (x3,1) € R3;
x3— 4 . .
flt+ ; if (x3,1) € R4;
Ulxs 1) = “

B
§(—x3+ Bt +20—x9), if (x3,¢) € RS.
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Here, the function f(#) and G(f) are constructed in Theorem 2.7.1, can be also written as

G(t)_(x((xﬁ—i—[})gt [5(€+ﬁt_x(3))] )
__B )0
f(t)—a+B-5(€+[3t x3) .

FOrn:2’37‘”
( X3 1 X3—€ 1 x3_|_€

g(n_l)(t_a)JrEf(n_l) (t+ o )_2f("—1) <t_ a >
o [ .

+5/tfw Guony(w)dp,  if (x3,1) € R(4n—2);

X3 1 x3—4 X340

gn(t_a)+2|:f(n—l)<t+ o >_f(n—1) <t— p >:|
o [ .

+5 | e Go-nW)du, if (w,0) € R(4n—1);

U(X3,[): o

x3—F 1 X3
In (’* a )*z'&nw(f‘a)
1

Y
e ) if (x3,1) € R(4n);

—{
1= ) 5 Bk pr )

—3-8(—x3+Pr+20—x9), if (x3,7) € R(4n+1).

Here, the function g, (¢), f,(t) and G,(t) are constructed in Theorem 2.8.1, can be also written

) Grl1) = g i)~ gy (1= 3 ).
)= [1 (=)~ (~5) ]+ [ G,
70 =5 g (1 )~ (i )1+ g0+ B =),
with
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o
fi(t) f—ﬁ S0+ Bt —1xI)
For 0= gl (1= 5 ) ~ g0 (g )1+ g O(E+Br—ad).

03 03

018
016
014 0

008
015

006
004

i
0 20 30 40 & 60 70 80 90 im0 0 10 20 3 4 50 60 70 80 90 100

(@t=0 b)yt=5 (c)t=15

01
0 10 2 30 4 5 60 70 81 9% 100 0 0 220 3 40 & 60 70 80 90 100 0 10 20 30 40 & B0 70 81 90 100

(d) t =40 () t=170 (f) t =95

Figure 2.4 Uy (x3,t) in two layered medium

Similarly, in these figures, the boundary is located at ¢ =40 and the pulse point source
is located outside the boundary ¢ = 40, at xg = 60. In figure (a), we can see the fluctuation
arising from the pulse point source xJ = 60 described by the function w(x3) = §(x3 —x3). In
the figure (b), the separated waves begin to move along the characteristics. In the figure (c), the

reflected and transmitted waves can be seen after the wave front touches the boundary x3 =40.

In the figure(d), the reflected wave continues its movement to the right while the transmitted

wave moves to the left. By the time is passing, the transmitted wave touches the boundary of
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the half space, then starts to move to the left in the figure(e). In the figure(f), the wave front

are separated into the reflected and the transmitted waves because of the boundary located at

x3 = 40.

Notice that, the magnitude of the reflected wave in the figure(f) has the negative sign, this is
the result of that the speed of the second layer is bigger than the first one. (For more details,

chapter 4)
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2.10 Conclusion of Chapter Two

e The system of elastic waves is reduced to IBVP of anisotropic layered elastic half space.

e Explicit formulae for the solution of IBVP with matching conditions has been con-

structed.
e Using this formulae, the simulation of wave propagation has been obtained.

e Results of the simulations have clear physical interpretation of wave

propagation in two layered media from the point source.



CHAPTER THREE
INITTIAL VALUE PROBLEM IN THREE LAYERED MEDIUM

Let us consider the problem (2.3.6) — (2.3.10). In this work, we omit the index k for sim-

plicity writing. Let (x,z) € R?, ®(x),¥(x) and d(x) have the following form,

dy, —oo<x<O0;
dx)=4 d, 0<x<£ (3.0.1)
di, {<x<oo.
©o, —o<x<O0; Yy, —o<x<0;
Px) =< @, 0<x< Px)=14 v, 0<x</ (3.0.2)
P2, L<x<oo. Vo, £ <x< oo

where dy, di, d are given constants; @y(x), @1(x), @2(x), Yo(x), yi(x) and ya(x) are given

functions depending on x.

In addition, we assume that there is no boundary condition and we have the matching con-

ditions not only on the boundary x = ¢, but also on the boundary x = 0, as the following

differential problem,

2%u 2%u

ot?

with initial data,

u(x,0) = @(x), g? o Y(x), —oo<x<0,0<x<ll<x<oo,
and the matching conditions,
uo(x,1) 0T u(x,1) o
ac?T(x’t) —0 ac;jcl(x’t) x=+0
(1) wmto 2 (1) x=(+0
a;;cl(x’t) y=l—0 a;;z(x’t) x=(+0
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—— —d*(x)=5 =0, —wo<x<0, 0<x<{, {<x<oo, tER,
ox?

(3.0.3)

(3.0.4)

(3.0.5)

(3.0.6)

(3.0.7)

(3.0.8)



3.1 IVP of Wave Equations in Three Layered Medium

Far n=3

For n=2

Ri5n-2)

Rian+2)

Figure 3.1 The Regions with index n =2,3,4,...
Initial value problem (3.0.3) — (3.0.8) may be written in the term of

uo(x,t), —oo<x<0;
u(x,t) = up(x,t), 0<x<4,

ur(x,1), £ <x<oo.

as follows
%ug 282140
o2 OWZO, —0<x<0, tER,
(92141 282141
o 1W:0’ 0<x</, t R,
(921/!2 2(92142
W_Zaxz =0, €<x<°°7 t € R,
with initial data,
dugy
u()(x70) :(p()(x), a— :‘[l/o(_x)7 —00<_x<0’
t 1t=0
8141
(x,0) = ¢1(x), or =y (x), 0<x</¥,
t =0

40

(3.1.1)

(3.1.2)

(3.1.3)

(3.1.4)

(3.1.5)

(3.1.6)
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O:wz(x), l < x < oo, (3.1.7)
=

uz(x,O) = (PZ(X)7 W

the matching conditions firstly defined on the boundary x = 0,

uo(x,1) = uy (x,1) (3.1.8)
x=—0 x=+0

dug du,
dy——(x,t =di t 3.1.9
0 dx (%,1) =0— ' ox (x,1) x=0+ ( )

and also defined on the boundary x = ¢,
= 1.1

ui(x,1) o up(x,1) o (3.1.10)

8u1 9M2
di— =dy == 3.1.11
U ox (%,1) =0 2 ox (x,1) x=(40 ( )

3.2 Construction of the Solution

Similar to the previous chapter, to find the solution, we separate half space into subregions
and the solution of the problem (3.1.2) — (3.1.11) is investigated in these subregions, indepen-

dently by using the method of characteristics.
u@ﬂZ{M@n,ﬁuﬁeml (3.2.1)

Here, the index m denotes the number of subregion.

3.3 Zero Step

Zero step includes the regions R1, R2 and R3 (see, Figure 3.4) Let us consider the problem

(3.1.2) — (3.1.11) for zero step. Notice that in this step we use only initial conditions.

Theorem 3.3.1. Let ®(x) and ¥(x) are given continuous functions as in the form (3.0.2)
depending on x; u(x,t) is unknown function as in the form (3.1.1). Then the solution of the

problem (3.1.2) — (3.1.11) for zero step is the following,
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! [%(H dot) + o (x — dof)}

2 1 x+dot
+*/ wo(7)dy, if (x,t) € R1;
2do Jx—dor

% [q)l(x—f-dll) + @ (x—dlt)}

M()C,t) = 1 x+dit (3.3.1)

t3ar / vi(vdy, if (x,t) € R2;

2d1 x—dit
1
3 [9”2(954"0121) —sz(x—dzt)}

1 x+dat

+*/ v (7)dy, if (x,1) € R3.

2dy Jx—dot

where

Rlz{(x,t) —0<x<0, t<x}
do

g_
R2 = (x,t)‘0<x<€, t<—i At< al
d; d;

-/
R3 = {(x,t))€<x<<x>, r<t }
dp
Proof. Let us consider the problem (3.1.2) — (3.1.4) with the initial data (3.1.5) — (3.1.7) in
the form, for each of the regions R1, R2 and R3,

82u,- 2 82141-

Ior,
ot? L ox?

=0, i=0,1,2

W0 =00, 0=y =012,

If we rewrite the first equation as the following

dqi dqi _ . .
W—dlg —0, (x,t) GR(Z), l—0,1,2.
aui 8ul~ _ . .
W—i—d,-gfq,(x,t) (x,t) €R(i), i=0,1,2.

The characteristics of the equations are respectively,

dég
i _di )
dt

g _
dt

g(t):x ; 5:—dﬂ'—|—x+dﬂ‘, i:O,l,2.

d;, é(t):x ; ézdﬂ'—kx—dit,, i=0,1,2.



By integrating along the characteristics, we get the following
qi(x,t):l//i(x+dit)+di(p{(x+dit), i=0,1,2.
and
1 a t
/ = [uite—dite— ), )] a = dl-/ ¢! (x — dit +2d;7)d
0 dt 0
t
—I—/ l[/i(x—dit—i-ZdiT)dT, i=0,1,2.
0

Let
x—dit+2dit=v7y, 2didt =dy

Yiow =X —dit | Yup =x—+dt

By substituting the initial conditions, we get

x+d;t

) = 5 [+ di) + oa—an) + 50 [ winay

x—d;t

where 1=0,1,2. Hence,

up(x,t) = % [(po(x +dot) + @o(x — dot)}

1 x—+dot
b5 | wndr, (wnert,
2dO xfd()t

1
up(x,t) = 5 [(pl (x+dit) +@Qi(x—dit)

1 x-+dt
bar [ war, o ere,
2d1 x—dit

up(x,t) = % [(pz(er dot) + @2 (x — dot)

1 x+dot
b5 [ wndr (e,
2d2 x—dpt

43

(3.3.2)
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3.4 The First Step

The first step includes the regions R4, RS, R6 and R7 (see, Figure 3.4). In this step, we
consider initial data and also matching conditions defined on the boundaries x = 0 and x = /.
Before finding the solution for the first step, we must define the following

functions,

du du
5o lio = G(t) and —| =H(). (3.4.1)

M(O,l) = g(l), M(EJ) = h(t)’ Ox lx=t

We must construct these functions by initial data and the matching conditions.

Theorem 3.4.1. Let ®(x), ¥(x) be given continuous functions depending on x in the form
(3.0.2); u(x,t) is unknown function in the form (3.1.1). Then the solution of the problem
(3.1.2) — (3.1.11) for the first step is the following,

1 5 )4 5 [l o) = o+ o)

1 x—dot )
s | i, if(r) € R
2dO 7x7d()t

et=3 )+ 5otk = gr(ox- )

1 x-+dt
“‘7/ vi(v)dv, if (x,t) € RS;
2d1 —x+dit

w(x,t) = (3.4.2)

(—x\ 1
y a + 51 (x—dit) = 1 (—x— i +20)]
1

1 x—dit
_*/ vi(n)dn, if (x,t) € R6;
2dy J—x—dyi+20

h(t—

—x\ 1
h <z+ y x) + 5 2 (x+dot) = o (—x+dot +20)]
2

1 x-+dat
e / w(Wdv,  if(x1) €RT.
\ 2dy Jxidpry20

where

R4:{(x,t)‘ —0<x<0, —x<t<£—x}

RS—{(x,t)’ 0<x</? and x<[<£—x}
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/—
R6 = (x,t)‘ O<x<l and —><t<>
d d

x—4 x—0 !
R e oo - i
7 { (x,t)’ (<x< and & <t < & +a’1}

and the functions defined in (3.4.1) are constructed by initial data and the matching conditions

as follows
G(1) = —dllg’(t) + @i (dir) + dllllh (dyt) (3.4.3)
H(t) = U;lh’(t) + @i (0 —dit) - ;11//1 (¢ —dir) (3.4.4)
dp d
g(t) = dotd, (%(_dot)_%(o))+do+dl("" (dit) — ¢1(0))

1 —dot 1 dit

T drd /O Yo(s)ds + o d /0 Vi (z)dz (3.4.5)
h(e) = — (1 (= dit) = 91 (0)] + 2 g (£+dat) — 9a(0)]
di+dy di+d>

1 {—dt {+dyt

T ditd /[ Vi (s)ds+ it /e v (z)dz (3.4.6)

Proof. Let us consider the problem (3.1.2) — (3.1.4) with initial data (3.1.5) — (3.1.7) and the
matching conditions (3.1.8) — (3.1.11) in the regions R4, R5, R6 and R7 respectively.

Notice that, since u(x,) is defined as in (3.1.1), then the functions, defined in (3.4.1), can

be written as follows Now, we analyze the regions, independently.

3.4.1 The Region R4

Let us consider the problem (3.1.2) — (3.1.11) in the region R4 (see, Figure 3.4),

X {  x
R4 — ,z‘—oo 0, - it X
{(x ) <x< d0< <d1 do}
The equation (3.1.2) can be written as in the form,
dqo |, 9qo
——+dop—=—=0 t) €ER4 3.4.7
ot +do ox ) (x7 ) S ) ( )
d d
TN 0B = go(x,t),  (x.f) € R4. (3.4.8)
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The characteristic of the equation (3.4.7) — (3.4.8) are respectively,

d

S —do, EW=r 5 E=dorrr-du,
dé : X
—=—dy, E(t)=x ; E=—-dyt+x+dpt and if £=0; T=1+—.
dt do

By integrating along the characteristics,
qo(x,1) = o (x — dot) — do g (x — dot )
Then by integrating along the characteristic,

t
uo(x,1) — up (0,t+x) = Yo (x+dot —2dpT)dT
do 1+

t

—dy ] (p(/)(x+d0t—2dof)df,

t+%
Let
x+dot —2dpTt=1 , —2dodT =du
Hiow = —x—dot , Hyp =X — dot

By substituting the initial conditions (3.1.5), we have the solution and by the function g(¢)
defined in (3.4.1)

i) =g (14 ) + 3 bt o)~ (- dor)

1 x—dot
-5 / Vo(u)du , (x.1) € R4,
2d0 —x—dyt

3.4.2 The Region R5

Let us consider the problem (3.1.2) — (3.1.11) in the region R5 (see, Figure 3.4),

?—
R5 = (x,t)‘ O<x<f and —<t<-—2>
di di

The equation (3.1.3) can be written as in the form,

2 —0, (x,1)€RS, (3.4.9)
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duy du;
=5 +d1§ =qi(x,t), (xt)€ERS. (3.4.10)

The characteristic of the equation (3.4.9) — (3.4.10) are respectively,

d
diz_dh §)=x ; &=-dit+xtdt,
d
di:dl’ Et)=x ; E=dit+x—dit and if £=0; r:t—dil.

Similarly, by integrating along the characteristics,
q1(x,1) =y (x+dit) +d1 @) (x+di1)

By the same way in the region R4 and the function g(7) defined in (3.4.1), we get

=g (1= 5 ) + 3ot di) - pu(-x-taio)]

1 x+dit
+7/ yi(v)dv, (x.1)€RS,
2d, —x+dt

To find the functions defined on (3.4.1), we must apply the matching conditions between R4
and RS.

3.4.3 Matching Conditions Between R4 and R5

The formula for the region R4 is in the form,

wo(x,1) = g <z+ d’;) + % (00 (x — dot) — @o(—x — dot)]

1 x—dot

s | i, (k) € Ra,
0 J —x—dpt

and the formula for the region RS is in the form,

=g (1= 5 )+ 3ot di) - (-t

1 x+dit
+7/ yiV)dv, (x1) €RS,
2d, —x+dt
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By the first matching condition (3.1.8), we have,
u(_()?t) = M(+O,l) = g(t)

To use the second matching condition (3.1.9), we must differentiate the formulas for the regions

R4 and R5, and substitute x = 0. Then we get the function G(¢) defined in (3.4.1),

1 1
Gl1) =~ 5-4/(0)+ 9{(dir) + -y (air)

By using the second matching condition (3.1.9) And we get the function g() as follows,

d() dl
1) = —dot) — @y (0 dit) — @ (0
8(1) = o= (Pol(—do) = 9o(0)) + (1 (dit) — 91(0))
1 —dot 4 1 dit 4
“dord o vo(s) St v d vi(z)dz

3.4.4 The Region R6

Let us consider the problem (3.1.2) — (3.1.11) in the region R6 (see, Figure 3.4),

{—
R6 = (x,t)‘ O<x<l and —><r<>
di di

The equation (3.1.3) can be written as in the form,

Iqi dq .
W_Fdlﬁ =0, (x,t) € R6, (34.11)
8u1 8u1 .
W—dlx—ql(x,t), (x,t)€R6 (3412)

The characteristic of the equation (3.4.11) — (3.4.12) are respectively,

E:dl’ Et)=x ; E=dit+x—dit,

d l—
diz—dl, Et)=x ; E=—-dit+x+dit and if E=0; T=1— ay

Similarly, by integrating along the characteristics,

q1(x,t) = yi(x —dit) — d1 ] (x — dit)
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By the same way in the region R4 and the function /(z) defined in (3.4.1), we get

ui(x,t)=nh (t— €d_1x> —l—%[(pl(x—dlt)—(pl(—x—d1t+2€)]

1 x—djt
_g/ WI(n)dn ’ (X,t) € R6>
1 7x7d1t+2/f

3.4.5 The Region R7

Let us consider the problem (3.1.2) — (3.1.11) in the region R7 (see, Figure 3.4),

R7:{(x,t)‘ f<x<oo and Xt Xt E}

R A

The equation (3.1.4) can be written as in the form,

g Iq2 .
W—dzx—o, (X,I)GR7, (3413)
Juy duy
W‘i‘de —L]z(x,t) s (X,t) € R7. (3.4.14)

The characteristic of the equation (3.4.13) — (3.4.14) are respectively,

d

jz_d27 EW)=x ; E=—-drt+x+dyt,

drt
d 0 —
—é:dz, Et)=x ; E=dyt+x—dy and if &=/, T:t—l——x.
dt dp

Similarly, by integrating along the characteristics,
QQ()C,I) = l[/z(X-i-dzt) +d2(p£(x+d2t)

By the same way in the region R4 and the function /(z) defined in (3.4.1), we get

{— 1
ur(x,t) =h <t+ dx) t5 [@2(x+ dat) — @2 (—x + dat +20)]
2

1 x+dot
—"_7/ WZ(V)dV ) ()C,t) €R77
2dy Jxtdrti2¢

To find the functions defined on (3.4.1), we must apply the matching conditions between R6
and R7.
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3.4.6 Matching Conditions Between R6 and R7

The formula for the region R6 is in the form,

un(e,) = h <t _ Kd—lx) + % (01 (x— dyt) — @y (—x —dyz +20)]

1 x—dt

—sa | widn. () e,
2dy J—x-dyi+2t

and the formula for the region R7 is in the form,

(- 1
up(x,t) =h <t+ dzx) + 3 [@2(x+dot) — @2 (—x+ dat +20)]

1 x+dot
+7/ w(Mdv, (un1)€RT,
2dy J—xtdyt+20

By the first matching condition (3.1.10), we have,
u(l—0,t) =u({+0,t) = h(r)
To use the second matching condition (3.1.11), we must differentiate the formulas for the

regions R6 and R7, and substitute x = ¢. Then we get the function H(r) defined in (3.4.1),

1

H(t):d—1

1
h’(t)+(p{(€—d1t) —awl(g—dlt)

By using the second matching condition (3.1.11) And we get the function A(z) as follows,

dl dz
h(t) = {—dit)— (4 £4+dat) — @ (4
(1) d1+d2[(p1( 1) <P1()]+dl+d2[<P2(+ 2t) — ¢a2(4)]
1 (—dyt J 1 (+dot y
_d1+d2/z vils) s+d1+d2/g ¥a(2)dz

3.5 General Case

In zero and the first step, we have constructed the formulations of u(x,7) and the functions

g(t), h(t), G(t), H(t) defined in (3.4.1) for n = 0 and n = 1, respectively.
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After the first step, we generalize the number of the step with index n, for n =2,3,... So,

we reformulate the initial value problem.

Initial value problem is to find u,(x,#) in the form

l/l()n(.x,f), —°°<x<0,
un(X,1) = 8 upp(x,r), 0<x</. (3.5.1)

Uz (x,1), £ <x<oo.
for each n=2,3,... satisfying

2 2
9" uoy, 28 Uon

52 —d 52, —o<x<0, r€R, (3.5.2)
a;j;" =& ‘9;’;1" . 0<x</!, fcR, (3.5.3)
a;':f” = %a;;’j” ., l<x<ow, teR, (3.5.4)
with initial data,
wE0) =), |y, e<x<0, (355)
uin(x,0) = @ (x) , %;ttln(x,t) W (x), O0<x</{, (3.5.6)
U2, (x,0) = @2(x) , astzn (x,t)‘t:() =yx), [<x<o, (3.5.7)

with the matching conditions defined on the boundary x = 0,

Uon = Uy (3.5.8)
x=—0 x=+0
31/!0 0 up
dy—— =di—" 359
O 9x =m0 "1 9x li=+o ( )
and also the matching conditions defined on the boundary x = /,
Ulpn = Uy (3510)
x=(—0 x=0+0
du du
29%1n 2 OUn
— =d;—— 3.5.11
Uox li=e0 ™ "2 Ox la=to ( )
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The General case includes the regions R(5n—2), R(5n—1), R(5n), R(5n+1) and R(5n+2)
(see, Figure 3.4). Notice that, unlike in the first step, in the general case we have an additional

subregion, namely the region R(5n).

However, similar to the first step, in the general case we consider initial data and matching

conditions defined on the boundaries x =0, x = /.

Before finding the solution for the general case, we must define the following

functions,
un(0,1) = gu(1), %

Un(€,1) = hy(1), o

= Gp(t
x=0 “ (3.5.12)

=H,(t)

x={
We must construct these functions by initial data and also by the matching conditions. Similar

to (3.2.1), the solution of the problem (3.5.2) — (3.5.11) will be found in the following form

by using the method of characteristics.

”n(xvt):{ Unm(x,1), if (x,1) € Rm (3.5.13)

Here, the index n denotes the number of the step and the index m denotes the number of

subregion.

Theorem 3.5.1. Let ®(x), W(x) be given continuous functions depending on x in the form

(3.0.2); up(x,t) is unknown function in the form (3.5.1). Then the solution of the problem
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(3.5.2) — (3.5.11) for the general case is the following,

( X 1
&n <t—|— d()) + 3 [(po(x—dot) — (po(—x—doz)}
1 —x—dyt
+*/ wo(u)du if (x,t) € R(5n—2);
2do Jx—dyt
X 1 E—_x g_i_x
gn(t_d]) +§[h(n—1)(f—71> —h(n_1)<t— a )}
dy [
+5 H,-1)(n)dn, if (x,) € R(5n—1);
2 1_%
1 X ¢ 1 £—x
D) g(nfl) [_dil _g(nfl) _le +2h(n71) — dl
1 / d, t—bx
1
dy (4
_31/ ¢ ] G(" 1)(Y)dYa lf(X,l‘) ER(Sn),
e
Z—X 1 X 2£_x
hn( dk)jLz[g(n—l)(tdl) 8n-1)(t— d )]
dy [Td
= G (Vdy, if (x,1) € R(5n+1);
2 r— 2o
{—x 1
o\ 14— "‘*[(Pz(x‘f‘dzl)—(Pz(—x+d2t+2£)}
d> 2
1 x+dot
+*/ v2(8)d¢, if (x,t) € R(5n+2).
( 2d> J—xtdar+20

where
(n—1)¢ x—/ nt
R 2) = oo _- - -
(5n+2) {(x,t)‘€<x< , @ <(t 7 )<d1
R(5"+1)={(x,t)] 0<x</, ”£x<t<(”1>”x}
dl d1

R(5n) = {(x,t)‘ 0<x</,

(n—=2)0+x nl —x (n—1)¢—x (n—l)E—Hc}
T <t N < ~— 7
di <P< d di <I< d,

R(5n—1):{(x,t)‘ 0<x<p, BZDEEX nf—x}

t
dl <t < dl
(n—1)¢ «x nt x}
<r <

R(5n—-2) = t‘ — o0 0 _ =
(5n—2) {(xy) <x<0, 7 i "
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and the functions defined in (3.5.12) are constructed by initial data and the

matching conditions as follows

G,(t) = —c;gi,(t) + dl]h’(nl) (t — j}) +H,y) (z — Ui) (3.5.15)

H, (1) = ;1 n(t) —dll (n-1) <t - jl) dllG(”‘” <z— i) (3.5.16)
1= w0000 g o ) e ()]

_ dOj-dl /O—dof Wo(s)ds + do‘f . /’ j H(, 1)(2)dz (3.5.17)

__ 4 4y L b _
n(t) = oo (1= 5 )~ g0y (= )1+ 5 e+ )~ (0]

L

d? i
_d1+d2/;i G(nfl)(Z)dZ‘F
4

L+dyt
d 3.5.18
d1+d2/(e va(s)ds ( )

Proof. In zero and the first step, we constructed the formulations of u(x,¢) and the functions,
defined in (3.4.1), for n=0 and n =1, respectively. In the general step, we reformulate

initial value problem (3.1.2) — (3.1.11) with the index n, for n =2,3,...

In some regions, namely in R(5n— 1), R(5n), R(5n+ 1), we do not use the initial condi-

tions. Instead we use the functions defined in (3.5.12), in the form of recurrence relations.

3.5.1 The Region R(5n—2)

Let us consider the problem (3.5.2) — (3.5.11) in the region R(5n —2) (see, Figure 3.4),

(n—1)¢ x nl x
R(5n—-2) = — oo -z - _ =
(5n—2) {(x,t)‘ <x<0, Fomo<i<n -

The equation (3.5.2) can be written as in the form,

aQOn aqu

DS =0, (1) €R(5n-2), (3.5.19)
duon dUon .
3 —do T qon(x,t), (x,t) € R(5n—2). (3.5.20)
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The characteristic of the equation (3.5.19) — (3.5.20) are respectively,

d

ézd()’ g(;):x ; (S:dof—l-x—d()l‘,

dt
d& , x
—=—dy, E(t)=x ; E=—dopt+x+dpt and if £=0; T=1+—.
dt dp

By integrating along the characteristics,

qo,,(x,t) = l[/o(x—d()l‘) —dqu(/)(x—d()l‘)

Then by integrating along the characteristic,

t

> = Yo (x+dot —2dyt)dT

z+%

I/t()n(x,t) — UOn <07t+ i
do

t

—dy (p(/)(x—i-dot—ZdoT)dT R

+3
Let
x+dot —2dpTt = , —2dpdTt =du
Uiow = —X — dOt ; Uyp =X — dOt

By substituting the initial conditions (3.5.5), we have the solution and by the function g,(7)
defined in (3.5.12)

1

ton50) = 0 (145 )+ 3 [ dor) o1~ o)

1 x—dpt
_7/ wo(u)dp , (x,t) €R(5n—2).
2do J—x—dot

3.5.2 The Region R(5n—1)

Let us consider the problem (3.5.2) — (3.5.11) in the region R(5n— 1)

(see, Figure 3.4),

R(Sn—l):{(x,t)’ 0<x</?, (= D)ltx né—x}

<t <
d d
The equation (3.5.3) can be written as in the form,

—d agl” =0, (x,7)eRGn—1), (3.5.21)
X

aqln
ot
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duip d duin

5 +d, e =qin(x,1), (x,1) ER(5n—1). (3.5.22)

The characteristic of the equation (3.5.21) — (3.5.22) are respectively,

d .
é:—du Et)=x ; E=—-dit+x+d;t and if E=0; T=1- xa
drt 7
d
di:du E(ty=x ; E=dit+x—dit and if £=0; T:t_d%'

£—x £—x
qunloet) =y (1= =) i (1= )
By the same way in the region R(5n — 2) and the function g,(¢) defined in (??), we get

st =) 4l (=5 (-5

_l=x
dy T4

Lx
2 [771*

+ H(n—l)(n)dn ) (xat) ER(Sn_l)

To find the functions defined on (3.5.12), we must apply the matching conditions between

R(5n—2)and R(5n—1).

3.5.3 Matching Conditions Between R(5n—2) and R(5n—1)

The formula for the region R(5n — 2) is in the form,

ton50) =0 (145 ) 3 (= dor) o -3~ o)

1 x—dpt
s | wlwdi, (x0) €R(Sn-2),
2do J—x—dot

and the formula for the region R(5n — 1) is in the form,

uin(X,1) = gn (f - dil) + % |:h(n—l) (f - ﬁd—lx) — R (z— e;x)]

/—.
dy [~

14x
2 it

+ H(n—l)(n)dn ) ()C,t) ER(SI’l—l)
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By the first matching condition (3.5.8), we have,
uon(—0,1) = u1,(+0,1) = g,(¢)

To use the second matching condition (3.5.9), we must differentiate the formulas for the regions
R(5n—2) and R(5n — 1), and substitute x = 0. Then we get the function G,(¢) defined in
(3.5.12),

1 1 12 l
Grlt) == 640+ -y (1= ) o) (1 )

By using the second matching condition (3.5.9) And we get the function g,(¢) as follows,

_ do‘i’dl (@o(—dot) — @o(0)) + docildl [’“ <t_ cfl) - (_51)]

gn(t)

L s [y d
o b wds+ S [ s

d

3.5.4 The Region R(5n)

Similar to the previous chapter, there is a region, namely the region R(5r), in the general

case has a different form. (see Figure 3.5)

-

—

h [r—1)
H [r—1}

fin—1)

G[ri—l]

Figure 3.2 The Region R(5n)
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In this region, we use the functions g, 1), A(,—1), G(,—1) and H,_) which we must found

in the previous step.

l
We assume that there is a jump at x = 7 We will apply the following matching conditions

when the speeds are the same.

uln(x,t)‘ , = uln(x,t)‘ ,
—L —L40
dzauln o Zauln

Pox i=f0 1 9x lx=tt0

Let us consider the problem (3.5.2) — (3.5.11) in the region R(5n), for n=2,3,...
R(5n) = {(xJ)‘ O<x<?,

<r<
dy dy dy dy

(n—2)+x nl —x A (n—l)é—x<t<(n—1)€+x}

The equation (3.5.3) can be written as in the form,

8611n aqln .
ot +d1 ox —Oa (X,l) ER(SH),
dui, duiy
ot —d ox _q1n(x7t>7 (x,t)ER(Sn).

The characteristics of the equation (3.5.25) — (3.5.26) are the following,

(3.5.23)

(3.5.24)

(3.5.25)

(3.5.26)

d
df_:dl, Et)=x; E=dit+x—dit,when§ =0; T:t—dil,
9 _ 4 e E = —dittxtdi whené = L: poq— =2
_— = — :x; = — X 7\V n :7; — J— .
7 15 1 1 > 3
By integrating along the characteristic £ = x—d;(r — 1), from ¢ — dﬁ toz,
1
x X
aute) =g (1= ) =G (- 7 )
0—2x

Then by integrating along the characteristic & =x+d,(t — 1), from 7 — 2d
1

g ) t x
(x4 dy(t — 1), 7)]dT = No2r—r—2)a
o ettt =9l = e (2ot 5 )

tot,
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Let

X X
Uiow =1 — )

up =1 — —
d Hup

¢
By letting uln(?t) =my,(t), we get

{—2x 1 X {—x
uln(x,t):mln r— 24, +§ 8(n—1) t_aT] —8n-1) \I——— .

Similarly, the equation (3.5.3) can be written as in the form,

(3.5.27)

achn aq1n
Fra R

0, (x,f)€R(5n), (3.5.28)

3 o qin(x,t), (x,1) € R(5n). (3.5.29)

The characteristics of the equation (3.5.28) — (3.5.29) are the following,

dg

?—
C——di, Gl =x; E=—dirxtdit, when& = (; -

Zf_:dl, é(t):x;

14 -2
E=d\T+x—dt, whenézi; al

L
By integrating along the characteristic £ = x+d;(r — 1), from ¢ —

£—x {—x
qln(x,t) :hzn—l) (l‘— a; > +d1H(n_1) <t— )

14
Similarly, by letting u; ,,(5 +0,7) = r(t) and integrating along the characteristic
14
E=x—di(t—1), from ¢+

tot, we get

{—2x 1 {—x X
um(x,t) = r(t—i— 2d, ) +§ |:h(n1) (l— d]> _h(n—l) (t— ):|

(3.5.30)
i



By using the second matching condition (3.5.24), we get

mt) =3 ¢ (1- 55 ) ¢ (~55 )] -5/ T Gy (Vv

_ﬁ

1 ¢ ¢ dy [
+§ |:h <t—2d1> —h<—2dl>:| +?/_ H(nfl)(\/)dv

L
2dy

If we substitute the function m(¢) into the formulation (2.8.21), we get

Ui (x,1) = % [g(nl) (’_ cZ) ~8 <_2fll>]

3.5.5 The Region R(5n+1)

Let us consider the problem (3.5.2) — (3.5.11) in the region R(5n+ 1) (see, Figure 3.4),

(— —1)¢
R(Sn—I—l)—{(x,t)’ 0<x</t, ndx<t<(nd)+x}
1 1

The equation (3.5.3) can be written as in the form,

aC]ln 8q1n
d = t)eR 1 3.5.31
ot +d ox 07 (xv )E (5n+ )a ( )
duyy, duiy,
gtl —d (;‘; —qin(x,1), (x,1)€RGn+1). (3.5.32)
The characteristic of the equation (3.5.31) — (3.5.32) are respectively,
Z’i:dl’ Et)y=x ; E=dit+x—dyit and if £=0; T:t—dil
d 0—
—g —dy, E(t)=x ; E=—-dit+x+dit and if E=0; T=1— al
drt di

Similarly, by integrating along the characteristics,

X X
qun(x,1) = g(,_1) <’ - d1> —diG) <’ - >
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{—x 1 x 20 —x
uln(xat):hn (t_ d > +§[g(n71)(t_dil)_g(nfl)(t_ )]
dy [

2 t,% G(”_l)(’}/)d% (x,t) S R(5n+ 1);
1

3.5.6 The Region R(5n+2)

Let us consider the problem (3.5.2) — (3.5.11) in the region R(5n+ 2) (see, Figure 3.4),

{— ——

dp

R(5n+2) = {(—x7t)‘€<x<007 (ndll)f < ( xfﬁ) _ Zf}

The equation (3.5.4) can be written as in the form,

aC]Zn 3612n

5 da e 0, (x,t)€R(5n+2), (3.5.33)
8u2n 8142,, .

o +d> 9y = qon(x,t),  (x,1) € R(5n+2). (3.5.34)

The characteristic of the equation (3.5.33) — (3.5.34) are respectively,

d
j —d> é(t):x ; <S —dhT+x+dot
drt
d f—
df_zclz, §(t):x ; §:d2’1:+x—d2t and if é:ﬁ; T=t—|—7x.

dy
Similarly, by integrating along the characteristics,

qzn(x,t) = l[/g(x-f-dzl‘) +d2(p£(x+d2t)

then

/- 1
Uz (x,1) = hy, <t+ y x> +§ [@2(x+ dat) — @r(—x + dat 4+ 20)]
2

1 x+dat
+*/ wv(v)dv, (x,t) €R(5n+2),
2dy Jxvdrrv20

To find the functions defined on (3.5.12), we must apply the matching conditions between
R(5n+1) and R(5n+2).
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3.5.7 Matching Conditions Between R(5n+ 1) and R(5n+2)

The formula for the region R(5n+ 1) is in the form,

{—x 1 X
uln(x,t):hn<t— i >+2[8(n—1>(f—d1)—g(n—1>(f— a

d; t*ﬁ
) t_bG(nfl)(Y)d% (x,t) €R(5n+1);

dy

and the formula for the region R(5n+2) is in the form,

- 1
uon(x,1) = hy <t+ p x) +5 [@2(x +dat) — @a(—x+ dat +20)]
2

1 x+dot
+—/ vV, (61) €RGn+2),
2dy J—xydot+26

By the first matching condition (3.5.10), we have,
uin(£—0,1) = up, (£ +0,1) = h(t)

To use the second matching condition (3.5.11), we must differentiate the formulas for the

regions R(5n+ 1) and R(5n+2), and substitute x = £. Then we get the function H,(¢) defined

in (3.5.12),
1 1 ¢ 1 l
H,t)=—HW(t)— —g —— = —=G,,_ -
(t) " B (1) a4, 8- (f d1> " Gn-1) (f d1>

By using the second matching condition (3.5.11) And we get the function £, (¢) as follows,

d,

hn(t) - di+dy

[gn—1) <f— jl) —&(n-1) (—jl>] + dlizdz [@2(€+dat) — @a(0)]

d% tfﬂG J 1 l+dot J
— _ + / s)ds
dH—dz/—j1 n-n(2)dz di+dy Ji va(s)

3.6 Examples of Simulations of Wave Propagation in Three Layered Medium

In this section, we deal with examples of simulations of wave propagation in three layered

medium. IVP of wave equations is studied as the mathematical model of wave propagation.
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In this work, the space has three layers that are separated with two boundaries x =0 and
x = £. Each layer has different speed. We defined the matching conditions not only on the

boundary x = ¢ but also on x = 0.

A pulse point source was taken in different positions in the space: Between —co and x = 0;

between the boundaries x =0 and x = ¢; between x = ¢ and oo.

3.6.1 Example I - The Pulse Point Source is Between — and x = (

Let us consider initial value problem (3.1.2) — (3.1.11). The initial conditions (3.1.5) —

(3.1.7) have the following form

Po(x) =8(x—x"),  w(x) =0,
¢1(x) =0, vi(x) =0,
$2(x) =0, y2(x) =0,

where &(x) is Dirac delta function, the boundary ¢ = 40, the point source x’ = —20. By the
properties of Dirac delta function and the assumptions, the solution u(x,#) of IVP can be writ-

ten as follows:

1
3 8(x+dot —x°) + 8(x —dot —x°)| if (x,r) € RI;
u(x,t) =9 0, if (x,r) € R2;

0, if (x,1) € R3.

dyp
—5-5(—x+dot—x0), if (x,1) € R4;
x .
u(x,r) = g(t—dl>, if (x,1) € R5;
0, if (x,1) € R6;

0, if (x,7) € R7.
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Here, the function g(t), constructed in Theorem 3.4.1, can be also written as

do

)= ————8(—dot —x°),
For n=23,...
LA 8(x —dot —x°)
8\ ) 2 0
—%~5(—x—dot—x0), if (x,1) € R(5n— 2):
X 1 {—x {+x
oo 5) 4l G menle- )
dy [0
+5 [ Hyon(m)dn, if (nr) €R(5n—1);
2 ,_%x
1 X L 1 {—x
5 1800\ 1= 5 | ~8m-1) ~2dr +2h(n71) 4
M()C,t): 1 ! dl tfz;l"
_Eh(nfl) <—21> +2/_2y H(nfl)(\/)d\/
dy 4 :
1 1
7?/,L G(n—l)(’)/)d’y’ lf(x,l‘)ER(Sn),
2d
f—x, 1 X 20 —x
hn<dlx>+2[g<n_1><rd1> Syt =3
d —ar
2 Y Guy(ndy, if (x) €R(Sn+1);
2 iz
{—x )
hy, <t+d>, 1f(x,t)€R(5n—|—2).
2

Here, the functions g, (¢), h,(t), Gu(t), and H,(t), constructed in Theorem 3.5.1, can be also

written as forn =2,3,...
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with

do+d; -£
H; (l‘) =0 ,
—d ¢ b ¢
H —_ % _ = %2 | _ L
n-n(®) di(di +d) 8(n-2) (t d1> - (dy +dy) -2 <t d
G (I) - d (d0+d]) ot [5( d()t X )] )

___—do 9 oy, do _ £
G0 () = gdoran ar O =+ gy e - g

do 14
% ' H -
+(do+d1) (n=2) (t d1>

By using Matlab codes, we simulate the solution u(x,#) of IVP (3.1.2) — (3.1.11).

In these figures, we simulate the wave propagation in three layered medium that is separated

with two boundaries; the first boundary is x = 0 and the second boundary is x = ¢ .(In this

example, £ = 40.)
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Figure 3.3 Pulse Point Source is between —eo and 0

In the figures, the horizontal axes x and the vertical axes y show the location and the mag-
nitude of the wave front, respectively. In figure (a), we can see the fluctuation arising from the
pulse point source x° = —20 described by the function ¢@(x) = 8(x —x°). In the figure (b),
the separated waves began to move along the characteristics. In the figure (c), the reflected and

transmitted waves can be seen after the wave front touched the boundary x =0.

Notice that in the figure(c), the reflected wave has the negative sign. This the result of that

the speed of the second layer is bigger than the first layer.(For more detail, chapter 4.)

After the transmitted wave touched the second boundary (x =/¢), itis separated into
transmitted and reflected waves in the figure(d). In the figure(e), the movement of the reflected
and transmitted waves can be seen. Especially, the reflected wave is moving between two
boundaries, so in the figure(f), the reflected wave touches the boundary and is separated into

reflected and the transmitted waves.
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3.6.2 Example 2 - The Pulse Point Source is Between the Boundaries x = 0and x =/

Let us consider initial value problem (3.1.2) — (3.1.11). The initial conditions (3.1.5) —

(3.1.7) have the following form

®o(x) =0, Wo(x) =0,
@1(x) =6(x—x"),  wi(x)=0,
$2(x) =0, va(x) =0,

where &(x) is Dirac delta function, the boundary ¢ = 40, the point source x” = 10. By the
properties of Dirac delta function and the assumptions, the solution u(x,z) of IVP can be writ-

ten as follows:

0, if (x,7) € R1;
1 0 0 .
u(x,t) = 5 O(x+dit—x")+6(x—dit—x")|, if(x,1)€R2;
0, if (x,t) € R3.
g<t+;) ) € R4;
g<t ;) ~ - S(x+dit —x°)
1
—3 S(—x+dit —x%), if (x,1) € RS;
u(x,t) =

{—x 1 0
h(t— a >+2-5(x—d1t—x)
1
§(—x—dyt +20—xY), if (x,t) € R6;

é_
h <t+ x) . if(x1) ERT.

Here, the functions g(¢), h(t), G(t), and H(t), constructed in Theorem 3.4.1, can be also
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written as

For n=23,...

gn <z+ x) , if (x,t) ER(5Sn—2);

i 34l (- 50 o 5]

dy [~ .
+—/  Hy,_py(n)dn, if (x,1) € R(Sn—1);
tfi

1 Y4
u(x,t) =9 51 2

X 20 —x
3 [g(nq)(l - E) —8n—1)(t— i )

t_
_7/t d,lx G(ﬂﬂ)(?’)d?’a if (x,1) € R(5n41);
Ty

Here, the functions g, (), h,(t), G,(t), and H,(t), constructed in Theorem 3.5.1, can be also

written as forn = 2,3, ...



4

di ¢ ¢ 2
hy = n— - —8(n— - - n—
) di+do 801 <t dl) Sn1) ( d1>] di +d2/ Glo-n) ()2

_ L
d

4 ¢ ¢
gn(t) - do+d; |:h(n1) <t d1> h(nl)( dl):|

d% t—%
Hy, 1)(2)d
+do+all/_;,1 (n—1)(2)dz

with
g1(t) dotd, 6(dit —x7)
di ¢ ¢
g(n71)( )= do+ds [ (n—2) <t_dl> —h(n-2) <_dl>:|
dl 0
l(t) d] —i—dz 5(€ dll X )

_ e .0
(1) di(do+dy) ot [S(dlt * )]
do / i do L
G(n—l)( ) dl <d0+d]) h(n72) <t d]) + (d0+d1> (n—2) <t dl)
—d> i

—dy , 6) d» ( E)
H, ()= —"——. f—— 4+ —" G [ 1——
n-n)®) dy(d\ +d>) g("2)< d, +(d1+d2) (n-2) d
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By using Matlab codes, we simulate the solution u(x,#)of IVP (3.1.2) —(3.1.11) forn =2,3, ...

Similarly, in these figures, we simulate the wave propagation in three layered medium in

which a pulse point source is located at xX° = 10. And the horizontal axes x and the vertical

axes y show the location and the magnitude of the wave front, respectively.

In figure (a), we can see the fluctuation arising from the pulse point source x’ = 10 de-

scribed by the function ¢;(x) = §(x —x°). In the figure (b), the separated waves began to move

along the characteristics. In the figure (c), the reflected and transmitted waves can be seen after

the wave front touched the boundary x =0.
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Figure 3.4 Pulse Point Source is between x = 0 and x =/
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On the other hand, the separated wave front in the figure (c), touches the boundary x = ¢.

So in the figure (d), it is separated into transmitted and reflected waves.

Notice that, in these figures the movements of reflected waves occur between the boundaries

x =0 and x = /. In a small time period, they are separated over and over again. In the figures

(e) and (f), we can see the separation of the reflected waves into transmitted and reflected waves.

3.6.3 Example 3 - The Pulse Point Source is Between 0 and -

Let us consider initial value problem (3.1.2) — (3.1.11). The initial conditions (3.1.5) —

(3.1.7) have the following form

(po(X) = 07 WO('X) = 07
¢1(x) =0, vi(x) =0,
¢ (x)=8(x—x%),  yo(x)=0

Y

where O(x) is Dirac delta function, the boundary ¢ = 40, the

point source is located at

x% = 60. By the properties of Dirac delta function and the assumptions, the solution u(x,?) of
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IVP can be written as follows:

0, if (x,1) € R1;
u(x,t) =< 0, if (x,1) € R2;
S (80t dot ) 48—t —a0)], i () € B3,

0, if (x,1) € R4;

0, if (x,7) € RS;

u(x,r) = h(t—H>, if (x,1) € R6;

d
h <t+€d_2x> + %-ﬁ(x—f—dzt—xo)
_%.5(_x+d2t+2€—xo), if (x,t) € R7.

Here, the function A(z), constructed in Theorem 3.4.1, can be also written as

N di+d,

h(r) 8 (0+dat —x°)
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For n=2,3,... in the general case;

gn <t—i— x) . if (x,f) € R(5n—2);

do
o) Yoo 5 -]
+% tt:: Ho_n(n)dn,  if (x,t) € R(5n—1);
O

u(x,t) = 2 )k
) d o
d
_51/ . Gy, f (x,t) € R(5n);

Ty

¢—x, ] X 20—x

hn(t_ d )+§[g(n—l)(t_zl)—g(n_l)(t— dl )
dy [

S Y Guy(dy, i (xr) €R(Sn+1);
2 l‘f%

y <z+ f;) + %5(x+d2t _ 0

—%6(—x+d2t—|—2€—xo), if (x,1) € R(5n+2).

Here, the functions g, (), h,(t), G,(t), and H,(t), constructed in Theorem 3.5.1, can be also

written as forn =2,3,...

d ( ‘ &
= ——) - — H
gnlt) do +d [h(”” (t d1> h“’”( dl)}eroerl/ ) (2)dz

_t
dq

hy(t) = . - . .
(1) itd O0(l+dyt —x )+d1+d2g( 1) (t d1>
d ( d? /ffl
L Gy (2)d
A 1)< d1> dirds ) (n—1)(2)dz
dO / E dO E
G(t)=——H |lt——)+——H, |t——
®) di(do+d;) @ 1>< d1>+(do+d1) ( 1>< d1>
Hy(t) = — 2 2 15(0+ dyt — )]

dy(di +dy) ot

_L / <t—€>+de <f—£>
di(d+d) SO\ " a ) T+ O g



with
g1(1) =0,
4 ¢ 0 e
g(nfl)( )= do+d; [ (n=2) ( a d) h(niz) < d1>:| do +dy /—d‘l
G (Z) =0,

d 4 [
- —— ) - G d
di +d2g(n72) ( d]) di+dy / (n=2) (2)dz

_ L
dq

Hi(t) = CMCZI"%;[S(H@%‘))]

B9 50+ dot— )]

L B Q—£>+d2G G—£>
d(d, +d2)g("72) d (dy+da) (n-2) d
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By using Matlab codes, we simulate the solution of u(x,7) IVP (3.1.2) — (3.1.11) for n =

2,3,...

In this example, the pulse point source is located on the right of the boundary x = ¢, at x° = 60.

Similarly, in figure (a), we can see the fluctuation arising from the pulse point source described

by the function @, (x) = §(x —x°). In the figure (b), the separated waves began to move along

the characteristics. In the figure (c), the reflected and transmitted waves can be seen after the

wave front touched the boundary x = /.

Notice that in the figure(c), the reflected wave has the negative sign. This the result of that

the speed of the second layer is bigger than the third layer.(For more detail, chapter 4.)

In the figure (d), the separated wave front, that is on the right in the figure (c), disappear by
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Figure 3.5 Pulse Point Source is between ¢ and oo

the time is passing. And on the other hand, the reflected wave is separated into transmitted and

reflected waves again, after it touches the other boundary (x =0).

In the figures(e) and (f), the reflected waves are separated over and over again, as the result

of touching the boundaries x = ¢ and x = 0, respectively.
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3.7 Conclusion of Chapter Three

e Explicit formulae for the solution of IVP with matching conditions has been constructed.
e Using this formulae, the simulation of wave propagation has been obtained.

e Results of the simulations have clear physical interpretation of wave

propagation in three layered media from the point source.



CHAPTER FOUR
INITTIAL VALUE PROBLEMS WITH ONE BOUNDARY

4.1 IVP-1

Let us consider the problem (2.3.6) — (2.3.10). In this work, we omit the index k. Let
(x,t) € R?, ®(x),¥(x) and d(x) have the following form,
dy, —o0<x<0;

d(x) = 4.1.1)
dl, 0<x<oo;

, —oo<x<0; , —oo<x<0;
o)={ » Py =4 7 4.1.2)
01, 0<x<os; v, 0<x<oo;

where dy, d;, are given constants; @y(x), @;(x), Wo(x) and y;(x) are given functions depend-

ing on x.

In addition, we assume that there is no boundary condition and we have the matching con-

ditions defined on one boundary x = 0.
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Initial value problem (2.3.6) — (2.3.10) may be written in the term of

Figure 4.1 Initial value problems with one boundary x =0

() uo(x,t), —oo<x<0;
u(x,t) =
ul(x,t), 0<x<oo;

as follows

d%u 2%u
0 2200, —cw<x<0, t€R,

a2 "0 ox2
azul 2 azul
8_1‘2_ la—xzzo, O<x<°°,t€R,
with initial data,
dug
up(x,0) = @o(x), ol (x), —eo<x<0,
=
8u1
0 = _ = 0 oo
ul(x? ) (P](x), It li—o 1()6), <x < oo,
and the matching conditions,
t = t
uO(x7 ) =0 up ()C, ) =10
duyg uy
— = —(x,t
dx (x.1) x=—0 Jdx (x.1) x=+0
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(4.1.3)

“4.1.4)

(4.1.5)

(4.1.6)

4.1.7)

(4.1.8)
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Before finding solution of initial value problem (4.1.4) — (4.1.8), we must define the following

function.

u(0,1) = g(r) (4.1.9)
We must construct the function g(¢) by initial data and the matching conditions.
Theorem 4.1.1. Let ©(x) and ¥ (x) be given functions in the form (4.1.2); u(x,t) be unknown

functions in the form (4.1.3) then the solution u(x,t) of IVP (4.1.4) — (4.1.8) is the following,

2 [0 +-dot) + ol o)

1 x-+dot
o / vo(v)dy, (x,1) ERL,
2do Jx—dot

% [(PO(x—dof) - <Po(—x—dol‘)}

—x—dot X
Hf T @ re (i) . ery
x—dot do
(4.1.10)
1
3 [(pl (x+dit)+ @ (x—dlt)]
1 X+dlt
o [ wEE (1) € R2:
2d1 x—dit
1
5 |:(p1 (x+d1t) — (pl(—x—f-dll‘)}
1 x+dit 4 x R4
— t—— t .
g |, @ rg(i= 1) e
where the regions R1, R2, R3 and R4 are the following,
—X
Rl = {(x,t)‘ —o<x<0, t< }
dyp
R2 = {(x,t)}0<x<oo, t < x}
dq
—X
R3 = {(x,t)‘ —o<x<0, t> }
do
X
R4 = {(x,t)}0<x<°°, t> }
dq
and the function g(t) defined in (4.1.9) is the following,
(1) = (ol —dor) ~ p(0) + (1 (1) ~ 1 (0))
&  do+d, Pol=do P do+d; Prich o
1 —dot 1 dt
— d / d 4.1.11
d0+d1/0 Vo(s) s+do+d1 0 vi(z)dz ( )



79

Proof. In this work, we have four subregions, namely the regions R1, R2,R3 and R4. Let us

investigate these subregions, independently.

4.1.1 The Region RI and R2

Let us consider the problem (4.1.4) — (4.1.8) in the region R1,

Rlz{(x,t)‘ —0<x<0, t<_x}
do

R22{(X,t)’0<x<°°, t<x}
dq

The equation (4.1.4) can be written

dqi dg _ . .

> —d,—ax =0, (x,¢)€R(i), fori=0,1. (4.1.12)
8u,~ 8u,~ o . .
W—Fd,-g =gqi(x,t), (x,t) €R(i) fori=0,1. (4.1.13)

For the solution of the problem, we use the method of characteristics. So, the characteristics of

the equations (4.1.12) — (4.1.13) are respectively,

d

df_:—d,-, Et)=x ; E=—-dit+x+dit, fori=0,1.
d& .
E:di’ EW)=x ; E=dit+x—dit fori=0,1.

By integrating along the characteristics, we get the following
qi(x,t) = Wi(x+dit) +d; @ (x+dit), fori=0,1.

and

t t
/a[ui(x—di(t—r),r)dr} :/ Y (x —dit +2d;7)dt
0 dT 0

t
—|—dl'/ di(p,-’(x—dit +2d,’7:)df, fori =0,1.
0



Then let, fori =0, 1.
x—dit+2dit=17y, 2didt =dy

Yiow = x —djt , YMp:x+dit

So, we get

u,-(x,t) — M,‘(X—dit,()) = % [(P,'(X-l-dil) — (pi(x—d,-t)]
1 erd,'t )
+27i - v;(y)dy, for i=0,1.

By substituting the initial conditions (4.1.6), we have the solution

1 1 x+dot
uo(x,t) = = [@o(x+dot) + @o(x —dot)] + */ vo(y)dy, (x,t) €RI.
2 2d0 x—dot

1 1 x+dit
uy(x,t) = = (Pl(x+d1f)+<P1(x—d1f)] +7/ vi(§)dE, (x,1) eR2
2 2d1 x—dit

4.1.2 The Region R3

Let us consider the problem (4.1.4) — (4.1.8) in the region R3 (see, Figure 3.4),

R4:{(x,t)’0<x<oo7 t>x}
dy

The equation (4.1.4) can be written as in the form,

dq dq .

W—dlx —0, (x,t) €R4,

duy du;
W‘i‘dlx—Q](x,t), (X,Z)ER4

The characteristic of the equation (4.1.14) — (4.1.15) are respectively,
7:_d17 §(t):x ; (S:—dfl?—i-x—l—dlt,

% _a, Et)=x ; E=dit+x—dit and if E=0; r:t—di.
1
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(4.1.14)

(4.1.15)
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By integrating along the characteristics,
q1(x,1) =y (x+dit) +d1 @) (x+dit)

Then by integrating along the characteristic,

t
up(x,1) —u (O,t— x) :/ v (x—dit+2d;t)dT
dl tfﬁ

t
+d1/ (p{(x—dll‘—l-Zdl’C)dT,
=

Let
x—dit+2dit=u, 2d\dt=du

Ujow = —X — dOt ’ Uyp =X — dot

By substituting the initial conditions (4.1.6), we have the solution and by the function g(¢)
defined in (4.1.9)

uo(x,1) =g <t+ ;()) + % [@o(x — dot) — @o(—x — dot)]

1 —x—dyt
+7/ IVO(:U')d.u ) (x’t) € R37
2do Jx—dyt

4.1.3 The Region R4

Let us consider the problem (4.1.4) — (4.1.8) in the region R4 (see, Figure 3.4),

R3:{(x,t)‘ —0o<x<0, t>_x}
do

The equation (4.1.4) can be written as in the form,

dqo dqo .
W+dog =0, (x,t)ER3, (4.1.16)
auo auo

(x,t), (x,t) €RR3. (4.1.17)

7:d0’ 5(1‘):)6 ) ézdof—l-x—dol,
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9 _ 4y, Er)=x ; E=—dpt+x+tdpt and if E=0; r:t+di.
0

By integrating along the characteristics,
qo(x,1) = Wo(x —dot) — do@(x — dot)
Then by integrating along the characteristic,

t
I/l()(x,l‘)—uo (O,l‘—f—x) = l[/o(x—i—dot—zd()f)df
do t-l-%

t

—dy ] (p(/)(x+d0t—2dof)df,

"+
Let
x+dot —2dpt = , —2dpdt =du
Hiow = —x+dit , Hup =x+dit

By substituting the initial conditions (4.1.6), we have the solution and by the function g(¢)
defined in (4.1.9)

up(x,t) = g(t - dil) + % [(pl (x+dit) — (pl(—x—i—dll‘)]

1 x+dt
tor [ w@dE, ()R
2d1 —x+dit

4.1.4 Matching Conditions Between R3 and R4

The formula for the region R3 is in the form,

wo(xn,) = g (t—l— ;()) + % (00 (x — dot) — @o(—x —dot)]

1 —x—dyt
+7/ lll()(:u)d.u ’ (X,t) € R37
2do Jx—dyt

and the formula for the region R4 is in the form,

up(x,t) = g(t - dil) + % [(pl (x+dit) — (pl(—x—i—dll‘)]

+ ! /X+dlt vi(&)dE, (x,t) €R4

2d1 7x+d1t
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By the first matching condition (4.1.7), we have,

u(—0,t) = u(40,1)(tr) = g(t)

To get an explicit formula for the function g(7), we must differentiate the formulas for the
regions R3 and R4, and substitute x = 0.Then by using the second matching condition (4.1.8)

And we get the function g(¢) as follows,

~do+d,

d
do +d;

g(t) (@o(—dot) — ¢0(0)) + (@1 (dit) — ¢1(0))

1 —dot 1 dit
— d d
do+d1/0 vo(s) s+do+d1 0 Vi()dz

O]

Lemma 4.1.2. Let u(x,t) be the solution of initial value problem (4.1.4) — (4.1.8) in the form

(4.1.18). And if the function g(t) is in the form

d() dl
1) = —dpt) — @p(0 dit) — @ (0
8() = 2 (Pol(=dot) = u(0)) + = (1 (dir) — 91(0))
1 —dot J 1 dit P
Tdotds Jo Vo(s) S+d0+d1 A vi(z)dz
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Then the solution u(x,t) have the form,

2 [0 +-dot) + golx o)

1 x-+dot
+o— / Yo(7)dY, (x,f) €RT,
2do Jx—dot

do —dy

2(d0+d1) )
d 1 dyt+ 5+

—— 20 pn(0)+ /0 “ vi(z)dz

1 —x—dot dl dl >
5 / d& + —x+dit
ol LS el Gl

q_ o0 L s R3
_ ; :
do+d; (Pl( ) do+dy /0 WO(S) 5 (x’ ) <

1
(po(—x—dol) + quo(x—dot)

(4.1.18)

% |:§D1 (x—l—d]t) + @ (X—d1l‘):|

1 x-+dit
+7/ vi(8)ds (x,1) € R2;
2dy Jx—ayt
dy—dy
2(do+d1)

do 0 1 x+dit é;— d&
i + -
do+d; (PO( ) 2d, /—x+d1t Wl( )

dO dO p 1 —dot—i-g—?x J
—_ ) — t —
+do+d1%(d1x O) do+d; /0 Vo(s)ds

dl 0 1 —x+dit 4 R4
_ + / , X,l) € K4,

1
<p1(—x+d1t)+§<p1(x+d1t)

where

Rl—{(x,t)‘ —o0<x<0, t<_x}

dyp

R2={(x,t)}0<x<°°, t<;}
1

R3—{(x,t)‘ —o0<x<0, t>_x}
dyp

R4:{(x,t)}0<x<°°, t>;}
1

Proof. The solution of initial value problem (4.1.4) — (4.1.8) is in the form (4.1.18). And if

the function g(¢) is in the form
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1 —dot 1 dt
— d d
do+d Jo Yols) s+do+d1 0 Vi()dz

Then by substituting the formula of g(¢) into the solution, we get the following formula for the
region R3,

_ do=d L oot — dor) — %0

1 d]l-l-% 1 —x—dot dl dl
+ / d _+_7/ dé + ( +d t)
dordi Jo vi(z)dz 2o e wo(§)dé& dora O gt

! 01 (0 ! o d R3
— — s)ds, (x,t) € R3;
d()+d1 1( ) d0+d1/0 IVO( ) ( )

And the formula for the region R4 is the following,

 d—do I
Ml(x,f) = W(Pl( X+d1t)+§(,01(x+d1t)

do
0
d0+d1"’°( )

1 x+dt 1 fdoH»j—?x do do
+— dé — / ds—+ —x —dot
2d1/_x+dﬂ""(‘5)‘§ do+dy Jo Vols) do+d1%<d0x °>

D40 LY B R4
_ ¢ :
do+d1(pl( )+d0+d1/0 WI(Z) Z’ (x’ )E

O
Corollary 4.1.3. Let us consider initial value problem (4.1.4) — (4.1.8) in the term of,
up(x,t), —oo<x<0
u(x,t) =
up(x,t), 0<x<eo
as the following differential equations
82u0 232140
2 %52 =0, —o<x<0, teR, 4.1.19)
0%u, ) 0%u,
W_ IW:07 O<x<oo, telR, (4.1.20)
with the special initial data,
(x,0) f(_x) sy f’(_x> <x<0, reR 4.1.21)
up(x,0) = f( — —(x,0) = —oo < X 1.
0y dO ) ot ’ dO ; ) )

)
u (x,0) =0, %(x,O):O, O<x<o, tER, (4.1.22)
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and matching conditions,

uop(0,¢) = u1(0,1) , (4.1.23)
u Ju
20up o\ 20U
CO ax (0,[) Cl 8)( (O,[) . (4124)

where  f(x) is given in CZ(—OO,O] . Then a solution of the problem (4.1.19)-(4.1.24) is the
following,

( X
f(t_i) ) (X,I)ER17
do
X dy—d; ( x)
1 —— I3 t R3
f( d0>+d0+d1f to) e ERs,
u(xj[) = (4125)
0 , (x,7) € R2,
2dy ( x)
t——), ,t) € R4.
\ do+d1f d; (1)

dy—d
where the coefficient 0% of f(t + d£> in equation (4.1.25) is called ’Reflection Coeffi-
0

do+dy
2dy

do+d;
"Transmission Coefficient’ donated by T .(Zauderer, E., 1998. Partial Differential Equations of

cient’ donated by R and the coefficient of f (t — i) in equation (4.1.25) is called
C1

Applied Mathematics. John Wiley & Sons, New York.)

Proof. Let us consider the initial value problem (4.1.4) —(4.1.8) and let the functions @(x), @;(x), Yo(x)

and v (x) be in the following form,
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Then the solution of initial value problem in (4.1.18) in Lemma 4.1.2, has the form,

( x
r——) x,t) €RI1,
(-7) (x,1)
X dy—d; X
r—— t+— t) €R3
f( d()) d0+d1f( do)’ (x,1) € B3,
u(x,t) =
0 , (x,7) € R2,
2d0 X
—ft—— t) € R4.
do+d1f( d1>’ (1) €

4.2 Examples of Simulations of Wave Propagation

In this section, we deal with simulation examples of wave propagations in two layered space
that is separated with one boundary x = 0. Each layer has different speed. The speed of the first
layer is dy = 1, and the speed of the second layer is d; = 2. We defined the matching condi-

tions on the boundary x = 0.

A pulse point source was located in different positions: Between —co and 0; between 0 and oo.

4.2.1 Example 1 - The Pulse Point Source is Between — and 0

Let us consider initial value problem (4.1.4) — (4.1.8). The initial conditions (4.1.6) have
the following form
@0 =38(x—x%), w=0,
¢ =0, vy =0.

4.2.1)

where &(x) is Dirac delta function, the point source is located x° = —20. By the properties of

Dirac delta function and the assumptions, the solution u(x,7) of IVP can be written as follows:
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1

3 [8(x+dot —x°) + 8 (x — dot —x°)] , (x,) €RI,

[0 =)~ 8(xdur ) g (145 ) L e

do

4.2.2)

0, (x,t) € R2;

g(r-2). (x,1) € R4

dy
Here the function g(z), constructed in Theorem 4.1.1 can be also written as follows
o) =~ 5(—dot —x9) 4.2.3)
do+d;

Lemma 4.2.1. Let ¢y(x), @1(x), Wo(x), psii(x) be given in the form (4.2.1); u(x,t) be the
solution of initial value problem (4.1.4) — (4.1.8) in the form (4.2.2). And if the function g(t)

has the form
do

1) = -8(—dot —x°
a(t) = 75 (dot )
Then the solution u(x,t) have the form,
1
5 [8(x+dot —x°) + 8 (x — dot —x°)], (x,f) €RL,
— . 0(—x—dyt — —-0(x—dot — t) € R3;
4.24)
0, (x,1) € R2;
dO dO 0
2O | —x—dpt — , ,t) € R4,
do+d; <d1x 0 x> (1)

where the regions R1, R2, R3 and R4 are the following,

Rlz{(x,t)‘ —o0<x<0, t<_x}
do

R2={(x,t)}0<x<oo, t<;}
1
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R3:{(x,t)‘ —0<x<0, t>x}
do

R4 = {(x,t)’0<x<°°, t> x}
d
Proof. By substituting the formulation (4.2.3) of the function g(¢) into the equation (4.2.2),

we get the resulting formulation (4.2.4). O

By using Matlab codes, we simulate the solution u(x,#) of IVP (4.1.4) — (4.1.8).

4.2.1.1 Commands of Matlab for Example 1

To run the program in Matlab successfully, we define some functions such as the function
g(t), constructed for example 1 in (4.2.3), and Dirac delta function. These functions are the
tools which the program uses while running. To define Dirac delta function to the program, we

use the regularization of Dirac delta function.

[}

% Defining Dirac Delta Function:

function S=dirac (e, j,x);

[

% S:output value

[}

% e:epsilon

[}

% J=x*{0} (pulse point source)

[

% x: variable

o

% Regularization of Dirac delta function

S=(1/(2xsqgrt (pixe))) xexp (- (((x—7J) "2)/ (4%e)));

[

% Defining g—-function:
function g=gfunction(t, j,a,b,e)

o

% t:variable



o\

e:epsilon

o

a=d_{0} (speed of the first layer x<0.)

o\°

b=d_{1} (speed of the second layer x>0.)

o\

J=x"{0} (pulse point source)

o

gfunction is the function defined on the boundary x=0.

o\

gfunction calls Dirac delta function.

g=((a/(atb))xdirac (e, J, ((-a)*t)));
%$Algorithm:

x=[-100:1:1007;

t=50;%——-————- time-—————----—--———~
a=l; %-—————- d0-————-

b=2; %"= dl-————————-
e=.5;%———""""—"""—"—- epsilon—-——————————-

j=-20; for i=l:length(x) if x(1)<0 if t<-x(i)/a

m(i)=dirac(e, J, (x(1)+(axt)));
z(1)=(1/2)*(m(i)+dirac(e,J, (x(i)-(axt))));%$-R1l-
else

d(i)=gfunction((t+(x(i)/a)),j,a,b,e);

g(i)=(1/2)+dirac (e, j, (x(i)-(a*xt)));
z(1)=(g(i)—-(1/2)*dirac(e,J, (-x(i)—-(axt))))+d(i);%-R3-
end

elseif 0<x (1)

if t<(x(i)/b)

z(1)=0;%-R2-

else t>(x(1i)/b)

z (1)=gfunction ((t-(x(i)/b)), j,a,b,e);%$-R4-
end

end

end

plot (x,2z);

90
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4.2.1.2  Results of Simulations by the Formula (4.2.2)

02

0
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04
0% 012 012
02 01
0m 008
0 006

004 1 004

05 o 002

[ 0
0 80 60 40 0 0 20 40 80 8 100 00 80 60 40 20 0 20 40 60 80 100 oo 60 60 40 20 0 0 40 &0 8 100

(@) t=0 b t=5 ©) t=10

01 01 01
005 00s 0os
o
005 005 005 V

01 0.1
400 80 60 40 20 0 20 40 60 8 100 700 60 B0 40 20 0 20 40 60 80 100 o0 80 60 40 20 0 20 40 60 60 100

(d) =30 (e) t =40 ) t=50

Figure 4.2 Pulse Point Source is between —eo and x =0

In these figures, we simulate the wave propagation in two layered medium that is separated
with one boundaries. The horizontal axes x and the vertical axes y show the location and the
magnitude of the wave front, respectively. In figure (a), we can see the fluctuation arising from
the pulse point source x° = —20 described by the function @y(x) = §(x —x"). In the figure
(b), the separated waves began to move along the characteristics. Notice that, in the figure (c),
the location of the wave fronts are respectively at x = —30 and x = —10 as a result of the
value of the speed dy = 1 in the first layer. In the figure (d), the reflected and transmitted waves

can be seen after the wave front touched the boundary x =0.

Notice that in the figure(c), the reflected wave has the negative sign. This the result of that

the speed of the second layer is bigger than the first layer.

In the figures (e) and (f), the movement of reflected and transmitted waves can be seen. In
the figure (e), the transmitted wave front reaches the point x = 40 with the speed d; = 2,
while the reflected wave front reaches the point x = —20 with the speed dy = 1. Since there
is no other boundary, both of the wave fronts move along their characteristics without any

changing in their magnitudes.

Remark 4.2.2. Let us consider Lemma 4.2.1. In the formulations for the region R3, the coef-
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do—d
2(d0 + dl) '
d; = 2 is bigger than the speed of the second layer dy = 1. As a result, the reflected wave has

ficient of Dirac delta function is In this example, the speed of the second layer

the negative sign.

Let M denote the magnitude of the fluctuation. In the figure (a), the magnitude of Dirac delta

arising from the pulse point source is

M ~0.4,

in the figure (b), after separation, the fluctuation has the magnitude of

M =0.2,
in this example, the coefficient is M = l so, in the figure (d), the magnitude of
pie. 2do+dr) 6 s A9, 8

reflected wave front M, and transmitted wave front M, are respectively

M, ~ —0.07, M; ~0.13,

M=M,—M,~0.2.

Hence, the substraction of the reflected wave from the transmitted wave gives us the previous

magnitude of dirac delta.

4.2.2 Example 2 - The Pulse Point Source is Between 0 and

Let us consider initial value problem (4.1.4) — (4.1.8). The initial conditions (4.1.6) have
the following form
%o =0, v =0,
o1 =8(x—x, y=0.

(4.2.5)

where §(x) is Dirac delta function, the point source is located x = 20. By the properties of

Dirac delta function and the assumptions, the solution u(x,7) of IVP can be written as follows:
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,

0, (x,r) ERL,
x
g(r+ ) (x,1) € R3;
do
(4.2.6)
1
E[5(x+d1t—x0)+5(x—d1t—xo)], (x,1) € R2;
1
5 [5(x+d1t 2 §(—x+dot —xo)} —i—g(t - di) . (x.1) € R4.
1
Here the function g(¢), constructed in Theorem 4.1.1 can be also written as follows
g(t) = dl - 8(dyt —°) 4.2.7)
do+d; : -

Lemma 4.2.3. Let ¢y(x), @1(x), Wo(x), psii(x) be given in the form (4.2.5); u(x,t) be the
solution of initial value problem (4.1.4) — (4.1.8) in the form (4.2.6). And if the function g(t)

has the form
dq

1) = S(dyt—x°
6l0) = 7 8l =)
Then the solution u(x,t) have the form,
0, (x,t) €R1,
d, di 0
O —x+dir— R3;
doid <d0x+ 1t—x >, (x,1) € R3;
1 (4.2.8)
5[S(x—i-d]t—xo)+5(x—d1t—x0)}, (x,t) € R2;
d] —d() 0 1 0
———— 0(—x+dit — —-O(x+dit— R4;
2(d()+d]) ( X+ 1t X)+2 (X+ 1f—x ), (X,t)e

where the regions R1, R2, R3 and R4 are the following,

Rlz{(x,t)‘ —0<x<0, t<_x}
do

R2z{(x,t)’0<x<00, t<x}
d
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R3:{(x,t)‘ —0<x<0, t>x}
do

R4 = {(x,t)’0<x<°°, t> x}
d
Proof. By substituting the formulation (4.2.7) of the function g(¢) into the equation (4.2.6),
y g q

we get the resulting formulation (4.2.8). O

By using Matlab codes, we simulate the solution u(x,#) of IVP (4.1.4) — (4.1.8).

4.2.2.1 Commands of Matlab for Example 2

Similarly to the previous example, we must define some functions such as the function g(z),
constructed for example 1 in (4.2.3), and Dirac delta function to run the program in Matlab.
To define Dirac delta function to the program, we use the regularization of Dirac delta function.

[}

% Defining Dirac Delta Function:

function S=dirac(e, j,x);

[}

% S:output value

[

% e:epsilon
% J=x"{0} (pulse point source)
% x: variable

[

% Regularization of Dirac delta function

S=(1/(2xsqrt (pixe)))xexp (= (((x=3)"2)/ (4%e)));

[}

% Defining g-function:
function g=gfunction(t, j,a,b,e)

[

% t:variable

o\°

e:epsilon



o\

a=d_{0} (speed of the first layer x<0.)

o

b=d_{1} (speed of the second layer x>0.)

o\°

J=x"{0} (pulse point source)

o\

gfunction is the function defined on the boundary x=0.

o

gfunction calls Dirac delta function.

g=((b/ (atb)) xdirac (e, j, (b*t)));

$Algorithm:

x=[-100:1:1001;

t=50;%———"""""- time-———————-—-————-
a=1l; %$-——————— d0—————-

b=2; % dl-——————————-
e=.5;%————"—"—""""""—- epsilon—-——————————-

j=-20; for i=l:length(x) if x(1)<0 if t<-x(i)/a
z(1)=0;%-R1-

else

z (i) =gfunction ((t+(x(i)/a)),3,a,b,e);$-R3-

end

elseif 0<x (1)

if t<(x(i)/b)

m(i)=dirac(e,J, (x(1)+(b*xt)));

z(1)=((1/2)* (m(1)+dirac (e, J, (x(1i)—-(b*t)))));$-R2—-
else t>(x(i)/b)
d(i)=gfunction((t-(x(i) /b)), j,a,b,e);

q(i)=(1/2)~dirac(e, J, (x (1) +(bxt)));

z(1)=(g(i)-(1/2)xdirac(e, J, (-x(i)+(bxt))))+d(1i);%-R3-
end
end
end

95
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4.2.2.2 Results of Simulations by the Formula (4.2.2)

1 O Ll

o o L
-on 80 B0 40 20 o 20 40 B0 a0 100 -loo 80 60 40 -20 a 20 40 60 80 100

© =10 (d) =30

Figure 4.3 Pulse Point Source is between 0 and oo

Similarly, in figure (a), we can see the fluctuation arising from the pulse point source
x% =20 described by the function @;(x) = &(x —x°). In the figure (b), the separated waves
began to move along the characteristics. Notice that, the location of the wave fronts are respec-
tively at x =10 and x =30 with the speed d; = 2 in the second layer. In the figure (c), the

reflected and transmitted waves can be seen after the wave front touched the boundary x =0.

In the figure (d), the movement of reflected and transmitted waves can be seen. The trans-
mitted wave front reaches the point x = —20 with the speed dyp =1 in the first layer, while the
reflected wave front reaches the point x = 40 with the speed d; =2 in the second layer. Since
there is no other boundary, both of the wave fronts move along their characteristics without any

changing in their magnitudes.

Remark 4.2.4. Let us consider Lemma 4.2.3. In the formulations for the region R4, the coeffi-
di—dy
2(do +dy)
wave has positive sign. Let M denote the magnitude of the fluctuation. Similarly, In the figure

cient of Dirac delta function is . Since d; = 2 is bigger than dy = 1, the reflected
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(a), the magnitude of Dirac delta arising from the pulse point source is

M=~0.4,

in the figure (b), after separation, the fluctuation has the magnitude of

M =~0.2,
in this example, the coefficient is di — do ! so, in the figure (d), the magnitude of
X , ———— = — 50, u , u
P 2(do+di) 6 g &

reflected wave front M, and transmitted wave front M, are respectively

M, ~0.07, M, ~0.27,

M:Mt—Mr %02

Hence, the substraction of the reflected wave from the transmitted wave gives us the previous

magnitude of dirac delta.
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4.3 Conclusion of Chapter Four

e Explicit formulae for the solution of IVP with matching conditions has been constructed.
e Using this formulae, the simulation of wave propagation has been obtained.

e Results of the simulations have clear physical interpretation of wave

propagation in two layered media from the point source.



CHAPTER FIVE
CONCLUSION

The main results of this thesis are the following;

e The system of anisotropic elasticity is reduced to one-dimensional initial value problem

(IVP) and initial boundary value problem (IBVP).

e Explicit formulae for the solutions of IVP and IBVP with boundary and matching con-

dition has been constructed.
e Using these formulae, the simulations of wave propagation have been obtained.

e Results of the simulations have clear physical interpretation of wave propagation in two

and three layered media from the point source.

We note that the method of characteristics has been used for constructing explicit formulae and

MATLAB codes has been successfully applied for the simulation of the waves.
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