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WAVE PROPAGATION IN COMPOSITE MATERIALS

ABSTRACT

The system of anisotropic elasticity with piecewise constant coefficients is considered in

this thesis. The main object of the thesis is to model an initial value problem (IVP) and an

initial boundary value problem (IBVP) for the considered system. The main results are explicit

formulae for solutions of initial value problem and initial boundary value problem. Using these

formulae the simulation of elastic waves have been obtained. Results of the simulations have

clear physical interpretation of wave propagation in layered medium from the point source.

The method of characteristics has been used for constructing explicit formulae and MAT-

LAB codes has been successfully applied for the simulation of the waves.

Keywords: anisotropic elastic system, elastic layered medium, initial value problem, initial

boundary value problem, modeling, simulation, wave propagation.
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BİLES. İK MATERYALLERDE DALGA YAYILIMI

ÖZ

Bu tezde parçalı sabit katsayılı, anizotropik elastik sistem çalışıldı. Bu tezdeki ana hedef

çalışılan sistemin başlangıç deǧer problemine (BDP) ve başlangıç sınır deǧer problemine (BSDP)

modellenmesidir. Bu başlangıç deǧer ve başlangıç sınır deǧer problemlerinin temel sonucu

formüllerle belirtilen çözümleridir. Bu formüller kullanılarak elastik dalgaların simulasyonları

elde edilmiş ve sonuçları katmanlı elastik ortamlarda oluşan dalga yayılımının fiziksel yorum-

larıyla uyum göstermiştir.

Çözümleri elde edebilmek için karakteristikler metodu kullanılmış ve dalgaların simulasy-

onları için MATLAB kodları başarılı bir şekilde uygulanmıştır.

Anahtar Sözcükler: Anizotropik elastik sistem, elastik katmanlı ortam, başlangıç deǧer prob-

lemi, başlangıç sınır deǧer problemi, modelleme, simulasyon, dalga yayılımı.
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CHAPTER ONE

INTRODUCTION

Anisotropic elasticity has been mostly studied in different applied sciences such as engi-

neering sciences, geophysics, solids and structures sciences etc. for the last thirty years due to

its applications to composite materials. [(Ting, 2000), (Yahkno & Akmaz, 2005)]

The propagation of elastic waves in anisotropic media is governed by a system of second

order partial differential equations.[see, for example, (Dieulesaint and Royer, 1980), (Fedorov,

1968), (Ting, 1996), (Ting & Barnet & Wu, 1990)] Here, we formulate shortly the problems

which are considered in this thesis.

1.1 Equations of Anisotropic Elasticity

Let x = (x1,x2,x3) ∈ R2× [0,∞) and t ∈ R be variables. The displacement of the point x is

the vector u(x, t) = (u1,u2,u3) with components

u(x, t) = u j(x, t), for each j = 1,2,3.

Initial value problem (IVP) of anisotropic elastic layered medium is described by the fol-

lowing differential equations,

ρ(x3)
∂ 2u j

∂ t2 =
3

∑
k=1

3

∑̀
=1

3

∑
m=1

∂
∂xk

(
c jk`m(x3)

∂u j

∂xm

)
,

0 < x3 < `, ` < x3 < ∞, t ∈ R, j = 1,2,3,

(1.1.1)

with initial data
u j(x,0) = ϕ j(x) ,

∂u j

∂ t
(x, t)

∣∣∣
t=0

= ψ j(x),

0 < x3 < `, ` < x3 < ∞, j = 1,2,3,

(1.1.2)

and matching conditions

u j(x3, t)
∣∣∣
x3=`−0

= u j(x3, t)
∣∣∣
x3=`+0

, (1.1.3)

3

∑̀
=1

3

∑
m=1

c j3`m(x3)
∂u j

∂xm

∣∣∣
x3=`−0

=
3

∑̀
=1

3

∑
m=1

c j3`m(x3)
∂u j

∂xm

∣∣∣
x3=`+0

, (1.1.4)

where ` is given number,
{

c jk`m(x3)
}3

jk`m=1
are the elastic moduli of the medium; ρ(x3) > 0

1
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is the density of the elastic medium; ϕ j, ψ j and Fj are smooth functions for each j = 1,2,3.

For initial boundary value problem (IBVP) of anisotropic elastic layered medium, we add

the following boundary condition to the system (1.1.1)− (1.1.4), the boundary condition

3

∑̀
=1

3

∑
m=1

c j3`m
∂u`

∂xm

∣∣∣
x3=0

= Fj(t), t ∈ R. (1.1.5)

The elastic moduli of the medium is positive definite and satisfy the symmetry property

c jk`m(x3) = c`m jk(x3) = ck j`m(x3)

so that the system of anisotropic elasticity can be written as Cauchy problem of second order

partial differential equations (Yahkno & Akmaz, 2005). The assumptions and detailed expla-

nations can be found in the Chapter 2.

1.2 Problems and Methods for Equations of Anisotropic Elasticity

In the recent years, there exists substantially modern methods for solving initial and bound-

ary value problems [(Boyce & DiPrima, 1992), (Dieulesaint & Royer, 1980), (Courant &

Hilbert, 1989), (Cohen & Heikkola & Joly & Neittaan, 2003)] so that many researchers get

a great chance to study more about the phenomena of the elastic wave propagation. And the

developments of computer facilities-applications of analytical methods [(Rand & Rovenski,

2005), (Pavlovic, 2003)], special softwares such as Mathematica, Maple, Matlab etc.-provide

better understanding of invisible elastic waves.

In this section, we mention some approaches for constructing solutions of IVPs and IBVPS.

1.2.1 Plane Wave Formalism-Stroh Formalism

Stroh formalism (Stroh, 1958) is a well-known approach for the system of elasticity in

material sciences, applied mathematics and Physics community (Ting, 2000). In the method

of plane wave approach, the system of elasticity is considered in a unbounded domain and the
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solution of the systems have the form

u(x, t) = a f (x.n− ct). (1.2.1)

where n, a, c are values to be determined. Substitution of (1.2.1) into the system, gives us

(Λ−λ I)a = 0, (1.2.2)

where λ = c2 and Λ is second-order tensor with components

Λ jl =
3

∑
k,m=1

c jklmnknm

for all nk and nm. The construction of a solution is reduced to eigenvalues and eigenfunctions

problem for Λ.

1.2.2 Green’s Functions Method

A different method to obtain the solution of the system is Green’s functions method. The

main idea of applying this method is Fourier transforms. The system is firstly solved in the

Fourier-transformed domain. Then the solution of the system is derived by using Fourier-

inverse transform (Yang, 2004). In the article of Yang (2004), after applying 2-D Fourier trans-

form with the variables (k1,k2), the solution in Fourier-transformed domain is the following

ũi(k1,k2,y3) =
∫ ∫

u(y1,y2,y3)eikα yα dy1dy2,

where e stands for exponential function, i is the imaginary number for both variables y1,y2.

Fourier-inverse transform yield the solution of the system in the domain.

1.2.3 Finite Element Method

Besides the analytical approaches, the numerical methods can be applied to solve the sys-

tems. Finite element and finite difference methods are mostly used for some problems de-

scribed by partial differential equations including system of elasticity. This approach is based

on converting partial differential equations into an approximating system of ordinary differen-

tial equations.
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1.2.4 Polynomial Solution Method

Polynomial Solution method (PS-method) is an analytical method for constructing solution

of partial differential problems with the special form of initial data and inhomogeneous term

[(Yakhno & Akmaz, 2005), (Yakhno & Akmaz, 2007)]. In the article of Yakhno & Akmaz

(2005), it is proved that if the initial data are polynomials with respect to the lateral variables

(x1,x2), then the solution of the problem which has coefficient functions depending on the other

variable x3, is in the form of polynomials depending of the same variables. The system in the

article (Yakhno & Akmaz, 2005) can be written as follows

ρ
∂ 2uγ

j

∂ t2 =
3

∑
k=1

∂σ γ
jk

∂xk
, j = 1,2,3, x ∈ R3, t > 0

uγ
j(x,0) = ϕγ(x), j = 1,2,3, x ∈ R3

∂uγ
j

∂ t
(x, t)

∣∣∣
t=0

= ψγ(x), j = 1,2,3, x ∈ R3

where

uγ
j = Dγu j, ϕγ

j = Dγϕ j, ψγ
j = Dγψ j, σ γ

jk = ∑
`,m=1

C jk`mεγ
`m, εγ

`m =
1
2

(
∂uγ

`

∂xm
+

∂uγ
m

∂x`

)
.

By applying Polynomial Solution method (PS-method), the solution can be written in the

form

u j(x1,x2,x3, t) =
∞

∑
k=0

∞

∑
s=0

U s,k
j (x3, t)xs

1xk
2

where

U s,k
j (x3, t) =

1
s!k!

∂ s+k

∂xs
1xk

2
u j(x1,x2,x3, t)

∣∣∣
x1=x2=0

, j = 1,2,3; s,k = 0,1,2.

1.3 Plan of the Thesis

The system of anisotropic elasticity with piecewise constant coefficients is a mathematical

model of elastic wave propagation in layered media (composite elastic materials). The main

goal of the thesis is to construct explicit formulae for the solutions of the considered problems

and using these formulae to obtain the simulation of the elastic waves. The thesis is organized

as follows.
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In Chapter 1, we describe initial value problem (IVP) and initial boundary value problem

(IBVP) of anisotropic elastic layered medium. We mention about other studies and approaches

for solving the system of anisotropic elasticity and the way of finding solutions. In addition,

the main goal of this thesis is given.

In Chapter 2, we reformulate initial boundary value problem of anisotropic elasticity in

two layered half space. The following section deals with the reduction of the system to the

Cauchy problem of the wave equation. For solving this problem, we separate the half space

into different subregions. By using the method of characteristics, the solution of IBVP

is investigated in these subregions. The explicit formula of a solution is constructed. The

simulations of wave propagation are obtained and analyzed.

Chapter 3 starts with the formulations of initial value problem (IVP) of the wave equation

with piecewise constant coefficients. IBVP in Chapter 2 is reformulated as IVP in three lay-

ered medium. Similarly, we separate the space into different subregions and the solution of

the problem is investigated independently. By using the explicit formula of the solution, the

simulations of wave propagation are obtained and analyzed.

Chapter 4 starts with initial value problem (IVP) that is formulated in Chapter 3 with two

layered space. The techniques of finding solution is described in detail. Analysis of the formu-

lations and the results of the simulations are dealed extensively. In addition, the Matlab codes

of IVP in two layered medium are given.

Chapter 5 is related with the conclusion of the thesis.



CHAPTER TWO

INITIAL BOUNDARY VALUE PROBLEM OF ANISOTROPIC LAYERED ELASTIC

HALF SPACE

Let x = (x1,x2,x3) ∈ R3, t ∈ R and let

• ϕ = (ϕ1,ϕ2,ϕ3) and ψ = (ψ1,ψ2,ψ3) be given vector functions

depending on x;

• F = (F1,F2,F3) be given vector function depending on t;

• u = (u1,u2,u3) be unknown vector function depending on x and t.

2.1 Statement of the Problem

Initial boundary value problem of anisotropic elastic half space is to find unknown function

u = (u1,u2,u3) satisfying the following system of differential equations

ρ(x3)
∂ 2u j

∂ t2 =
3

∑
k=1

3

∑̀
=1

3

∑
m=1

∂
∂xk

(
c jk`m(x3)

∂u j

∂xm

)
, 0 < x3 < `, ` < x3 < ∞, t ∈ R (2.1.1)

with initial data

u j(x,0) = ϕ j(x) ,
∂u j

∂ t
(x, t)

∣∣∣
t=0

= ψ j(x), 0 < x3 < `, ` < x3 < ∞, (2.1.2)

the boundary condition

3

∑̀
=1

3

∑
m=1

c j3`m
∂u`

∂xm

∣∣∣
x3=0

= Fj(t), t ∈ R (2.1.3)

and matching conditions

u j(x3, t)
∣∣∣
x3=`−0

= u j(x3, t)
∣∣∣
x3=`+0

(2.1.4)

3

∑̀
=1

3

∑
m=1

c j3`m(x3)
∂u j

∂xm

∣∣∣
x3=`−0

=
3

∑̀
=1

3

∑
m=1

c j3`m(x3)
∂u j

∂xm

∣∣∣
x3=`+0

(2.1.5)

where ` is given number, (x1,x2) ∈ R2 and for each j = 1,2,3 u j(x, t) is jth component of

the displacement vector u(x, t) = (u1(x, t),u2(x, t),u3(x, t)) ; ρ(x3) is the density of the elastic

6
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medium and
{

c jk`m(x3)
}3

jk`m=1
are the elastic moduli of the medium.

2.2 Assumptions

The elastic moduli c jk`m(x3) satisfy the symmetry properties

c jk`m(x3) = c`m jk(x3) = ck j`m(x3)

and also c jk`m(x3) is positive definite for each j,k, `,m = 1,2,3 i.e. there exists a positive

constant M such that
3

∑
j,k,`,m=1

c jk`m(x3)ε jkε`m > M ·
3

∑
j,k,`,m=1

ε2
jk

for all ε jk such that ε jk = εk j .

There exists a real, symmetric, positive definite 6x6 matrix C = (cγσ (x3))6x6 which includes

c jk`m(x3) as its entries by relating the pair ( j,k) of indices j,k = 1,2,3 to a single index

γ = 1,2, . . . ,6 and the pair (`,m) of indices `,m = 1,2,3 to a single index σ = 1,2, . . . ,6 .

(1,1)↔ 1 , (2,3),(3,2)↔ 4 ,

(2,2)↔ 2 , (1,3),(3,1)↔ 5 ,

(3,3)↔ 3 , (1,2),(2,1)↔ 6 .

(2.2.1)

due to the symmetry properties. Then the matrix C is the following,

C(x3) =




c11(x3) c12(x3) c13(x3) c14(x3) c15(x3) c16(x3)

c21(x3) c22(x3) c23(x3) c24(x3) c25(x3) c26(x3)

c31(x3) c32(x3) c33(x3) c34(x3) c35(x3) c36(x3)

c41(x3) c42(x3) c43(x3) c44(x3) c45(x3) c46(x3)

c51(x3) c52(x3) c53(x3) c54(x3) c55(x3) c56(x3)

c61(x3) c62(x3) c63(x3) c64(x3) c65(x3) c66(x3)




= (cγσ (x3))6×6
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In this work, we assume that

cγσ (x3) =





c1
γσ , 0 < x3 < `;

c2
γσ , ` < x3 < ∞.

ρ(x3) =





ρ1, 0 < x3 < `;

ρ2, ` < x3 < ∞.
(2.2.2)

where c1
γσ , c2

γσ , ρ1 > 0 and ρ2 > 0 are given constants.

2.3 Reduction to IBVP for Wave Equations in Two Layered Half Space

Under these assumptions, the equations (2.1.1)− (2.1.3) can be written as follows

ρ
∂ 2u
∂ t2 = A33

∂ 2u
∂x32 +

3

∑
i= j 6=3 ; i, j=1

Ai j
∂ 2u

∂xi∂x j
, 0 < x3 < `, ` < x3 < ∞ (2.3.1)

u(x,0) = ϕ(x) ,
∂u
∂ t

(x, t)
∣∣∣
t=0

= ψ(x) , 0 < x3 < `, ` < x3 < ∞ (2.3.2)

A33
∂u
∂x3

∣∣∣
x3=0

+
2

∑
i=1

Ai
∂u
∂xi

∣∣∣
x3=0

= F(t), t ∈ R (2.3.3)

where u is the vector u(x, t) =
(

u1(x, t),u2(x, t),u3(x, t)
)

under the assumption that u does

not depend on the variables x1 and x2 i.e. u(x, t) = u(x3, t) . And where the matrices are

as follow,

A11(x3) =




c11(x3) c16(x3) c15(x3)

c16(x3) c66(x3) c56(x3)

c15(x3) c56(x3) c55(x3)


 ,

A12(x3) =
1
2




2c16(x3) c12(x3)+ c66(x3) c14(x3)+ c56(x3)

c66(x3)+ c12(x3) 2c26(x3) c46(x3)+ c25(x3)

c56(x3)+ c14(x3) c25(x3)+ c46(x3) 2c45(x3)


 ,

A22(x3) =




c66(x3) c26(x3) c46(x3)

c26(x3) c22(x3) c24(x3)

c46(x3) c24(x3) c44(x3)


 ,
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A13(x3) =




2c15(x3) c14(x3)+ c56(x3) c13(x3)+ c55(x3)

c56(x3)+ c14(x3) 2c46(x3) c36(x3)+ c45(x3)

c55(x3)+ c13(x3) c45(x3)+ c36(x3) 2c35(x3)


 ,

A33(x3) =




c55(x3) c45(x3) c35(x3)

c45(x3) c44(x3) c34(x3)

c35(x3) c34(x3) c33(x3)


 ,

A23(x3) =
1
2




2c56(x3) c46(x3)+ c25(x3) c36(x3)+ c45(x3)

c25(x3)+ c46(x3) 2c24(x3) c23(x3)+ c44(x3)

c45(x3)+ c36(x3) c44(x3)+ c23(x3) 2c34(x3)


 ,

A1(x3) =




c15(x3) c56(x3) c55(x3)

c14(x3) c46(x3) c45(x3)

c13(x3) c36(x3) c35(x3)


 , A2(x3) =




c56(x3) c25(x3) c45(x3)

c46(x3) c24(x3) c44(x3)

c36(x3) c23(x3) c34(x3)


 .

We assume that
c45(x3) = 0, c35(x3) = 0, c34(x3) = 0,

c54(x3) = 0, c53(x3) = 0, c43(x3) = 0.

Under these assumptions, A33 has diagonal form,

A33(x3) =




c55(x3) 0 0

0 c44(x3) 0

0 0 c33(x3)


 (2.3.4)

Then the equations (2.3.1)− (2.3.3) can be written as

∂ 2u
∂ t2 = Λ(x3)

∂ 2u
∂x32 , 0 < x3 < ` , ` < x3 < ∞, t ∈ R,

u(x,0) = ϕ(x) ,
∂u
∂ t

(x, t)
∣∣∣
t=0

= ψ(x) , 0 < x3 < ` , ` < x3 < ∞

Λ(x3)
∂u
∂x3

∣∣∣
x3=0

= F(t), t ∈ R
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where Λ(x3) =
1

ρ(x3)
A33(x3), ρ(x3) > 0.

Consider the matching conditions (2.1.4)− (2.1.5), The equation (2.1.4) is obvious. Un-

der the above assumptions and notations in (2.2.1) , the equation (2.1.5) has the form,

A33(x3)
∂u
∂x3

∣∣∣
x3=`−0

+
2

∑
i=1

Ai(x3)
∂u
∂xi

∣∣∣
x3=`−0

=A33(x3)
∂u
∂x3

∣∣∣
x3=`+0

+
2

∑
i=1

Ai(x3)
∂u
∂xi

∣∣∣
x3=`+0

Since there is no dependence on x1 and x2 . So the equation (2.2.1) has the following form,

Λ(x3)
∂u
∂x3

∣∣∣
x3=`−0

= Λ(x3)
∂u
∂x3

∣∣∣
x3=`+0

where Λ(x3) =
1

ρ(x3)
A33(x3) , ρ(x3) > 0 where A33(x3) is defined in (2.3.4).

Notice that the matrix Λ is diagonal. Since the matrix C is positive definite and ρ(x3) > 0,

then

Λ =




d2
11(x3) 0 0

0 d2
22(x3) 0

0 0 d2
33(x3)


 (2.3.5)

where d2
11 =

c55(x3)
ρ(x3)

, d2
22 =

c44(x3)
ρ(x3)

, d2
33 =

c33(x3)
ρ(x3)

.

The initial and boundary value problem of anisotropic elastic half space is for each k = 1,2,3,

∂ 2Uk

∂ t2 = d2
kk(x3)

∂ 2Uk

∂x32 , 0 < x3 < ` , ` < x3 < ∞, t ∈ R, (2.3.6)

with initial and boundary conditions,

Uk(x,0) = Φk(x) ,
∂Uk

∂ t
(x, t)

∣∣∣
t=0

= Ψk(x) 0 < x3 < ` , ` < x3 < ∞ (2.3.7)

d2
kk(x3)

∂Uk

∂x3

∣∣∣
x3=0

= Fk(t) , t ∈ R (2.3.8)

and the matching conditions,

Uk(x3, t)
∣∣∣
x3=`−0

= Uk(x3, t)
∣∣∣
x3=`+0

(2.3.9)

d2
kk(x3)

∂Uk

∂x3
(x3, t)

∣∣∣
x3=`−0

= d2
kk(x3)

∂Uk

∂x3
(x3, t)

∣∣∣
x3=`+0

(2.3.10)
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2.4 IBVP Of Isotropic Elastic Half Space

Let Φk(x3), Ψk(x3) and dkk(x3) for k = 1,2,3 are in the form,

dkk(x3) =





αk, 0 < x3 < `;

βk, ` < x3 < ∞.
(2.4.1)

Φk(x3) =





ϕk(x3), 0 < x3 < `;

wk(x3), ` < x3 < ∞.
Ψk(x3) =





ψk(x3), 0 < x3 < `;

φk(x3), ` < x3 < ∞.
(2.4.2)

In our further consideration, we consider the scalar equation with fixed k together with initial

data and boundary condition. We will omit the index k for simplicity writing.

Figure 2.1 The Regions for n=2,3,4,. . .

Initial boundary value problem (2.3.6)− (2.3.10) may be written in the form of

Uk(x3, t) =





uk(x3, t), 0 < x3 < `;

vk(x3, t), ` < x3 < ∞.

as follows,
∂ 2uk

∂ t2 = α2
k

∂ 2uk

∂x32 , 0 < x3 < ` , t ∈ R, (2.4.3)

∂ 2vk

∂ t2 = β 2
k

∂ 2vk

∂x32 , ` < x3 < ∞ , t ∈ R, (2.4.4)
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with initial and boundary data,

uk(x3,0) = ϕk(x3),
∂uk

∂ t
(x3, t)

∣∣∣
t=0

= ψk(x3), 0 < x3 < `, (2.4.5)

vk(x3,0) = wk(x3),
∂vk

∂ t
(x3, t)

∣∣∣
t=0

= φk(x3), ` < x3 < ∞, (2.4.6)

α2
k

∂uk

∂x3

∣∣∣
x3=0

= Fk(t) , for k = 1,2,3. (2.4.7)

and the matching conditions,

uk

∣∣∣
x3=`−0

= vk

∣∣∣
x3=`+0

(2.4.8)

α2
k

∂uk

∂x3

∣∣∣
x3=`−0

= β 2
k

∂vk

∂x3

∣∣∣
x3=`+0

(2.4.9)

2.5 Construction of the Solution

To find the solution, we separate half space into subregions and the formulation of the

solution of the problem (2.4.3)− (2.4.9) is constructed for each subregions, independently by

using the method of characteristics.

uk(x3, t) =
{

ukm(x3, t), if (x3, t) ∈ Rm (2.5.1)

Here, k denotes the the component of the matrix u(x3, t) and m denotes the index of subre-

gion.

2.6 Zero Step

Zero step includes the regions R1 and R2 (see, Figure 2.1) Let us consider the problem

(2.4.3)− (2.4.9) for zero step. Notice that in this step there is no

boundary, so we use only initial conditions.

Theorem 2.6.1. Let ϕk(x3), ψk(x3), wk and φk(x3) be given continuous

functions depending on x3; uk(x3, t) is unknown function in the form (2.5.1). Then the solution

of the problem (2.4.3)− (2.4.9) for zero step is the following,



13

Uk(x3, t) =





1
2

[ϕk(x3 +αkt)+ϕk(x3−αkt)]

+
1

2αk

∫ x3+αkt

x3−αkt
ψk(γ)dγ, if (x3, t) ∈ R1;

1
2

[wk(x3 +βkt)−w(x3−βkt)]

+
1

2βk

∫ x3+βkt

x3−βkt
φk(ν)dν , if (x3, t) ∈ R2.

(2.6.1)

where

R1 =
{

(x3, t)
∣∣∣ 0 < x3 < ` , t <

x3

αk
∧ t <

`− x3

αk

}

R2 =
{

(x3, t)
∣∣∣ ` < x3 < ∞ , t <

x3− `

βk

}

for each k = 1,2,3.

Proof. Let us consider the problem (2.4.3)− (2.4.4) with initial conditions

(2.4.5)− (2.4.6) in the regions R1 and R2, respectively.

2.6.1 The Region R1

Let us consider the problem (2.4.3)− (2.4.9) in the region R1,

R1 =
{

(x3, t)
∣∣∣ 0 < x3 < ` , t <

x3

αk
∧ t <

`− x3

αk

}

for k = 1,2,3.

The equation (2.4.3) can be written

∂qk

∂ t
−αk

∂qk

∂x3
= 0, (x3, t) ∈ R1, (2.6.2)

∂uk

∂ t
+αk

∂uk

∂x3
= qk(x3, t), (x3, t) ∈ R1. (2.6.3)
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For the solution of the problem, we use the method of characteristics. So, the characteristics of

the equations (2.6.2)− (2.6.3) are respectively,

dξ
dτ

=−αk , ξ (t) = x3 ; ξ =−αkτ + x3 +αkt,

dξ
dτ

= αk , ξ (t) = x3 ; ξ = αkτ + x3−αkt.

By integrating along the characteristics, we get the following

qk(x3, t) = ψk(x3 +αkt)+αkϕ ′k(x3 +αkt)

and ∫ t

0

∂
∂τ

[
uk(x3−αk(t− τ),τ)

]
dτ =

∫ t

0
ψk(x3−αkt +2αkτ)dτ

+αk

∫ t

0
ϕ ′k(x3−αkt +2αkτ)dτ

Let
x3−αkt +2αkτ = γ , 2αkdτ = dγ

γlow = x3−αkt , γup = x3 +αkt

So, we get

uk(x3, t)−uk(x3−αkt,0) =
1
2

[ϕk(x3 +αkt)−ϕk(x3−αkt)]

+
1

2αk

∫ x3+αkt

x3−αkt
ψk(γ)dγ

By substituting the initial conditions (2.4.5), we have the solution

uk(x3, t) =
1
2

[ϕk(x3 +αkt)+ϕk(x3−αkt)]+
1

2αk

∫ x3+αkt

x3−αkt
ψk(γ)dγ, (x3, t) ∈ R1.

2.6.2 The Region R2

Let us consider the problem (2.4.3)− (2.4.9) in the region R2, for each k = 1,2,3.

The equation (2.4.4) can be written

∂qk

∂ t
−βk

∂qk

∂x3
= 0 , (x3, t) ∈ R2, (2.6.4)

∂vk

∂ t
+βk

∂vk

∂x
= qk(x3, t) , (x3, t) ∈ R2. (2.6.5)
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The characteristic of the equation (2.6.4)− (2.6.5) are respectively,

dξ
dτ

=−βk , ξ (t) = x3 ; ξ =−βkτ + x3 +βkt,

dξ
dτ

= βk , ξ (x3) = t ; ξ = βkτ + x3−βkt.

Then by the same argument, we integrate along the characteristics so we get,

vk(x3, t) =
1
2

[wk(x3 +βkt)−w(x3−βkt)]+
1

2βk

∫ x3+βkt

x3−βkt
φk(ν)dν , (x3, t) ∈ R2.

2.7 The First Step

The first step includes the regions R3, R4 and R5 (see, Figure 2.1). In this step, we consider

initial boundary data and also matching conditions defined on the boundary x = `.

Before finding the solution for the first step, we must define the following

functions,

uk(0, t) = gk(t), uk(`, t) = fk(t) and
∂uk

∂x3

∣∣∣
x3=`

= Gk(t) . (2.7.1)

We must construct these functions by initial and boundary data and also by the matching

conditions.

Theorem 2.7.1. Let ϕk(x3), ψk(x3), wk and φk(x3) be given continuous

functions depending on x3; Fk(t) be given continuous function depending on t; uk(x3, t) is

unknown function in the form (2.5.1). Then the solution of the problem (2.4.3)− (2.4.9) for

the first step is the following,
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Uk(x3, t) =





gk

(
t− x3

αk

)
+

1
2

[ϕk(x3 +αkt)−ϕk(−x3 +αkt)]

+
1

2αk

∫ x3+αkt

−x3+αkt
ψk(µ)dµ, if (x3, t) ∈ R3;

fk

(
t +

x3− `

αk

)
+

1
2

[ϕk(x3−αkt)−ϕk(−x3−αkt +2`)]

− 1
2αk

∫ x3−αkt

−x3−αkt+2`
ψk(µ)dµ, if (x3, t) ∈ R4;

fk

(
t− x3− `

βk

)
+

1
2

[wk(x3 +βkt)−wk(−x3 +βkt +2`)]

+
1

2βk

∫ x3+βkt

−x3+βkt+2`
φk(ν)dν, if (x3, t) ∈ R5.

(2.7.2)

where

R3 =
{

(x3, t)
∣∣∣ 0 < x3 < ` ,

x3

αk
< t <

`− x3

αk

}
,

R4 =
{

(x3, t)
∣∣∣ 0 < x3 < ` ,

`− x3

αk
< t <

x3

αk

}
,

R5 =
{

(x3, t)
∣∣∣ ` < x3 < ∞ ,

x3− `

βk
< t <

x3− `

βk
+

`

αk

}
,

and the functions defined in (2.7.1) are constructed by initial-boundary data and the matching

conditions as follows

gk(t) = (ϕk(αkt)−ϕk(0))+
∫ t

0
ψk(αkτ)dτ− 1

αk

∫ t

0
Fk(τ)dτ (2.7.3)

Gk(t) =
1

αk
f ′k(t)+ϕ ′k(`−αkt)− 1

αk
ψk(`−αkt) (2.7.4)

fk(t) =
αk

αk +βk
[ϕk(`−αkt)−ϕk(`)]− 1

αk +βk

∫ `−αkt

`
ψk(s)ds

+
βk

αk +βk
[wk(`+βkt)−w(`)]+

1
αk +βk

∫ `+βkt

`
φk(z)dz (2.7.5)

for each k = 1,2,3.

Proof. Let us consider the problem (2.4.3)−(2.4.4) with initial-boundary data (2.4.5)−(2.4.7)

and the matching conditions (2.4.8)− (2.4.9) in the regions R3, R4 and R5 respectively.
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Now, we analyze the regions, independently.

2.7.1 The Region R3

Let us consider the problem (2.4.3)− (2.4.9) in the region R3 (see, Figure 2.1), for k =

1,2,3.

R3 =
{

(x3, t)
∣∣∣ 0 < x3 < ` ,

x3

αk
< t <

`− x3

αk

}

The equation (2.4.3) can be written as in the form,

∂qk

∂ t
−αk

∂qk

∂x3
= 0 , (x3, t) ∈ R3, (2.7.6)

∂uk

∂ t
+αk

∂uk

∂x3
= qk(x3, t) , (x3, t) ∈ R3. (2.7.7)

The characteristic of the equation (2.7.6)− (2.7.7) are respectively,

dξ
dτ

=−αk , ξ (t) = x3 ; ξ =−αkτ + x3 +αkt ,

dξ
dτ

= αk , ξ (t) = x3 ; ξ = αkτ + x3−αkt and if ξ = 0 ; τ = t− x3

αk
.

By integrating along the characteristics,

qk(x3, t) = ψk(x3 +αkt)+αkϕ ′k(x3 +αkt)

Then by integrating along the characteristic,

uk(x3, t)−uk

(
0, t− x3

αk

)
=

∫ t

t− x3
αk

ψk(x3−αkt +2αkτ)dτ

+αk

∫ t

t− x3
αk

ϕ ′k(x3−αkt +2αkτ)dτ ,

Let
x3−αkt +2αkτ = ν , 2αkdτ = dν

νlow =−x3 +αkt , νup = x3 +αkt



18

By substituting the initial conditions (2.4.5), we have the solution

uk(x3, t) = gk

(
t− x3

αk

)
+

1
2

[ϕk(x3 +αkt)−ϕk(−x3 +αkt)]

+
1

2αk

∫ x3+αkt

−x3+αkt
ψk(µ)dµ , (x3, t) ∈ R3,

and the function gk(t) defined in (2.7.1) is the following,

gk(t) = (ϕk(αkt)−ϕk(0))+
∫ t

0
ψk(αkτ)dτ− 1

αk

∫ t

0
Fk(τ)dτ .

2.7.2 The Region R4

Let us consider the problem (2.4.3)− (2.4.9) in the region R4 (see, Figure 2.1), for k =

1,2,3.

R4 =
{

(x3, t)
∣∣∣ 0 < x3 < ` ,

`− x3

αk
< t <

x3

αk

}

The equation (2.4.3) can be written as in the form,

∂qk

∂ t
+αk

∂qk

∂x3
= 0 , (x3, t) ∈ R4 , (2.7.8)

∂uk

∂ t
−αk

∂uk

∂x3
= qk(x3, t) , (x3, t) ∈ R4 . (2.7.9)

The characteristics of the equations (2.7.8)− ((2.7.9)) are respectively,

dξ
dτ

= αk , ξ (t) = x3 ; ξ = αkτ + x3−αkt ,

dξ
dτ

=−αk , ξ =−αkτ + x3 +αkt , when ξ = ` ; τ = t +
x3− `

αk
.

By integrating along the characteristics, we get

qk(x3, t) = ψk(x3−αkt)−αkϕ ′k(x3−αkt)
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Similarly, we integrate along the characteristic and by using the boundary data (2.4.7), we get

the following formula

uk(x3, t) = fk

(
t +

x3− `

αk

)
+

1
2

[ϕk(x3−αkt)−ϕk(−x3−αkt +2`)]

− 1
2αk

∫ x3−αkt

−x3−αkt+2`
ψk(µ)dµ , (x3, t) ∈ R4.

2.7.3 The Region R5

Let us consider the problem (2.4.3)− (2.4.9) in the region R5 (see, Figure 2.1), for k =

1,2,3.

R5 =
{

(x3, t)
∣∣∣ ` < x3 < ∞ ,

x3− `

βk
< t <

x3− `

βk
+

`

αk

}

The equation (2.4.4) can be written as in the form,

∂qk

∂ t
−βk

∂qk

∂x3
= 0 , (x3, t) ∈ R5, (2.7.10)

∂vk

∂ t
+βk

∂vk

∂x3
= qk(x3, t) , (x3, t) ∈ R5. (2.7.11)

The characteristics of the equations (2.7.10)− ((2.7.11)) are respectively,

dξ
dτ

=−βk , ξ (t) = x3 ; ξ =−βkτ + x3 +βkt,

dξ
dτ

= βk , ξ (t) = x3 ; ξ = βkτ + x3−βkt, when ξ = `; τ = t− x3− `

βk
.

So

qk(x3, t) = φk(x3 +βkt)+βkw′k(x3 +βkt) ,

Similarly, by integrating along the characteristics and by using initial conditions, we get the

following formula

vk(x3, t) = hk

(
t− x3− `

βk

)
+

1
2

[wk(x3 +βkt)−wk(−x3 +βkt +2`)]
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+
1

2βk

∫ x3+βkt

−x3+βkt+2`
φk(ν)dν , (x3, t) ∈ R5.

To find the functions fk(t) and Gk(t) defined in (2.7.1), we must use the matching conditions

in (2.4.8)− (2.4.9).

2.7.4 Matching Conditions Between R4 and R5

The formula for the region R4 is in the form,

uk(x3, t) = fk

(
t− `− x3

αk

)
+

1
2
[ϕk(x3−αkt)−ϕk(−x3−αkt +2`)]

− 1
2αk

∫ x3−αkt

−x3−αkt+2`
ψk(ν)dν ,

and the formula for the region R5 is in the form,

vk(x3, t) = hk

(
t +

`− x3

βk

)
+

1
2
[wk(x3 +βkt)−wk(−x3 +βkt +2`)]

+
1

2βk

∫ x3+βkt

−x3+βkt+2`
φk(ν)dν .

By the first matching condition (2.4.8), we have,

uk(`−0, t) = vk(`+0, t) = fk(t)

To use the second matching condition (2.4.9), we must differentiate the formulas for the regions

R4 and R5, and substitute x = `. Then we get the function Gk(t) defined in (2.7.1),

Gk(t) =
∂uk

∂x3

∣∣∣
x3=`−0

=
1

αk
f ′k(t)+ϕ ′k(`−αkt)− 1

αk
ψk(`−αkt)

By using the second matching condition (2.4.9) and by integrating the resulting formula from

0 to t, we get the function fk(t) defined in (2.7.1) as follows,

fk(t) =
αk

αk +βk
[ϕk(`−αkt)−ϕk(`)]− 1

αk +βk

∫ `−αkt

`
ψk(s)ds

+
βk

αk +βk
[wk(`+βkt)−w(`)]+

1
αk +βk

∫ `+βkt

`
φk(z)dz
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2.8 General Case

In zero and the first step, we have constructed the formulations of uk(x3, t), vk(x3, t) and

the functions gk(t), fk(t), Gk(t) defined in (2.7.1) for n = 0 and n = 1. After the first step, we

generalize the number of the step with index n, for n = 2,3, . . . So, we reformulate the initial

boundary value problem.

Initial boundary value problem is to find unk(x3, t) in the form

Unk(x3, t) =





unk(x3, t), 0 < x3 < `;

vnk(x3, t), ` < x3 < ∞.

for each k = 1,2,3 and n = 2,3, . . . satisfying

∂ 2unk

∂ t2 = α2
k

∂ 2unk

∂x32 , 0 < x3 < ` , t ∈ R, (2.8.1)

∂ 2vnk

∂ t2 = β 2
k

∂ 2vnk

∂x32 , ` < x3 < ∞ , t ∈ R, (2.8.2)

with initial and boundary data,

unk(x,0) = ϕk(x3) ,
∂unk

∂ t
(x, t)

∣∣∣
t=0

= ψk(x3) , 0 < x3 < ` , (2.8.3)

vnk(x,0) = wk(x3) ,
∂vnk

∂ t
(x, t)

∣∣∣
t=0

= φk(x3) , ` < x3 < ∞ , (2.8.4)

α2
k

∂unk

∂x3

∣∣∣
x3=0

= Fk(t) , t ∈ R (2.8.5)

and the matching conditions,

unk

∣∣∣
x3=`−0

= vnk

∣∣∣
x3=`+0

(2.8.6)

α2
k

∂unk

∂x3

∣∣∣
x3=`−0

= β 2
k

∂vnk

∂x3

∣∣∣
x3=`+0

(2.8.7)

The General case includes the regions R(4n−2),R(4n−1),R(4n) and R(4n+1) (see, Fig-

ure 2.1). Notice that, unlike in the first step, in the general case we have an additional subregion,

namely the region R(4n-2).

However, similar to the first step, in the general case we consider initial boundary data and
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also matching conditions defined on the boundary x = `.

Before finding the solution for the general case, we must define the following

functions,

unk(0, t) = gnk(t), unk(`, t) = fnk(t) and
∂unk

∂x3

∣∣∣
x3=`

= Gnk(t) (2.8.8)

We must construct these functions by initial-boundary data and also by the matching conditions.

Similar to (2.5.1), the solution of the problem (2.8.1)− (2.8.7) for the general case will be

found in the following form by using the method of characteristics.

ukn(x3, t) =
{

uknm(x3, t), if (x3, t) ∈ Rm (2.8.9)

Here, the index k denotes the component of the vector function u(x3, t), the index n denotes

the number of the step and the index m denotes the number of subregion.

Theorem 2.8.1. Let ϕk(x3), ψk(x3), wk and φk(x3) be given continuous

functions depending on x3; Fk(t) be given continuous function depending on t; uk(x3, t) is

unknown function in the form (2.5.1). Then the solution of the problem (2.8.1)− (2.8.7) for

the general case is the following,

Uk(x3, t) =





g(n−1)k

(
t− x3

αk

)
+

1
2

f(n−1)k

(
t +

x3− `

αk

)
− 1

2
f(n−1)k

(
t− x3 + `

αk

)

+
αk

2

∫ t+ x3−`
αk

t− x3+`
αk

G(n−1)k(µ)dµ, if (x3, t) ∈ R(4n−2);

gnk

(
t− x3

αk

)
+

1
2

[
f(n−1)k

(
t +

x3− `

αk

)
− f(n−1)k

(
t− x3 + `

αk

)]

+
αk

2

∫ t+ x3−`
αk

t− x3+`
αk

G(n−1)k(µ)dµ, if (x3, t) ∈ R(4n−1);

fnk

(
t +

x3− `

αk

)
+

1
2

[
g(n−1)k

(
t− x3

αk

)
−g(n−1)k

(
t +

x3−2`

αk

)]

−αk

2

∫ t− x3
αk

t+ x3−2`
αk

F(n−1)k(γ)dγ , if (x3, t) ∈ R(4n);

fnk

(
t− x3− `

βk

)
+

1
2

[wk(x3 +βkt)−wk(−x3 +βkt +2`)]

+
1

2βk

∫ x3+βkt

−x3+βkt+2`
φk(ν)dν , if (x3, t) ∈ R(4n+1).

(2.8.10)
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where

R(4n−2) =
{

(x3, t)
∣∣∣ 0 < x3 < ` ,

(n−2)`
αk

< t− x3

αk
<

(n−1)`
αk

and

(n−1)`
αk

< t +
x3

αk
<

n`

αk

}

R(4n−1) =
{

(x3, t)
∣∣∣ 0 < x3 < ` ,

x3 +(n−1)`
αk

< t <
n`− x3

αk

}

R(4n) =
{

(x3, t)
∣∣∣ 0 < x3 < ` ,

n`− x3

αk
< t <

x3 +(n−1)`
αk

}

R(4n+1) =
{

(x3, t)
∣∣∣ ` < x3 < ∞ ,

(n−1)`
αk

< t− x3− `

βk
<

n`

αk

}

for each n = 2,3, . . . and the functions defined in (2.8.8) are constructed by initial-boundary

data and the matching conditions as follows

Gnk(t) =
1

αk
f ′nk(t)−

1
αk

g′(n−1)k

(
t− `

αk

)
+F(n−1)k

(
t− `

αk

)
, (2.8.11)

gnk(t) =
[

f(n−1)k

(
t− `

αk

)
− f(n−1)k

(
− `

αk

)]
+αk

∫ t− `
αk

− `
αk

G(n−1)k(γ)dγ

− 1
αk

∫ t

0
Fnk(τ)dτ, (2.8.12)

fnk(t) =
αk

αk +βk
[g(n−1)k

(
t− `

αk

)
−g(n−1)k

(
− `

αk

)
]+

βk

αk +βk
wk(`+βkt)

− βk

αk +βk
wk(`)−

α2
k

αk +βk

∫ t− `
αk

− `
αk

F(n−1)k(s)ds

+
1

αk +βk

∫ `+βkt

`
φk(z)dz (2.8.13)

for each k = 1,2,3 and n = 2,3, . . .

Proof. If we notice the subregions in 0 < x3 < `, namely the regions R(4n−2),

R(4n− 1) and R(4n) (see, Figure 2.1), we do not use the initial conditions. Instead, we use

the functions, defined in (2.8.8). As a result of this situation, the formulation of the defined

functions (2.8.11)− (2.8.13) is in the form of recurrence relations.

Now, we analyze the regions, independently.
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2.8.1 The Region R(4n-2)

The region R(4n− 2) has a different form (see, Figure 2.2). We use the boundary

condition Fk(t) and the functions f(n−1)k(t), g(n−1)k and G(n−1)k which we must find in the

previous step.

In this region, we assume that there is a jump at x =
`

2
. We will apply the following matching

conditions when the speeds are the same.

unk(
`

2
−0, t) = unk(

`

2
+0, t) (2.8.14)

(α2
k )

∂unk

∂x3

∣∣∣
x3= `

2−0
= (α2

k )
∂unk

∂x3

∣∣∣
x3= `

2 +0
(2.8.15)

Figure 2.2 The Region R(4n-2)

Let us consider the problem (2.8.1)− (2.8.7) in the region R(4n-2), for k = 1,2,3. and

n = 2,3, . . .

R(4n−2) =
{

(x3, t)
∣∣∣ 0 < x3 < ` ,

(n−2)`
αk

< t− x3

αk
<

(n−1)`
αk

and

(n−1)`
αk

< t +
x3

αk
<

n`

αk

}
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The equation (2.8.1) can be written as in the form,

∂qnk

∂ t
+αk

∂qnk

∂x3
= 0 , (x3, t) ∈ R(4n−2), (2.8.16)

∂unk

∂ t
−αk

∂unk

∂x3
= qnk(x3, t) , (x3, t) ∈ R(4n−2). (2.8.17)

The characteristics of the equation (2.8.16)− (2.8.17) are the following,

dξ
dτ

= αk , ξ (t) = x3 ; ξ = αkτ + x3−αkt , when ξ = 0 ; τ = t− x3

αk
,

dξ
dτ

=−αk , ξ (t) = x3 ; ξ =−αkτ + x3 +αkt ,when ξ =
`

2
; τ = t +

2x3− `

2αk
.

By integrating along the characteristic ξ = x3−αk(t− τ), from t− x3

αk
to t,

qnk(x3, t) = g(n−1)k(t−
x3

αk
)

Then by integrating along the characteristic ξ = x3 +αk(t− τ), from t +
2x3− `

2αk
to t, ∫ t

t+ 2x3−`
2αk

∂
∂τ

[unk(x3 +αk(t− τ),τ)]dτ =
∫ t

t+ 2x3−`
2αk

g′
(

2τ− t− x3

αk

)
dτ

Let
2τ− t− x3

αk
= µ , 2dτ = dµ

µlow = t +
x3− `

αk
, µup = t− x3

αk

By letting unk(
`

2
, t) = mnk(t), we get

unk(x3, t) = mnk

(
t +

2x3− `

2αk

)
+

1
2

[
g(n−1)k

(
t− x3

αk

)
−g(n−1)k

(
t +

x3− `

αk

)]
. (2.8.18)

Similarly, the equation (2.8.1) can be written as in the form,

∂qnk

∂ t
−αk

∂qnk

∂x3
= 0 , (x3, t) ∈ R(4n−2) , (2.8.19)

∂unk

∂ t
+αk

∂unk

∂x3
= qnk(x3, t) , (x3, t) ∈ R(4n−2) . (2.8.20)
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The characteristics of the equation (2.8.18)− (2.8.19) are the following,

dξ
dτ

=−αk , ξ (t) = x3 ; ξ =−αkτ + x3 +αkt , when ξ = ` ; τ = t +
x3− `

αk
,

dξ
dτ

= αk , ξ (t) = x3 ; ξ = αkτ + x3−αkt, when ξ =
`

2
; τ = t +

`−2x3

2αk
.

By integrating along the characteristic ξ = x3 +αk(t− τ), from t +
x3− `

αk
to t,

qnk(x3, t) = f ′(n−1)k

(
t +

x3− `

αk

)
+αkG(n−1)k

(
t +

x3− `

αk

)

Similarly, by letting unk(
`

2
+0, t) = r(t) and integrating along the characteristic

ξ = x3−αk(t− τ), from t +
`−2x3

2αk
to t, we get

unk(x3, t) = r
(

t +
`−2x3

2αk

)
+

1
2

[
f(n−1)k

(
t +

x3− `

αk

)
− f(n−1)k

(
t− x3

αk

)]

+
αk

2

∫ t+ x3−`
αk

t− x3
αk

G(n−1)k(z)dz (2.8.21)

If we use the first matching condition (2.8.14), we get

m(t) = r(t)

By using the second matching condition (2.8.15), we get

m(t) =
1
2

[
g
(

t− `

2αk

)
−g

(
− `

2αk

)]
+

αk

2

∫ t− `
2αk

− `
2αk

G(n−1)k(µ)dµ

+
1
2

[
f
(

t− `

2αk

)
− f

(
− `

2αk

)]
,

If we substitute the function m(t) into the formulation (2.8.21), we get

unk(x3, t) = g(n−1)k

(
t− x3

αk

)
+

1
2

f(n−1)k

(
t +

x3− `

αk

)
− 1

2
f(n−1)k

(
t− x3 + `

αk

)

+
αk

2

∫ t+ x3−`
αk

t− x3+`
αk

G(n−1)k(µ)dµ, (x3, t) ∈ R(4n−2).



27

2.8.2 The Region R(4n-1)

Let us consider the problem (2.8.1)− (2.8.7) in the region R(4n-1), for k = 1,2,3. and

n = 2,3, . . .

R(4n−1) =
{

(x3, t)
∣∣∣ 0 < x3 < ` ,

x3 +(n−1)`
αk

< t <
n`− x3

αk

}

The equation (2.8.1) can be written in the form,

∂qnk

∂ t
−αk

∂qnk

∂x3
= 0 , (x3, t) ∈ R(4n−1), (2.8.22)

∂unk

∂ t
+αk

∂unk

∂x3
= qnk(x3, t) , (x3, t) ∈ R(4n−1). (2.8.23)

The characteristics of the equation (2.8.22)− (2.8.23) are the following,

dξ
dτ

=−αk , ξ (t) = x3 ; ξ =−αkτ + x3 +αkt , when ξ = ` ; τ = t +
x3− `

αk
,

dξ
dτ

= αk , ξ (t) = x3 ; ξ = αkτ + x3−αkt and if ξ = 0 ; τ = t− x3

αk
.

So, by integrating along the characteristic ξ = x3 +αk(t− τ) from t +
x3− `

αk
, to t,

qnk(x3, t) = f ′(n−1)k

(
t +

x3− `

αk

)
+αkG(n−1)k

(
t +

x3− `

αk

)
,

By integrating along the characteristic, ξ = x3−αk(t− τ) we get the solution

unk(x3, t) = gnk

(
t− x3

αk

)
=

1
2

[
f(n−1)k

(
t +

x3− `

αk

)
− f(n−1)k

(
t− x3 + `

αk

)]

+
αk

2

∫ t+ x3−`
αk

t− x3+`
αk

G(n−1)k(µ)dµ , (x3, t) ∈ R(4n−1).

And the function gnk defined in (2.8.8) is in the form,

gnk(t) =
[

f(n−1)k

(
t− `

αk

)
− f(n−1)k

(
− `

αk

)]
+αk

∫ t− `
αk

− `
αk

G(n−1)k(γ)dγ

− 1
αk

∫ t

0
Fnk(τ)dτ .
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2.8.3 The Region R(4n)

Let us consider the problem (2.8.1)− (2.8.7) in the region R(4n), for k = 1,2,3. and

n = 2,3, . . .

R(4n) =
{

(x3, t)
∣∣∣ 0 < x3 < ` ,

n`− x3

αk
< t <

x3 +(n−1)`
αk

}

The equation (2.8.1) can be written as in the form,

∂qnk

∂ t
+αk

∂qnk

∂x3
= 0 , (x3, t) ∈ R(4n), (2.8.24)

∂unk

∂ t
−αk

∂unk

∂x3
= qnk(x3, t) , (x3, t) ∈ R(4n). (2.8.25)

The characteristics of the equations (2.8.24)− (2.8.25) are the following

dξ
dτ

= αk , ξ (t) = x3 ; ξ = αkτ + x3−αkt and if ξ = 0 ; τ = t− x3

αk
,

dξ
dτ

=−αk , ξ (t) = x3 ξ =−αkτ + x3 +αkt , when ξ = ` ; τ = t +
x3− `

αk
.

So, by integrating along the characteristic ξ = x3−αk(t− τ) from t− x3

αk
to t,

qnk(x3, t) = g′(n−1)k

(
t− x3

αk

)
−αkF(n−1)k

(
t− x3

αk

)
,

Similarly, by integrating along the characteristic ξ =−αkτ + x3 +αkt from t +
x3− `

αk
to t, we

get

unk(x3, t) = fnk

(
t +

x3− `

αk

)
+

1
2

[
g(n−1)k

(
t− x3

αk

)
−g(n−1)k

(
t +

x3−2`

αk

)]

−αk

2

∫ t− x3
αk

t+ x3−2`
αk

F(n−1)k(γ)dγ , (x3, t) ∈ R(4n). (2.8.26)
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2.8.4 The Region R(4n+1)

Let us consider the problem (2.8.1)−(2.8.7) in the region R(4n+1), for k = 1,2,3. and n =

2,3, . . .

R(4n+1) =
{

(x3, t)
∣∣∣ ` < x3 < ∞ ,

(n−1)`
αk

< t− x3− `

βk
<

n`

αk

}

The equation (2.8.2) can be written as in the form,

∂qnk

∂ t
−βk

∂qnk

∂x3
= 0 , (x3, t) ∈ R(4n+1), (2.8.27)

∂vnk

∂ t
+βk

∂vnk

∂x3
= qnk(x3, t) , (x3, t) ∈ R(4n+1). (2.8.28)

The characteristics of the equation (2.8.27)− (2.8.28) are the following,

dξ
dτ

=−βk , ξ (x3) = t ; ξ =−βkτ + x3 +βkt ,

dξ
dτ

= βk , ξ (x3) = t ; ξ = βkτ + x3−βkt , when ξ = ` ; τ = t− x3− `

βk
.

So, by integrating along ξ = βkτ + x3−βkt from 0 to t,

qnk(x3, t) = φk(x3 +βkt)+βkw′k(x3 +βkt),

Similarly, by integrating along the characteristic ξ = βkτ + x3−βkt from τ = t− x3− `

βk
to t,

we get

vnk(x3, t) = fnk

(
t− x3− `

βk

)
+

1
2

[wk(x3 +βkt)−wk(−x3 +βkt +2`)]

+
1

2βk

∫ x3+βkt

−x3+βkt+2`
φk(ν)dν ,(x3, t) ∈ R(4n+1). (2.8.29)

2.8.5 Matching Conditions Between R(4n) and R(4n+1)

Consider the formulations in (2.8.26)− (2.8.29) for the regions R(4n) and R(4n+1).

By the first matching condition (2.8.6), we get the relation

unk(`−0, t) = unk(`+0, t) = fnk(t) (2.8.30)
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To apply the second matching condition (2.8.7), we must differentiate the formulations in

(2.8.26)− (2.8.29), then by substituting x3 = `, we get the function Gnk(t) defined in (2.8.8)

Gnk(t) =
∂unk

∂x3

∣∣∣
x3=`−0

=
1

αk
f ′nk(t)−

1
αk

g′(n−1)k

(
t− `

αk

)
+F(n−1)k

(
t− `

αk

)

and by the second matching condition (2.8.7), we get the function fnk(t),

fnk(t) =
αk

αk +βk
[g(n−1)k

(
t− `

αk

)
−g(n−1)k

(
− `

αk

)
]

+
βk

αk +βk
[wk(`+βkt)−wk(`)]+

1
αk +βk

∫ `+βkt

`
φk(z)dz

− α2
k

αk +βk

∫ t− `
αk

− `
αk

F(n−1)k(s)ds .

2.9 Examples of Simulations of Wave Propagation in Two Layered Medium

In this section, we deal with examples of simulations of wave propagation in two layered

elastic half space. As the mathematical model of wave propagation, we study IBVP of wave

equations in two layered medium.,

We took a pulse point source in different positions in half space: Between the boundaries

x3 = 0 and x3 = `, outside the boundary x3 = `. In each case, the half space has two layers

with different speed. The speed of the first layer is α = 1 and the speed of the second layer

is β = 2. We considered the matching conditions (2.4.8)−(2.4.9) only on the boundary x3 = `.

For all examples, we omit the index k for simplicity writing.

2.9.1 Example 1 - The Pulse Point Source is Between the Boundaries x3 = 0 and x3 = `

Let us consider initial boundary value problem (2.4.3)−(2.4.9) with its general form

(2.8.1)− (2.8.7) for k = 1 and n = 2,3, . . . The initial conditions ϕ(x3), ψ(x3), w(x3), φ(x3)

have the following form

ϕ(x3) = δ (x3− x0
3), ψ(x3) = 0,
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w(x3) = 0, φ(x3) = 0.

where δ (x3) is Dirac delta function, the boundary ` = 40, the point source is located at x0
3 = 10

and the boundary condition

F(x3) = 0.

By the properties of Dirac delta function and the assumptions, the solution of IBVP can be

written as follows:

U(x3, t) =





1
2

[
δ (x3 +αt− x0

3)+δ (x3−αt− x0
3)

]
, if (x3, t) ∈ R1;

0, if (x3, t) ∈ R2.

U(x3, t) =





g
(

t− x3

α

)
+

1
2
·δ (x3 +αt− x0

3)

−1
2
·δ (−x3 +αt− x0

3), if (x3, t) ∈ R3;

f
(

t +
x3− `

α

)
+

1
2
·δ (x3−αt− x0

3)

−1
2
·δ (−x3−αt +2`− x0

3), if (x3, t) ∈ R4;

f
(

t− x3− `

β

)
, if (x3, t) ∈ R5.

Here, the function g(t), f (t) and G(t), constructed in Theorem 2.7.1, can be also written as

g(t) = δ (αt− x0
3),

G(t) =− β
α(α +β )

· ∂
∂ t

[
δ (`−αt− x0

3)
]

f (t) =
α

α +β
·δ (`−αt− x0

3)

For n = 2,3, . . .
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U(x3, t) =





g(n−1)

(
t− x3

α

)
+

1
2
· f(n−1)

(
t +

x3− `

α

)
− 1

2
f(n−1)

(
t− x3 + `

α

)

+
α
2

∫ t+ x3−`
α

t− x3+`
α

G(n−1)(µ)dµ, if (x3, t) ∈ R(4n−2);

gn

(
t− x3

α

)
+

1
2

[
f(n−1)

(
t +

x3− `

α

)
− f(n−1)

(
t− x3 + `

α

)]

+
α
2

∫ t+ x3−`
α

t− x3+`
α

G(n−1)(µ)dµ, if (x3, t) ∈ R(4n−1);

fn

(
t +

x3− `

α

)
+

1
2
·g(n−1)

(
t− x3

α

)

−1
2
·g(n−1)

(
t +

x3−2`

α

)
, if (x3, t) ∈ R(4n);

fn

(
t− x3− `

β

)
, if (x3, t) ∈ R(4n+1).

Here, the function gn(t), fn(t) and Gn(t) are constructed in Theorem 2.8.1, can be also written

as for n = 2,3, . . .

Gn(t) =
1
α
· f ′n(t)−

1
α
·g′(n−1)

(
t− `

α

)
,

gn(t) =
[

f(n−1)

(
t− `

α

)
− f(n−1)

(
− `

α

)]
+α

∫ t− `
α

− `
α

G(n−1)(γ)dγ

fn(t) =
α

α +β
[g(n−1)

(
t− `

α

)
−g(n−1)

(
− `

α

)
]

with

G1(t) =− β
α(α +β )

· ∂
∂ t

[
δ (`−αt− x0

3)
]

G(n−1)(t) =
1
α
· f ′(n−1)(t)−

1
α
·g′(n−2)

(
t− `

α

)
,

g1(t) = δ (αt− x0
3),

g(n−1)(t) =
[

f(n−2)

(
t− `

α

)
− f(n−2)

(
− `

α

)]
+α

∫ t− `
α

− `
α

G(n−2)(γ)dγ

f1(t) =
α

α +β
·δ (`−αt− x0

3)

f(n−1)(t) =
α

α +β
[g(n−2)

(
t− `

α

)
−g(n−2)

(
− `

α

)
]
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By using Matlab codes, we simulate the solution of IBVP (2.8.1)− (2.8.7)

(a) t = 0 (b) t = 5 (c) t = 20

(d) t = 35 (e) t = 55 (f) t = 75

Figure 2.3 Uk(x3, t) in two layered medium

In these figures, we simulate the wave propagation in two layered elastic half space that

is the first layer is located 0 < x3 < 40, while the second layer is located 40 < x3 < ∞ (the

boundary ` = 40).

In the figures, the horizontal axes x and the vertical axes y show the location and the mag-

nitude of the wave front, respectively. In figure (a), we can see the fluctuation arising from

the pulse point source x0
3 = 10, described by the function ϕ(x3) = δ (x3− x0

3). In the figure

(b), the separated waves began to move to the opposite sides along the characteristics. In the

figure (c), The wave front that is moving to the left, touches the boundary x3 = 0, while time

is passing. Then it turns back and starts to move to the right. This time, they both move to

the right. In the figure (d), the reflected and transmitted waves can be seen after the wave front

touched the boundary x3 = 40 . Notice the magnitudes of the reflected and transmitted waves,

The substraction of reflected wave form the transmitted wave, gives us the previous magnitude

of wave front in. And the magnitude of the reflected wave in the figure(d) has the negative sign,

this is the result of that the speed of the second layer is bigger than the first one. (For more

details, chapter 4)

In the figure (e), similarly the other wave front is separated into the reflected and the trans-
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mitted waves. When the reflected waves are moving to the left, the transmitted waves are

moving to the right. In the figure (f), the reflected wave touches the boundary x = 0, it turns

back and starts to move to the right similar to the figure (c). And one of the transmitted waves

disappears by the time is passing.

2.9.2 Example 2 - The Pulse Point Source is between ` and ∞

Let us consider initial boundary value problem (2.4.3)−(2.4.9) with its general form

(2.8.1)− (2.8.7) for k = 1 and n = 2,3, . . . The initial conditions ϕ(x3), ψ(x3), w(x3), φ(x3)

have the following form

ϕ(x3) = 0,

ψ(x3) = 0,

w(x3) = δ (x3− x0
3),

φ(x3) = 0.

where δ (x3) is Dirac delta function, the boundary ` = 40, the point source is located at x0
3 = 60

and the boundary condition

F(x3) = 0.

From the properties of Dirac delta function and the assumptions, the solution U(x3, t) of IBVP

can be written as follows:

U(x3, t) =





0, if (x3, t) ∈ R1;

1
2

[
δ (x3 +β t− x0

3)−δ (x3−β t− x0
3)

]
, if (x3, t) ∈ R2.

U(x3, t) =





0, if (x3, t) ∈ R3;

f
(

t +
x3− `

α

)
, if (x3, t) ∈ R4;

h
(

t− x3− `

β

)
+

1
2
·δ (x3 +β t− x0

3)

−1
2
·δ (−x3 +β t +2`− x0

3), if (x3, t) ∈ R5.
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Here, the function f (t) and G(t) are constructed in Theorem 2.7.1, can be also written as

G(t) =
β

α(α +β )
∂
∂ t

[
δ (`+β t− x0

3)
]

,

f (t) =
β

α +β
·δ (`+β t− x0

3) .

For n = 2,3, . . .

U(x3, t) =





g(n−1)

(
t− x3

α

)
+

1
2

f(n−1)

(
t +

x3− `

α

)
− 1

2
f(n−1)

(
t− x3 + `

α

)

+
α
2

∫ t+ x3−`
α

t− x3+`
α

G(n−1)(µ)dµ, if (x3, t) ∈ R(4n−2);

gn

(
t− x3

α

)
+

1
2

[
f(n−1)

(
t +

x3− `

α

)
− f(n−1)

(
t− x3 + `

α

)]

+
α
2

∫ t+ x3−`
α

t− x3+`
α

G(n−1)(µ)dµ, if (x3, t) ∈ R(4n−1);

fn

(
t +

x3− `

α

)
+

1
2
·g(n−1)

(
t− x3

α

)

−1
2
·g(n−1)

(
t +

x3−2`

α

)
, if (x3, t) ∈ R(4n);

fn

(
t− x3− `

β

)
+

1
2
·δ (x3 +β t− x0

3)

−1
2 ·δ (−x3 +β t +2`− x0

3), if (x3, t) ∈ R(4n+1).

Here, the function gn(t), fn(t) and Gn(t) are constructed in Theorem 2.8.1, can be also written

as

Gn(t) =
1
α
· f ′n(t)−

1
α
·g′(n−1)

(
t− `

α

)
,

gn(t) =
[

f(n−1)

(
t− `

α

)
− f(n−1)

(
− `

α

)]
+α

∫ t− `
α

− `
α

G(n−1)(γ)dγ,

fn(t) =
α

α +β
[g(n−1)

(
t− `

α

)
−g(n−1)

(
− `

α

)
]+

β
α +β

δ (`+β t− x0
3) .

with

g1(t) = 0 ,
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g(n−1)(t) =
[

f(n−2)

(
t− `

α

)
− f(n−2)

(
− `

α

)]
+α

∫ t− `
α

− `
α

G(n−2)(γ)dγ,

G1(t) =
β

α(α +β )
∂
∂ t

[
δ (`+β t− x0

3)
]

,

G(n−1)(t) =
1
α
· f ′(n−1)(t)−

1
α
·g′(n−2)

(
t− `

α

)
,

f1(t) =
β

α +β
·δ (`+β t− x0

3) .

f(n−1)(t) =
α

α +β
[g(n−2)

(
t− `

α

)
−g(n−2)

(
− `

α

)
]+

β
α +β

δ (`+β t− x0
3) .

By using Matlab codes, we simulate the solution of IBVP (2.8.1)− (2.8.7).

(a) t = 0 (b) t = 5 (c) t = 15

(d) t = 40 (e) t = 70 (f) t = 95

Figure 2.4 Uk(x3, t) in two layered medium

Similarly, in these figures, the boundary is located at ` = 40 and the pulse point source

is located outside the boundary ` = 40, at x0
3 = 60. In figure (a), we can see the fluctuation

arising from the pulse point source x0
3 = 60 described by the function w(x3) = δ (x3− x0

3). In

the figure (b), the separated waves begin to move along the characteristics. In the figure (c), the

reflected and transmitted waves can be seen after the wave front touches the boundary x3 = 40 .

In the figure(d), the reflected wave continues its movement to the right while the transmitted

wave moves to the left. By the time is passing, the transmitted wave touches the boundary of
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the half space, then starts to move to the left in the figure(e). In the figure(f), the wave front

are separated into the reflected and the transmitted waves because of the boundary located at

x3 = 40.

Notice that, the magnitude of the reflected wave in the figure(f) has the negative sign, this is

the result of that the speed of the second layer is bigger than the first one. (For more details,

chapter 4)
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2.10 Conclusion of Chapter Two

• The system of elastic waves is reduced to IBVP of anisotropic layered elastic half space.

• Explicit formulae for the solution of IBVP with matching conditions has been con-

structed.

• Using this formulae, the simulation of wave propagation has been obtained.

• Results of the simulations have clear physical interpretation of wave

propagation in two layered media from the point source.



CHAPTER THREE

INITIAL VALUE PROBLEM IN THREE LAYERED MEDIUM

Let us consider the problem (2.3.6)− (2.3.10). In this work, we omit the index k for sim-

plicity writing. Let (x, t) ∈ R2, Φ(x),Ψ(x) and d(x) have the following form,

d(x) =





d0, −∞ < x < 0;

d1, 0 < x < `;

d1, ` < x < ∞.

(3.0.1)

Φ(x) =





ϕ0, −∞ < x < 0;

ϕ1, 0 < x < `;

ϕ2, ` < x < ∞.

Ψ(x) =





ψ0, −∞ < x < 0;

ψ1, 0 < x < `;

ψ2, ` < x < ∞.

(3.0.2)

where d0, d1, d2 are given constants; ϕ0(x), ϕ1(x), ϕ2(x), ψ0(x), ψ1(x) and ψ2(x) are given

functions depending on x.

In addition, we assume that there is no boundary condition and we have the matching con-

ditions not only on the boundary x = `, but also on the boundary x = 0, as the following

differential problem,

∂ 2u
∂ t2 −d2(x)

∂ 2u
∂x2 = 0, −∞ < x < 0, 0 < x < `, ` < x < ∞, t ∈ R, (3.0.3)

with initial data,

u(x,0) = ϕ(x),
∂u
∂ t

∣∣∣
t=0

= ψ(x), −∞ < x < 0,0 < x < `,` < x < ∞, (3.0.4)

and the matching conditions,

u0(x, t)
∣∣∣
x=−0

= u1(x, t)
∣∣∣
x=+0

(3.0.5)

∂u0

∂x
(x, t)

∣∣∣
x=−0

=
∂u1

∂x
(x, t)

∣∣∣
x=+0

(3.0.6)

u1(x, t)
∣∣∣
x=`−0

= u2(x, t)
∣∣∣
x=`+0

(3.0.7)

∂u1

∂x
(x, t)

∣∣∣
x=`−0

=
∂u2

∂x
(x, t)

∣∣∣
x=`+0

(3.0.8)

39
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3.1 IVP of Wave Equations in Three Layered Medium

Figure 3.1 The Regions with index n = 2,3,4, . . .

Initial value problem (3.0.3)− (3.0.8) may be written in the term of

u(x, t) =





u0(x, t), −∞ < x < 0;

u1(x, t), 0 < x < `;

u2(x, t), ` < x < ∞.

(3.1.1)

as follows
∂ 2u0

∂ t2 −d2
0

∂ 2u0

∂x2 = 0, −∞ < x < 0, t ∈ R, (3.1.2)

∂ 2u1

∂ t2 −d2
1

∂ 2u1

∂x2 = 0, 0 < x < `, t ∈ R, (3.1.3)

∂ 2u2

∂ t2 −d2
2

∂ 2u2

∂x2 = 0, ` < x < ∞, t ∈ R, (3.1.4)

with initial data,

u0(x,0) = ϕ0(x),
∂ u0

∂ t

∣∣∣
t=0

= ψ0(x), −∞ < x < 0, (3.1.5)

u1(x,0) = ϕ1(x),
∂u1

∂ t

∣∣∣
t=0

= ψ1(x), 0 < x < `, (3.1.6)
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u2(x,0) = ϕ2(x),
∂u2

∂ t

∣∣∣
t=0

= ψ2(x), ` < x < ∞, (3.1.7)

the matching conditions firstly defined on the boundary x = 0,

u0(x, t)
∣∣∣
x=−0

= u1(x, t)
∣∣∣
x=+0

(3.1.8)

d2
0

∂u0

∂x
(x, t)

∣∣∣
x=0−

= d2
1

∂u1

∂x
(x, t)

∣∣∣
x=0+

(3.1.9)

and also defined on the boundary x = `,

u1(x, t)
∣∣∣
x=`−0

= u2(x, t)
∣∣∣
x=`+0

(3.1.10)

d2
1

∂u1

∂x
(x, t)

∣∣∣
x=`−0

= d2
2

∂u2

∂x
(x, t)

∣∣∣
x=`+0

(3.1.11)

3.2 Construction of the Solution

Similar to the previous chapter, to find the solution, we separate half space into subregions

and the solution of the problem (3.1.2)− (3.1.11) is investigated in these subregions, indepen-

dently by using the method of characteristics.

u(x, t) =
{

um(x, t), if (x, t) ∈ Rm (3.2.1)

Here, the index m denotes the number of subregion.

3.3 Zero Step

Zero step includes the regions R1, R2 and R3 (see, Figure 3.4) Let us consider the problem

(3.1.2)− (3.1.11) for zero step. Notice that in this step we use only initial conditions.

Theorem 3.3.1. Let Φ(x) and Ψ(x) are given continuous functions as in the form (3.0.2)

depending on x; u(x, t) is unknown function as in the form (3.1.1). Then the solution of the

problem (3.1.2)− (3.1.11) for zero step is the following,
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u(x, t) =





1
2

[
ϕ0(x+d0t)+ϕ0(x−d0t)

]

+
1

2d0

∫ x+d0t

x−d0t
ψ0(γ)dγ, if (x, t) ∈ R1;

1
2

[
ϕ1(x+d1t)+ϕ1(x−d1t)

]

+
1

2d1

∫ x+d1t

x−d1t
ψ1(γ)dγ , if (x, t) ∈ R2;

1
2

[
ϕ2(x+d2t)+ϕ2(x−d2t)

]

+
1

2d2

∫ x+d2t

x−d2t
ψ2(γ)dγ , if (x, t) ∈ R3.

(3.3.1)

where

R1 =
{

(x, t)
∣∣∣ −∞ < x < 0 , t <

−x
d0

}

R2 =
{

(x, t)
∣∣∣ 0 < x < ` , t <− x

d1
∧ t <

`− x
d1

}

R3 =
{

(x, t)
∣∣∣ ` < x < ∞ , t <

x− `

d2

}

Proof. Let us consider the problem (3.1.2)− (3.1.4) with the initial data (3.1.5)− (3.1.7) in

the form, for each of the regions R1, R2 and R3,

∂ 2ui

∂ t2 − c2
i

∂ 2ui

∂x2 = 0 , i = 0,1,2

ui(x,0) = ϕi(x),
∂ui

∂ t
(x,0) = ψi(x) i = 0,1,2 .

If we rewrite the first equation as the following

∂qi

∂ t
−di

∂qi

∂x
= 0 , (x, t) ∈ R(i), i = 0,1,2.

∂ui

∂ t
+di

∂ui

∂x
= qi(x, t) (x, t) ∈ R(i), i = 0,1,2.

The characteristics of the equations are respectively,

dξ
dτ

=−di , ξ (t) = x ; ξ =−diτ + x+dit, i = 0,1,2.

dξ
dτ

= di , ξ (t) = x ; ξ = diτ + x−dit, , i = 0,1,2.
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By integrating along the characteristics, we get the following

qi(x, t) = ψi(x+dit)+diϕ ′i (x+dit), i = 0,1,2.

and ∫ t

0

∂
∂τ

[
ui(x−di(t− τ),τ)

]
dτ = di

∫ t

0
ϕ ′i (x−dit +2diτ)dτ

+
∫ t

0
ψi(x−dit +2diτ)dτ, i = 0,1,2.

Let
x−dit +2diτ = γ , 2didτ = dγ

γlow = x−dit , γup = x+dit

By substituting the initial conditions, we get

ui(x, t) =
1
2

[
ϕi(x+dit)+ϕi(x−dit)

]
+

1
2d2

∫ x+dit

x−dit
ψi(γ)dγ (3.3.2)

where i=0,1,2. Hence,

u0(x, t) =
1
2

[
ϕ0(x+d0t)+ϕ0(x−d0t)

]

+
1

2d0

∫ x+d0t

x−d0t
ψ0(γ)dγ, (x, t) ∈ R1 ,

u1(x, t) =
1
2

[
ϕ1(x+d1t)+ϕ1(x−d1t)

]

+
1

2d1

∫ x+d1t

x−d1t
ψ1(γ)dγ, (x, t) ∈ R2,

u2(x, t) =
1
2

[
ϕ2(x+d2t)+ϕ2(x−d2t)

]

+
1

2d2

∫ x+d2t

x−d2t
ψ2(γ)dγ, (x, t) ∈ R3.
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3.4 The First Step

The first step includes the regions R4, R5, R6 and R7 (see, Figure 3.4). In this step, we

consider initial data and also matching conditions defined on the boundaries x = 0 and x = `.

Before finding the solution for the first step, we must define the following

functions,

u(0, t) = g(t), u(`, t) = h(t),
∂u
∂x

∣∣∣
x=0

= G(t) and
∂u
∂x

∣∣∣
x=`

= H(t) . (3.4.1)

We must construct these functions by initial data and the matching conditions.

Theorem 3.4.1. Let Φ(x), Ψ(x) be given continuous functions depending on x in the form

(3.0.2); u(x, t) is unknown function in the form (3.1.1). Then the solution of the problem

(3.1.2)− (3.1.11) for the first step is the following,

u(x, t) =





g
(

t +
x
d0

)
+

1
2

[ϕ0(x−d0t)−ϕ0(−x+d0t)]

− 1
2d0

∫ x−d0t

−x−d0t
ψ0(µ)dµ, if (x, t) ∈ R4;

g
(

t− x
d1

)
+

1
2

[ϕ1(x+d1t)−ϕ1(−x+d1t)]

+
1

2d1

∫ x+d1t

−x+d1t
ψ1(ν)dν , if (x, t) ∈ R5;

h
(

t− `− x
d1

)
+

1
2

[ϕ1(x−d1t)−ϕ1(−x−d1t +2`)]

− 1
2d1

∫ x−d1t

−x−d1t+2`
ψ1(η)dη , if (x, t) ∈ R6;

h
(

t +
`− x

d2

)
+

1
2

[ϕ2(x+d2t)−ϕ2(−x+d2t +2`)]

+
1

2d2

∫ x+d2t

−x+d2t+2`
ψ2(ν)dν , if (x, t) ∈ R7.

(3.4.2)

where

R4 =
{

(x, t)
∣∣∣ −∞ < x < 0 , − x

d0
< t <

`

d1
− x

d0

}

R5 =
{

(x, t)
∣∣∣ 0 < x < ` and

x
d1

< t <
`− x

d1

}
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R6 =
{

(x, t)
∣∣∣ 0 < x < ` and

`− x
d1

< t <
x
d1

}

R7 =
{

(x, t)
∣∣∣ ` < x < ∞ and

x− `

d2
< t <

x− `

d2
+

`

d1

}

and the functions defined in (3.4.1) are constructed by initial data and the matching conditions

as follows

G(t) =− 1
d1

g′(t)+ϕ ′1(d1t)+
1
d1

ψ1(d1t) (3.4.3)

H(t) =
1
d1

h′(t)+ϕ ′1(`−d1t)− 1
d1

ψ1(`−d1t) (3.4.4)

g(t) =
d0

d0 +d1
(ϕ0(−d0t)−ϕ0(0))+

d1

d0 +d1
(ϕ1(d1t)−ϕ1(0))

− 1
d0 +d1

∫ −d0t

0
ψ0(s)ds+

1
d0 +d1

∫ d1t

0
ψ1(z)dz (3.4.5)

h(t) =
d1

d1 +d2
[ϕ1(`−d1t)−ϕ1(`)]+

d2

d1 +d2
[ϕ2(`+d2t)−ϕ2(`)]

− 1
d1 +d2

∫ `−d1t

`
ψ1(s)ds+

1
d1 +d2

∫ `+d2t

`
ψ2(z)dz (3.4.6)

Proof. Let us consider the problem (3.1.2)− (3.1.4) with initial data (3.1.5)− (3.1.7) and the

matching conditions (3.1.8)− (3.1.11) in the regions R4, R5, R6 and R7 respectively.

Notice that, since u(x, t) is defined as in (3.1.1), then the functions, defined in (3.4.1), can

be written as follows Now, we analyze the regions, independently.

3.4.1 The Region R4

Let us consider the problem (3.1.2)− (3.1.11) in the region R4 (see, Figure 3.4),

R4 =
{

(x, t)
∣∣∣ −∞ < x < 0 , − x

d0
< t <

`

d1
− x

d0

}

The equation (3.1.2) can be written as in the form,

∂q0

∂ t
+d0

∂q0

∂x
= 0 , (x, t) ∈ R4, (3.4.7)

∂u0

∂ t
−d0

∂u0

∂x
= q0(x, t) , (x, t) ∈ R4. (3.4.8)
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The characteristic of the equation (3.4.7)− (3.4.8) are respectively,

dξ
dτ

= d0 , ξ (t) = x ; ξ = d0τ + x−d0t ,

dξ
dτ

=−d0 , ξ (t) = x ; ξ =−d0τ + x+d0t and if ξ = 0 ; τ = t +
x
d0

.

By integrating along the characteristics,

q0(x, t) = ψ0(x−d0t)−d0ϕ ′0(x−d0t)

Then by integrating along the characteristic,

u0(x, t)−u0

(
0, t +

x
d0

)
=

∫ t

t+ x
d0

ψ0(x+d0t−2d0τ)dτ

−d0

∫ t

t+ x
d0

ϕ ′0(x+d0t−2d0τ)dτ ,

Let
x+d0t−2d0τ = µ , −2d0dτ = dµ

µlow =−x−d0t , µup = x−d0t

By substituting the initial conditions (3.1.5), we have the solution and by the function g(t)

defined in (3.4.1)

u0(x, t) = g
(

t +
x
d0

)
+

1
2

[ϕ0(x−d0t)−ϕ0(−x−d0t)]

− 1
2d0

∫ x−d0t

−x−d0t
ψ0(µ)dµ , (x, t) ∈ R4,

3.4.2 The Region R5

Let us consider the problem (3.1.2)− (3.1.11) in the region R5 (see, Figure 3.4),

R5 =
{

(x, t)
∣∣∣ 0 < x < ` and

x
d1

< t <
`− x

d1

}

The equation (3.1.3) can be written as in the form,

∂q1

∂ t
−d1

∂q1

∂x
= 0 , (x, t) ∈ R5, (3.4.9)
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∂u1

∂ t
+d1

∂u1

∂x
= q1(x, t) , (x, t) ∈ R5. (3.4.10)

The characteristic of the equation (3.4.9)− (3.4.10) are respectively,

dξ
dτ

=−d1 , ξ (t) = x ; ξ =−d1τ + x+d1t ,

dξ
dτ

= d1 , ξ (t) = x ; ξ = d1τ + x−d1t and if ξ = 0 ; τ = t− x
d1

.

Similarly, by integrating along the characteristics,

q1(x, t) = ψ1(x+d1t)+d1ϕ ′1(x+d1t)

By the same way in the region R4 and the function g(t) defined in (3.4.1), we get

u1(x, t) = g
(

t− x
d1

)
+

1
2

[ϕ1(x+d1t)−ϕ1(−x+d1t)]

+
1

2d1

∫ x+d1t

−x+d1t
ψ1(ν)dν , (x, t) ∈ R5,

To find the functions defined on (3.4.1), we must apply the matching conditions between R4

and R5.

3.4.3 Matching Conditions Between R4 and R5

The formula for the region R4 is in the form,

u0(x, t) = g
(

t +
x
d0

)
+

1
2

[ϕ0(x−d0t)−ϕ0(−x−d0t)]

− 1
2d0

∫ x−d0t

−x−d0t
ψ0(µ)dµ , (x, t) ∈ R4,

and the formula for the region R5 is in the form,

u1(x, t) = g
(

t− x
d1

)
+

1
2

[ϕ1(x+d1t)−ϕ1(−x+d1t)]

+
1

2d1

∫ x+d1t

−x+d1t
ψ1(ν)dν , (x, t) ∈ R5,
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By the first matching condition (3.1.8), we have,

u(−0, t) = u(+0, t) = g(t)

To use the second matching condition (3.1.9), we must differentiate the formulas for the regions

R4 and R5, and substitute x = 0. Then we get the function G(t) defined in (3.4.1),

G(t) =− 1
d1

g′(t)+ϕ ′1(d1t)+
1
d1

ψ1(d1t)

By using the second matching condition (3.1.9) And we get the function g(t) as follows,

g(t) =
d0

d0 +d1
(ϕ0(−d0t)−ϕ0(0))+

d1

d0 +d1
(ϕ1(d1t)−ϕ1(0))

− 1
d0 +d1

∫ −d0t

0
ψ0(s)ds+

1
d0 +d1

∫ d1t

0
ψ1(z)dz

3.4.4 The Region R6

Let us consider the problem (3.1.2)− (3.1.11) in the region R6 (see, Figure 3.4),

R6 =
{

(x, t)
∣∣∣ 0 < x < ` and

`− x
d1

< t <
x
d1

}

The equation (3.1.3) can be written as in the form,

∂q1

∂ t
+d1

∂q1

∂x
= 0 , (x, t) ∈ R6, (3.4.11)

∂u1

∂ t
−d1

∂u1

∂x
= q1(x, t) , (x, t) ∈ R6. (3.4.12)

The characteristic of the equation (3.4.11)− (3.4.12) are respectively,

dξ
dτ

= d1 , ξ (t) = x ; ξ = d1τ + x−d1t ,

dξ
dτ

=−d1 , ξ (t) = x ; ξ =−d1τ + x+d1t and if ξ = ` ; τ = t− `− x
d1

.

Similarly, by integrating along the characteristics,

q1(x, t) = ψ1(x−d1t)−d1ϕ ′1(x−d1t)
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By the same way in the region R4 and the function h(t) defined in (3.4.1), we get

u1(x, t) = h
(

t− `− x
d1

)
+

1
2

[ϕ1(x−d1t)−ϕ1(−x−d1t +2`)]

− 1
2d1

∫ x−d1t

−x−d1t+2`
ψ1(η)dη , (x, t) ∈ R6,

3.4.5 The Region R7

Let us consider the problem (3.1.2)− (3.1.11) in the region R7 (see, Figure 3.4),

R7 =
{

(x, t)
∣∣∣ ` < x < ∞ and

x− `

d2
< t <

x− `

d2
+

`

d1

}

The equation (3.1.4) can be written as in the form,

∂q2

∂ t
−d2

∂q2

∂x
= 0 , (x, t) ∈ R7, (3.4.13)

∂u2

∂ t
+d2

∂u2

∂x
= q2(x, t) , (x, t) ∈ R7. (3.4.14)

The characteristic of the equation (3.4.13)− (3.4.14) are respectively,

dξ
dτ

=−d2 , ξ (t) = x ; ξ =−d2τ + x+d2t ,

dξ
dτ

= d2 , ξ (t) = x ; ξ = d2τ + x−d2t and if ξ = ` ; τ = t +
`− x

d2
.

Similarly, by integrating along the characteristics,

q2(x, t) = ψ2(x+d2t)+d2ϕ ′2(x+d2t)

By the same way in the region R4 and the function h(t) defined in (3.4.1), we get

u2(x, t) = h
(

t +
`− x

d2

)
+

1
2

[ϕ2(x+d2t)−ϕ2(−x+d2t +2`)]

+
1

2d2

∫ x+d2t

−x+d2t+2`
ψ2(ν)dν , (x, t) ∈ R7,

To find the functions defined on (3.4.1), we must apply the matching conditions between R6

and R7.
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3.4.6 Matching Conditions Between R6 and R7

The formula for the region R6 is in the form,

u1(x, t) = h
(

t− `− x
d1

)
+

1
2

[ϕ1(x−d1t)−ϕ1(−x−d1t +2`)]

− 1
2d1

∫ x−d1t

−x−d1t+2`
ψ1(η)dη , (x, t) ∈ R6,

and the formula for the region R7 is in the form,

u2(x, t) = h
(

t +
`− x

d2

)
+

1
2

[ϕ2(x+d2t)−ϕ2(−x+d2t +2`)]

+
1

2d2

∫ x+d2t

−x+d2t+2`
ψ2(ν)dν , (x, t) ∈ R7,

By the first matching condition (3.1.10), we have,

u(`−0, t) = u(`+0, t) = h(t)

To use the second matching condition (3.1.11), we must differentiate the formulas for the

regions R6 and R7, and substitute x = `. Then we get the function H(t) defined in (3.4.1),

H(t) =
1
d1

h′(t)+ϕ ′1(`−d1t)− 1
d1

ψ1(`−d1t)

By using the second matching condition (3.1.11) And we get the function h(t) as follows,

h(t) =
d1

d1 +d2
[ϕ1(`−d1t)−ϕ1(`)]+

d2

d1 +d2
[ϕ2(`+d2t)−ϕ2(`)]

− 1
d1 +d2

∫ `−d1t

`
ψ1(s)ds+

1
d1 +d2

∫ `+d2t

`
ψ2(z)dz

3.5 General Case

In zero and the first step, we have constructed the formulations of u(x, t) and the functions

g(t), h(t), G(t), H(t) defined in (3.4.1) for n = 0 and n = 1, respectively.
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After the first step, we generalize the number of the step with index n, for n = 2,3, . . . So,

we reformulate the initial value problem.

Initial value problem is to find un(x, t) in the form

un(x, t) =





u0n(x, t), −∞ < x < 0;

u1n(x, t), 0 < x < `.

u2n(x, t), ` < x < ∞.

(3.5.1)

for each n = 2,3, . . . satisfying

∂ 2u0n

∂ t2 = d2
0

∂ 2u0n

∂x2 , −∞ < x < 0 , t ∈ R, (3.5.2)

∂ 2u1n

∂ t2 = d2
1

∂ 2u1n

∂x2 , 0 < x < ` , t ∈ R, (3.5.3)

∂ 2u2n

∂ t2 = d2
2

∂ 2u2n

∂x2 , ` < x < ∞ , t ∈ R, (3.5.4)

with initial data,

u0n(x,0) = ϕ0(x) ,
∂u0n

∂ t
(x, t)

∣∣∣
t=0

= ψ0(x) , −∞ < x < 0 , (3.5.5)

u1n(x,0) = ϕ1(x) ,
∂u1n

∂ t
(x, t)

∣∣∣
t=0

= ψ1(x) , 0 < x < ` , (3.5.6)

u2n(x,0) = ϕ2(x) ,
∂u2n

∂ t
(x, t)

∣∣∣
t=0

= ψ2(x) , ` < x < ∞ , (3.5.7)

with the matching conditions defined on the boundary x = 0,

u0n

∣∣∣
x=−0

= u0n

∣∣∣
x=+0

(3.5.8)

d2
0

∂u0n

∂x

∣∣∣
x=−0

= d2
1

∂u1n

∂x

∣∣∣
x=+0

(3.5.9)

and also the matching conditions defined on the boundary x = `,

u1n

∣∣∣
x=`−0

= u2n

∣∣∣
x=`+0

(3.5.10)

d2
1

∂u1n

∂x

∣∣∣
x=`−0

= d2
2

∂u2n

∂x

∣∣∣
x=`+0

(3.5.11)
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The General case includes the regions R(5n−2), R(5n−1), R(5n), R(5n+1) and R(5n+2)

(see, Figure 3.4). Notice that, unlike in the first step, in the general case we have an additional

subregion, namely the region R(5n).

However, similar to the first step, in the general case we consider initial data and matching

conditions defined on the boundaries x = 0, x = `.

Before finding the solution for the general case, we must define the following

functions,
un(0, t) = gn(t), ∂un

∂ x

∣∣∣
x=0

= Gn(t)

un(`, t) = hn(t), ∂un
∂x

∣∣∣
x=`

= Hn(t)
(3.5.12)

We must construct these functions by initial data and also by the matching conditions. Similar

to (3.2.1), the solution of the problem (3.5.2)− (3.5.11) will be found in the following form

by using the method of characteristics.

un(x, t) =
{

unm(x, t), if (x, t) ∈ Rm (3.5.13)

Here, the index n denotes the number of the step and the index m denotes the number of

subregion.

Theorem 3.5.1. Let Φ(x), Ψ(x) be given continuous functions depending on x in the form

(3.0.2); un(x, t) is unknown function in the form (3.5.1). Then the solution of the problem
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(3.5.2)− (3.5.11) for the general case is the following,

u(x, t) =





gn

(
t +

x
d0

)
+

1
2

[
ϕ0(x−d0t)−ϕ0(−x−d0t)

]

+
1

2d0

∫ −x−d0t

x−d0t
ψ0(µ)dµ if (x, t) ∈ R(5n−2);

gn

(
t− x

d1

)
+

1
2

[
h(n−1)

(
t− `− x

d1

)
−h(n−1)

(
t− `+ x

d1

)]

+
d1

2

∫ t− `−x
d1

t− `+x
d1

H(n−1)(η)dη , if (x, t) ∈ R(5n−1);

1
2

[
g(n−1)

(
t− x

d1

)
−g(n−1)

(
− `

2d1

)]
+

1
2

h(n−1)

(
t− `− x

d1

)

−1
2

h(n−1)

(
− `

2d1

)
+

d1

2

∫ t− `−x
d1

− `
2d1

H(n−1)(ν)dν

−d1

2

∫ t− x
d1

− `
2d1

G(n−1)(γ)dγ , if (x, t) ∈ R(5n);

hn(t− `− x
d1

)+
1
2

[
g(n−1)(t−

x
d1

)−g(n−1)(t−
2`− x

d1
)
]

−d1

2

∫ t− x
d1

t− 2`−x
d1

G(n−1)(γ)dγ, if (x, t) ∈ R(5n+1);

hn

(
t +

`− x
d2

)
+

1
2

[
ϕ2(x+d2t)−ϕ2(−x+d2t +2`)

]

+
1

2d2

∫ x+d2t

−x+d2t+2`
ψ2(ξ )dξ , if (x, t) ∈ R(5n+2).

(3.5.14)

where

R(5n+2) =
{

(x, t)
∣∣∣ ` < x < ∞ ,

(n−1)`
d1

<
(

t− x− `

d2

)
<

n`

d1

}

R(5n+1) =
{

(x, t)
∣∣∣ 0 < x < ` ,

n`− x
d1

< t <
(n−1)`+ x

d1

}

R(5n) =
{
(x, t)

∣∣∣ 0 < x < ` ,

(n−2)`+ x
d1

< t <
n`− x

d1
∧ (n−1)`− x

d1
< t <

(n−1)`+ x
d1

}

R(5n−1) =
{

(x, t)
∣∣∣ 0 < x < ` ,

(n−1)`+ x
d1

< t <
n`− x

d1

}

R(5n−2) =
{

(x, t)
∣∣∣ −∞ < x < 0 ,

(n−1)`
d1

− x
d0

< t <
n`

d1
− x

d0

}
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and the functions defined in (3.5.12) are constructed by initial data and the

matching conditions as follows

Gn(t) =− 1
d1

g′n(t)+
1
d1

h′(n−1)

(
t− `

d1

)
+H(n−1)

(
t− `

d1

)
(3.5.15)

Hn(t) =
1
d1

h′n(t)−
1
d1

g′(n−1)

(
t− `

d1

)
− 1

d1
G(n−1)

(
t− `

d1

)
(3.5.16)

gn(t) =
d0

d0 +d1
(ϕ0(−d0t)−ϕ0(0))+

d1

d0 +d1

[
h(n−1)

(
t− `

d1

)
−h(n−1)

(
− `

d1

)]

− 1
d0 +d1

∫ −d0t

0
ψ0(s)ds+

d2
1

d0 +d1

∫ t− `
d1

− `
d1

H(n−1)(z)dz (3.5.17)

hn(t) =
d1

d1 +d2
[g(n−1)

(
t− `

d1

)
−g(n−1)

(
− `

d1

)
]+

d2

d1 +d2
[ϕ2(`+d2t)−ϕ2(`)]

− d2
1

d1 +d2

∫ t− `
d1

− `
d1

G(n−1)(z)dz+
1

d1 +d2

∫ `+d2t

`
ψ2(s)ds (3.5.18)

Proof. In zero and the first step, we constructed the formulations of u(x, t) and the functions,

defined in (3.4.1), for n = 0 and n = 1, respectively. In the general step, we reformulate

initial value problem (3.1.2)− (3.1.11) with the index n, for n = 2,3, . . .

In some regions, namely in R(5n− 1), R(5n), R(5n + 1), we do not use the initial condi-

tions. Instead we use the functions defined in (3.5.12), in the form of recurrence relations.

3.5.1 The Region R(5n−2)

Let us consider the problem (3.5.2)− (3.5.11) in the region R(5n−2) (see, Figure 3.4),

R(5n−2) =
{

(x, t)
∣∣∣ −∞ < x < 0 ,

(n−1)`
d1

− x
d0

< t <
n`

d1
− x

d0

}

The equation (3.5.2) can be written as in the form,

∂q0n

∂ t
+d0

∂q0n

∂x
= 0 , (x, t) ∈ R(5n−2), (3.5.19)

∂u0n

∂ t
−d0

∂u0n

∂x
= q0n(x, t) , (x, t) ∈ R(5n−2). (3.5.20)
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The characteristic of the equation (3.5.19)− (3.5.20) are respectively,

dξ
dτ

= d0 , ξ (t) = x ; ξ = d0τ + x−d0t ,

dξ
dτ

=−d0 , ξ (t) = x ; ξ =−d0τ + x+d0t and if ξ = 0 ; τ = t +
x
d0

.

By integrating along the characteristics,

q0n(x, t) = ψ0(x−d0t)−d0ϕ ′0(x−d0t)

Then by integrating along the characteristic,

u0n(x, t)−u0n

(
0, t +

x
d0

)
=

∫ t

t+ x
d0

ψ0(x+d0t−2d0τ)dτ

−d0

∫ t

t+ x
d0

ϕ ′0(x+d0t−2d0τ)dτ ,

Let
x+d0t−2d0τ = µ , −2d0dτ = dµ

µlow =−x−d0t , µup = x−d0t

By substituting the initial conditions (3.5.5), we have the solution and by the function gn(t)

defined in (3.5.12)

u0n(x, t) = gn

(
t +

x
d0

)
+

1
2

[ϕ0(x−d0t)−ϕ0(−x−d0t)]

− 1
2d0

∫ x−d0t

−x−d0t
ψ0(µ)dµ , (x, t) ∈ R(5n−2).

3.5.2 The Region R(5n−1)

Let us consider the problem (3.5.2)− (3.5.11) in the region R(5n−1)

(see, Figure 3.4),

R(5n−1) =
{

(x, t)
∣∣∣ 0 < x < ` ,

(n−1)`+ x
d1

< t <
n`− x

d1

}

The equation (3.5.3) can be written as in the form,

∂q1n

∂ t
−d1

∂q1n

∂x
= 0 , (x, t) ∈ R(5n−1), (3.5.21)
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∂u1n

∂ t
+d1

∂u1n

∂x
= q1n(x, t) , (x, t) ∈ R(5n−1). (3.5.22)

The characteristic of the equation (3.5.21)− (3.5.22) are respectively,

dξ
dτ

=−d1 , ξ (t) = x ; ξ =−d1τ + x+d1t and if ξ = ` ; τ = t− `− x
d1

,

dξ
dτ

= d1 , ξ (t) = x ; ξ = d1τ + x−d1t and if ξ = 0 ; τ = t− x
d1

.

Similarly, by integrating along the characteristics,

q1n(x, t) = h′(n−1)

(
t− `− x

d1

)
+d1H(n−1)

(
t− `− x

d1

)

By the same way in the region R(5n−2) and the function gn(t) defined in (??), we get

u1n(x, t) = gn

(
t− x

d1

)
+

1
2

[
h(n−1)

(
t− `− x

d1

)
−h(n−1)

(
t− `+ x

d1

)]

+
d1

2

∫ t− `−x
d1

t− `+x
d1

H(n−1)(η)dη , (x, t) ∈ R(5n−1)

To find the functions defined on (3.5.12), we must apply the matching conditions between

R(5n−2) and R(5n−1).

3.5.3 Matching Conditions Between R(5n−2) and R(5n−1)

The formula for the region R(5n−2) is in the form,

u0n(x, t) = gn

(
t +

x
d0

)
+

1
2

[ϕ0(x−d0t)−ϕ0(−x−d0t)]

− 1
2d0

∫ x−d0t

−x−d0t
ψ0(µ)dµ , (x, t) ∈ R(5n−2),

and the formula for the region R(5n−1) is in the form,

u1n(x, t) = gn

(
t− x

d1

)
+

1
2

[
h(n−1)

(
t− `− x

d1

)
−h(n−1)

(
t− `+ x

d1

)]

+
d1

2

∫ t− `−x
d1

t− `+x
d1

H(n−1)(η)dη , (x, t) ∈ R(5n−1).
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By the first matching condition (3.5.8), we have,

u0n(−0, t) = u1n(+0, t) = gn(t)

To use the second matching condition (3.5.9), we must differentiate the formulas for the regions

R(5n− 2) and R(5n− 1), and substitute x = 0. Then we get the function Gn(t) defined in

(3.5.12),

Gn(t) =− 1
d1

g′n(t)+
1
d1

h′(n−1)

(
t− `

d1

)
+H(n−1)

(
t− `

d1

)

By using the second matching condition (3.5.9) And we get the function gn(t) as follows,

gn(t) =
d0

d0 +d1
(ϕ0(−d0t)−ϕ0(0))+

d1

d0 +d1

[
h1

(
t− `

d1

)
−h1

(
− `

d1

)]

− 1
d0 +d1

∫ −d0t

0
ψ0(s)ds+

d2
1

d0 +d1

∫ t− `
d1

− `
d1

H(n−1)(z)dz

3.5.4 The Region R(5n)

Similar to the previous chapter, there is a region, namely the region R(5n), in the general

case has a different form. (see Figure 3.5)

Figure 3.2 The Region R(5n)
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In this region, we use the functions g(n−1), h(n−1), G(n−1) and H(n−1) which we must found

in the previous step.

We assume that there is a jump at x =
`

2
. We will apply the following matching conditions

when the speeds are the same.

u1n(x, t)
∣∣∣
x= `

2−0
= u1n(x, t)

∣∣∣
x= `

2 +0
(3.5.23)

d2
1

∂u1n

∂x

∣∣∣
x= `

2−0
= d2

1
∂u1n

∂x

∣∣∣
x= `

2 +0
(3.5.24)

Let us consider the problem (3.5.2)− (3.5.11) in the region R(5n), for n = 2,3, . . .

R(5n) =
{
(x, t)

∣∣∣ 0 < x < ` ,

(n−2)`+ x
d1

< t <
n`− x

d1
∧ (n−1)`− x

d1
< t <

(n−1)`+ x
d1

}

The equation (3.5.3) can be written as in the form,

∂q1n

∂ t
+d1

∂q1n

∂x
= 0 , (x, t) ∈ R(5n), (3.5.25)

∂u1n

∂ t
−d1

∂u1n

∂x
= q1n(x, t) , (x, t) ∈ R(5n). (3.5.26)

The characteristics of the equation (3.5.25)− (3.5.26) are the following,

dξ
dτ

= d1 , ξ (t) = x ; ξ = d1τ + x−d1t , when ξ = 0 ; τ = t− x
d1

,

dξ
dτ

=−d1 , ξ (t) = x ; ξ =−d1τ + x+d1t ,when ξ =
`

2
; τ = t− `−2x

2d1
.

By integrating along the characteristic ξ = x−d1(t− τ), from t− x
d1

to t,

q1n(x, t) = g′(n−1)

(
t− x

d1

)
−d1G(n−1)

(
t− x

d1

)

Then by integrating along the characteristic ξ = x+d1(t− τ), from t− `−2x
2d1

to t, ∫ t

t− `−2x
2d1

∂
∂τ

[u1n(x+d1(t− τ),τ)]dτ =
∫ t

t− `−2x
2d1

g′
(

2τ− t− x
d1

)
dτ



59

Let
2τ− t− x

d1
= µ , 2dτ = dµ

µlow = t− `− x
d1

, µup = t− x
d1

By letting u1n(
`

2
, t) = m1n(t), we get

u1n(x, t) = m1n

(
t− `−2x

2d1

)
+

1
2

[
g(n−1)

(
t− x

d1

)
−g(n−1)

(
t− `− x

d1

)]
. (3.5.27)

Similarly, the equation (3.5.3) can be written as in the form,

∂q1n

∂ t
−d1

∂q1n

∂x
= 0 , (x, t) ∈ R(5n), (3.5.28)

∂u1n

∂ t
+d1

∂u1n

∂x
= q1n(x, t) , (x, t) ∈ R(5n). (3.5.29)

The characteristics of the equation (3.5.28)− (3.5.29) are the following,

dξ
dτ

=−d1 , ξ (t) = x ; ξ =−d1τ + x+d1t , when ξ = ` ; τ = t− `− x
d1

,

dξ
dτ

= d1 , ξ (t) = x ; ξ = d1τ + x−d1t, when ξ =
`

2
; τ = t +

`−2x
2d1

.

By integrating along the characteristic ξ = x+d1(t− τ), from t− `− x3

d1
to t,

q1n(x, t) = h′(n−1)

(
t− `− x

d1

)
+d1H(n−1)

(
t− `− x

d1

)

Similarly, by letting u1n(
`

2
+0, t) = r(t) and integrating along the characteristic

ξ = x−d1(t− τ), from t +
`−2x

2d1
to t, we get

u1n(x, t) = r
(

t +
`−2x

2d1

)
+

1
2

[
h(n−1)

(
t− `− x

d1

)
−h(n−1)

(
t− x

d1

)]

+
d1

2

∫ t− `−x
d1

t− x
d1

H(n−1)(z)dz (3.5.30)

If we use the first matching condition (3.5.23), we get

m(t) = r(t)
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By using the second matching condition (3.5.24), we get

m(t) =
1
2

[
g
(

t− `

2d1

)
−g

(
− `

2d1

)]
− d1

2

∫ t− `
2d1

− `
2d1

G(n−1)(ν)dν

+
1
2

[
h
(

t− `

2d1

)
−h

(
− `

2d1

)]
+

d1

2

∫ t− `
2d1

− `
2d1

H(n−1)(ν)dν

If we substitute the function m(t) into the formulation (2.8.21), we get

u1n(x, t) =
1
2

[
g(n−1)

(
t− x

d1

)
−g

(
− `

2d1

)]

+
1
2

[
h(n−1)

(
t− `− x

d1

)
−h

(
− `

2d1

)]

−d1

2

∫ t− x
d1

− `
2d1

G(n−1)(ν)dν +
d1

2

∫ t− `−x
d1

− `
2d1

H(n−1)(ν)dν , (x, t) ∈ R(5n).

3.5.5 The Region R(5n+1)

Let us consider the problem (3.5.2)− (3.5.11) in the region R(5n+1) (see, Figure 3.4),

R(5n+1) =
{

(x, t)
∣∣∣ 0 < x < ` ,

n`− x
d1

< t <
(n−1)`+ x

d1

}

The equation (3.5.3) can be written as in the form,

∂q1n

∂ t
+d1

∂q1n

∂x
= 0 , (x, t) ∈ R(5n+1), (3.5.31)

∂u1n

∂ t
−d1

∂u1n

∂x
= q1n(x, t) , (x, t) ∈ R(5n+1). (3.5.32)

The characteristic of the equation (3.5.31)− (3.5.32) are respectively,

dξ
dτ

= d1 , ξ (t) = x ; ξ = d1τ + x−d1t and if ξ = 0 ; τ = t− x
d1

dξ
dτ

=−d1 , ξ (t) = x ; ξ =−d1τ + x+d1t and if ξ = ` ; τ = t− `− x
d1

.

Similarly, by integrating along the characteristics,

q1n(x, t) = g′(n−1)

(
t− x

d1

)
−d1G(n−1)

(
t− x

d1

)
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u1n(x, t) = hn

(
t− `− x

d1

)
+

1
2

[
g(n−1)(t−

x
d1

)−g(n−1)(t−
2`− x

d1
)
]

−d1

2

∫ t− x
d1

t− 2`−x
d1

G(n−1)(γ)dγ, (x, t) ∈ R(5n+1);

3.5.6 The Region R(5n+2)

Let us consider the problem (3.5.2)− (3.5.11) in the region R(5n+2) (see, Figure 3.4),

R(5n+2) =
{

(x, t)
∣∣∣ ` < x < ∞ ,

(n−1)`
d1

<
(

t− x− `

d2

)
<

n`

d1

}

The equation (3.5.4) can be written as in the form,

∂q2n

∂ t
−d2

∂q2n

∂x
= 0 , (x, t) ∈ R(5n+2), (3.5.33)

∂u2n

∂ t
+d2

∂u2n

∂x
= q2n(x, t) , (x, t) ∈ R(5n+2). (3.5.34)

The characteristic of the equation (3.5.33)− (3.5.34) are respectively,

dξ
dτ

=−d2 , ξ (t) = x ; ξ =−d2τ + x+d2t ,

dξ
dτ

= d2 , ξ (t) = x ; ξ = d2τ + x−d2t and if ξ = ` ; τ = t +
`− x

d2
.

Similarly, by integrating along the characteristics,

q2n(x, t) = ψ2(x+d2t)+d2ϕ ′2(x+d2t)

then

u2n(x, t) = hn

(
t +

`− x
d2

)
+

1
2

[ϕ2(x+d2t)−ϕ2(−x+d2t +2`)]

+
1

2d2

∫ x+d2t

−x+d2t+2`
ψ2(ν)dν , (x, t) ∈ R(5n+2),

To find the functions defined on (3.5.12), we must apply the matching conditions between

R(5n+1) and R(5n+2).
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3.5.7 Matching Conditions Between R(5n+1) and R(5n+2)

The formula for the region R(5n+1) is in the form,

u1n(x, t) = hn

(
t− `− x

d1

)
+

1
2

[
g(n−1)(t−

x
d1

)−g(n−1)(t−
2`− x

d1
)
]

−d1

2

∫ t− x
d1

t− 2`−x
d1

G(n−1)(γ)dγ, (x, t) ∈ R(5n+1);

and the formula for the region R(5n+2) is in the form,

u2n(x, t) = hn

(
t +

`− x
d2

)
+

1
2

[ϕ2(x+d2t)−ϕ2(−x+d2t +2`)]

+
1

2d2

∫ x+d2t

−x+d2t+2`
ψ2(ν)dν , (x, t) ∈ R(5n+2),

By the first matching condition (3.5.10), we have,

u1n(`−0, t) = u2n(`+0, t) = h(t)

To use the second matching condition (3.5.11), we must differentiate the formulas for the

regions R(5n+1) and R(5n+2), and substitute x = `. Then we get the function Hn(t) defined

in (3.5.12),

Hn(t) =
1
d1

h′n(t)−
1
d1

g′(n−1)

(
t− `

d1

)
− 1

d1
G(n−1)

(
t− `

d1

)

By using the second matching condition (3.5.11) And we get the function hn(t) as follows,

hn(t) =
d1

d1 +d2
[g(n−1)

(
t− `

d1

)
−g(n−1)

(
− `

d1

)
]+

d2

d1 +d2
[ϕ2(`+d2t)−ϕ2(`)]

− d2
1

d1 +d2

∫ t− `
d1

− `
d1

G(n−1)(z)dz+
1

d1 +d2

∫ `+d2t

`
ψ2(s)ds

3.6 Examples of Simulations of Wave Propagation in Three Layered Medium

In this section, we deal with examples of simulations of wave propagation in three layered

medium. IVP of wave equations is studied as the mathematical model of wave propagation.
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In this work, the space has three layers that are separated with two boundaries x = 0 and

x = `. Each layer has different speed. We defined the matching conditions not only on the

boundary x = ` but also on x = 0.

A pulse point source was taken in different positions in the space: Between −∞ and x = 0;

between the boundaries x = 0 and x = `; between x = ` and ∞.

3.6.1 Example 1 - The Pulse Point Source is Between −∞ and x = 0

Let us consider initial value problem (3.1.2)− (3.1.11). The initial conditions (3.1.5)−
(3.1.7) have the following form

ϕ0(x) = δ (x− x0), ψ0(x) = 0,

ϕ1(x) = 0, ψ1(x) = 0,

ϕ2(x) = 0, ψ2(x) = 0,

where δ (x) is Dirac delta function, the boundary ` = 40, the point source x0 = −20. By the

properties of Dirac delta function and the assumptions, the solution u(x, t) of IVP can be writ-

ten as follows:

u(x, t) =





1
2

[
δ (x+d0t− x0)+δ (x−d0t− x0)

]
if (x, t) ∈ R1;

0, if (x, t) ∈ R2;

0, if (x, t) ∈ R3.

u(x, t) =





g
(

t +
x
d0

)
+

1
2
·δ (x−d0t− x0)

−1
2
·δ (−x+d0t− x0), if (x, t) ∈ R4;

g
(

t− x
d1

)
, if (x, t) ∈ R5;

0, if (x, t) ∈ R6;

0, if (x, t) ∈ R7.
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Here, the function g(t), constructed in Theorem 3.4.1, can be also written as

g(t) =
d0

(d0 +d1)
·δ (−d0t− x0) ,

For n = 2,3, . . .

u(x, t) =





gn

(
t +

x
d0

)
+

1
2
·δ (x−d0t− x0)

−1
2
·δ (−x−d0t− x0), if (x, t) ∈ R(5n−2);

gn

(
t− x

d1

)
+

1
2

[
h(n−1)

(
t− `− x

d1

)
−h(n−1)

(
t− `+ x

d1

)]

+
d1

2

∫ t− `−x
d1

t− `+x
d1

H(n−1)(η)dη , if (x, t) ∈ R(5n−1);

1
2

[
g(n−1)

(
t− x

d1

)
−g(n−1)

(
− `

2d1

)]
+

1
2

h(n−1)

(
t− `− x

d1

)

−1
2

h(n−1)

(
− `

2d1

)
+

d1

2

∫ t− `−x
d1

− `
2d1

H(n−1)(ν)dν

−d1

2

∫ t− x
d1

− `
2d1

G(n−1)(γ)dγ , if (x, t) ∈ R(5n);

hn(t− `− x
d1

)+
1
2

[
g(n−1)(t−

x
d1

)−g(n−1)(t−
2`− x

d1
)
]

−d1

2

∫ t− x
d1

t− 2`−x
d1

G(n−1)(γ)dγ, if (x, t) ∈ R(5n+1);

hn

(
t +

`− x
d2

)
, if (x, t) ∈ R(5n+2).

Here, the functions gn(t), hn(t), Gn(t), and Hn(t), constructed in Theorem 3.5.1, can be also

written as for n = 2,3, . . .

Gn(t) =
−d0

d1(d0 +d1)
· ∂

∂ t

[
δ (−d0t− x0)

]
+

d0

d1(d0 +d1)
·h′(n−1)

(
t− `

d1

)

+
d0

(d0 +d1)
·H(n−1)

(
t− `

d1

)

Hn(t) =
−d2

d1(d1 +d2)
·g′(n−1)

(
t− `

d1

)
+

d2

(d1 +d2)
·G(n−1)

(
t− `

d1

)
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gn(t) =
d0

d0 +d1
·δ (−d0t− x0)+

d1

d0 +d1

[
h(n−1)

(
t− `

d1

)
−h(n−1)

(
− `

d1

)]

+
d2

1
d0 +d1

∫ t− `
d1

− `
d1

H(n−1)(z)dz

hn(t) =
d1

d1 +d2
[g(n−1)

(
t− `

d1

)
−g(n−1)

(
− `

d1

)
]− d2

1
d1 +d2

∫ t− `
d1

− `
d1

G(n−1)(z)dz

with

h1(t) = 0 .

h(n−1)(t) =
d1

d1 +d2
[g(n−2)

(
t− `

d1

)
−g(n−2)

(
− `

d1

)
]− d2

1
d1 +d2

∫ t− `
d1

− `
d1

G(n−1)(z)dz

g1(t) =
d0

(d0 +d1)
·δ (−d0t− x0) ,

g(n−1)(t) =
d0

d0 +d1
·δ (−d0t− x0)+

d1

d0 +d1

[
h(n−2)

(
t− `

d1

)
−h(n−2)

(
− `

d1

)]

+
d2

1
d0 +d1

∫ t− `
d1

− `
d1

H(n−2)(z)dz

H1(t) = 0 ,

H(n−1)(t) =
−d2

d1(d1 +d2)
·g′(n−2)

(
t− `

d1

)
+

d2

(d1 +d2)
·G(n−2)

(
t− `

d1

)

G1(t) =
−d0

d1(d0 +d1)
· ∂

∂ t

[
δ (−d0t− x0)

]
,

G(n−1)(t) =
−d0

d1(d0 +d1)
· ∂

∂ t

[
δ (−d0t− x0)

]
+

d0

d1(d0 +d1)
·h′(n−2)

(
t− `

d1

)

+
d0

(d0 +d1)
·H(n−2)

(
t− `

d1

)

By using Matlab codes, we simulate the solution u(x, t) of IVP (3.1.2)− (3.1.11).

In these figures, we simulate the wave propagation in three layered medium that is separated

with two boundaries; the first boundary is x = 0 and the second boundary is x = ` .(In this

example, ` = 40.)
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(a) t = 0 (b) t = 10 (c) t = 25

(d) t = 50 (e) t = 55 (f) t = 70

Figure 3.3 Pulse Point Source is between −∞ and 0

In the figures, the horizontal axes x and the vertical axes y show the location and the mag-

nitude of the wave front, respectively. In figure (a), we can see the fluctuation arising from the

pulse point source x0 =−20 described by the function ϕ0(x) = δ (x− x0). In the figure (b),

the separated waves began to move along the characteristics. In the figure (c), the reflected and

transmitted waves can be seen after the wave front touched the boundary x = 0 .

Notice that in the figure(c), the reflected wave has the negative sign. This the result of that

the speed of the second layer is bigger than the first layer.(For more detail, chapter 4.)

After the transmitted wave touched the second boundary (x = `) , it is separated into

transmitted and reflected waves in the figure(d). In the figure(e), the movement of the reflected

and transmitted waves can be seen. Especially, the reflected wave is moving between two

boundaries, so in the figure(f), the reflected wave touches the boundary and is separated into

reflected and the transmitted waves.
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3.6.2 Example 2 - The Pulse Point Source is Between the Boundaries x = 0 and x = `

Let us consider initial value problem (3.1.2)− (3.1.11). The initial conditions (3.1.5)−
(3.1.7) have the following form

ϕ0(x) = 0, ψ0(x) = 0,

ϕ1(x) = δ (x− x0), ψ1(x) = 0,

ϕ2(x) = 0, ψ2(x) = 0,

where δ (x) is Dirac delta function, the boundary ` = 40, the point source x0 = 10. By the

properties of Dirac delta function and the assumptions, the solution u(x, t) of IVP can be writ-

ten as follows:

u(x, t) =





0, if (x, t) ∈ R1;

1
2

[
δ (x+d1t− x0)+δ (x−d1t− x0)

]
, if (x, t) ∈ R2;

0, if (x, t) ∈ R3.

u(x, t) =





g
(

t +
x
d0

)
, if (x, t) ∈ R4;

g
(

t− x
d1

)
+

1
2
·δ (x+d1t− x0)

−1
2
·δ (−x+d1t− x0), if (x, t) ∈ R5;

h
(

t− `− x
d1

)
+

1
2
·δ (x−d1t− x0)

−1
2
·δ (−x−d1t +2`− x0), if (x, t) ∈ R6;

h
(

t +
`− x

d2

)
, if (x, t) ∈ R7.

Here, the functions g(t), h(t), G(t), and H(t), constructed in Theorem 3.4.1, can be also
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written as

g(t) =
d1

d0 +d1
·δ (d1t− x0)

h(t) =
d1

d1 +d2
·δ (`−d1t− x0)

G(t) =
d0

d1(d0 +d1)
∂
∂ t

[
δ (d1t− x0)

]

H(t) =
−d2

d1(d1 +d2)
∂
∂ t

[
δ (`−d1t− x0)

]

For n = 2,3, . . .

u(x, t) =





gn

(
t +

x
d0

)
, if (x, t) ∈ R(5n−2);

gn

(
t− x

d1

)
+

1
2

[
h(n−1)

(
t− `− x

d1

)
−h(n−1)

(
t− `+ x

d1

)]

+
d1

2

∫ t− `−x
d1

t− `+x
d1

H(n−1)(η)dη , if (x, t) ∈ R(5n−1);

1
2

[
g(n−1)

(
t− x

d1

)
−g(n−1)

(
− `

2d1

)]
+

1
2

h(n−1)

(
t− `− x

d1

)

−1
2

h(n−1)

(
− `

2d1

)
+

d1

2

∫ t− `−x
d1

− `
2d1

H(n−1)(ν)dν

−d1

2

∫ t− x
d1

− `
2d1

G(n−1)(γ)dγ , if (x, t) ∈ R(5n);

hn(t− `− x
d1

)+
1
2

[
g(n−1)(t−

x
d1

)−g(n−1)(t−
2`− x

d1
)
]

−d1

2

∫ t− x
d1

t− 2`−x
d1

G(n−1)(γ)dγ, if (x, t) ∈ R(5n+1);

hn

(
t +

`− x
d2

)
, if (x, t) ∈ R(5n+2).

Here, the functions gn(t), hn(t), Gn(t), and Hn(t), constructed in Theorem 3.5.1, can be also

written as for n = 2,3, . . .

Gn(t) =
d0

d1(d0 +d1)
·h′(n−1)

(
t− `

d1

)
+

d0

(d0 +d1)
·H(n−1)

(
t− `

d1

)

Hn(t) =
−d2

d1(d1 +d2)
·g′(n−1)

(
t− `

d1

)
+

d2

(d1 +d2)
·G(n−1)

(
t− `

d1

)
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hn(t) =
d1

d1 +d2
[g(n−1)

(
t− `

d1

)
−g(n−1)

(
− `

d1

)
]− d2

1
d1 +d2

∫ t− `
d1

− `
d1

G(n−1)(z)dz

gn(t) =
d1

d0 +d1

[
h(n−1)

(
t− `

d1

)
−h(n−1)

(
− `

d1

)]

+
d2

1
d0 +d1

∫ t− `
d1

− `
d1

H(n−1)(z)dz

with

g1(t) =
d1

d0 +d1
·δ (d1t− x0)

g(n−1)(t) =
d1

d0 +d1

[
h(n−2)

(
t− `

d1

)
−h(n−2)

(
− `

d1

)]

h1(t) =
d1

d1 +d2
·δ (`−d1t− x0)

h(n−1)(t) =
d1

d1 +d2
[g(n−2)

(
t− `

d1

)
−g(n−2)

(
− `

d1

)
]− d2

1
d1 +d2

∫ t− `
d1

− `
d1

G(n−2)(z)dz

G1(t) =
d0

d1(d0 +d1)
∂
∂ t

[
δ (d1t− x0)

]

G(n−1)(t) =
d0

d1(d0 +d1)
·h′(n−2)

(
t− `

d1

)
+

d0

(d0 +d1)
·H(n−2)

(
t− `

d1

)

H1(t) =
−d2

d1(d1 +d2)
∂
∂ t

[
δ (`−d1t− x0)

]

H(n−1)(t) =
−d2

d1(d1 +d2)
·g′(n−2)

(
t− `

d1

)
+

d2

(d1 +d2)
·G(n−2)

(
t− `

d1

)

By using Matlab codes, we simulate the solution u(x, t)of IVP (3.1.2)−(3.1.11) for n = 2,3, . . .

Similarly, in these figures, we simulate the wave propagation in three layered medium in

which a pulse point source is located at x0 = 10. And the horizontal axes x and the vertical

axes y show the location and the magnitude of the wave front, respectively.

In figure (a), we can see the fluctuation arising from the pulse point source x0 = 10 de-

scribed by the function ϕ1(x) = δ (x−x0). In the figure (b), the separated waves began to move

along the characteristics. In the figure (c), the reflected and transmitted waves can be seen after

the wave front touched the boundary x = 0 .
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(a) t = 0 (b) t = 3 (c) t = 10

(d) t = 18 (e) t = 30 (f) t = 38

Figure 3.4 Pulse Point Source is between x = 0 and x = `

On the other hand, the separated wave front in the figure (c), touches the boundary x = `.

So in the figure (d), it is separated into transmitted and reflected waves.

Notice that, in these figures the movements of reflected waves occur between the boundaries

x = 0 and x = `. In a small time period, they are separated over and over again. In the figures

(e) and (f), we can see the separation of the reflected waves into transmitted and reflected waves.

3.6.3 Example 3 - The Pulse Point Source is Between 0 and ∞

Let us consider initial value problem (3.1.2)− (3.1.11). The initial conditions (3.1.5)−
(3.1.7) have the following form

ϕ0(x) = 0, ψ0(x) = 0,

ϕ1(x) = 0, ψ1(x) = 0,

ϕ2(x) = δ (x− x0), ψ2(x) = 0,

where δ (x) is Dirac delta function, the boundary ` = 40, the point source is located at

x0 = 60. By the properties of Dirac delta function and the assumptions, the solution u(x, t) of
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IVP can be written as follows:

u(x, t) =





0, if (x, t) ∈ R1;

0, if (x, t) ∈ R2;

1
2

[
δ (x+d2t− x0)+δ (x−d2t− x0)

]
, if (x, t) ∈ R3.

u(x, t) =





0, if (x, t) ∈ R4;

0, if (x, t) ∈ R5;

h
(

t− `− x
d1

)
, if (x, t) ∈ R6;

h
(

t +
`− x

d2

)
+

1
2
·δ (x+d2t− x0)

−1
2
·δ (−x+d2t +2`− x0), if (x, t) ∈ R7.

Here, the function h(t), constructed in Theorem 3.4.1, can be also written as

h(t) =
d2

d1 +d2
·δ (`+d2t− x0)
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For n = 2,3, . . . in the general case;

u(x, t) =





gn

(
t +

x
d0

)
, if (x, t) ∈ R(5n−2);

gn

(
t− x

d1

)
+

1
2

[
h(n−1)

(
t− `− x

d1

)
−h(n−1)

(
t− `+ x

d1

)]

+
d1

2

∫ t− `−x
d1

t− `+x
d1

H(n−1)(η)dη , if (x, t) ∈ R(5n−1);

1
2

[
g(n−1)

(
t− x

d1

)
−g(n−1)

(
− `

2d1

)]
+

1
2

h(n−1)

(
t− `− x

d1

)

−1
2

h(n−1)

(
− `

2d1

)
+

d1

2

∫ t− `−x
d1

− `
2d1

H(n−1)(ν)dν

−d1

2

∫ t− x
d1

− `
2d1

G(n−1)(γ)dγ , if (x, t) ∈ R(5n);

hn(t− `− x
d1

)+
1
2

[
g(n−1)(t−

x
d1

)−g(n−1)(t−
2`− x

d1
)
]

−d1

2

∫ t− x
d1

t− 2`−x
d1

G(n−1)(γ)dγ, if (x, t) ∈ R(5n+1);

hn

(
t +

`− x
d2

)
+

1
2

δ (x+d2t− x0)

−1
2

δ (−x+d2t +2`− x0), if (x, t) ∈ R(5n+2).

Here, the functions gn(t), hn(t), Gn(t), and Hn(t), constructed in Theorem 3.5.1, can be also

written as for n = 2,3, . . .

gn(t) =
d1

d0 +d1

[
h(n−1)

(
t− `

d1

)
−h(n−1)

(
− `

d1

)]
+

d2
1

d0 +d1

∫ t− `
d1

− `
d1

H(n−1)(z)dz

hn(t) =
d2

d1 +d2
·δ (`+d2t− x0)+

d1

d1 +d2
g(n−1)

(
t− `

d1

)

− d1

d1 +d2
g(n−1)

(
− `

d1

)
− d2

1
d1 +d2

∫ t− `
d1

− `
d1

G(n−1)(z)dz

Gn(t) =
d0

d1(d0 +d1)
h′(n−1)

(
t− `

d1

)
+

d0

(d0 +d1)
H(n−1)

(
t− `

d1

)

Hn(t) =
d2

d1(d1 +d2)
∂
∂ t

[δ (`+d2t− x0)]

− d2

d1(d1 +d2)
g′(n−1)

(
t− `

d1

)
+

d2

(d1 +d2)
G(n−1)

(
t− `

d1

)
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with

g1(t) = 0,

g(n−1)(t) =
d1

d0 +d1

[
h(n−2)

(
t− `

d1

)
−h(n−2)

(
− `

d1

)]
+

d2
1

d0 +d1

∫ t− `
d1

− `
d1

H(n−2)(z)dz

G1(t) = 0,

G(n−1)(t) =
d0

d1(d0 +d1)
h′(n−2)

(
t− `

d1

)
+

d0

(d0 +d1)
H(n−2)

(
t− `

d1

)

h1(t) =
d2

d1 +d2
·δ (`+d2t− x0)

h(n−1)(t) =
d2

d1 +d2
·δ (`+d2t− x0)+

d1

d1 +d2
g(n−2)

(
t− `

d1

)

− d1

d1 +d2
g(n−2)

(
− `

d1

)
− d2

1
d1 +d2

∫ t− `
d1

− `
d1

G(n−2)(z)dz

H1(t) =
d2

d1(d1 +d2)
∂
∂ t

[δ (`+d2t− x0)]

H(n−1)(t) =
d2

d1(d1 +d2)
∂
∂ t

[δ (`+d2t− x0)]

− d2

d1(d1 +d2)
g′(n−2)

(
t− `

d1

)
+

d2

(d1 +d2)
G(n−2)

(
t− `

d1

)

By using Matlab codes, we simulate the solution of u(x, t) IVP (3.1.2)− (3.1.11) for n =

2,3, . . .

In this example, the pulse point source is located on the right of the boundary x = `, at x0 = 60.

Similarly, in figure (a), we can see the fluctuation arising from the pulse point source described

by the function ϕ2(x) = δ (x− x0). In the figure (b), the separated waves began to move along

the characteristics. In the figure (c), the reflected and transmitted waves can be seen after the

wave front touched the boundary x = ` .

Notice that in the figure(c), the reflected wave has the negative sign. This the result of that

the speed of the second layer is bigger than the third layer.(For more detail, chapter 4.)

In the figure (d), the separated wave front, that is on the right in the figure (c), disappear by
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(a) t = 0 (b) t = 10 (c) t = 25

(d) t = 45 (e) t = 65 (f) t = 85

Figure 3.5 Pulse Point Source is between ` and ∞

the time is passing. And on the other hand, the reflected wave is separated into transmitted and

reflected waves again, after it touches the other boundary (x = 0).

In the figures(e) and (f), the reflected waves are separated over and over again, as the result

of touching the boundaries x = ` and x = 0, respectively.
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3.7 Conclusion of Chapter Three

• Explicit formulae for the solution of IVP with matching conditions has been constructed.

• Using this formulae, the simulation of wave propagation has been obtained.

• Results of the simulations have clear physical interpretation of wave

propagation in three layered media from the point source.



CHAPTER FOUR

INITIAL VALUE PROBLEMS WITH ONE BOUNDARY

4.1 IVP-I

Let us consider the problem (2.3.6)− (2.3.10). In this work, we omit the index k. Let

(x, t) ∈ R2, Φ(x),Ψ(x) and d(x) have the following form,

d(x) =





d0, −∞ < x < 0;

d1, 0 < x < ∞;
(4.1.1)

Φ(x) =





ϕ0, −∞ < x < 0;

ϕ1, 0 < x < ∞;
Ψ(x) =





ψ0, −∞ < x < 0;

ψ1, 0 < x < ∞;
(4.1.2)

where d0, d1, are given constants; ϕ0(x), ϕ1(x), ψ0(x) and ψ1(x) are given functions depend-

ing on x.

In addition, we assume that there is no boundary condition and we have the matching con-

ditions defined on one boundary x = 0.

76
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Initial value problem (2.3.6)− (2.3.10) may be written in the term of

Figure 4.1 Initial value problems with one boundary x = 0

u(x, t) =





u0(x, t), −∞ < x < 0;

u1(x, t), 0 < x < ∞;
(4.1.3)

as follows
∂ 2u0

∂ t2 −d2
0

∂ 2u0

∂x2 = 0, −∞ < x < 0, t ∈ R, (4.1.4)

∂ 2u1

∂ t2 −d2
1

∂ 2u1

∂x2 = 0, 0 < x < ∞, t ∈ R, (4.1.5)

with initial data,

u0(x,0) = ϕ0(x),
∂u0

∂ t

∣∣∣
t=0

= ψ0(x), −∞ < x < 0,

u1(x,0) = ϕ1(x),
∂u1

∂ t

∣∣∣
t=0

= ψ1(x), 0 < x < ∞,
(4.1.6)

and the matching conditions,

u0(x, t)
∣∣∣
x=−0

= u1(x, t)
∣∣∣
x=+0

(4.1.7)

∂u0

∂x
(x, t)

∣∣∣
x=−0

=
∂u1

∂x
(x, t)

∣∣∣
x=+0

(4.1.8)
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Before finding solution of initial value problem (4.1.4)− (4.1.8), we must define the following

function.

u(0, t) = g(t) (4.1.9)

We must construct the function g(t) by initial data and the matching conditions.

Theorem 4.1.1. Let Φ(x) and Ψ(x) be given functions in the form (4.1.2); u(x, t) be unknown

functions in the form (4.1.3) then the solution u(x, t) of IVP (4.1.4)− (4.1.8) is the following,





1
2

[ϕ0(x+d0t)+ϕ0(x−d0t)]

+
1

2d0

∫ x+d0t

x−d0t
ψ0(γ)dγ, (x, t) ∈ R1 ,

1
2

[
ϕ0(x−d0t)−ϕ0(−x−d0t)

]

+
∫ −x−d0t

x−d0t
ψ0(ξ )dξ +g

(
t +

x
d0

)
, (x, t) ∈ R3;

1
2

[
ϕ1(x+d1t)+ϕ1(x−d1t)

]

+
1

2d1

∫ x+d1t

x−d1t
ψ1(ξ )dξ , (x, t) ∈ R2;

1
2

[
ϕ1(x+d1t)−ϕ1(−x+d1t)

]

+
1

2d1

∫ x+d1t

−x+d1t
ψ1(ξ )dξ +g

(
t− x

d1

)
, (x, t) ∈ R4.

(4.1.10)

where the regions R1, R2, R3 and R4 are the following,

R1 =
{

(x, t)
∣∣∣ −∞ < x < 0 , t <

−x
d0

}

R2 =
{

(x, t)
∣∣∣ 0 < x < ∞ , t <

x
d1

}

R3 =
{

(x, t)
∣∣∣ −∞ < x < 0 , t >

−x
d0

}

R4 =
{

(x, t)
∣∣∣ 0 < x < ∞ , t >

x
d1

}

and the function g(t) defined in (4.1.9) is the following,

g(t) =
d0

d0 +d1
(ϕ0(−d0t)−ϕ0(0))+

d1

d0 +d1
(ϕ1(d1t)−ϕ1(0))

− 1
d0 +d1

∫ −d0t

0
ψ0(s)ds+

1
d0 +d1

∫ d1t

0
ψ1(z)dz (4.1.11)
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Proof. In this work, we have four subregions, namely the regions R1, R2,R3 and R4. Let us

investigate these subregions, independently.

4.1.1 The Region R1 and R2

Let us consider the problem (4.1.4)− (4.1.8) in the region R1,

R1 =
{

(x, t)
∣∣∣ −∞ < x < 0 , t <

−x
d0

}

R2 =
{

(x, t)
∣∣∣ 0 < x < ∞ , t <

x
d1

}

The equation (4.1.4) can be written

∂qi

∂ t
−di

∂qi

∂x
= 0, (x, t) ∈ R(i), fori = 0,1. (4.1.12)

∂ui

∂ t
+di

∂ui

∂x
= qi(x, t), (x, t) ∈ R(i) fori = 0,1. (4.1.13)

For the solution of the problem, we use the method of characteristics. So, the characteristics of

the equations (4.1.12)− (4.1.13) are respectively,

dξ
dτ

=−di , ξ (t) = x ; ξ =−diτ + x+dit, fori = 0,1.

dξ
dτ

= di , ξ (t) = x ; ξ = diτ + x−dit fori = 0,1.

By integrating along the characteristics, we get the following

qi(x, t) = ψi(x+dit)+diϕ ′i (x+dit), fori = 0,1.

and ∫ t

0

∂
∂τ

[
ui(x−di(t− τ),τ)dτ

]
=

∫ t

0
ψi(x−dit +2diτ)dτ

+di

∫ t

0
diϕ ′i (x−dit +2diτ)dτ, fori = 0,1.
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Then let, for i = 0,1.

x−dit +2diτ = γ , 2didτ = dγ

γlow = x−dit , γup = x+dit

So, we get

ui(x, t)−ui(x−dit,0) =
1
2

[ϕi(x+dit)−ϕi(x−dit)]

+
1

2di

∫ x+dit

x−dit
ψi(γ)dγ, for i = 0,1.

By substituting the initial conditions (4.1.6), we have the solution

u0(x, t) =
1
2

[ϕ0(x+d0t)+ϕ0(x−d0t)]+
1

2d0

∫ x+d0t

x−d0t
ψ0(γ)dγ, (x, t) ∈ R1.

u1(x, t) =
1
2

[
ϕ1(x+d1t)+ϕ1(x−d1t)

]
+

1
2d1

∫ x+d1t

x−d1t
ψ1(ξ )dξ , (x, t) ∈ R2

4.1.2 The Region R3

Let us consider the problem (4.1.4)− (4.1.8) in the region R3 (see, Figure 3.4),

R4 =
{

(x, t)
∣∣∣ 0 < x < ∞ , t >

x
d1

}

The equation (4.1.4) can be written as in the form,

∂q1

∂ t
−d1

∂q1

∂x
= 0 , (x, t) ∈ R4, (4.1.14)

∂u1

∂ t
+d1

∂u1

∂x
= q1(x, t) , (x, t) ∈ R4. (4.1.15)

The characteristic of the equation (4.1.14)− (4.1.15) are respectively,

dξ
dτ

=−d1 , ξ (t) = x ; ξ =−d1τ + x+d1t ,

dξ
dτ

= d1 , ξ (t) = x ; ξ = d1τ + x−d1t and if ξ = 0 ; τ = t− x
d1

.
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By integrating along the characteristics,

q1(x, t) = ψ1(x+d1t)+d1ϕ ′1(x+d1t)

Then by integrating along the characteristic,

u1(x, t)−u1

(
0, t− x

d1

)
=

∫ t

t− x
d1

ψ1(x−d1t +2d1τ)dτ

+d1

∫ t

t− x
d1

ϕ ′1(x−d1t +2d1τ)dτ ,

Let
x−d1t +2d1τ = µ , 2d1dτ = dµ

µlow =−x−d0t , µup = x−d0t

By substituting the initial conditions (4.1.6), we have the solution and by the function g(t)

defined in (4.1.9)

u0(x, t) = g
(

t +
x
d0

)
+

1
2

[ϕ0(x−d0t)−ϕ0(−x−d0t)]

+
1

2d0

∫ −x−d0t

x−d0t
ψ0(µ)dµ , (x, t) ∈ R3,

4.1.3 The Region R4

Let us consider the problem (4.1.4)− (4.1.8) in the region R4 (see, Figure 3.4),

R3 =
{

(x, t)
∣∣∣ −∞ < x < 0 , t >

−x
d0

}

The equation (4.1.4) can be written as in the form,

∂q0

∂ t
+d0

∂q0

∂x
= 0 , (x, t) ∈ R3, (4.1.16)

∂u0

∂ t
−d0

∂u0

∂x
= q0(x, t) , (x, t) ∈ R3. (4.1.17)

The characteristic of the equation (4.1.16)− (4.1.17) are respectively,

dξ
dτ

= d0 , ξ (t) = x ; ξ = d0τ + x−d0t ,
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dξ
dτ

=−d0 , ξ (t) = x ; ξ =−d0τ + x+d0t and if ξ = 0 ; τ = t +
x
d0

.

By integrating along the characteristics,

q0(x, t) = ψ0(x−d0t)−d0ϕ ′0(x−d0t)

Then by integrating along the characteristic,

u0(x, t)−u0

(
0, t +

x
d0

)
=

∫ t

t+ x
d0

ψ0(x+d0t−2d0τ)dτ

−d0

∫ t

t+ x
d0

ϕ ′0(x+d0t−2d0τ)dτ ,

Let
x+d0t−2d0τ = µ , −2d0dτ = dµ

µlow =−x+d1t , µup = x+d1t

By substituting the initial conditions (4.1.6), we have the solution and by the function g(t)

defined in (4.1.9)

u1(x, t) = g
(

t− x
d1

)
+

1
2

[
ϕ1(x+d1t)−ϕ1(−x+d1t)

]

+
1

2d1

∫ x+d1t

−x+d1t
ψ1(ξ )dξ , (x, t) ∈ R4.

4.1.4 Matching Conditions Between R3 and R4

The formula for the region R3 is in the form,

u0(x, t) = g
(

t +
x
d0

)
+

1
2

[ϕ0(x−d0t)−ϕ0(−x−d0t)]

+
1

2d0

∫ −x−d0t

x−d0t
ψ0(µ)dµ , (x, t) ∈ R3,

and the formula for the region R4 is in the form,

u1(x, t) = g
(

t− x
d1

)
+

1
2

[
ϕ1(x+d1t)−ϕ1(−x+d1t)

]

+
1

2d1

∫ x+d1t

−x+d1t
ψ1(ξ )dξ , (x, t) ∈ R4
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By the first matching condition (4.1.7), we have,

u(−0, t) = u(+0, t)(t) = g(t)

To get an explicit formula for the function g(t), we must differentiate the formulas for the

regions R3 and R4, and substitute x = 0.Then by using the second matching condition (4.1.8)

And we get the function g(t) as follows,

g(t) =
d0

d0 +d1
(ϕ0(−d0t)−ϕ0(0))+

d1

d0 +d1
(ϕ1(d1t)−ϕ1(0))

− 1
d0 +d1

∫ −d0t

0
ψ0(s)ds+

1
d0 +d1

∫ d1t

0
ψ1(z)dz

Lemma 4.1.2. Let u(x, t) be the solution of initial value problem (4.1.4)− (4.1.8) in the form

(4.1.18). And if the function g(t) is in the form

g(t) =
d0

d0 +d1
(ϕ0(−d0t)−ϕ0(0))+

d1

d0 +d1
(ϕ1(d1t)−ϕ1(0))

− 1
d0 +d1

∫ −d0t

0
ψ0(s)ds+

1
d0 +d1

∫ d1t

0
ψ1(z)dz
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Then the solution u(x, t) have the form,





1
2

[ϕ0(x+d0t)+ϕ0(x−d0t)]

+
1

2d0

∫ x+d0t

x−d0t
ψ0(γ)dγ, (x, t) ∈ R1 ,

d0−d1

2(d0 +d1)
ϕ0(−x−d0t)+

1
2

ϕ0(x−d0t)

− d0

d0 +d1
ϕ0(0)+

1
d0 +d1

∫ d1t+ d1
d0

0
ψ1(z)dz

+
1

2d0

∫ −x−d0t

x−d0t
ψ0(ξ )dξ +

d1

d0 +d1
ϕ1

(
d1

d0
x+d1t

)

− d1

d0 +d1
ϕ1(0)− 1

d0 +d1

∫ −x−d0t

0
ψ0(s)ds, (x, t) ∈ R3;

1
2

[
ϕ1(x+d1t)+ϕ1(x−d1t)

]

+
1

2d1

∫ x+d1t

x−d1t
ψ1(ξ )dξ , (x, t) ∈ R2;

d1−d0

2(d0 +d1)
ϕ1(−x+d1t)+

1
2

ϕ1(x+d1t)

− d0

d0 +d1
ϕ0(0)+

1
2d1

∫ x+d1t

−x+d1t
ψ1(ξ )dξ

+
d0

d0 +d1
ϕ0

(
d0

d1
x−d0t

)
− 1

d0 +d1

∫ −d0t+ d0
d1

x

0
ψ0(s)ds

− d1

d0 +d1
ϕ1(0)+

1
d0 +d1

∫ −x+d1t

0
ψ1(z)dz, (x, t) ∈ R4;

(4.1.18)

where

R1 =
{

(x, t)
∣∣∣ −∞ < x < 0 , t <

−x
d0

}

R2 =
{

(x, t)
∣∣∣ 0 < x < ∞ , t <

x
d1

}

R3 =
{

(x, t)
∣∣∣ −∞ < x < 0 , t >

−x
d0

}

R4 =
{

(x, t)
∣∣∣ 0 < x < ∞ , t >

x
d1

}

Proof. The solution of initial value problem (4.1.4)− (4.1.8) is in the form (4.1.18). And if

the function g(t) is in the form

g(t) =
d0

d0 +d1
(ϕ0(−d0t)−ϕ0(0))+

d1

d0 +d1
(ϕ1(d1t)−ϕ1(0))
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− 1
d0 +d1

∫ −d0t

0
ψ0(s)ds+

1
d0 +d1

∫ d1t

0
ψ1(z)dz

Then by substituting the formula of g(t) into the solution, we get the following formula for the

region R3,

u0(x, t) =
d0−d1

2(d0 +d1)
ϕ0(−x−d0t)+

1
2

ϕ0(x−d0t)− d0

d0 +d1
ϕ0(0)

+
1

d0 +d1

∫ d1t+ d1
d0

0
ψ1(z)dz+

1
2d0

∫ −x−d0t

x−d0t
ψ0(ξ )dξ +

d1

d0 +d1
ϕ1

(
d1

d0
x+d1t

)

− d1

d0 +d1
ϕ1(0)− 1

d0 +d1

∫ −x−d0t

0
ψ0(s)ds, (x, t) ∈ R3;

And the formula for the region R4 is the following,

u1(x, t) =
d1−d0

2(d0 +d1)
ϕ1(−x+d1t)+

1
2

ϕ1(x+d1t)− d0

d0 +d1
ϕ0(0)

+
1

2d1

∫ x+d1t

−x+d1t
ψ1(ξ )dξ − 1

d0 +d1

∫ −d0t+ d0
d1

x

0
ψ0(s)ds+

d0

d0 +d1
ϕ0

(
d0

d0
x−d0t

)

− d1

d0 +d1
ϕ1(0)+

1
d0 +d1

∫ −x+d1t

0
ψ1(z)dz, (x, t) ∈ R4;

Corollary 4.1.3. Let us consider initial value problem (4.1.4)− (4.1.8) in the term of,

u(x, t) =





u0(x, t), −∞ < x < 0

u1(x, t), 0 < x < ∞

as the following differential equations

∂ 2u0

∂ t2 −d2
0

∂ 2u0

∂x2 = 0 , −∞ < x < 0, t ∈ R , (4.1.19)

∂ 2u1

∂ t2 −d2
1

∂ 2u1

∂x2 = 0 , 0 < x < ∞, t ∈ R , (4.1.20)

with the special initial data,

u0(x,0) = f
(−x

d0

)
,

∂u0

∂ t
(x,0) = f ′

(−x
d0

)
, −∞ < x < 0, t ∈ R , (4.1.21)

u1(x,0) = 0 ,
∂u1

∂ t
(x,0) = 0 , 0 < x < ∞ , t ∈ R , (4.1.22)
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and matching conditions,

u0(0, t) = u1(0, t) , (4.1.23)

c2
0

∂u0

∂x
(0, t) = c2

1
∂u1

∂x
(0, t) . (4.1.24)

where f (x) is given in C2(−∞,0] . Then a solution of the problem (4.1.19)-(4.1.24) is the

following,

u(x, t) =





f
(

t− x
d0

)
, (x, t) ∈ R1,

f
(

t− x
d0

)
+

d0−d1

d0 +d1
f
(

t +
x
d0

)
, (x, t) ∈ R3,

0 , (x, t) ∈ R2,

2d0

d0 +d1
f
(

t− x
d1

)
, (x, t) ∈ R4.

(4.1.25)

where the coefficient
d0−d1

d0 +d1
of f

(
t +

x
d0

)
in equation (4.1.25) is called ’Reflection Coeffi-

cient’ donated by R and the coefficient
2d0

d0 +d1
of f

(
t− x

c1

)
in equation (4.1.25) is called

’Transmission Coefficient’ donated by T .(Zauderer, E., 1998. Partial Differential Equations of

Applied Mathematics. John Wiley & Sons, New York.)

Proof. Let us consider the initial value problem (4.1.4)−(4.1.8) and let the functions ϕ0(x), ϕ1(x), ψ0(x)

and ψ1(x) be in the following form,

ϕ0(x) = f
(
− x

d0

)
,

ψ0(x) = f ′
(
− x

d0

)
,

ϕ1(x) = 0,

ψ1(x) = 0.



87

Then the solution of initial value problem in (4.1.18) in Lemma 4.1.2, has the form,

u(x, t) =





f
(

t− x
d0

)
, (x, t) ∈ R1,

f
(

t− x
d0

)
+

d0−d1

d0 +d1
f
(

t +
x
d0

)
, (x, t) ∈ R3,

0 , (x, t) ∈ R2,

2d0

d0 +d1
f
(

t− x
d1

)
, (x, t) ∈ R4.

4.2 Examples of Simulations of Wave Propagation

In this section, we deal with simulation examples of wave propagations in two layered space

that is separated with one boundary x = 0. Each layer has different speed. The speed of the first

layer is d0 = 1, and the speed of the second layer is d1 = 2. We defined the matching condi-

tions on the boundary x = 0.

A pulse point source was located in different positions: Between−∞ and 0; between 0 and ∞.

4.2.1 Example 1 - The Pulse Point Source is Between −∞ and 0

Let us consider initial value problem (4.1.4)− (4.1.8). The initial conditions (4.1.6) have

the following form

ϕ0 = δ (x− x0), ψ0 = 0,

ϕ1 = 0, ψ1 = 0.
(4.2.1)

where δ (x) is Dirac delta function, the point source is located x0 =−20. By the properties of

Dirac delta function and the assumptions, the solution u(x, t) of IVP can be written as follows:
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



1
2

[
δ (x+d0t− x0)+δ (x−d0t− x0)

]
, (x, t) ∈ R1 ,

1
2

[
δ (x−d0t− x0)−δ (−x−d0t− x0)

]
+g

(
t +

x
d0

)
, (x, t) ∈ R3;

0, (x, t) ∈ R2;

g
(

t− x
d1

)
, (x, t) ∈ R4.

(4.2.2)

Here the function g(t), constructed in Theorem 4.1.1 can be also written as follows

g(t) =
d0

d0 +d1
·δ (−d0t− x0) (4.2.3)

Lemma 4.2.1. Let ϕ0(x), ϕ1(x), ψ0(x), psi1(x) be given in the form (4.2.1); u(x, t) be the

solution of initial value problem (4.1.4)− (4.1.8) in the form (4.2.2). And if the function g(t)

has the form

g(t) =
d0

d0 +d1
·δ (−d0t− x0)

Then the solution u(x, t) have the form,





1
2

[
δ (x+d0t− x0)+δ (x−d0t− x0)

]
, (x, t) ∈ R1 ,

d0−d1

2(d0 +d1)
·δ (−x−d0t− x0)+

1
2
·δ (x−d0t− x0), (x, t) ∈ R3;

0, (x, t) ∈ R2;

d0

d0 +d1
·δ

(
d0

d1
x−d0t− x0

)
, (x, t) ∈ R4;

(4.2.4)

where the regions R1, R2, R3 and R4 are the following,

R1 =
{

(x, t)
∣∣∣ −∞ < x < 0 , t <

−x
d0

}

R2 =
{

(x, t)
∣∣∣ 0 < x < ∞ , t <

x
d1

}
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R3 =
{

(x, t)
∣∣∣ −∞ < x < 0 , t >

−x
d0

}

R4 =
{

(x, t)
∣∣∣ 0 < x < ∞ , t >

x
d1

}

Proof. By substituting the formulation (4.2.3) of the function g(t) into the equation (4.2.2),

we get the resulting formulation (4.2.4).

By using Matlab codes, we simulate the solution u(x, t) of IVP (4.1.4)− (4.1.8).

4.2.1.1 Commands of Matlab for Example 1

To run the program in Matlab successfully, we define some functions such as the function

g(t), constructed for example 1 in (4.2.3), and Dirac delta function. These functions are the

tools which the program uses while running. To define Dirac delta function to the program, we

use the regularization of Dirac delta function.

% Defining Dirac Delta Function:

function S=dirac(e,j,x);

% S:output value

% e:epsilon

% j=x^{0} (pulse point source)

% x: variable

% Regularization of Dirac delta function

S=(1/(2*sqrt(pi*e)))*exp(-(((x-j)^2)/(4*e)));

% Defining g-function:

function g=gfunction(t,j,a,b,e)

% t:variable
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% e:epsilon

% a=d_{0} (speed of the first layer x<0.)

% b=d_{1} (speed of the second layer x>0.)

% j=x^{0} (pulse point source)

% gfunction is the function defined on the boundary x=0.

% gfunction calls Dirac delta function.

g=((a/(a+b))*dirac(e,j,((-a)*t)));

%Algorithm:

x=[-100:1:100];

t=50;%---------time-----------------

a=1; %-------d0------

b=2; %---------------d1------------

e=.5;%-------------epsilon------------

j=-20; for i=1:length(x) if x(i)<0 if t<-x(i)/a

m(i)=dirac(e,j,(x(i)+(a*t)));

z(i)=(1/2)*(m(i)+dirac(e,j,(x(i)-(a*t))));%-R1-

else

d(i)=gfunction((t+(x(i)/a)),j,a,b,e);

q(i)=(1/2)*dirac(e,j,(x(i)-(a*t)));

z(i)=(q(i)-(1/2)*dirac(e,j,(-x(i)-(a*t))))+d(i);%-R3-

end

elseif 0<x(i)

if t<(x(i)/b)

z(i)=0;%-R2-

else t>(x(i)/b)

z(i)=gfunction((t-(x(i)/b)),j,a,b,e);%-R4-

end

end

end

plot(x,z);
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4.2.1.2 Results of Simulations by the Formula (4.2.2)

(a) t = 0 (b) t = 5 (c) t = 10

(d) t = 30 (e) t = 40 (f) t = 50

Figure 4.2 Pulse Point Source is between −∞ and x = 0

In these figures, we simulate the wave propagation in two layered medium that is separated

with one boundaries. The horizontal axes x and the vertical axes y show the location and the

magnitude of the wave front, respectively. In figure (a), we can see the fluctuation arising from

the pulse point source x0 = −20 described by the function ϕ0(x) = δ (x− x0). In the figure

(b), the separated waves began to move along the characteristics. Notice that, in the figure (c),

the location of the wave fronts are respectively at x = −30 and x = −10 as a result of the

value of the speed d0 = 1 in the first layer. In the figure (d), the reflected and transmitted waves

can be seen after the wave front touched the boundary x = 0 .

Notice that in the figure(c), the reflected wave has the negative sign. This the result of that

the speed of the second layer is bigger than the first layer.

In the figures (e) and (f), the movement of reflected and transmitted waves can be seen. In

the figure (e), the transmitted wave front reaches the point x = 40 with the speed d1 = 2,

while the reflected wave front reaches the point x = −20 with the speed d0 = 1. Since there

is no other boundary, both of the wave fronts move along their characteristics without any

changing in their magnitudes.

Remark 4.2.2. Let us consider Lemma 4.2.1. In the formulations for the region R3, the coef-
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ficient of Dirac delta function is
d0−d1

2(d0 +d1)
. In this example, the speed of the second layer

d1 = 2 is bigger than the speed of the second layer d0 = 1. As a result, the reflected wave has

the negative sign.

Let M denote the magnitude of the fluctuation. In the figure (a), the magnitude of Dirac delta

arising from the pulse point source is

M ≈ 0.4,

in the figure (b), after separation, the fluctuation has the magnitude of

M ≈ 0.2,

in this example, the coefficient is
d0−d1

2(d0 +d1)
= −1

6
so, in the figure (d), the magnitude of

reflected wave front Mr and transmitted wave front Mt are respectively

Mr ≈−0.07, Mt ≈ 0.13,

M = Mt −Mr ≈ 0.2.

Hence, the substraction of the reflected wave from the transmitted wave gives us the previous

magnitude of dirac delta.

4.2.2 Example 2 - The Pulse Point Source is Between 0 and ∞

Let us consider initial value problem (4.1.4)− (4.1.8). The initial conditions (4.1.6) have

the following form

ϕ0 = 0, ψ0 = 0,

ϕ1 = δ (x− x0), ψ1 = 0.
(4.2.5)

where δ (x) is Dirac delta function, the point source is located x0 = 20. By the properties of

Dirac delta function and the assumptions, the solution u(x, t) of IVP can be written as follows:



93





0, (x, t) ∈ R1 ,

g
(

t +
x
d0

)
, (x, t) ∈ R3;

1
2

[
δ (x+d1t− x0)+δ (x−d1t− x0)

]
, (x, t) ∈ R2;

1
2

[
δ (x+d1t− x0)−δ (−x+d0t− x0)

]
+g

(
t− x

d1

)
, (x, t) ∈ R4.

(4.2.6)

Here the function g(t), constructed in Theorem 4.1.1 can be also written as follows

g(t) =
d1

d0 +d1
·δ (d1t− x0) (4.2.7)

Lemma 4.2.3. Let ϕ0(x), ϕ1(x), ψ0(x), psi1(x) be given in the form (4.2.5); u(x, t) be the

solution of initial value problem (4.1.4)− (4.1.8) in the form (4.2.6). And if the function g(t)

has the form

g(t) =
d1

d0 +d1
·δ (d1t− x0)

Then the solution u(x, t) have the form,





0, (x, t) ∈ R1 ,

d1

d0 +d1
·δ

(
d1

d0
x+d1t− x0

)
, (x, t) ∈ R3;

1
2

[
δ (x+d1t− x0)+δ (x−d1t− x0)

]
, (x, t) ∈ R2;

d1−d0

2(d0 +d1)
·δ (−x+d1t− x0)+

1
2
·δ (x+d1t− x0), (x, t) ∈ R4;

(4.2.8)

where the regions R1, R2, R3 and R4 are the following,

R1 =
{

(x, t)
∣∣∣ −∞ < x < 0 , t <

−x
d0

}

R2 =
{

(x, t)
∣∣∣ 0 < x < ∞ , t <

x
d1

}
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R3 =
{

(x, t)
∣∣∣ −∞ < x < 0 , t >

−x
d0

}

R4 =
{

(x, t)
∣∣∣ 0 < x < ∞ , t >

x
d1

}

Proof. By substituting the formulation (4.2.7) of the function g(t) into the equation (4.2.6),

we get the resulting formulation (4.2.8).

By using Matlab codes, we simulate the solution u(x, t) of IVP (4.1.4)− (4.1.8).

4.2.2.1 Commands of Matlab for Example 2

Similarly to the previous example, we must define some functions such as the function g(t),

constructed for example 1 in (4.2.3), and Dirac delta function to run the program in Matlab.

To define Dirac delta function to the program, we use the regularization of Dirac delta function.

% Defining Dirac Delta Function:

function S=dirac(e,j,x);

% S:output value

% e:epsilon

% j=x^{0} (pulse point source)

% x: variable

% Regularization of Dirac delta function

S=(1/(2*sqrt(pi*e)))*exp(-(((x-j)^2)/(4*e)));

% Defining g-function:

function g=gfunction(t,j,a,b,e)

% t:variable

% e:epsilon
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% a=d_{0} (speed of the first layer x<0.)

% b=d_{1} (speed of the second layer x>0.)

% j=x^{0} (pulse point source)

% gfunction is the function defined on the boundary x=0.

% gfunction calls Dirac delta function.

g=((b/(a+b))*dirac(e,j,(b*t)));

%Algorithm:

x=[-100:1:100];

t=50;%---------time-----------------

a=1; %-------d0------

b=2; %---------------d1------------

e=.5;%-------------epsilon------------

j=-20; for i=1:length(x) if x(i)<0 if t<-x(i)/a

z(i)=0;%-R1-

else

z(i)=gfunction((t+(x(i)/a)),j,a,b,e);%-R3-

end

elseif 0<x(i)

if t<(x(i)/b)

m(i)=dirac(e,j,(x(i)+(b*t)));

z(i)=((1/2)*(m(i)+dirac(e,j,(x(i)-(b*t)))));%-R2-

else t>(x(i)/b)

d(i)=gfunction((t-(x(i)/b)),j,a,b,e);

q(i)=(1/2)*dirac(e,j,(x(i)+(b*t)));

z(i)=(q(i)-(1/2)*dirac(e,j,(-x(i)+(b*t))))+d(i);%-R3-

end

end

end

plot(x,z);
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4.2.2.2 Results of Simulations by the Formula (4.2.2)

(a) t = 0 (b) t = 5

(c) t = 10 (d) t = 30

Figure 4.3 Pulse Point Source is between 0 and ∞

Similarly, in figure (a), we can see the fluctuation arising from the pulse point source

x0 = 20 described by the function ϕ1(x) = δ (x− x0). In the figure (b), the separated waves

began to move along the characteristics. Notice that, the location of the wave fronts are respec-

tively at x = 10 and x = 30 with the speed d1 = 2 in the second layer. In the figure (c), the

reflected and transmitted waves can be seen after the wave front touched the boundary x = 0 .

In the figure (d), the movement of reflected and transmitted waves can be seen. The trans-

mitted wave front reaches the point x =−20 with the speed d0 = 1 in the first layer, while the

reflected wave front reaches the point x = 40 with the speed d1 = 2 in the second layer. Since

there is no other boundary, both of the wave fronts move along their characteristics without any

changing in their magnitudes.

Remark 4.2.4. Let us consider Lemma 4.2.3. In the formulations for the region R4, the coeffi-

cient of Dirac delta function is
d1−d0

2(d0 +d1)
. Since d1 = 2 is bigger than d0 = 1, the reflected

wave has positive sign. Let M denote the magnitude of the fluctuation. Similarly, In the figure
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(a), the magnitude of Dirac delta arising from the pulse point source is

M ≈ 0.4,

in the figure (b), after separation, the fluctuation has the magnitude of

M ≈ 0.2,

in this example, the coefficient is
d1−d0

2(d0 +d1)
=

1
6

so, in the figure (d), the magnitude of

reflected wave front Mr and transmitted wave front Mt are respectively

Mr ≈ 0.07, Mt ≈ 0.27,

M = Mt −Mr ≈ 0.2.

Hence, the substraction of the reflected wave from the transmitted wave gives us the previous

magnitude of dirac delta.
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4.3 Conclusion of Chapter Four

• Explicit formulae for the solution of IVP with matching conditions has been constructed.

• Using this formulae, the simulation of wave propagation has been obtained.

• Results of the simulations have clear physical interpretation of wave

propagation in two layered media from the point source.



CHAPTER FIVE

CONCLUSION

The main results of this thesis are the following;

• The system of anisotropic elasticity is reduced to one-dimensional initial value problem

(IVP) and initial boundary value problem (IBVP).

• Explicit formulae for the solutions of IVP and IBVP with boundary and matching con-

dition has been constructed.

• Using these formulae, the simulations of wave propagation have been obtained.

• Results of the simulations have clear physical interpretation of wave propagation in two

and three layered media from the point source.

We note that the method of characteristics has been used for constructing explicit formulae and

MATLAB codes has been successfully applied for the simulation of the waves.
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