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IMAGE REGISTRATION USING ARTIFICIAL NEURAL NETWORKS 

ABSTRACT 

 

Image registration is a procedure that transforms different sets of data that are 

multiple photographs or data from different sensors, from different times, or from 

different viewpoints into one coordinate system. In this thesis affine transform is 

chosen as the transform model. 

 

In this thesis image registration process is done using neural networks in the 

presence of noise. In the applications, we had three images and affine transform was 

applied all of the images. At first, features were extracted from the images and these 

features were given to the network as inputs, then estimated parameters were 

obtained at the output. These features were extracted by the methods of discrete 

cosine transform (DCT) and two dimensional principal component analysis 

(2DPCA). In a pre-registration phase, extracted features from a set of translated, 

rotated and scaled images of the same scene are employed to train both a Radial 

Basis Function Neural Network (RBF NN) and a Feed-forward Neural Network 

(FNN). In the registration phase, the features are extracted from the test image and 

these features are given to the network. By this way, registration parameters are 

obtained. 

 

The results were compared both according to the different feature extraction 

methods and different type of neural networks.  

 

Keywords: Image Registration, Radial Basis Function Neural Network, Feed-

forward Neural Network, DCT Coefficients, 2DPCA 
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YAPAY SİNİR AĞLARI KULLANARAK GÖRÜNTÜ ÇAKIŞTIRMA 

ÖZ 

 

Görüntü çakıştırma çeşitli sensörlerden, değişik zamanlarda ya da farklı bakış 

açılarından çekilen birçok fotoğraf olarak tanımlanabilen çeşitli gruplardaki veriyi bir 

koordinat sistemine dönüştüren bir işlemdir.  Bu tezde, dönüştürme modeli olarak 

afin dönüşümü seçilmiştir. 

 

Bu tezde görüntü çakıştırma işlemi sinir ağları kullanılarak gürültünün varlığında 

yapılmaktadır. Uygulamalarda üç tane resmimiz bulunmaktadır ve bu resimlerin 

hepsine afin dönüşümü uygulanmıştır. İlk olarak resimlerden özellikler çıkarmış ve 

bu özellikler ağa giriş olarak verilmiş sonra çıkışta tahmini parametreler elde 

edilmiştir. Bu özellikler ayrık kosinüs dönüşünü ya da iki boyutlu temel bileşen 

analizi ile çıkarıldı. Çakıştırma öncesi evrede aynı manzaraya ait ötelenmiş, 

döndürülmüş ve ölçeklendirilmiş resimlerden çıkarılmış özellikler hem radyal tabanlı 

yapay sinir ağını hem de ileri beslemeli sinir ağını eğitmek için kullanılmıştır. 

Çakıştırma evresinde, test resminden özellikler çıkarılır ve bu özellikler ağa verilir. 

Bu şekilde çakıştırma parametreleri elde edilir. 

 

Sonuçlar hem çeşitli özellik çıkarma yöntemlerine göre hem de yapay sinir ağı 

çeşitlerine göre karşılaştırılmıştır. 

 

Anahtar Kelimeler: Görüntü Çakıştırma, Radyal Tabanlı Yapay Sinir Ağı, İleri 

Beslemeli Sinir Ağı, DCT Katsayıları, 2 Boyutlu Temel Bileşen Analizi 
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CHAPTER ONE 

INTRODUCTION 

 

1.1 Introduction  

 

Image registration is a technique that determines the spatial best fit between two 

images which overlaps the same screen. That is; by image registration two images 

that are taken in different times with different sensor from different viewpoints can 

be matched. In many image processing applications, registration is a fundamental 

stage because of this property. The application areas of image registration are 

computer vision and pattern recognition, medical image analysis, remote sensing, 

image matching-based vehicle guidance and super-resolution. 

 

According to the essential ideas of the registration algorithm criterion, most image 

registration methods are divided into feature-based and area based methods that are 

which will be discussed in the Chapter Two-Image Registration Theory in detail. In 

this thesis, neural network-based image registration was used as the registration 

method. A neural network is trained with a set of global image features at inputs that 

represents an image transformed by some known parameters and the known 

parameters at the outputs. After the training process, when its features of the same 

type are input to the network, the trained neural network can estimate unknown 

parameters of a query image. 

 

Image registration is done with various methods and one of the newest methods 

used in image registration is neural network approach. In an early study (Qian, &  Li, 

1997), Hopfield neural network was used. This network was used only in matching a 

set of landmark points for the registration process. In this study, registration 

parameters were found by another approach on the basis of matched control points. 

 

The other approach of using neural networks in image registration is seen in a 

study (Wachowiak, Smolikova, Zurada, & Elmaghraby, 2002) for landmark-based 

elastic biomedical image registration. In this study, local elastic registration is 



2 
 

 
 

achieved by feedforward, Gaussian-sigmoid and radial basis function neural 

networks. This study also detects and matches control points. After control points are 

matched, simply, a local elastic model is used to interpolate the coordinates of the 

other points in one image to those in the other image by the help of a neural network.  

 

In the same way support vector machines can be used in such problems. Namely, 

support vector machines can also establish a nonlinear transformation between two 

images. While establishing the nonlinear transformation between the two images, 

some control points from the images are used. This approach was used in (Peng, Liu, 

Tian, & Zheng, 2006) and (Davoodi-Bojd, & Soltanian-Zadeh, 2008).  

 

The first image registration scheme that estimates the registration parameters by a 

feedforward neural network (FNN) own its own have been proposed by Elhanany 

(Elhanany, Sheinfeld, & Beck, 2000). The registration scheme proposed estimates 

the affine transformation parameters of a test image with respect to a reference image 

using discrete cosine transform (DCT) features as a global image feature set. In their 

study, the inputs of a trained neural network are selected DCT coefficients of a test 

image. As a result, the estimated parameters are obtained at the output. In their work, 

there exists a pre-registration stage in which DCT features extracted from a set of 

translated, rotated and scaled copies of the reference image are employed to train a 

FNN. This was a new method in image registration and their work pioneered a new 

category of registration schemes. 

 

After this study, some other studies followed. However, they used Zernike 

moments, (Wu, & Xie, 2004) principal components (Xu, Jin, & Guo, 2004) and 

kernel independent components (Xu, Jin, Guo, & Bie, 2004) instead of DCT features. 

  

All the registration schemes given above provide rather accurate results for noisy 

images. However they have two drawbacks. The first one is the duration of learning 

process of FNN. This period of iterative learning process of FNN is too long. The 

second drawback is the difficulty with network generalization for problem specific 

data to increase the accuracy of the results.  
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As it is known, in order to obtain a well generalized FNN, regularization 

techniques or early stopping method can be used. However, these solutions cost 

either increased training times or many number of training trials. When the training 

phase is kept too long, that results a network which is not generalized enough 

because of  overlearning of training data used in that training phase.  

 

The fundamental objective of this thesis is to replace the FNN with a radial basis 

function neural network (RBFNN) to overcome the drawbacks mentioned above. The 

scheme proposed here avoids the drawbacks of a FNN-based scheme. At the same 

time, it increases the accuracy and gives robust results in the presence of additive 

Gaussian noise owing to the better generalization ability of RBFNN.The registration 

transformation assumed in this work is global affine transformation. This 

transformation is composed of the Cartesian operations of a scaling, a translation, 

and a rotation and the aim is to find these parameters of a transformed image for 

which a neural network is trained.  

 

In this thesis, a neural network estimates the affine transformation parameters of a 

test image with respect to a reference image using discrete cosine transform (DCT) 

and 2-dimensional principal component analysis (2D-PCA) features as global image 

feature sets respectively. Selected DCT and 2D-PCA coefficients of a test image are 

inputs to the trained network and estimated parameters are obtained at the output. In 

a pre-registration phase, features extracted from a set of translated, rotated and scaled 

copies of the reference image are employed to train neural networks. In this thesis, 

Feed-forward Neural Network (FNN) and Radial Basis Function Neural Network 

(RBF) are implemented to compare their performances. In the testing phase a new 

data set of translated, rotated and scaled copies of the reference image are employed 

to test the networks. The results are compared in the conclusion part. 

 

1.2 Outline 

This thesis has five chapters. Chapter 1 presents introduction to image 

registration, general review of the implementation that is done with artificial neural 

networks. 
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In chapter 2, image registration theory is given. Image registration methods and 

usage of image registration with artificial neural networks are also mentioned. 

 

In this thesis, image registration is implemented using a neural network and, 

because of this; neural network based image registration is presented in chapter 3 in 

detail. Neural Network architectures and training algorithms are also examined.  

 

In Chapter 4, the experimental work is given. In this thesis, image registration is 

realized with two different artificial neural network methods, which are Feed-

forward Neural Network and Radial Basis Function Neural Network. While 

implementing these methods, two different types of feature data sets were extracted 

using Discrete Cosine Transform and Two Dimensional Principal Component 

Analysis. In this chapter extracting these data sets with two different methods and the 

train and the test processes are discussed. All experimental results are given in this 

chapter. The comparisons of the two neural network methods and two different 

feature sets are also presented.  

 

Finally, a conclusion is given in chapter 5. 
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CHAPTER TWO  

 

IMAGE REGISTRATION THEORY 

 

2.1 Introduction to Image Registration 

 

Sets of data acquired by sampling the same scene or object at different times, or 

from different perspectives, will be in different coordinate systems in computer 

vision. Image registration is the process of transforming such kind of different sets of 

data into one coordinate system. That is; image registration is the process of 

overlaying two or more images which belong to the same scene. These images are 

taken at different times, from different viewpoints, and/or by different sensors. It 

geometrically aligns the reference and sensed images. (Zitova & Flusser, 2003) 

 

Typically, the application areas of registration are remote sensing (multispectral 

classification, environmental monitoring, change detection, image mosaicing, 

weather forecasting, creating super-resolution images, integrating information into 

geographic information systems (GIS)), medicine (combining computer tomography 

(CT) and NMR data to obtain more complete information about the patient, 

monitoring tumor growth, treatment verification, comparison of the patient’s data 

with anatomical atlases), cartography (map updating), and in computer vision (target 

localization, automatic quality control). 

 

2.2 Theory Definition 
 
 

As it was mentioned previously, image registration can be defined as a mapping 

between two images. (Brown, 1992). This mapping is spatially and it is with respect 

to intensity. If these two images are defined as two 2D arrays of a given size denoted 

by I1 and I2, then the mapping between images can be expressed as: 

 
I2,(x, y) =g(I1(f(x, y)))                             (2.1) 
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Where I1(x,y) and I2(x,y) each map to their respective intensity (or other 

measurement) values and f is a 2D spatial-coordinate transformation, and g is 1D 

intensity or radiometric transformation. 

 

2.3 Transformations 

 

The type of spatial transformation or mapping used to properly overlay two 

images is the fundamental characteristic of any image registration technique.  

 

The most common general transformations are rigid, affine, projective, 

perspective, and global polynomial. These transformations and their parameters are 

defined in this section.  

 

First of all, a transformation T is linear if for every constant c 

 

T(x1+x2) =T(x1)+T(x2)                  (2.2) 

 

and  

 

cT(x)=T(cx)                   (2.3) 

 

If the objects in the images retain their relative shape and size, rigid 

transformations are used in object or sensor movement in such kind of images. 

Briefly, a rigid-body transformation is the combination of a rotation, a translation, 

and a scale change.  

 

Affine transformation is the most commonly used registration transformation. 

This transformation is sufficient to match two images. These images are of a scene 

which has the same viewing angle but taken from a different position. Affine 

transformation is a combination of Cartesian operations of a scaling, a translation and 

a rotation. A transformation is defined as affine if T(x)-T(0) is linear. It generally has 

four parameters. If these parameters are denoted as tx, ty, s and θ that map a point 
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(x1,y1) of the first image to  a point (x2,y2) of the second image it is represented as 

follows: 

 

                (2.4) 

 

The general 2D affine transformation is: 

 

                (2.5) 

 

 

Projective transformations and perspective transformations account for distortions 

because of the projection of objects which are at varying distances to the sensor onto 

the image plane. Perspective transformation is more general than the projection one 

in applications. 

 

To use the perspective transformation for registration, the relative distance of the 

objects of the scene and the sensor is needed to be known.  

 

If the coordinates of an object point in the scene are (x0, y0, z0), then the 

corresponding point in the image is  

                                (2.6) 

                                                                           (2.7) 

 where, f is the position (focal length) of the center of the camera lens when the 

camera is in focus for far objects.  

 

2.4 Distortion 

 

In a given problem, one of the important factors that has to be taken into 

consideration is the source of misregistration. The misregistration source is the 
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reason of the misalignment between images. Misregistration happens because of such 

that change in a sensor position, viewpoint and viewing characteristics or it can be 

due to object movement and deformation.  

 

Distortions can be classified as static/dynamic, internal/external and 

geometric/photometric.  

 

The reason of internal distortions is sensor. On the other hand, external distortions 

arise from the sensor operations that continuously changed. The other reason of 

external distortions is individual scene characteristics.  

 

Most of the internal errors and many of the photometric distortions are static and 

they can be removed by using calibration. The reasons of intensity distortions that 

are not static are change in sensor and varied lighting and atmospheric conditions. 

Predictably; in a particular system, the more that is known about the type of 

distortion present, the more effective registration can be.  

 

2.5 Rectification 

 

It can be said that, registration can be easily implemented to a system which the 

scene under observation is relatively flat and the viewing geometry is known. This is 

often the case in remote sensing if the altitude is sufficiently high. In this type of 

registration, rectification is applied in order to correct the perspective distortion in an 

image of flat scene. The effect of perspective distortion is compressing the image of 

scene features as if they are farther from the camera. Rectification is used to correct 

images so that they conform to a specific map standard such as Universal Transverse 

Mectacor projection. It is also used in registering two images of a flat surface that 

were taken from different viewpoints.  
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2.6 Image Registration Methodology 

 

As it was mentioned above, image registration is widely used in remote sensing, 

medical imaging, computer vision etc. In general, according to the manner of the 

image acquisition image registration applications can be divided into four main 

groups: 

 

Different viewpoints (multiview analysis) method is related to the images of the 

same scene which are acquired from different viewpoints. The objective of this 

method is to gain larger a 2D view or a 3D representation of the scanned scene.  

 

Different times (multitemporal analysis) method is related to the images of the 

same scene that are acquired at different times, often on regular basis, and possibly 

under different conditions. The aim of this method is finding and evaluating changes 

in the scene that appeared between the consecutive image acquisitions.  

 

Different sensors (multimodal analysis) method is related to different sensors that 

acquire images of the same scene. The aim of this method is to integrate the 

information obtained from different sources of images in order to gain more complex 

and detailed scene representation.  

 

Scene to model registration method is used for the images of the scene and of the 

model of the scene to align one with another. As an example; the model can be a 

computer representation of the scene maps or digital elevation models (DEM) in 

GIS, another scene with similar content (another patient), ‘average’ specimen, etc. 

The aim of this method is to localize the acquired image in the scene/model and/or to 

compare them.  
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2.7 The steps of Image Registration 

 

2.7.1 Feature detection 

 

The objects which have the properties such that closed-boundary regions, edges, 

contour, line intersections, corners are manually or, preferably, automatically 

detected. In order to process further, these features can be represented by their point 

representatives which can be centers of gravity, line endings and distinctive points. 

These point representatives are called control points (CPs) in the literature.  

 

2.7.2 Feature matching 

 

A relationship between the features detected in the sensed image and that are 

detected in the reference image is established in this step. To this end; various feature 

descriptors and similarity measures along with spatial relationships among the 

features are used.  

 

2.7.3 Transform model estimation 

 

In this step, the type and parameters f the mapping functions which align the 

reference and test images are estimated. The established feature correspondence is 

used to compute the parameters of the mapping functions. 

 

2.7.4 Image resampling and transformation 

 

The mapping functions are used to transform the sensed image. The image values 

which have non-integer coordinates are computed by a suitable interpolation 

technique. 

 

In this step, for a given task at first we have to decide what kind of features are 

appropriate. This means that with the help of which features we detect the images. 

The most important property of the features used is their distinctivity. That is they 
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have to be distinctive objects which are frequently spread over the images and which 

are easily detectable. In the ideal case, the algorithm used should be able to detect the 

same features in all of the projections of the scene.  

 

In an ideal case, the algorithm should be capable of detecting the same features in 

all projections of the scene regardless of the particular image deformation.  

Problems can arise in the feature matching step. These problems can arise because of 

incorrect feature detection or by image degradations. 
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CHAPTER THREE 

 

NEURAL NETWORK BASED IMAGE REGISTRATION 

 

3.1 Introduction to Neural Network Based Image Registration 

 

In a typical neural network based image registration scheme, there are two 

separate phases. These phases are shown in Figure 3.1. In the pre registration phase, 

in order to generate a set of affine transformed parameters, a reference image is 

rotated, scaled and translated several times. After adding noise to these images, in 

order to obtain the training data for neural network, a global feature extraction is 

applied to every image in the set. As examples of global features, DCT coefficients 

and moments of images can be given.    

 

In the training stage, after extracting the global features from the image set, these 

features are fed into a neural network together with corresponding parameter values 

at the output. After the trained network is ready, registration phase is simple. That is; 

the same global features are extracted from a test image with unknown affine 

transformation parameters. These features are fed to the network, and then the  

estimated parameter values are read at the output. 

 

In this type of approach of registration, the entire registration problem is reduced 

to vector regression by a neural network. The neural network used in this situation 

provides an accurate mapping between global feature space of affine transformed 

images and their affine transformation parameters which are known as registration 

parameters. The advantage of this method for the applications which require many 

fast registrations to a single reference image is good mapping capability and ease of 

use of neural networks. Some application areas of this method are image-based 

navigation, super-resolution, and analysis of time series of medical images. 

 

In order to improve the generalization and immunity of the neural network, noise 

is added to the images in the training set. The number of affine transformed images 
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represents the samples from the four-dimensional parameter space. This number 

must be sufficient and the sampling of the parameter space must be done suitably.  

Else, the parameter estimation accuracy of the network will not be satisfactory. 

 

In the pre-registration phase, when we use an FNN, the training stage is lengthy. 

Moreover, in the registration phase, the output accuracy of the scheme with FNN 

strongly depends on how good the FNN has been trained. On the other hand, if the 

FNN is replaced with a RBFNN this change simplifies the training stage both in 

terms of training time and improving network generalization.   

 

3.1.1 General Review of Neural Networks 

A neural network is called so because it is a network of interconnected elements 

that behaves like neurons. It can be said that neural network is an attempt to realize 

biological neuron model to the machines that are desired to work in a similar way to 

the human brain. It can be defined as a massively parallel distributed processor that 

has a natural propensity for storing experiential knowledge and making it available 

for use.  

It has resemblance to the brain in two respects: 

1. The network acquires knowledge through a learning process 

Generate train-set: 
● Apply affine transform 
● Add noise 

Extract global 
features 

Pre-registration phase 

Registration phase 

Reference 
image 

Feed features  
To neural 
network 

 
 

Test 

 

Registration  
parameters 

Train neural 
network 

Extract global 
features 

Figure 3. 1  Neural network based registration scheme 
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2. The synaptic weights which also can be referred as interconnection strengths 

are used to store the knowledge. 

The function of a neural network is producing an output pattern when an input 

pattern is presented. To summarize, a neural network should be able to: 

• classify patterns 

• be small enough to be physically realizable 

• be programmed by training, so it must have the ability to learn 

• be able to generalize from the examples shown during training. 

 Neural network are composed of computation elements that works parallel. These 

elements were designed originating from biological neural systems. In order to 

realize a function, we can train e neural network by adjusting the values of the 

connections that are called weights. 

In general; by training the neural networks the desired outputs can be obtained. 

This is given in Figure 3.1. Until the output of the neural network reaches the desired 

target, the output and the target are compared and training process continues. 

Neural networks are used in the areas of pattern recognition, identification, 

classification, speech processing, image processing with computer and control 

systems, etc.  

In general, the learning process may be classified as follows: 

• Learning with a teacher, also referred as supervised learning. 

• Learning without a teacher, also referred as unsupervised learning. 

In this thesis, we only deal with the methods of Feedforward Neural Network and 

Radial Basis Function neural network. These methods are both related to the 

supervised learning. Therefore we will only deal with these two methods in theory.  
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3.2 Neuron Model 

A simple model of artificial neuron is a computation element that has one output 

and more than one input. The model of single-input neuron is given in the Figure 3.2 

referred to the study (Haykin, 1999).  

 

 
       Figure 3. 2 Model of a single input neuron 
 

 
In Figure 3.2; p is the scalar value which refers to the input of the neuron, w is the 

weight value between the neuron and the p value, b is the bias value of the neuron, f 

is transfer function, a is the output of the neuron. At first; input p is multiplied by the 

weight w. The result of this operation is added to the bias b and after the operation 

with the transfer function, the output a is calculated. Transfer function can be a linear 

or non-linear differential function. In this simple neuron model, there is a simple 

mathematical relationship between input and output. However, in order to the neuron 

gives the desired output value, w and b values must be adjusted to an optimum value. 

The neuron model of multi-inputs is given in the Figure 3.3 referred to the study 

(Haykin, 1999).  
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   Figure 3. 3 Model of multi-inputs neuron 

 

In this figure, R is the number of inputs. As it can be seen from the figure the 

number of weight values w is equal to the number of input values. In this case; the 

mathematical expression of the neuron is given below: 

                 (3.1) 

 

3.3 Network Architectures 

 

The structure of neural network is directly related to the learning algorithm used. 

In general, there are three different kinds of network architectures 

 

3.3.1 Single Layer Feedforward Networks 

 

Neurons are organized in the form of layers in a layered neural network. The 

simplest form of a layered network has one input layer, and an output layer. This 

network is shown in Figure 3.4 
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  Figure 3.4 Single-layered feedforward neural network   

 

3.3.2 Multilayer Feedforward Networks 

 

In this kind of neural network in addition to the input and output layers, there are 

also one or more hidden layers whose computation nodes are correspondingly called 

hidden neurons or hidden units. These hidden layers are between input and output 

layers. The outputs of the input nodes are input to the first hidden layer, the outputs 

of the first hidden layer are inputs to the second hidden layer and so on. Figure 3.5 

shows a one hidden layered feed-forward neural network. 
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Figure 3. 5 A multilayer feedforward neural network with one hidden layer 

 

3.3.3 Recurrent Networks 

 

A recurrent neural network is distinguished from a feed-forward neural network 

by at least one feedback loop it has. The presence of feedback loops in recurrent 

neural network has a profound effect on learning capability of the network.  
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Figure 3.6 Recurrent Neural Networks with no self feedback loops and no hidden 

neurons 

 

3.4 Transfer Functions 

 

3.4.1 Hard-Limiter Transfer Function 

 

The graph of hard limiter transfer function is given in Figure 3.7 below. In this 

graph, n is the input of the function and a is the output of the function. The formula 

of this function is a=f(n). In this function; if the input value a is greater than zero, the 

output value is one; if the input value is smaller than zero, the output value is zero. 

Generally, this function is used in classification applications.  
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                               Figure 3.7 Hard Limit Transfer Function 

 

3.4.2 Linear Transfer Function 

 

The graph of linear transfer function is given in the Figure  3.8. As it can be seen 

from the figure, input is given to the output without any change. Here a is equal to 

n.This function is commonly used in linear filter problems. 

 
 

 
                            Figure 3.8 Linear Transfer Function 

 

3.4.3 Log-Sigmoid Transfer Function 

 

The sigmoid is a nonlinear logarithmic function. The output values are between 

zero and one independent of in what interval the input values are. It is a differential 

function, so it can be used with back-propagation algorithms. It can be used in the 

solution of nonlinear problems. The graph of log-sigmoid transfer function is shown 

in Figure 3.9. 
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                             Figure 3.9 Log-sigmoid transfer function. 

 

The mathematical expression of the function is as equation 3.2 below: 

 

                            (3.2) 

 

3.4.4 Tan-Sigmoid Transfer Function 

 

The graph of tangent sigmoid transfer function is given in the Figure 3.10. The 

mathematical expression of tan-sigmoid transfer function is as equation 3.3 below: 

 

                              (3.3) 

 

 
                        Figure 3.10 Tan-sigmoid transfer function 
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3.5 Feed-Forward Neural Network 

 

A feedforward neural network has connections between units that do not form a 

directed cycle. In this type of network, the information moves only in forward 

direction. The information moves from the input nodes through the hidden nodes and 

to the output nodes. In the network there are no cycles or loops. 

 

3.5.1 Single Layer Perceptron 

 

The simplest kind of feedforward neural network is a single-layer perceptron 

network. This type of neural network consists of a single layer of output nodes and 

the inputs are fed directly to the outputs via a series of weights. By taking this 

architecture into consideration, this type of neural network can be denoted as the 

simplest kind of feed-forward network. In each node the sum of products of the 

weights and the inputs is calculated. If the calculated value in this multiplication is 

above some threshold the neuron fires and takes the activated value; otherwise it 

takes the deactivated value. Generally, the threshold value is 0, activated value is 1 

and deactivated value is -1. The neurons which have such kind of activation 

functions are also called artificial neurons or linear threshold units. . In the literature 

the term perceptron often refers to networks consisting of just one of these units. As 

long as the threshold values lies between the activated and deactivated states, a 

perceptron can be created using any values of activated and deactivated states.  

 

A simple learning algorithm called delta rule is used for training perceptrons. This 

algorithm calculates the errors between calculated output and sample output data, 

and uses the calculated result to create an adjustment to the weights. It can be said 

that delta rule is a kind of implementation of gradient descent. 

 

Single-unit perceptrons are only capable of learning linearly separable patterns. In 

order to learn more complicated patterns, More complicated patterns can be learned 

by multilayer perceptrons.  

 

http://en.wikipedia.org/wiki/Artificial_neurons�
http://en.wikipedia.org/wiki/Perceptron�
http://en.wikipedia.org/wiki/Gradient_descent�
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3.5.2 Multilayer Perceptrons and Back-Propagation Learning 

The back-propagation algorithm has an important role in the design of a special 

class of layered feedforward networks known as multilayer perceptrons (MLP). 

Multilayer perceptron consists of an input layer of source nodes and an output layer 

of neurons known as computation nodes as shown in Fig.3.11. With the help of these 

two layers the network is connected to the outside world. In addition to these two 

layers, the multilayer perceptron usually has one or more layers of hidden neurons. 

These neurons are called as hidden because they are not directly accessible. The 

hidden neurons extract important features contained in the input data. 

 
  Figure 3.11 Fully connected feed-forward with one hidden layer and one output layer 

 

MLP is usually trained by using a backpropagation (BP) algorithm that involves 

two phases:  
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• Forward Phase: The free parameters of the network are fixed during this phase, 

and the input signal is propagated through the network seen in Figure 3.11 layer by 

layer. When an error signal is computed, the forward phase finishes 

 

                    (3.4) 

 

In the equation 3.4, di is the desired response and yi is the actual output produced 

by the network in response to the input xi. 

 

• Backward Phase During this second phase known as backward phase; the error 

signal ei is propagated through the network in the backward direction. During this 

phase in order to minimize the error ei some adjustments are applied to the free 

parameters of the network.  

 

Back-propagation learning may be implemented in one of two basic ways: 

 

1. Sequential mode: This mode is also referred to as the on-line mode or 

stochastic mode. In this mode, adjustments are made to the free parameters of the 

network on an example basis. The sequential mode is suitable for pattern 

classification.  

 

2. Batch mode: In this second mode of BP learning, adjustments are made to the 

free parameters of the network on an epoch basis. Each epoch consists of the entire 

set of training examples. The batch mode is suitable for nonlinear regression. The 

advantage of the back-propagation learning algorithm is its ease of implementation 

and computational efficiency. However, a major limitation of the algorithm is when 

we have to deal with a difficult learning task that requires the use of a large network, 

this type of network does not always converge and can be excruciatingly slow.  
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3.5.3 Accelerated Learning Backpropagation Algorithms 

 

The summary of accelerated learning backpropagation algorithms is given in the 

next parts with reference to the study (Ham & Kostanic, 2001, chap. 3). 

 

3.5.3.1 Conjugate –Gradient-based algorithm for training an MLP 
 
Step 1:Inıtialize the network weights to some small random values.  

 

Step 2: Propagate the qth training pattern through the network, calculating the 

output of every node. 

 

Step 3: Calculate the local error at every node in the network. For the output 

nodes the local error is calculated as  

 

                  (3.5) 

 

Where g(.) is the derivative of activation function f(.). For each of the hidden 

layer nodes, the local error is calculated as    

 

                 (3.6) 

 

Step 4:For each of the linear combiner estimates, the desired output value is given 

by  

 

  where                                                 (3.7) 

 

Step 5: Update the estimate of the covariance matrix in each layer 

 

                                                           (3.8) 
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Update the estimate of the cross-correlation vector for each node 

 

                                                                 (3.9) 

 

Where k is the pattern presentation index. 

 

Step 6: Update the weight vector for every node in the network as follows. 

 

a) At every node calculate  

 

 , else              (3.10) 

 

If  =0, do not update the weight vector for the node and go to step 7, else 

perform the following steps: 

 

b) Find the direction d(k). If the iteration number is an integer multiple of 

weights in the node, then  

 

                            (3.11) 

 

Else  

 

               (3.12) 

 

Where 

 

                   (3.13) 

 

c) Compute the step size  
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                (3.14) 

 

d) Modify the weight vector according to  

 

                       (3.15) 

 

Step 7: If the network has not converged, go back to step 2. 

 

3.5.3.2 Recursive Least-Squares-Based Backpropagation Algorithm 

 

Step 1: Inıtialize the network weights to some small random values.  

 

Step 2: Present an input pattern and calculate the responses of all linear 

combiners vi
(s) and all neuron outputs xout,I

(s) in the network. 

 

Step 3: For each layer of the network, calculate the Kalman gain matrix and 

update the covariance matrix estimate according to the following equations: 

 

               (3.16) 

 

Update the Kalman gain matrix for the sth layer. 

 

                (3.17) 

 

Update the covariance matrix for the sth layer according to  

 

            (3.18) 

 

Step 4: Calculate and backpropagate the local errors for the output layer 

according to the equations: 
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                (3.19) 

 

And for hidden layers 

 

               (3.20) 

 

Where g(z)=df(z)/dz, and f(z) is the activation function of the neuron. 

 

Step 5: For each of the linear combiners, estimate the desired output according to  

 

                (3.21) 

 

Where f-1(z) denotes the inverse of the neuron activation function. 

 

Step 6: Update the weights in each layer of the network according to  

 

             (3.22) 

 

Step 7: Stop if the network has converged, else go back to step 2.  

 

3.5.3.3 Backpropagation algorithm with adaptive Slopes of Activation functions 

 

Step 1: Inıtialize the network weights to some small random values. 

 

Step 2: From the set of the training input/output pairs, present the input pattern 

and calculate the network represented. 

 

Step 3:Compare the desired network response with the actual output of the 

network, and the local errors are computed using 

 

    for output layer             (3.23) 
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 for hidden layers            (3.24) 

 

Step 4: The weights of the network are updated according to  

 

              (3.25) 

 

Step 5: The slopes of the activation functions are updated according to  

 

            (3.26) 

 

If  < , then  =              (3.27) 

 

Step 6: Stop if the network has converged; else go back to step 2. 

 

3.5.3.4 Levenberg-Marquart Algorithm  

 

Step 1: Inıtialize the network weights to some small random values. 

 

Step 2: Present the input pattern and calculate the network represented. 

 

Step 3: Use the formula below to calculate the elements of the Jacobian matrix 

associated with the input/output pairs 

 

                                                              (3.28) 

 

Step 4: When the last input/output pair is presented, use the formula below to 

update the weights. 

              (3.29) 

 

Step 5: Stop if the network has converged; else, go back to step 2. 
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3.6 Radial-Basis Function Networks  

 

The other commonly used layered feed-forward network is the radial-basis 

function network which has important universal approximation properties. The 

structure of RBNNN is shown in Figure 3.12. With their structural simplicity and 

training efficiency; are good candidate to perform a nonlinear mapping between the 

input and output vector spaces RBF networks use memory-based learning for their 

design. Specifically, in this type of neural network learning is viewed as a curve-

fitting problem in high-dimensional space. 

 

RBFNN is a fully connected feed-forward structure. This type of network consists 

of three layers namely, an input layer, a single layer of nonlinear processing units, 

and an output layer.   Input layer has input nodes which are equal to the dimension of 

the input vector x. The calculation of the output of the jth hidden neuron with 

Gaussian transfer function is given as 

 
22

/σjcx
j eh −−
=                            (3.30)

    

where jh  is the output of the jth neuron, 1×ℜ∈ nx  is an input vector, 
1×ℜ∈ n

jc  is the 

jth RBF center, σ is the center spread parameter which controls the width of the 

RBF, and 
2. represents the Euclidean norm. The output of any neuron at the output 

layer of RBFNN is calculated as 

 

j

k

j
iji hwy ∑

=

=
1                             (3.31) 

 

In this formula  ijw  is the weight connecting hidden neuron j to output neuron i 

and k is the number of hidden layer neurons.  

The mapping properties of the RBFNN can be modified by adjusting the weights 

in the output layer, the centers of the RBFs, and spread parameter of the Gaussian 
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function. The simplest form of RBFNN training can be obtained with fixed number 

of centers. In Figure 3.12, a model of RBFNN is given. 
 

 
  Figure 3.12 A model of RBF NN 

 

3.7 Comparison of RBF Networks and Multilayer Perceptrons 

RBFNN and multilayer perceptrons NN has differences in some fundamental 

respects: 

 

RBF networks are local approximators, however multilayer perceptrons are global 

approximators. 

 

RBF networks have a single hidden layer, whereas multilayer perceptrons can 

have any number of hidden layers. 

The output layer of a RBF network is always linear, but the output layer of 

multilayer perceptron can be linear or nonlinear. 
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In an RBF network the activation function of the hidden layer computes the 

Euclidean distance between the input signal vector and parameter vector of the 

network, but the activation function of a multilayer perceptron computes the inner 

product between the input signal vector and the pertinent synaptic weight vector. 
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CHAPTER FOUR 

EXPERIMENTAL WORK 

4.1 General Information 

In this thesis, accurate and robust image registration based on neural networks 

have been implemented and tested in the presence of noise. Although some studies 

related to image registration based on neural networks are mentioned in chapter two, 

section 2.7, all of the schemes given have drawbacks. These are the long period of 

iterative learning process of FNN and its generalization for problem specific data to 

increase the accuracy of the results.  

 

As it is known; a well-generalized FNN can be obtained by regularization 

techniques or early stopping method at the cost of increased training times (or 

number of training trials).  This means a lengthy training phase, that may consists of 

many trials for ensuring a well-generalized FNN can never be avoided.   

 

The fundamental objective of this work is to replace the FNN with a radial basis 

function neural network (RBFNN) to overcome the drawbacks mentioned above.  

The proposed scheme here does not only avoid the drawbacks of a FNN-based 

scheme but also increases the accuracy and gives robust results in the presence of 

additive Gaussian noise owing to the better generalization ability of RBFNN. 

 

4.2 Coarse and Fine Registration 

In this thesis, the registration process is implemented in two categories. The first 

category is local range fine registration (LRFR) and the second category is medium 

range coarse registration (MRCR). 

 

The purpose of LRFR part was to accurately estimate the registration parameters 

from a relatively small range using a moderate size RBFNN. If it was wanted to be 

accurately estimated the registration parameters from a much wider range, then the 
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RBFNN needed would be enormous and impractical since the number of neurons in 

the hidden layer of an RBFNN is equal to the number of input vectors.  

 

On the other hand, by using MRCR, from a medium range, an additional RBFNN 

with a moderate size can be designed and trained to find registration parameters 

roughly. By this way, if it is wanted to register an image accurately from a wider 

parameter range: first, coarsely register image by the MRCR network, then apply 

back affine transform to image, and finally accurately register by the LRFR network. 

Later, the actual registration parameters can be found by joining the estimated values 

given by the two networks. The joint registration parameters are extracted from a 

combined affine transformation matrix. This transformation matrix is simply 

computed by multiplying the coarse transformation matrix from MRCR result by the 

fine transformation matrix from LRFR result. The same idea can also be applied to a 

FNN-based image registration scheme.  

 

4.3 Data Sets 

 

Table 4.1 shows the values of affine transformation parameters used for 

experimental LRFR and MRCR categories. This table also gives the numbers of 

generated images for training and test data. In MRCR, both range and step size 

chosen for all parameter values are wider compared to those in LRFR. 

Transformation parameters for the test data were chosen as the midpoints of the 

transformation parameters used for training data. This parameter choice helps 

discriminating the performances of the RBFNN-based scheme and FNN-based 

scheme by testing them at points farthest from the points at which they trained. By 

this way the system gives most accurate results anyway. In the experiments, three 

different reference images were used. In Figure 4.1 the first reference image, aerial 

and two samples in a training set generated from this by translating, rotating and 

scaling according to the values given in Table 1 is shown. Reference image moon is 

shown in Figure 4.2 and reference image girl is shown is Figure 4.3. All reference 

images have 256 gray levels and a size of 400×400 pixels. All generated images, 

each of which is 128 by 128 pixels size, were first added with white Gaussian noise.  
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In order to get DCT features, DCT of the noisy images were taken to obtain 

frequency domain coefficients. A region of 6 by 6 coefficients in the lowest 

frequency band in the DCT plane was cut out and used as a feature vector for each 

affine transformed image. Discarding the zero frequency coefficients, a matrix of 35 

by N coefficients was obtained. In this matrix, the dimension N is the number of 

generated images. This matrix was used to train exact RBFNNs and FNNs. Some test 

images with the transformation parameter values given in Table 1 were also created 

and added with noise of the same strength as that in the training set. In the same way, 

features from the test images were obtained.   

 
Table 4.1.Transform parameters for LRFR and MRCR 

transform 

parameter 

LRFR MRCR 

values used in 

training set 

values used in 

test set 

values used in 

training set 

values used in  

test set 

scaling 
0.9, 0.965, 1.035, 

1.1 
0.93, 1, 1.07 

0.70, 0.85, 1, 1.15, 

1.3 

0.77, 0.92, 1.07, 

1.24 

rotation (degrees) -5, -2, 2, 5      -3, 1, 4      -30, -15, 0, 15, 30 -25, -12, 5, 22 

vertical translation 

(pixels) 
-5, -2, 2, 5  -4, 0, 3      -20, -10, 0, 10, 20 -18, -5, 7, 16 

horizontal translation 

(pixels) 
-5, -2, 2, 5      -3, 1, 4      -20, -10, 0, 10, 20  -16, -4, 4, 17 

Number of generated 

images, N 
256 81 625 256 

 

For 2D-PCA coefficients, 2 Dimensional PCA is taken. As a result, a 6 by 6 

matrix was obtained and this matrix was used as a feature vector for each affine 

transformed image. This time, we have 36 by N coefficients differently from DCT 

features. Same as the DCT featured system these features are used for training in 

both RBFNNs and FNNs. Some test images with the transformation parameter 

values given in Table 4.1 were also created. These created images are added with 

noise of the same strength as that in the training set. Features from the test images 

were obtained exactly in the same manner as explained for the training data.  
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Figure 4. 1 

 

 
Figure 4.2 Reference image moon. 

 

 

 

 
(a) 

 

 
(b) 

 
(c)  

 Figure 4.1 (a) Reference image aerial, (b) an image generated from (a) by 

scaling and translating and (c) another image generated by scaling, rotating, 

translating and adding noise to use in the training set of the neural networks. 
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Figure 4.3 Reference image girl. 

 

4.4 Experiments with DCT Features 

 

The main purpose of these experiments was obtaining optimized neural networks. 

The first issue to train a RBF NN is finding the optimal spread values of the transfer 

function for the neurons of all RBFNNs. These spread values were found empirically 

as shown in Figure 4.4. The way of finding the optimal spread value is spanning a 

range of spread values at which registration errors for test data are computed. In the 

decision of the optimal spread value, Figure 4.4 is used and the value associated to 

the minimum of the registration errors in this figure is chosen. Figure 4.4 shows that 

the search for the optimal spread value of a RBFNN that yields 2000, using the 

training and test data of reference image ‘girl’. This search was done for 5 dB signal 

to noise ratio (SNR).  

 

In this manner, an optimal spread value was found for the data generated from 

each reference image and this computation was done for each SNR value used in the 

experiments. It can be seen from the plot that registration errors tend to increase 
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slowly after an abrupt fall. If any suboptimal spread value is chosen in a range, it will 

not increase estimation errors drastically.  

 

All the experiments were done for a noise free image and noisy images with two 

different SNR values. These SNR values are chosen 20 dB and 5dB for all 

experiments. For each affine transform parameter, mean of the absolute value of 

LRFR errors resulted by the RBFNN-based scheme was computed for each affine 

registration parameter.  

 

The fact that registration errors in scaling factor are very small in value compared 

to the others, as shown in Table 4.2, should not be mistaken. Since scaling factors in 

affine transformations are generally small and around 1, in order the estimation of 

scaling factor to have comparable accuracies, its errors are expected to be much 

smaller than registration errors in rotation and translations. 

 

In order to make comparisons of performance of RBF NN, mean errors from a 

FNN with a 20 neurons in one hidden layer by using the same training and test data 

were also computed and given in the Table 4.2. In the training of FNN, tangent-

sigmoid transfer function for the hidden layer neurons and a linear function for the 

output layer neurons were used. The network was trained using the Levenberg-

Marquardt method.  

 

In the training of FNN, the output parameter values fed to the FNN were 

normalized. This normalization process is done to speed up the convergence in the 

training stage and this also helped to obtain smaller network output errors in the 

registration stage. After this process the actual parameter values were obtained by 

denormalizing the network output values. For a better generalization of the FNN for 

the test data, we deliberately stopped training early during every training stage. 

Because of this, the training stage had to be repeated many times with early stopping. 

This early stopping method continues until it is concluded that a network giving the 

smallest registration errors for the test data among the trial networks was well 

enough generalized. The results shown in table 4.2 were obtained after about 25 
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training trials with early stopping. If the results of a single trial were used, we had 

had much worse registration errors. 

 

 

Figure 4.4 Optimal spread value is found by spanning a range of 
values at which registration errors for test data are computed. Scaling 
errors were multiplied by 100 to make them visible.  

 

The same procedures explained above for LRFR were repeated for MRCR. The 

difference of MRCR from LRFR was the dimensions of train and test sets. These sets 

are also given in table 4.1. The parameter value steps which were used in training 

had to be large, because it is wanted to keep the size of RBFNN in a moderate level. 

Mean of the absolute value of MRCR errors resulted by both networks are given in 

Table 4.3. From the table 4.3, it can be said that the mean errors are relatively high. 

However, the estimated registration parameters are in an acceptable range for a 

Coarse registration task. 

 

It must be taken into consideration that, such a Coarse registration task is to be 

followed by a fine registration performed using a neural network trained in LRFR 

mode. The LRFR process was done after back transforming the image of the Coarse 

registration.  

 

In the MRCR mode, coarse registration parameters that are estimated must be in 

the range for which that fine registration network is capable of estimating fine 
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registration parameters accurately. This can be done by selecting a proper range and 

also sufficiently small step size for registration parameter values used in the training 

stage of that coarse registration network.   

 

The results of these experiments are given in table 4.2 and table 4.3. These results 

show that RBFNN-based registration scheme is more accurate in estimating the 

affine transformation parameters for both LRFR and MRCR. For LRFR, it can be 

said that the accuracies of both of the schemes becomes nearly the same as SNR 

reduces to around 20 dB. However, for MRCR, the accuracy of the RBFNN-based 

registration scheme is clearly much better compared to FNN-based scheme. This is 

because of the larger parameter value steps in the MRCR training set. For this 

reason, network approximation errors are inevitably become large and dominate 

noise errors at the output of any of the two networks. Because of too small parameter 

value steps in the training set, LRFR estimates the parameter values very accurate.  

In this mode, still RBFNN-based scheme outperforms the FNN-based scheme at the 

high SNR values. Inherently, as the noise strength increases noise errors start 

dominating network approximation errors. For this reason in relatively low SNR 

values, there exist similar estimation accuracies for both schemes because an 

estimator in the highest accuracy region is prone to larger degradations caused by 

noise. In LRFR, the FNN-based scheme seems to be more robust to noise but this is 

not a valid fact for the total registration accuracy. Table 4.3 also shows that the 

RBFNN-based scheme is more robust to additive Gaussian noise in MRCR in 

addition to being more accurate.  
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Table 4.2  Mean absolute registration errors of RBFNN-based and FNN-based schemes for LRFR for 
DCT features 

Image SNR Neural 
Network scaling rotation horizontal 

translation 
vertical 

translation 

aerial 

Noise 
free 

RBF NN 0.0002 0.01 0.007 0.02 
FNN 0.0004 0.04 0.02 0.03 

20 dB RBF NN 0.0006 0.06 0.03 0.05 
FNN 0.001 0.1 0.04 0.07 

5 dB RBF NN 0.002 0.18 0.1 0.15 
FNN 0.003 0.22 0.17 0.25 

moon 

Noise 
free 

RBF NN 0.0003 0.03    0.004    0.01 
FNN 0.0006    0.06    0.01    0.02  

20 dB RBF NN 0.001   0.09  0.06   0.04 
FNN 0.001 0.1   0.05  0.06 

5 dB RBF NN 0.003    0.2   0.18    0.18 
FNN 0.004    0.3    0.24    0.19 

girl 

Noise 
free 

RBF NN 0.0001   0.005   0.004   0.004 
FNN 0.0003    0.01    0.01    0.02    

20 dB RBF NN 0.0007   0.05 0.05   0.03 
FNN 0.0009 0.05    0.04    0.05  

5 dB RBF NN 0.003   0.2    0.17  0.15 
FNN 0.003 0.2    0.15    0.19 

 
 
Table 4.3  Mean absolute registration errors of RBFNN-based and FNN-based schemes for MRCR for 
DCT features 

Image SNR Neural 
Network 

scaling rotation horizontal 
translation 

vertical 
translation 

aerial 

Noise 
free 

RBF 
 

0.014 1.3 1.0 1.3 
FNN 0.022 1.7 1.2 1.6 

20 dB RBF 
 

0.014 1.3 1.0 1.3 
FNN 0.022 1.7 1.1 1.4 

5 dB RBF 
 

0.018 1.5 1.1 1.5 
FNN 0.032 2.2 1.7 2.2 

moon 

Noise 
free 

RBF 
 

0.014 1.0 0.5   0.5 
FNN 0.021 1.7 0.9 0.8 

20 dB RBF 
 

0.017   1.4   0.6  0.6 
FNN 0.025   1.8 1.0    0.9 

5 dB RBF 
 

0.023   1.3   1.1   0.9 
FNN 0.031 2.4   1.5  1.3 

girl 

Noise 
free 

RBF 
 

0.011 0.8  0.9  0.7 
FNN 0.018 1.2 1.2 1.1 

20 dB RBF 
 

0.011   0.8  0.8  0.9 
FNN 0.020  1.4    1.3 1.0    

5 dB RBF 
 

0.013   1.0    0.9 0.8 
FNN 0.021 1.6    1.4    1.5 

 

4.5 Experiments with 2D PCA Features 

In order to compare the results that were obtained for the DCT features, it was 

needed to use a different feature extraction method, by the way, different features to 
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train the neural networks. For this reason Two Dimensional Principal Component 

Analysis (2D-PCA) was used as the feature extraction transform.  

 

Again, the same procedure was applied to the RBFNN and FNN. The optimal 

spread values of the transfer function for the neurons of all RBFNNs were found 

empirically.  After that, the training and testing processes were completed and mean 

of the absolute value of LRFR errors resulted by the RBFNN-based scheme was 

computed for each affine registration parameter, and the computed error values were 

given in Table 4.4 for the same SNR values as DCT features. Also, the training and 

testing processes were completed for the FNN same as it was done in DCT features. 

Mean errors computed from a FNN with a 20 neurons in one hidden layer by using 

the same training and test data were also given in the Table 4.4.  

 

While training in the FNN, In order to improve generalization of the FNN for the 

test data during every training stage, training was deliberately stopped early. For this 

reason, training stage had to be repeated with early stopping as many times until 

having the smallest registration errors for the test data. The registration error results 

for the FNN-based scheme given in Table 4.4 were obtained after about 25 training 

trials with early stopping. In a single trial, an average FNN gives much worse 

registration errors. 
 

The same procedures explained for LRFR of were repeated for MRCR. The only 

difference of these two modes is the difference of the transformation parameter 

values used for the training and test sets.  All the values are shown in Table 4.1. As it 

was in the DCT parameters, the size of the RBFNN is wanted to be kept moderate. 

For this reason, the parameter value steps chosen for training had to be large at the 

cost of much lower accuracy in estimating the registration parameters. Mean of the 

absolute value of MRCR errors resulted by both networks are given in Table 4.5. In 

fact, the mean errors for each parameter are relatively high, but if we take into 

consideration that this is a coarse registration task, then, the registration parameters 

are in an acceptable range. 
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According to the experimental results in table 4.4 and table 4.5, we can say that 

RBFNN is much better than FNN for the 2DPCA features. However if we compare 

DCT versus 2DPCA features, DCT has a better performance in noise free condition 

and higher SNR values.  
 

Table 4.4  Mean absolute registration errors of RBFNN-based and FNN-based schemes for LRFR for 
2DPCA features 

Image SNR Neural 
Network 

scaling rotation horizontal 
translation 

vertical 
translation 

 aerial 

Noise 
free 

RBF NN 0.0008 0.0694 0.0522 0.0740 
FNN 0.0023 0.1472 0.1036 0.1625 

20 dB RBF NN 0.0008 0.0694 0.0694 0.0843 
FNN 0.0018 0.1551 0.1177 0.1829 

5 dB RBF NN 0.0018 0.1302 0.1156 0.1461 
FNN 0.0040 0.2289 0.2106 0.2541 

moon 

Noise 
free 

RBF NN 0.0020 0.0882 0.1249 0.0622 
FNN 0.0023 0.1240 0.0943 0.0681 

20 dB RBF NN 0.0013 0.0831 0.0451 0.0655 
FNN 0.0018 0.1249 0.1315 0.0845 

5 dB RBF NN 0.0025 0.1487 0.1276 0.1002 
FNN 0.0041 0.2595 0.2593 0.2195 

girl 

Noise 
free 

RBF NN 0.0006 0.0767 0.0395 0.0279 
FNN 0.0015 0.0822 0.0653 0.0654 

20 dB RBF NN 0.0008 0.0638 0.0508 0.0492 
FNN 0.0009 0.1132 0.0717 0.0723 

5 dB RBF NN 0.0020 0.1774 0.1544 0.1135 
FNN 0.0034 0.2037 0.1779 0.1936 

 

Table 4.5  Mean absolute registration errors of RBFNN-based and FNN-based schemes for MRCR for 
2DPCA features 

Image SNR Neural 
Network 

scaling rotation horizontal 
translation 

vertical 
translation 

aerial 

Noise 
free 

RBF NN 0.021 1.480 1.186 1.129 
FNN 0.028 3.430 2.143 2.872 

20 dB RBF NN 0.021 1.505 1.149 1.112 
FNN 0.035 3.361 1.808 2.393 

5 dB RBF NN 0.023 1.476 1.145 1.147 
FNN 0.033 3.440 1.920 2.470 

moon 

Noise 
free 

RBF NN 0.012 1.40 0.67 0.59 
FNN 0.012 1.859 1.062 1.094 

20 dB RBF NN 0.013 1.390 0.676 0.795 
FNN 0.019 1.752 1.163 1.013 

5 dB RBF NN 0.014 1.449 1.023 0.946 
FNN 0.020 2.109 1.283 1.086 

girl 

Noise 
free 

RBF NN 0.010 0.677 0.619 0.472 
FNN 0.022 1.645 0.990 1.190 

20 dB RBF NN 0.011 0.672 0.639 0.481 
FNN 0.020 1.610 1.077 1.010 

5 dB RBF NN 0.012 0.768 0.784 0.604 
FNN 0.021 1.382 1.099 1.012 
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4.6 Performance Comparisons 

 

As mentioned in the former parts, in this study, experiments done in MATLAB by 

using two kinds of feature extraction methods and two kinds of neural networks; that 

is DCT and 2DPCA were used as feature extraction methods and RBF NN and FNN 

were used as artificial neural network structures. In this part, the performances of two 

networks used and two transforms used are compared respectively. While comparing 

these results, graphs based on table 4.2, table 4.3 table 4.4 and table 4.5 were used in 

order to understand the results better.  

  

4.6.1 Characteristics of the Computer Used 

 

In this thesis, the computer used for the experiments done has a Intel Core 2 Quad 

2.5 GHz CPU. The random access memory (RAM) of the computer has a capacity of 

4 GB. The computer uses Windows 7 Ultimate as the operating system. In the 

experiments, MATLAB R2009a was used as the version of MATLAB. 

 

4.6.2 RBF NN and FNN Performance Comparison 

 

The experiments done in all the study have two main categories. These are local 

range fine registration (LRFR) and medium range coarse registration (MRCR). The 

graphs in the Figures from 4.5 to 4.22 refer to LRFR category and Figures from 4.23 

to 4.40 refer to MRCR category.  In these graphs, the performance of RBF NN and 

FNN are compared both for DCT and 2DPCA features. In the comparisons, it was 

seen that in almost all the varieties of noise conditions that is, noise free, 20 db noise 

and 5 db noise, RBF NN has a superior performance compared to FNN independent 

of the image used.  As SNR is reduces to around 20 db, LRFR accuracies of both 

registration schemes become nearly the same. On the other hand MRCR accuracy of 

the RBFNN-based registration scheme is much better than the FNN-based 

registration scheme. The graphs from 4.5 to 4.40 are given in the next parts 4.6.2.1., 

4.6.2.2., 4.6.2.3 and 4.6.2.4.  At the end of this part, in Table 4.6 the comparison of 

RBF NN and FNN is also given as a summary of this section. 
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4.6.2.1 The Results of LRFR of DCT 

 

 
Figure 4.5 The errors of RBF NN versus FNN for noise free condition for the image aerial for 

DCT features in LRFR 

 

 
Figure 4.6 The errors of RBF NN versus FNN for 20 db Noise Condition for the image aerial 

and DCT features in LRFR 
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Figure 4.7 The errors of RBF NN versus FNN for 5 db Noise Condition for the image aerial 

and DCT features in LRFR 

 

 
Figure 4.8 The errors of RBF NN versus FNN for Noise Free Condition for the image moon 

and DCT features in LRFR 
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Figure 4.9 The errors of RBF NN versus FNN for 20 db Noise Condition for the image moon 

and DCT features in LRFR 

 

 
Figure 4.10 The errors of RBF NN versus FNN for 5 db Noise Condition for the image moon 

and DCT features in LRFR 
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Figure 4.11 The errors of RBF NN versus FNN for Noise-Free Condition for the image girl and 

DCT features in LRFR 

 
 

 
Figure 4.12 The errors of RBF NN versus FNN for 20 db noise Condition for the image girl 

and DCT features in LRFR 
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Figure 4.13 The errors of RBF NN versus FNN for 5 db noise Condition for the image girl and 

DCT features in LRFR 

 

4.6.2.2 The Results of LRFR of 2DPCA 

 

 
Figure 4.14 The errors of RBF NN versus FNN for noise free condition for the image aerial for 

2DPCA features in LRFR 
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Figure 4.15 The errors of RBF NN versus FNN for 20 db noise condition for the image aerial 

for 2DPCA features in LRFR 

 

 
Figure 4.16 The errors of RBF NN versus FNN for 5 db noise condition for the image aerial for 

2DPCA features in LRFR 
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Figure 4.17 The errors of RBF NN versus FNN for noise free condition for the image moon for 

2DPCA features in LRFR 

 

 
Figure 4.18 The errors of RBF NN versus FNN for 20 db noise condition for the image moon 

for 2DPCA features in LRFR 
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Figure 4.19 The errors of RBF NN versus FNN for 5 db noise condition for the image moon 

for 2DPCA features in LRFR 

 

 
Figure 4.20 The errors of RBF NN versus FNN for noise free condition for the image girl for 

2DPCA features in LRFR 
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Figure 4.21 The errors of RBF NN versus FNN for 20 db noise condition for the image girl 

for 2DPCA features in LRFR 

 

 

Figure 4.22 The errors of RBF NN versus FNN for 5 db noise condition for the image girl for 

2DPCA features in LRFR 
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4.6.2.3 The Results of MRCR of DCT 

 

 
Figure 4.23 The errors of RBF NN versus FNN for noise free condition for the image aerial for 

DCT features in MRCR 

 

 
Figure 4.24 The errors of RBF NN versus FNN for 20 db noise condition for the image aerial 

for DCT features in MRCR 
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Figure 4.25 The errors of RBF NN versus FNN for 5 db noise condition for the image aerial for 

DCT features in MRCR 

 

 

Figure 4.26 The errors of RBF NN versus FNN for noise free condition for the image moon for 

DCT features in MRCR 
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Figure 4.27 The errors of RBF NN versus FNN for 20 db noise condition for the image moon 

for DCT features in MRCR 

 

 

Figure 4.28 The errors of RBF NN versus FNN for 5 db noise condition for the image moon 

for DCT features in MRCR 
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Figure 4.29 The errors of RBF NN versus FNN for noise free condition for the image girl for 

DCT features in MRCR 

 

 

Figure 4.30 The errors of RBF NN versus FNN for 20 db noise condition for the image girl for 

DCT features in MRCR 

 

0,000

0,200

0,400

0,600

0,800

1,000

1,200

scaling rotation horizontal 
translation

vertical 
translation

0,011

0,800
0,900

0,700

0,018

1,200 1,200
1,100

RBF NN FNN

RBF NN versus FNN for Noise Free Condition

0,000

0,200

0,400

0,600

0,800

1,000

1,200

1,400

scaling rotation horizontal 
translation

vertical 
translation

0,011

0,800 0,800
0,900

0,020

1,400
1,300

1,100

RBF NN FNN

RBF NN versus FNN for 20 db Noise Condition



58 
 

 
 

 

Figure 4.31 The errors of RBF NN versus FNN for 5 db noise condition for the image girl for 

DCT features in MRCR 

 

4.6.2.4 The Results of MRCR of 2DPCA 

 

 
Figure 4.32 The errors of RBF NN versus FNN for noise free condition for the image aerial for 

2DPCA features in MRCR 
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Figure 4.33 The errors of RBF NN versus FNN for 20 db noise condition for the image aerial 

for 2DPCA features in MRCR 

 

 
Figure 4.34 The errors of RBF NN versus FNN for 5 db noise condition for the image aerial for 

2DPCA features in MRCR 
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Figure 4.35 The errors of RBF NN versus FNN for noise free condition for the image moon for 

2DPCA features in MRCR 

 

 
Figure 4.36 The errors of RBF NN versus FNN for 20 db noise condition for the image moon 

for 2DPCA features in MRCR 
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Figure 4.37 The errors of RBF NN versus FNN for 5 db noise condition for the image moon 

for 2DPCA features in MRCR 

 

 
Figure 4.38 The errors of RBF NN versus FNN for noise free condition for the image girl for 

2DPCA features in MRCR 
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Figure 4.39 The errors of RBF NN versus FNN for 20 db condition for the image girl for 

2DPCA features in MRCR 

 

 
Figure 4.40 The errors of RBF NN versus FNN for 5 db condition for the image girl for 
2DPCA features in MRCR 
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Table 4.6  Comparison between RBFNN-based and FNN-based schemes 

Issues RBFNN-based FNN-based 

Need for input/output data 
normalization 

No Yes 

Need for network 
generalization methods 

No Yes 

Need for multiple training 
trials 

No Yes 

LRFR performance Superior for high SNR  

MRCR performance Superior   

Time for single training < 1 sec between 15-50 sec 

 

4.6.3 DCT and 2D PCA Performance Comparison 

 

In this section, the comparison of DCT and 2DPCA features is given for both 

local range fine registration (LRFR) and medium range coarse registration (MRCR). 

The graphs in the Figures from 4.41 to 4.58 refer to LRFR category and Figures from 

4.59 to 4.76 refer to MRCR category.  In these graphs, the performances of DCT and 

2DPCA features are compared both for RBFNN and FNN. In the comparisons, it was 

seen that in noise free conditions, DCT has a superior performance compared to 

2DPCA. However, while the level of noise increases, that is increasing the noise 

from 20 db to 5 db; the performance of 2DPCA first becomes equal to the 

performance of DCT, and when the noise is in the level of 5 db, its performance 

becomes a little bit better than DCT for both LRFR and MRCR modes. The graphs 

of the experiments are given in the Figures from 4.41 to 4.76  in the  sections 

4.6.3.1., 4.6.3.2., 4.6.3.3 and 4.6.3.4.   
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4.6.3.1 The Results of LRFR of RBF NN  

 

 
Figure 4.41 The errors of RBF NN for DCT features versus 2DPCA features for noise free 

condition for the image aerial in LRFR 

 

 

Figure 4.42 The errors of RBF NN for DCT features versus 2DPCA features for 20 db noise 

condition for the image aerial in LRFR 

0

0,01

0,02

0,03

0,04

0,05

0,06

0,07

0,08

scaling rotation horizontal 
translation

vertical 
translation

0,0002

0,010 0,007

0,02

0,0008

0,0694

0,0522

0,074

DCT 2DPCA

DCT versus 2DPCA for Noise Free Condition

0,0000

0,0100

0,0200

0,0300

0,0400

0,0500

0,0600

0,0700

0,0800

0,0900

scaling rotation horizontal 
translation

vertical 
translation

0,0006

0,060

0,030

0,050

0,0008

0,0694 0,0694

0,0843

DCT 2DPCA

DCT versus 2DPCA for 20 db Noise Condition



65 
 

 
 

 
Figure 4.43 The errors of RBF NN for DCT features versus 2DPCA features for 5 db noise 

condition for the image aerial in LRFR 

 

 
Figure 4.44 The errors of RBF NN for DCT features versus 2DPCA features for noise free 

condition for the image moon in LRFR 
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Figure 4.45 The errors of RBF NN for DCT features versus 2DPCA features for 20 db noise 

condition for the image moon in LRFR 

 

 
Figure 4.46 The errors of RBF NN for DCT features versus 2DPCA features for 5 db noise 

condition for the image moon in LRFR 
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Figure 4.47 The errors of RBF NN for DCT features versus 2DPCA features for noise free 

condition for the image girl in LRFR 

 

 
Figure 4.48 The errors of RBF NN for DCT features versus 2DPCA features for 20 db noise 

condition for the image girl in LRFR 
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Figure 4.49 The errors of RBF NN for DCT features versus 2DPCA features for 5 db noise 

condition for the image girl in LRFR 

 

4.6.3.2 The results of LRFR of FNN 

 

 
Figure 4.50 The errors of FNN for DCT features versus 2DPCA features for noise free 

condition for the image aerial in LRFR 
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Figure 4.51 The errors of FNN for DCT features versus 2DPCA features for 20 db noise 

condition for the image aerial in LRFR 

 

 

Figure 4.52 The errors of FNN for DCT features versus 2DPCA features for 5 db noise 

condition for the image aerial in LRFR 
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Figure 4.53 The errors of FNN for DCT features versus 2DPCA features for noise free 

condition for the image moon in LRFR 

 

 

Figure 4.54 The errors of FNN for DCT features versus 2DPCA features for 20 db noise 

condition for the image moon in LRFR 
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Figure 4.55 The errors of FNN for DCT features versus 2DPCA features for 5 db noise 

condition for the image moon in LRFR 

 

 

Figure 4.56 The errors of FNN for DCT features versus 2DPCA features for noise free 

condition for the image girl in LRFR 
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Figure 4.57 The errors of FNN for DCT features versus 2DPCA features for 20 db noise 

condition for the image girl in LRFR 

 

 

Figure 4.58 The errors of FNN for DCT features versus 2DPCA features for 5 db noise 

condition for the image girl in LRFR 
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4.6.3.3 The Results of MRCR of RBF NN  

 

 
Figure 4.59 The errors of RBF NN for DCT features versus 2DPCA features for noise free 

condition for the image aerial in MRCR 

 

 

Figure 4.60 The errors of RBF NN for DCT features versus 2DPCA features for 20 db noise 

condition for the image aerial in MRCR 
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Figure 4.61 The errors of RBF NN for DCT features versus 2DPCA features for 5 db noise 

condition for the image aerial in MRCR 

 

 
Figure 4.62 The errors of RBF NN for DCT features versus 2DPCA features for noise free 

condition for the image moon in MRCR 
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Figure 4.63 The errors of RBF NN for DCT features versus 2DPCA features for 20 db noise 

condition for the image moon in MRCR 

 

 
Figure 4.64 The errors of RBF NN for DCT features versus 2DPCA features for 5 db noise 

condition for the image moon in MRCR 
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Figure 4.65 The errors of RBF NN for DCT features versus 2DPCA features for noise free 

condition for the image girl in MRCR 

 

 
Figure 4.66 The errors of RBF NN for DCT features versus 2DPCA features for 20 db noise 

condition for the image girl in MRCR 
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Figure 4.67 The errors of RBF NN for DCT features versus 2DPCA features for 5 db noise 

condition for the image girl in MRCR 

 

4.6.3.4 The Results of MRCR of FNN  

 
Figure 4.68 The errors of FNN for DCT features versus 2DPCA features for noise free 

condition for the image aerial in MRCR 
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Figure 4.69 The errors of FNN for DCT features versus 2DPCA features for 20 db noise 

condition for the image aerial in MRCR 

 

 
Figure 4.70 The errors of FNN for DCT features versus 2DPCA features for 5 db noise 

condition for the image aerial in MRCR 
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Figure 4.71 The errors of FNN for DCT features versus 2DPCA features for noise free 

condition for the image moon in MRCR 

 

 
Figure 4.72 The errors of FNN for DCT features versus 2DPCA features for 20 db noise 

condition for the image moon in MRCR 
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Figure 4.73 The errors of FNN for DCT features versus 2DPCA features for 5 db noise 

condition for the image moon in MRCR 

 

 

Figure 4.74 The errors of FNN for DCT features versus 2DPCA features for noise free 

condition for the image girl in MRCR 
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Figure 4.75 The errors of FNN for DCT features versus 2DPCA features for 20 db noise 

condition for the image girl in MRCR 

 

 

Figure 4.76  The errors of FNN for DCT features versus 2DPCA features for 5 db noise 

condition for the image girl in MRCR 
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CHAPTER FIVE 

CONCLUSION 

In this thesis, neural network based image registration process was released in the 

presence of noise. Two different types of neural networks were used for registration, 

which are RBFNN and FNN. Both of these networks are fed by global image 

features such as DCT coefficients and two dimensional PCA.  The results of RBFNN 

versus FNN networks and also DCT versus 2DPCA coefficients are compared in the 

experimental work part with the help of graphs and tables.  

In all the experiments done, it was seen that employing a RBFNN instead of FNN 

to estimate affine registration parameters gives more accurate results in the presence 

of noise. In addition to this, generally the proposed scheme shows good robustness to 

noise in general. The other important advantage of using RBFNN instead of FNN-

based scheme is its fastness and ease of implementation. By this way we avoid the 

disadvantages of FNN-based scheme such as lengthy training iterations, multiple 

training attempts and network generalization problem which are encountered during 

the training stage. In FNN, there are lots of parameters such as number of hidden 

layers, number of hidden layer neurons, etc. In order to determine these parameters, 

we have to do lots of tries. However, in RBFNN the only parameter has to be 

determined is the spread parameter of the Gaussian Function. Although the optimal 

spread value changes due to the changes in the training data in the training stage, the 

experiments show that any suboptimal spread value can be easily estimated and used 

without decreasing the performance drastically. 

The proposed scheme was applied both with DCT features and 2DPCA features. 

In the experiments, it was seen that DCT features gives more accurate results in noise 

free situation. However, in the presence of noise, 2DPCA has a better performance. 

This means that, DCT features are more sensitive to the presence of noise than 

2DPCA features. That is 2DPCA is more robust in the presence of noise. On the 

other hand, DCT has much more accurate results in the noise-free conditions or 

higher SNR values. As a result, DCT is much more sensitive to noise but it has 

higher accuracy in the noiseless conditions.   
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