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ABSTRACT

In this paper, the methods presented in | 1] and {2] lfor the solution of lincar
Fredholm integral cyuations are applied 1o certain nonlincar Fredholm integral
eyuations of the second Kind. Two cxamples, which had been cxamined by 3], are

solved in terms of Taylor polynomials and the results are compuired.
O7ZET

Bu makalede, lincer integral denklemlerin goziimii i¢in [11 ve 2] de verilen
yontemier, ikined tiir lineer olmayan bazi integral denklemlere uygulanmugtir. [3{'de
incelenmiy olan iki drnek, Taylor polinomlary cinsinden ¢oziiliip sonuglar

kargdagtiribmigur,
1. INTRODUCTION

A Taylor expansion approach for solving linear Fredholm integral eqnations

in the forny
b
p(x)=1(x)+ & S Ky ey dy
a
has been presented by Kanwal and Lio 1], where g s the unknown function, while

the functions [(x)} and K(x,y) are the known functions, and a,b and A are constants.
The method (Taylor 1) is based on lirst differentiating both sides of the integral
equation n times and then substituting the Taylor series for the unknowa function in

the resudting equation. In addition, a matria method (Taylor 1y kas been given by
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Sezer and Dogan [2], which is based on first king the Taylor expansions of the
functions in the integral equation and then substituting their matrix {orms in the
cquation. In both cases, it has been obtained o linear algebraic system with the

unknown coelficients or a malrix cquation and has been solved approximately by o

suitable truncation scheme.

In this study, the basic ideas of the mentioned works (Taylor I and Taylor 11

methods) are applied to the nonlinear Fredholm integral equations of the second

Kind
b

g(x) ='f(x) + A J Kix,y) [g(y)]zd}' 4))
a

andl the solution is expressed in the Torm

(2)

g(x)

or

Cglx) (3)

n
k=
o]
=
x-—-—
e
m
ES
[}

which is a Taylor polynomial of degree N at x=0. Here g(k)(n) or g k=0,1....N

are the Taylor coelticients w be determined.

2. THE METHODS OF SOLUTION

Taylor 1 method: To obtain the solution of the equation (1) in the form
(2, we follow the similar way as [1]. In this case, we first differentiate the both

sides of (1) 0 times with respect o x and have

b (n)
(x) = e xy 4« 2 ys B
a 3 x

(n)
& Eg(y)lzdy-

When we put x=0 in (his cquition, we gel
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b (n)
g™y = ™)+ a s B K(x,y) G(y) dy (4)
a T - %=0 ;

where G(y)= [g(y)]z. Nexl, we expand G(y) in Taylor serics at y=o, i.c.
" ; A ;
1 (m)

Gly) = L — & "oy, | (57
m=0. m! :

- and substitute it in (4); where the coefficients GUM(0),m=0,1,... can be computed by

Leibniz's rule as

mn = e
G(m)(o) N ): (M g(m i) (0) g( (0) (6)
i=0
The result is ;
] ‘5 (“) = 1 {m) m
(n) oy o0 a_Kix,¥) [y — e meaty" ldy
g {o)f ) xaf N IX:U R
or ‘
£ PR % (m)
g “(0) = £ (0) + Am):_o T .-G (0), (7)
where, for n,m= 0,1,2,...
b .(n)
1 a Kix,y) m :
s o § | vty
nm m! . 'ax” 5] 7 (8

The relations (7) for n,m=0,1,. . oceur an infinite nonlincar dlguhram sysiem
with the unknown b(“)(n) This system can be solved .lpprmun.udy by h!kmg,
nm=0,1,...,N so that N is a sulficienily farge number. In this case, the (uantitics
£M)(6) oblained by (7) Tor n=0,1,...,N correspond 1o the Taylor coelficients of the
function g(x) at x=0. Thus the solution of (1)-becomes a T aylor |Ju[yn()mml in the

form (2).

Taylor II Method: This is a matcix method, the similar to {21, which
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makes use of Taylor series about origin and can be used o vbtain a polynomial
solution of (1) in the form (3). For this purpose, we assume that the functions f(x),
K(x,y) and g(x) are approxiniated by the truncated Taylor serics (Taylor polynomials)

ol the forms, respectirely,

N (n) (9)
f 0
flx) = § f X", fn=-——J—L
n=0 n n! 4
(10)
N N m 1 a‘"*"‘)s{(x ¥)
K(x,y) = E E knm xny ; knm = = s
fel  mel ntmt 500 gy" =0,
y=0
and
N (n)
0
g = 1 g x", g =-52—% (11)
n=0 n!

In addition, using (11) it is possible (o express the lenn [g(y)l2 = G(y) of Eq.(1) as

N N i
Gly) = ) Y g & ¥
"n=0 m=0 % 1

+m

(12)

For n,m= 0,1, ....N, the functions in cquation (1) can be writicn in the

matrix forms

f(x) = XF (x) = XG ' (13)
K(x,y)= XK Y! G(y)=Y*B
s0 that '
X=[1xx2..xN] G=lg, g - &Nl
Y=(1yy2.. yN| F=If,f] .. I[N
Y*={1yy . y2N| K = {k,,,, l.m=0,1, ..N

B= Ihu l,)l thll
where F, K and B are mauices with elemens

I,(n) (0)

f = — £
n i (14)
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(n+m)

" 3 1 0 K(x,v) ) (15)
n m
nm nlm! ax ay x=0
y:O
and
"
= .., N
1 B, By I 7 Podunwen
3 :4 k=0 . (16)
; . N+ 2 ZN
: - IS
)I gk gj—k N N+1a ey » &t
bk:JwN

Next, we substitute the matrix forms (13) in the integral equation (1) and

have the matrix equation
G = F+A KHB : a7

where H is matrix with elements

b . m+ j+1 m+ j+ 1
= [ ym+3 dy = i . (18)
a

mj m+ j+1

’

m=0,1,...,N 5 J=0,1...,2N

Also, the equation (17) carresponds 1o a nonlinear algebraic system wilh the
unknown cacllicicnts g, n=0,1, .., N.This system can be solved approximately by

the known methads [4].
3. ILLUSTRATIONS

I this paper some methods ol approximation solutton, with Taylor

polynomial werms, and at the some time, if exist, analytical solwions as polynomial
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form, of the integral equation (1) have been evaluated. Now we illustrate it by the

following cxamples.

Example 1. Let us find the solution of the integral equation,

:
g(x):—;-——;-x+ fSln[—-—-x(yH)] [g(y) 1% dy (19)
-1

i terms of the Taylor polynomial of third degree, so that

. Iy
<I'(x)=,]; - X KOxy)=sin L x(y»i-])],:l:—l, b=1,d=1, N=3>

a) Taylor 1 Method: For this purpose we evaluate the quantities (™) o) .
and Ty, Tor, nm=0,1,2 3:

(Wn=1,2 0y = -1/8 =0 B3 =0

Typ=0 Top =0 Tyz =0 Toa=0
Tig=1/2 T =16 Ty =1/12 Ti3 = 1/60
Tyy=0 Ty =0 Tas =0 Ty3=0
1o . 3 s 1 2. 13
== 5 ™= 3o T32=- 150 T33=- 3360

Next, we substitute these values in (7) andd get the nonlinear system
gl =172

o !
g ((]) = CI(“)(U) + -_.(_. C’(l)(())"'""— 6(2)({))+ } G(B)(O)

e m)—“

R ] 1] 3 (1 13

gy = -]Z-G( o) g )(n) (.(2)(“)_ 360 GOy
whene

GOin= [ptny)2 Gy = 2 gy )
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Gy =2 g0y g@0) +2 (gon?

G =2 g0y g3 +6 gDy g0

This nonlincar system has two solutions:

gDy =05
gthm= - 0,000311
g2m= 0

gB3)0) = - 0,015551

Conscyucnily, substituting these valucs in (2),we obtain two solutions ol the

' integral equation (19) as

@) =
g D=
MO

gB3)0) = -0,934815

g1(x) =0,5-0,000311 x - 0,002592 x3

and

g2 (x) = 0,5+ 5.018627 x - (,155803 %3

b) Taylor 1I Method. Using the relations (14), (15) and (18) tor

n,m=0,1,2 3, j=0,1,...6 we oblain the matrices

A 0
9
F= l K.= __!__
— 4
8
0 0
0 o X
184

0 27
210

0 2p
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5,018627

0

0

0

0

0




Substituting these matrices in Eg, (17) and then using the result matrix

equation, we have the nonlinear algebraic system

By = ~,];~ g2 =0

by + —]—3+ l)4+ l)5+1 bg

]
gl=___+ (

m b0+-t-;—b1 +

L
6
7 13 17 4

- Ly b b —2_
oTh“ 60 "1 0 "2 1 P e ™ s S T org 6

: :ol-—

)

where hj-j =0,1,...,6 arc defined by (16). The solutions of this system are

gy=05 go=0.
- 0,0003073 g1 = 52096699

gr=0 gp=0

g3 = - 0,0025923 g3 =-0,16104615

and thereby the solutions of the given integral equation become
g1 (3) = 0,5 - 00003075 x - 0,0025923 x3
23 (X) = 0,5 + 52096699 x - 0,16104615 x3

The numerical solution of the integral equation (19) in Chebyshev series was
given by Shimasaki and Kiyono [3}. The final solutions are 1abulated together with
Chebyshev solution in the Tables 1 and 2.

Tuble 1. The Solution gy (x) for Example 1

Chebyshey Taylor I Taylor 1
X Sth degree 3th degree 3th degree
1,0 0,502879 0,502003 . 0,502899
-0,5 0,500478 0,500479 | 0,500478
0 (,499999 (L5 0,5
0,5 0,499522 0,499520 0,499522
1,0 0,497119 0,497097 0,497100
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Table 2. The Solution go (x) for Example 1

|
Chebyshew Taylor 1 Taylor 11

X Bth degree 3th degree 3th degree
-1,0 -4,548743 -4,362825 -4,548624
-0,5 -2,083991 -1,089838 -2,084704

0 0,499999 0.5 0,5
0,5 3,083992 2,989838 3,084704

1,0 5,548745 5,362825 5,548624

Example 2. Lel us solve the integral equation

1
B x-1+ J (2y+ny?) lg)1 dy (20)

S
1(X) = e X2 - ——
B(x) 6 105 0.

so that
() = Z 03 K(x,y) = x2y+xy?, a=o, b=1, A =1

Let us apply the first method 1o (20) in the case N=4. Then we evaluate the
quantities f’(")(f]) and Ty, nym = 0,1,23,4;

Oy =1 Doy=-8 @o= 2 Bho=0 @
(M Q) 05 () 3 ) (=t

Tow=ll  Trameed . Tous ot Tall Tyl
Om Im mi(m+3) 2m mi(m+2) Im 4m

We substitute these values in (7) for n,m=(,1,2,3,4 and get the nonlincar

algebraic sysiem

gOm=-1 g®m=0 poy=0

(D = L aOm+ L oMo+ La@wy+ <= 6B Loy
gt () (H4G()+1QG()+36G”+168(’()

8

105

g(2x0)= G(U)(tmT. G“)(O)+ G@0y+ L He (3)(0)+ 6(4)(0)+-—-§-
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where G0y, m=0,1,2,3,4, are defined by (6). From this sysiem, the coelTicients

gy, n=0,1,2,34 are computed us
gW=-1 gMm=0  g@=2 2Bm=0 g@w=0

and thus the solution ol the integral cquation (20) becomes g(x) = x2-1 which is the

cxact solution,
* By taking N=2 and using the second method, we have the same result casily.
4-CONCLUSIONS

Taylor Methods have been used 1o obtain a polynomial solulion of nonlinear

Fredholm integral equations of the second kind, which is expressed-in the form

N (n) N ‘
gix) = z _5_# Xn or g(x) = 2 gk xn,
n=0 s n=0

provided that the functions [(x) and K(x,y) can be expanded 10 Taylor series at origin,
Here the number N, the degree of (he approximating polynomial o g(x), must be

chosen sufficiently large.

Gencrally, the first method depends on the differentiating and inlegrating
operations; we can be encountered with difficulties. In the sccond method, the
clements of matrices are based on the algebraic relations and may be computed
easily. Therelore, in many cases, this method is rather useful and requires Iess

compuiational labour than the first one,

The mentioned methods, for small values of N, can be used in finding a good
starting solution for the Newton methad [3]. On the other hand, for the appropriate
values of N, they give results of nearly the same accuracy by Newton method; as
shown in Table 1 and 2, Here we observe that the value of N in the first method

must be taken greater than the second one,

An important property of these methods is that we get exuct solutions in
many cases, as demostrated in Example 2. In this example, we obtained the exact
solution by taking n=4 [or the lirst method and N=2 for the sccaomd method. So it is

appropriate to consider a priori estimaie for N,
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